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Abstract— Nonlinear model-predictive control has recently
shown its practicability in robotics. However it remains limited
in contact interaction tasks due to its inability to leverage
sensed efforts. In this work, we propose a novel model-predictive
control approach that incorporates direct feedback from force
sensors while circumventing explicit modeling of the contact
force evolution. Our approach is based on the online estimation
of the discrepancy between the force predicted by the dynamics
model and force measurements, combined with high-frequency
nonlinear model-predictive control. We report an experimental
validation on a torque-controlled manipulator in challenging
tasks for which accurate force tracking is necessary. We show
that a simple reformulation of the optimal control problem
combined with standard estimation tools enables to achieve
state-of-the-art performance in force control while preserving
the benefits of model-predictive control, thereby outperforming
traditional force control techniques. This work paves the way
toward a more systematic integration of force sensors in model
predictive control.

I. INTRODUCTION

A. Motivation

Many tasks require accurate control of contact forces

exerted on the environment: polishing, grinding, grasping,

etc. This skill, trivial to humans, remains beyond most robot’s

abilities despite continuous progress in robotics research over

the past decades. While Model Predictive Control (MPC)

affords the online synthesis of complex motions, it remains

fundamentally limited in its ability to control physical in-

teraction. As a matter of fact, although force sensors have

been used since the early days of robotics [1], they remain

notably absent from modern control techniques relying on

model-based optimization.

This is partly because predicting the evolution of contact

forces is challenging in general and involves sophisticated

models [2] that are too specific or impractical for real-time

applications. Hence, the contact models used in practice for

optimization-based control are kept simple for algorithmic

convenience [3]. However, these simplifications hinder the

ability to derive meaningful control policies in contact with

explicit force feedback. To this day, the predictive feedback

control of contact forces remains an open problem.

In this work, we address this issue and show that standard

estimation tools [4] together with a reformulation of the

optimal control problem can provide a simple yet effective

framework to achieve force-output-feedback MPC.
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B. Related work

Force control techniques are classically divided into direct

force control and indirect force control [5]. A full introduc-

tion is out of the scope, so we only provide here a brief

overview and refer the reader to the concise introductory

review on active compliant control proposed in [6].

Direct methods attempt to regulate the force explicitly us-

ing measurement feedback, typically in an integral controller

- which is historically considered the best basic strategy for

force tracking [7]. It can be combined with motion feedback

in complementary task directions [8], or in parallel [9]. While

the use of explicit force feedback enables high accuracy

tracking, the artificial decoupling of force and motion tasks

hides potential conflicts [10], [11] or phenomena such as

contact friction [12] and exchange of mechanical work [13].

On the other hand, indirect methods, such as impedance

control [14] or admittance control [15], [16], aim at reg-

ulating the dynamic relationship between force and motion.

While this allows to generate stable and compliant contact in-

teractions, such techniques are mainly limited by their force

tracking capability: since the force is controlled indirectly

through motion regulation, the tracking performance depends

on a priori unknown environment parameters [17]–[20].

More recently, MPC has shown its ability to accommodate

conflicting objectives through constrained nonlinear opti-

mization [21]. Much research has focused on introducing

MPC into direct [22], [23] and indirect [24]–[28] force

control methods, mainly motivated by its ability to satisfy

constraints. In contrast to [22], [23], [26], [28], [29], the

proposed approach does not require a contact force dynam-

ics model, which greatly simplifies the optimization. Un-

like [24], [25], [27], we use a force sensor to achieve explicit

force tracking rather than impedance/admittance regulation.

Estimation can also be used to improve performance in

force tasks. In [30], external forces are estimated with a

centroidal model. In [31], a state-dependent force correction

model is adapted online. Closer to our work, [32] proposed

an active Kalman observer in MPC to reject unmodeled

disturbances at the input level, which can be viewed as a

form of model-reference (direct) adaptive control. However,

those lines of work do not consider the full dynamics model.

C. Contributions

In this paper, we propose a novel MPC formulation that al-

lows to exploit direct feedback from force sensors. We show

that simple contact models and standard estimation tools

allow to incorporate force feedback in MPC and to achieve

state-of-the-art performance. We claim that force feedback

in MPC is not as challenging as it seems and that it solves



many issues: it circumvents tedious modeling of complex

phenomena (contact, friction, etc.), boosts performance of

classical MPC in contact tasks, and does not conflict with

optimization contrary to traditional force control methods.

