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Abstract. We study p-adic hyper-Kloosterman sums, a generalization of the Kloosterman sum
with a parameter k that recovers the classical Kloosterman sum when k = 2, over general p-adic
rings and even equal characteristic local rings. These can be evaluated by a simple stationary
phase estimate when k is not divisible by p, giving an essentially sharp bound for their size.
We give a more complicated stationary phase estimate to evaluate them in the case when k is
divisible by p. This gives both an upper bound and a lower bound showing the upper bound
is essentially sharp. This generalizes previously known bounds [3] in the case of Zp. The lower
bounds in the equal characteristic case have two applications to function field number theory,
showing that certain short interval sums and certain moments of Dirichlet L-functions do not,
as one might hope, admit square-root cancellation.

1. Introduction

Let R be a discrete valuation ring of prime residue characteristic p, ⇡ a uniformizer, n and
k positive integers, and  a nondegenerate character R/⇡

n
R ! C⇥. Fix k � 1 and define the

Kloosterman sum

Klk(x) =
X

x1,...,xk2R/⇡nRQk
i=1 xi=x

 

⇣ kX

i=1

xi

⌘
.

The goal of this paper is to evaluate this sum (including determining when it is zero and
bounding it) in the case where n > 1. In particular, we will handle the trickier case where p

divides k. This problem is most classical over R = Zp, but we will work with both more general
p-adic rings and rings of equal characteristic p in the interests of applications to function fields,
potential future applications to number fields, and the desirability of putting results in their
proper, most general context.

We begin by describing the obtained bounds. This requires introducing some notation:
Let v be the p-adic valuation of k. In mixed characteristic, let e be the ⇡-adic valuation of p.

Let
(1)

w =

(
#{j | 0  j  v � 1, pj(p� 1) | e, e(v � j + (pj + 1)/(pj+1 � p

j))  n� 1} (mixed characteristic)

0 (equal characteristic)

and

k
⇤ = gcd(k, |R/⇡|� 1)pw.

Note that w  v and gcd(k, |R/⇡|� 1)  k/p
v so we always have k

⇤  k.
We always take 0 2 N. Let

(2) c = min{s 2 N | ⇡(pr+1)s
p
v�r ⌘ 0 mod ⇡n for all r 2 N, r  v}
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and

(3) c̃ = min{s 2 N | ⇡(pr+1)s
p
v�r ⌘ 0 mod ⇡n�1 for all r 2 N, r  v}.

The main results of this paper are the upper bound Theorem 1.1 and the lower bound Propo-
sition 1.2 showing that Theorem 1.1 is close to sharp.

Theorem 1.1 (Propositions 3.6 and 3.13). If n � 2, we have

|Klk(x)|  k
⇤|R/⇡|kn/2�c/2�c̃/2

Proposition 1.2 (Proposition 3.15). If n � 2, there exists x 2 R/⇡
n such that

|Klk(x)| � |R/⇡|kn/2�c/2�c̃/2

The estimate of 1.1 simplifies in two cases.

Corollary 1.3. If n � 2 and e = 1 we have

|Klk(x)|  gcd(p, 2) gcd(k, |R/⇡|� 1)|R/⇡|kn/2�max(n�v
2 ,1)

where gcd(p, 2) is 1 if p 6= 2 and 2 if p = 2.

When R = Zp so |R/⇡| = p, this estimate was obtained earlier in [3].

Proof. Since e = 1, we never have pj(p�1) | e, unless p = 2 and j = 0, so k
⇤ = gcd(k, |R/⇡|�1),

except in the p = 2 case where there is an extra factor of 2. Furthermore, we have c̃ =
max

�⌃
n�1�v

2

⌥
, 1
�
and c = max

�⌃
n�v
2

⌥
, 1
�
so that c+ c̃ = max(n� v, 2). ⇤

Corollary 1.4. If n � 2 and R is a ring of equal characteristic,

|Klk(x)|  k
⇤|R/⇡|

kn�d n
pv+1e�d n�1

pv+1e
2 .

Note that this upper bound is roughly of size |R/⇡|(
k
2�

1
pv+1)n and thus is worse than square-

root cancellation, which would be an exponent of
�
k
2 �

1
2

�
n.