We propose to use force measurements to estimate online

the mismatch between the robot’s dynamics model and

measurements. This mismatch is used to correct directly the

predictive model or the control objective. This idea resembles

that of indirect adaptive control [33], where a model of the

plant is identified online to adapt the controller’s parameters.

Our approach allows high-quality force tracking accuracy in

challenging interaction tasks. Our main contributions are:

• a new framework affording direct force feedback control

inside nonlinear MPC based on online estimation and

feedback linearization

• a systematic comparative experimental study of our

force feedback MPC against traditional techniques.

In particular, we demonstrate that the proposed approach

outperforms integral control: it benefits from the same force

tracking capability without impeding the benefits of MPC.

In particular, in contrast to integral control, our approach

maintains or improves the MPC running cost performance.

It has also the advantage of being conceptually simple and

cheap to implement with existing tools and software.

II. BACKGROUND

In this section, we recall the classical MPC formulation

for torque-controlled robots under rigid contacts, and point

out its inherent inability to provide force-feedback policies.

A. Classical model-predictive control

MPC solves online the Optimal Control Problem (OCP)

min
x(.),u(.)

∫ T

0

ℓ (x(t), u(t), t) dt+ ℓT (x(T )) (1)

s.t. ẋ(t) = f(x(t), u(t))

where x(0) = xm is the initial (measured) state, f the

dynamics model, and ℓ, ℓT the running and terminal costs.

Note that hard constraints on the state and control can

be added, as soft penalties or hard constraints - which

may be more challenging for real-time applications. This

OCP is transcripted into a non-linear program, i.e. the cost

and dynamics are discretized using an Euler discretization

scheme. This program is solved online at each control cycle.

For the remainder, and without limitation, we assume that

the robot is fully actuated with n joints, the state vector

x = (q, q̇) ∈ R
2n includes the joint positions and velocities

and the control vector u = Ä ∈ R
n includes the joint torques.

B. Rigid contact model

In optimization-based control, it is convenient to assume

that contacts between the robot and the environment are

rigid, i.e., pure kinematic constraints that can be resolved

at the dynamics level. The dynamics of a robot in contact

is given by the following constrained dynamical system

corresponding to the KKT conditions of Gauss’ principle

of least constraint [34]
[
M(q) JT (q)
J(q) 0

] [
q̈

−F

]
=

[
Ä − b(q, q̇)
−³0(q, q̇)

]
(2)

where M(q) ∈ R
n×n is the generalized inertia matrix,

J(q) ∈ R
nc×n the contact Jacobian, F ∈ R

nc the contact

force, b(q, q̇) ∈ R
n the nonlinear effects of Coriolis, cen-

trifugal and gravity forces, and ³0(q, q̇) ∈ R
nc the contact

acceleration drift. For clarity, the dynamics f in (1), is in fact

the solution map of system (2), i.e. f : (q, q̇, Ä) 7→ (q̈, F ).
The dependencies in q, q̇ will be dropped in the remainder.

C. The challenge of force feedback

While the rigid contact model conveniently fits the MPC

framework, it inherently prevents force feedback. The contact

force F corresponds to the Lagrange multiplier of the contact

constraint, namely Jq̈ + ³0 = 0 (second row of the system

(2)) [35]. As such, it cannot be controlled in a feedback

sense: once x = (q, q̇) and F are measured, u = Ä is

already completely determined by (2). Hence, u cannot be

optimized as a function of F without creating an algebraic

loop. This issue is a typical pathology from control systems

with non-zero input-output feedthrough and can be broken

by introducing delay [36]. This point was discussed and

addressed in our previous work [29], where actuation was

modeled as a low-pass filter, and the joint torques were

treated as part of an augmented state. In contrast, we propose

in this paper to break this coupling thanks to the online

estimation without augmenting the state of the MPC.

III. METHOD

This section presents a new approach using estimation

to leverage force sensor feedback in MPC. It includes an

estimator, a reformulation of the MPC problem to include

force feedback in the MPC model, and a feedback-linearizing

compensation term for unmodeled force directions.

A. Estimation

As explained previously, it is unclear how to achieve

force feedback under the rigid contact assumption without

introducing delays or more complex contact models. We

show here that estimation is a simple way to circumvent this

issue by keeping the rigid contact assumption and correcting

the model. Indeed, due to numerous model inaccuracies, the

force F predicted by (2) rarely matches the force measure-

ment. Hence a natural idea is to keep track of this mismatch

by estimating online the offset between the model and the

measurement with standard Kalman filtering [4].

The idea of estimating an offset error to improve the

closed-loop performance of the controller is standard in

estimation (e.g., [30]). We show that a disturbance ∆ in

the dynamics can incorporate rich force sensor feedback

information in the MPC. We consider a model of the form:

Mq̈ + b = Ä + JTF +M(∆), (3a)

Jq̈ = −³0. (3b)



Here, M models how ∆ offsets the dynamics. While the

mismatch can be modeled in many ways, we assume that

M is linear. Specifically, we consider two different models:

• Torque offset (in joint space) : M(∆Ä) = ∆Ä

• Force offset (in task space) : M(∆F ) = JT∆F

This offset is meant to correct the model mismatch due to

inaccurate modeling of, e.g., the dynamics, contact model,

external disturbance, etc. The idea is to estimate the offset

online, given raw measurement. More precisely, given a

prior on the offset ∆̂, we use joint positions, velocities,

accelerations, torque commands, and force measurements to

update the force offset. We assume perfect joint position and

velocity measurements, and Gaussian measurement noise:

∆ = ∆̂ + w, w ∼ N (0, P ), (4a)

q̈m = q̈ + v, v ∼ N (0, Q), (4b)

Fm = F + ¸, ¸ ∼ N (0, R), (4c)

where Fm is the force measurement and q̈m the acceleration

measurement. P,Q and R are positive-definite covariance

matrices. As it is traditionally done in Kalman filtering, each

disturbance distribution is considered to be Gaussian, which

allows to solve the Maximum Likelihood Estimation (MLE)

problem [4]. Here, the MLE aims at finding the parameters

∆, q̈, F that maximize the probability density function given

the observed measurement and prior force offset:

max
∆,q̈,F

p(∆, q̈, F | ∆̂, q̈m, Fm) (5)

subject to constraint (3a)

Applying the negative logarithm and leveraging the normal

distribution assumption, the problem is equivalent to:

min
∆,q̈,F

∥∆− ∆̂∥2P−1 + ∥q̈ − q̈m∥2Q−1 + ∥F − Fm∥2R−1

subject to constraint (3a) (6)

where ∥w∥2
P−1 = wTP−1w. If M(∆) is linear, Prob-

lem (6) becomes an equality QP and can be solved very

efficiently with off-the-shelf solvers. This, in turn, allows

high-frequency online estimation, e.g., 5 kHz for a 7 DoF

robot. As in a Kalman filter, the obtained estimate ∆ is used

as a prior at the next time step.

Note that other constraints can be considered in the QP,

such as inequalities on estimated quantities (e.g. force offset).

Remark 1. If additional inequality constraints are unneces-

sary, one may solve the problem using a Kalman filter [4].

More specifically, one can use Recursive Least Squares

(RLS) [37] with the transition equation, ∆ = ∆̂ + w along

with the observation equation

[
q̈m

Fm

]
=

[
−M JT

J 0

]
−1 [

b− Ä −M(∆)
−³0

]
+

[
v

¸

]
, (7)

in order to estimate ∆ online. Note that if M is linear,

this observation model is linear, and one can use the RLS

equations to derive an update rule on ∆.

B. Force feedback in the MPC via estimation

Once estimated, the force offset must be considered by the

controller. This will break the coupling between forces and

torques discussed in Section II-C by adding a delay between

the measurement and the corrective term ∆F .

1) Naive inclusion as a corrective control: A naive ap-

proach is to add a feedforward term to the optimal torque

given by the MPC, ÄMPC, to compensate the estimated offset:

Ä = ÄMPC −M(∆). (8)

Although this work focuses on MPC, this method is agnostic

to the nature of the controller.

2) Inclusion in the predictive model: Alternatively, the

offset can be considered directly in the model used by the

MPC. More precisely, we can consider that the offset will

be constant over the horizon of the MPC and solve the OCP

using as dynamics Eq. (3a) (instead of Eq. (2)). The MPC

model is then updated online at each offset estimate update.

Remark 2. Interestingly, when M(∆F ) = JT∆F , updating

the predictive model is in fact equivalent to modifying the

force reference in the cost function. More specifically, the

modified dynamics can be written in the following way:

[
q̈

F

]
=

[
−M JT

J 0

]
−1 [

b− Ä

−³0

]
−
[

0
∆F

]
. (9)

Therefore, the force offset only biases the predicted forces

and does not affect the acceleration. This means that

this force offset has no impact on the predicted trajec-

tory. The offset will only impact terms of the cost func-

tion that include the predicted force. Given a cost of

the form ℓ(x, u, F (x, u,∆F )), we can simply consider

ℓ(x, u, F (x, u)−∆F )) , and discard ∆F from the prediction

model. This greatly simplifies the implementation and gives

more interpretation to the method. Interestingly, if the cost

function does not depend on the force, the force offset will

not impact the solution of the OCP.

C. Direct compensation of unmodeled force directions

The above formulation assumes that force can only be

exerted in the nc constrained dimensions. However, in reality,

forces can exist in the other 6 − nc directions and may

interfere with the task if not taken into account (e.g. friction

during a polishing task if only the normal force is modeled).

Following [1], instead of using an explicit 6D force model

to compute a feed-forward compensation term, we propose

to use the force measurements directly. This is in fact a

form of Feedback Linearization (FL) as emphasized in [38].

Concretely, we add to the optimal torque given by the MPC

the following compensation FL term

Ä = ÄMPC − JT
6DSF

m
6D, (10)

where J6D ∈ R
n×6 and Fm

6D ∈ R
6 are the full 6D Jacobian

and measured force, and the selection matrix S : R6 → R
6

nullifies the nc constrained dimensions. In the experiment

section, we will show that this simple FL term will lead to



competitive performances with more established yet more

complex friction models such as the Coulomb model.

From a control perspective, it could seem unsafe at first

glance to use measured forces in the control torque because

the robot would always maintain itself in a disturbed state,

which would create divergence of the force (e.g., pushing

harder). But this would happen only if unmodeled forces

are unbounded (i.e. motion is actually constrained by the

environment). If the unmodeled forces are bounded, the

disturbance would simply generate motion in their directions.

For instance, if the normal force on a plane is stably

controlled, the lateral forces are bounded by it through the

friction cone. In that case, a disturbance increasing the lateral

forces would simply make the robot slip. So this FL term is

a safe compensation term to use in practical situations.

Remark 3. The FL compensation term in Eq. (10), could

instead be added directly inside the MPC model, assuming

that it remains constant over the whole horizon.

IV. EXPERIMENTAL STUDY

In this section, we evaluate the performance of the pro-

posed approach through a comparative experimental study on

a torque-controlled manipulator. First, we show the major

advantage in tracking performance of using explicit force

feedback over classical MPC. This benefit is twofold: force

feedback enables to effectively cancel friction, and it corrects

the model mismatch thanks to online estimation. Second, we

demonstrate the benefit of encoding the model mismatch in

the task space (∆F ) rather than in the joint space (∆Ä ).

Finally, we show how the proposed approach outperforms the

most established force control strategy (integral control) by

demonstrating that its force tracking performance is identical,

but that it additionally aligns with the MPC objectives.

A. Experimental setup

All experiments were performed on the torque-controlled

KUKA LBR iiwa R82014. We used an ATI F/T Sensor

Mini40 mounted at the tip of the arm on a custom end-

effector mount piece. A short MPC horizon (4 nodes of 6ms)

allowed to run the MPC and the estimator synchronously

at 1 kHz. The estimation QP problem (6) is solved using

ProxQP [39], the OCP (1) is transcripted using Crocod-

dyl [40], and rigid-body dynamics are computed using

Pinocchio [41]. Our code is publicly available1. Moreover,

the accompanying video illustrates the robustness of the

proposed approach to external disturbances.

B. Tasks formulation

1) Polishing task: A constant normal force is exerted on

a horizontal plane (ex, ey) while tracking a circular end-

effector trajectory. The MPC includes a 1D rigid contact

force model (nc = 1) so that the constraint (3b) prevents

motions in the normal direction ez , and ignores tangential

1https://github.com/machines-in-motion/force_observer

forces in the (ex, ey) directions. The cost function is

ℓ(x, u, t) = w1∥x(t)− x̄(t)∥2Q1
+ w2∥u(t)− ū(t)∥2Q2

+w3∥pee(t)− p̄ee(t)∥2Q3
+ w4∥F (t)− F̄ (t)∥2Q4

+w5∥vee(t)∥2Q5
+ w6∥ log3

(
R̄ee(t)TRee(t)

)
∥2Q6

where (wi, Qi)i=1..6 are positive scalar weights and positive

diagonal activation matrices, x̄(t) = (q̄(t), 0) is a reference

configuration, pee(t), F (t), Ree(t) are the position of the end-

effector, contact force and end-effector orientation respec-

tively, , p̄ee(t), F̄ (t), R̄ee(t) are their respective references,

vee(t) is the end-effector velocity, ū(t) = g(q(t))− JTF (t)
is the gravity compensation torque under external forces,

log3 : SO(3) 7→ so(3) is the logarithm map on rotations.

The circular trajectory p̄ee(t) has a diameter of 14 cm and

a speed of 3 rad s−1, unless otherwise stated. The reference

normal force is constant F̄ = 50N.

2) Force step tracking task: A 3D contact force (nc = 3)

step signal is tracked. Hence the motion of the end-effector

is constrained in normal and tangential directions. The cost

function has the same form as the polishing cost function

(11), with the only differences that F (t), F̄ (t) are 3D, the

reference end-effector position pee(t) is now constant and the

force reference is defined as F̄ (t) =
(
F̄x(t), F̄y(t), F̄z(t))

)

where F̄x(t) is a step signal from −10N to 10N, F̄y(t) =
0N and F̄z(t) = 100N are constant.

3) Energy minimization: A sinusoidal joint position tra-

jectory is tracked while maintaining a fixed 3D contact with

the horizontal plane and minimizing ∥Ä∥2. The cost function

is similar to the polishing (11), except that the reference

configuration q̄(t) is no longer constant, no end-effector cost

is used (w3 = w5 = 0), the control regularization term is

turned into an energy term (ū(t) = 0). The reference joint

trajectory is a sine on the A3 joint with an amplitude of

0.2 rad and a frequency of 2Hz. Here the force objective acts

as a regularization term to avoid slipping and large forces (i.e.

w4 j w1, w2, w6) and the reference is F̄ (t) = (0, 0, 50).

C. Friction model vs direct measurement feedback (FL)

We evaluate the effect of force feedback as a direct

compensation of the contact friction (Section III-C). We

compare its performance on the polishing task against the

classical MPC (i.e., without compensation) and the well-

known Coulomb’s friction model

FT = −µ
v

∥v∥FN , (11)

where FT ∈ R
2 is the tangential force, FN ≜ F ∈ R is the

normal force, v ∈ R
2 is the tangential velocity of the contact

point and µ is the dynamic friction coefficient. This model

is clearly discontinuous in v so in order to avoid chattering

phenomena, we consider the following smooth relaxation

FT = −µ
tanh(ϵ∥v∥)√

2

v

∥v∥FN , (12)

where we used µ = 0.35 and ϵ = 10. Our results

are reported in Table I for several polishing speeds. We

can see that the Coulomb model is slightly better in fast
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Fig. 1: Normal force trajectories of the medium-velocity

polishing task. The blue curve is the classical MPC without

friction compensation, the green curve is the classical MPC

with the Coulomb model compensation, and the red curve is

the classical MPC with FL compensation.

Default FL Coulomb

Slow (1 rad/s) 7.67± 0.55 3.83± 0.17 4.72± 0.21

Medium (3 rad/s) 9.66± 1.38 3.92± 0.56 3.99± 0.33

Fast (6 rad/s) 16.42± 0.79 5.22± 0.32 4.82± 0.25

TABLE I: Mean-absolute error (MAE) of the normal force

(in N) for the polishing task over 10 circles: classical MPC

(Default), FL compensation (10) and Coulomb model (12).

motions but less performing in slow motions. Figure 1 shows

the corresponding force trajectories for the medium-speed

polishing task. Note that the FL compensation term only uses

the 3D Jacobian as the contact torques a negligible in that

task. These experiments confirm that considering the friction

forces substantially increases performance w.r.t. classical

MPC. Moreover, it shows that explicit force feedback from

sensors can effectively be used as an FL term to directly

to compensate friction effects and that it leads to a similar

performance to well-established friction models.

As pointed out in Remark 3, it would be interesting to use

the Coulomb model inside the MPC so that lateral forces are

predicted using velocity and rigid normal force predictions,

but this raises challenging issues (non-smoothness, insuffi-

cient software, breaks symmetry of KKT (2), etc.).

D. Comparison between force offset and torque offset

In this experiment, we compare the two mismatch models

introduced in Section III-A, namely the torque offset ∆Ä

and the force offset ∆F . Although capturing all disturbances

in ∆Ä seems intuitive, experimental comparisons on the

polishing task reveal a higher tracking accuracy for ∆F . For

each model, we implemented the two ways of incorporating

the correction into the MPC, namely
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Fig. 2: Normal force (top) and end-effector position error

(bottom) for the polishing task: in blue the classical MPC

(II), in green the classical MPC with the FL compensation

term (III-C), in red the proposed approach with FL compen-

sation and the force offset in the predictive model (III-B.2).

∆τ ∆F

Corrective control 2.01± 0.08 1.55± 0.03

Predictive model 1.95± 0.07 1.55± 0.04

TABLE II: MAE of the normal force (in N) for the polishing

task: force offset ∆F vs. torque offset ∆Ä , used in the

control loop either in the ”predictive model” way of III-B.2

or in the ”corrective control” way of III-B.1.

• The ”corrective control” way of III-B.1: the correction

is added to the optimal torque as a feedforward input

• The ”predictive model” way of III-B.2: the correction

is added directly to the model

Figure 2 illustrates how force feedback improves both the

force tracking and the end-effector position tracking. Our

results are summarized in Table II. There is a notable

performance difference between ∆F and ∆Ä with a clear

advantage for the force offset. Intuitively, the torque offset

estimates perturbations unrelated to the contact (e.g. joint

stiction) while the force offset only corrects what is necessary

to improve the force tracking. There is, however, no clear

difference in performance between using the estimate as a

corrective control or in the predictive model. There seem

to be a slight advantage for the predictive model, but the

performance gap is too shallow to draw any conclusions.

E. Integral force control

Our approach is now compared to the most established

direct force control approach - integral control. We were

not able to find a difference in performance between using

the integral term in the predictive model or as a corrective

control. This question being out of the scope of this paper,
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Fig. 3: Lateral force trajectories in the ex direction for the

force step tracking task: the blue curve is the classical MPC

(Default), the green curve is the classical MPC with with

integral control (Integral) and the red curve is the force offset

estimation ∆F included in the predictive model (∆F (PM)).

we propose to consider only the latter:

Ä = ÄMPC − J(q)T
(
−KI

∫ t

0

(
F (t′)− F̄ (t′)

)
dt′

)
(13)

Note that we deliberately chose not to include a proportional

and a derivative control term as Volpe et. al. [7] demonstrated

both theoretically and experimentally that pure integral gain

control was the best choice for accurate force tracking.

1) Polishing: We observed the same force tracking per-

formance on the polishing task for the integral controller

(1.69±0.05N) than for the proposed approach (cf. Table II,

∆F as corrective control).

2) Step experiment: We show in this experiment that the

proposed approach and integral control have equivalent force

tracking performances on a force step tracking task. The

force trajectories are in Figure 3. We also report the average

force tracking error of all the controllers in Table III.

Avg. error

Default 1.99

∆F (predictive model) 0.71

∆F (corrective control) 0.60

∆τ (predictive model) 0.80

∆τ (corrective control) 0.87

Integral control 0.68

TABLE III: MAE of the normal force error for a step tracking

task for different controllers: classical MPC (Default), force

offset estimation (∆F ), torque offset estimation (∆Ä ) and

integral control. ∆F and ∆Ä are used as corrective control

(III-B.1) or in the predictive model (III-B.2).

3) Energy minimization: In this experiment, we illustrate

the ability of force feedback MPC to achieve contact tasks

with conflicting objectives. Table IV shows how the proposed

force estimation approach aligns with the MPC objectives

by trading off force tracking against energy minimization:

its overall cost is lower than the integral controller, which

conflicts with the MPC and generates a high cost. These

results also show interestingly that somehow, the torque

offset estimation (∆Ä ) uses less energy than the force offset

estimation (∆F ), although it yields a slightly higher cost

overall. This suggests that encoding the mismatch as a

Avg. ∥τ∥2 Total cost

Default 136± 21 0.44± 0.02

∆F (predictive model) 139± 13 0.43± 0.01

∆F (corrective control) 145± 18 0.43± 0.02

∆τ (predictive model) 131± 21 0.48± 0.01

∆τ (corrective control) 132± 22 0.51± 0.02

Integral control 1052± 29 0.82± 0.027

TABLE IV: Average squared torque and total cost for each

controller for the energy task: classical MPC (Default), force

offset estimation (∆F ), torque offset estimation (∆Ä ) and

integral control. ∆F and ∆Ä are used as corrective control

(III-B.1) or in the predictive model (III-B.2).

joint torque offset may have its own benefits, other than

accurate force tracking. The accompanying video illustrates

the relative importance of w2∥Ä∥2Q2
w.r.t. the total cost.

V. CONCLUSION

In this work, we proposed a simple approach to achieve

force feedback in MPC that relies on the online estimation

of the mismatch between the predicted forces and the force

measurements. Our experiments showed that force feedback

effectively cancels friction and brings the force tracking

performance to the level of the most established direct

force control strategies. We also studied two variants of our

approach: the estimation of a torque offset in the joint space,

and the estimation of a force offset in the task space. Our

experiments show that the force offset yields a more accurate

force tracking while the torque offset is more generic and can

enhance other criteria (e.g., energy minimization).

In conclusion, our experimental results show that current

optimization-based control and estimation techniques are

sufficient to incorporate force sensors in model-predictive

controllers and suggest a more systematic exploitation of

those modalities on real robots. In future work, it would be

interesting to add the integral error as part of an augmented

state in the MPC. Also, the estimation could be done over a

horizon (although it has not led to any improvement so far

in our trials), and the assumption of perfect joint position

and velocity measurements could be relaxed, although this

would turn the estimation problem into a nonlinear program.

Finally, it would be interesting to extend the proposed

methodology to floating base robots.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-

dation grants 1932187, 2026479, 2222815 and 2315396, the

French government under the management of Agence Na-

tionale de la Recherche through the NIMBLE project (ANR-

22-CE33-0008) and through the ”Investissements d’avenir”

program (PRAIRIE ANR-19-P3IA-0001 and ANITI ANR-

19-P3IA-0004) and by the European Union through the

AGIMUS project (GA no.101070165). Views and opinions

expressed are those of the author(s) only and do not neces-

sarily reflect those of the European Union or the European

Commission. Neither the European Union nor the European

Commission can be held responsible for them.



REFERENCES

[1] D. Whitney, “Historical perspective and state of the art in robot
force control,” in Proceedings. 1985 IEEE International Conference

on Robotics and Automation, vol. 2, 1985, pp. 262–268.
[2] E. Corral, R. Moreno, M. J. G. Garcı́a, and C. Castejón, “Nonlinear

phenomena of contact in multibody systems dynamics: a review,”
Nonlinear Dynamics, vol. 104, pp. 1269 – 1295, 2021.

[3] R. Featherstone, Rigid Body Dynamics Algorithms, 2008.
[4] S. Thrun, “Probabilistic robotics,” Communications of the ACM,

vol. 45, no. 3, pp. 52–57, 2002.
[5] L. Villani and J. De Schutter, Force Control. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008, pp. 161–185.
[6] M. Schumacher, J. Wojtusch, P. Beckerle, and O. von Stryk, “An intro-

ductory review of active compliant control,” Robotics and Autonomous

Systems, vol. 119, pp. 185–200, 2019.
[7] R. Volpe and P. Khosla, “Theoretical and experimental investigation of

explicit force control strategies for manipulators,” IEEE Transactions

on Automatic Control, vol. 38, no. 11, pp. 1634–1650, 1993.
[8] M. Raibert and J. J. Craig, “Hybrid Position / Force Control of Ma-

nipulators,” Journal of Dynamic Systems, Measurement, and Control,
vol. 102, no. June 1981, pp. 126–133, 1981.

[9] S. Chiaverini and L. Sciavicco, “The Parallel Approach to
Force/Position Control of Robotic Manipulators,” IEEE Transactions

on Robotics and Automation, vol. 9, no. 4, pp. 361–373, 1993.
[10] B. Siciliano, “Parallel force/position control of robot manipulators,” in

Robotics Research. Springer London, 1996, pp. 78–89.
[11] J. Duffy, “The fallacy of modern hybrid control theory that is based

on “orthogonal complements” of twist and wrench spaces,” Journal

of Robotic Systems, vol. 7, no. 2, pp. 139–144, 1990.
[12] T. Yoshikawa, “Force control of robot manipulators,” Proceedings -

IEEE International Conference on Robotics and Automation, vol. 1,
no. April, pp. 220–226, 2000.

[13] N. Hogan, “Contact and Physical Interaction,” Annual Review of

Control, Robotics, and Autonomous Systems, vol. 5, no. 1, pp. 1–25,
2022.

[14] ——, “Impedance Control Part1-3,” Transaction of the ASME, Journal

of Dynamic Systems, Measurement, and Control, vol. 107, no. March
1985, pp. 1–24, 1985.

[15] D. E. Whitney, “Force feedback control of manipulator fine motions,”
Journal of Dynamic Systems, Measurement and Control, Transactions

of the ASME, vol. 99, no. 2, pp. 91–97, 1977.
[16] W. S. Newman, “Stability and performance limits of interaction

controllers,” Journal of Dynamic Systems, Measurement and Control,

Transactions of the ASME, vol. 114, no. 4, pp. 563–570, 1992.
[17] H. Seraji, “ADAPTIVE ADMITTANCE CONTROL: An Approach to

Explicit Force Control,” Jet Propulsion, pp. 2705–2712, 1994.
[18] H. Seraji and R. Colbaugh, “Force tracking in impedance control,”

International Journal of Robotics Research, vol. 16, no. 1, pp. 97–
117, 1997.

[19] S. Jung, T. C. Hsia, and R. G. Bonitz, “Force tracking impedance
control for robot manipulators with an unknown environment: The-
ory, simulation, and experiment,” International Journal of Robotics

Research, vol. 20, no. 9, pp. 765–774, 2001.
[20] D. Erickson, M. Weber, and I. Sharf, “Contact Stiffness and Damping

Estimation for Robotic Systems,” International Journal of Robotics

Research, vol. 22, no. 1, pp. 41–57, 2003.
[21] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli,

“Real-Time motion planning of legged robots: A model predictive
control approach,” IEEE-RAS International Conference on Humanoid

Robots, pp. 577–584, 2017.
[22] M. D. Killpack, A. Kapusta, and C. C. Kemp, “Model predictive

control for fast reaching in clutter,” Autonomous Robots, vol. 40, no. 3,
pp. 537–560, 2016.

[23] J. Matschek, J. Bethge, P. Zometa, and R. Findeisen, “Force Feedback
and Path Following using Predictive Control: Concept and Application
to a Lightweight Robot,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 9827–
9832, 2017.

[24] A. Wahrburg and K. Listmann, “MPC-based admittance control for
robotic manipulators,” 2016 IEEE 55th Conference on Decision and

Control, CDC 2016, pp. 7548–7554, 2016.
[25] K. J. Kazim, J. Bethge, J. Matschek, and R. Findeisen, “Combined

Predictive Path Following and Admittance Control,” Proceedings of

the American Control Conference, vol. 2018-June, pp. 3153–3158,
2018.

[26] M. Bednarczyk, H. Omran, and B. Bayle, “Model Predictive
Impedance Control,” Proceedings - IEEE International Conference on

Robotics and Automation, no. 1, pp. 4702–4708, 2020.
[27] M. V. Minniti, R. Grandia, K. Fäh, F. Farshidian, and M. Hutter,

“Model predictive robot-environment interaction control for mobile
manipulation tasks,” 2021 IEEE International Conference on Robotics

and Automation (ICRA), pp. 1651–1657, 2021.
[28] T. Gold, A. Völz, and K. Graichen, “Model predictive interaction con-

trol for robotic manipulation tasks,” IEEE Transactions on Robotics,
vol. 39, no. 1, pp. 76–89, 2023.

[29] S. Kleff, E. Dantec, G. Saurel, N. Mansard, and L. Righetti, “Intro-
ducing force feedback in model predictive control,” in 2022 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
2022, pp. 13 379–13 385.

[30] N. Rotella, A. Herzog, S. Schaal, and L. Righetti, “Humanoid mo-
mentum estimation using sensed contact wrenches,” 2015 IEEE-RAS

15th International Conference on Humanoid Robots (Humanoids), pp.
556–563, 2015.

[31] W. Amanhoud, M. Khoramshahi, M. Bonnesoeur, and A. Billard,
“Force Adaptation in Contact Tasks with Dynamical Systems,” Pro-

ceedings - IEEE International Conference on Robotics and Automa-

tion, pp. 6841–6847, 2020.
[32] A. Lawitzky, A. Nicklas, D. Wollherr, and M. Buss, “Determining

states of inevitable collision using reachability analysis,” IEEE In-

ternational Conference on Intelligent Robots and Systems, pp. 4142–
4147, 2014.
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