Proof. We have c =
l

n
pv+1

m
and c̃ =

l
n�1
pv+1

m
. ⇤

In the general mixed characteristic case, the situation is more complicated than either of these.
We have

c = min{s 2 N | (pr + 1)s+ e(v � r) � n for all r 2 N, r  v} = max
r2{0,...,v}

⇠
n� e(v � r)

pr + 1

⇡
.

Depending on n, e, v, the maximum can be attained at any value of r, so there are many regimes
where the growth rate of supx |Klk(x)| in n takes di↵erent values.

These estimates have interesting consequences for moments of L-functions in the function field
case. Let Fq be a finite field of characteristic p, Fq[T ] the ring of polynomials in one variable
over Fq, ⇡ a prime polynomial in Fq[T ], Fq[T ]

+
⇡0 the set of monic polynomials in Fq[T ] prime to

⇡, and n a natural number. For f a polynomial write |f | = q
deg f . For � a nontrivial Dirichlet

character (Fq[T ]/⇡n)⇥ ! C⇥, we can define

L(s,�) =
X

f2Fq [T ]+
⇡0

�(f)|f |�s
.
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We say � is primitive if it does not factor through (Fq[T ]/⇡n�1)⇥ and we say � is odd if �(F⇥
q ) 6= 1.

We let F⇡,n be the set of primitive odd Dirichlet characters mod ⇡n. We can consider moments
of L-functions such as X

�2F⇡,n

|L(1/2,�)|2k

for a natural number k or more general shifted twisted moments such as

(4)
X

�2F⇡,n

�(a)
kY

i=1

L(1/2 + ↵i,�)L(1/2 + ↵k+i,�)

for a natural number k, shifts ↵1, . . . ,↵2k 2 iR, and a 2 (Fq[T ]/⇡n)⇥. The CFKRS heuristics
[4] and their function field analogues [1] can be used to provide predictions for such moments.
However, in the case of twisted moments, they have usually been used to produce estimates with
error terms that are not uniform in the twist a [2], and in fact large secondary terms are known
to appear [5, Theorem 10]. We remedy this by producing a CFKRS-like estimate that could
plausibly have a uniform error term of square-root size, by including multiple main terms. We
show that for k = 1 the error term is in fact of square-root size uniformly in a.

However, we use our lower bounds for Kloosterman sums to show that, for k � p
v, the error

term of this estimate cannot have power savings better than 1/(pv + 1), in the large n, fixed
⇡ limit (i.e. in the depth aspect). In particular, when k � p one cannot obtain square-root
cancellation. We expect that this is a large characteristic phenomenon and cautiously predict
that uniform square-root cancellation should hold over function fields for k < p and over the
integers for all k, in particular because this family of Dirichlet L-functions is harmonic (in the
sense of [8]) and there still seems to be no evidence that harmonic families over number fields
don’t admit square-root cancellation in their moments.

Another lower bound applies to sums of divisor-like functions in short intervals.
For f a monic polynomial over Fq of degree k(n� 2), let d(n�2,...,n�2)

k (f) be the number of k-
tuples f1, . . . , fk of monic polynomials of degree n�2 such that

Qk
i=1 fi = f , which we think of as

either an analogue of the generalized divisor function dk(n) which counts the number of k-tuples
of positive integers whose product is n, or, more precisely, an analogue with factors of restricted
size

P
n1,...,nk2N,

Qk
i=1 ni=n

Qk
i=1 ✓(ni/N) for a smooth weight function ✓. Define If,(k�1)(n�2)�1 to

be {f + g | g 2 Fq[T ], |g| < q
(k�1)(n�2)�1}, which we think of as a function field analogue of a

short interval.
A special case of [9, Theorem 4.5] is that for any g monic of degree k(n� 2) over a finite field

Fq of characteristic p,
������

X

f2Ig,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f)� q

(k�1)(n�2)�1

������
⌧ 3(k + 2)(k+1)(n�2)+1

q
p+1
2p (k�1)n

.

This is an Fq[T ]-analogue of a power savings estimate for the sum of a divisor-like function
(with the size of the divisors restricted by smooth weights, say) in a short interval. It has power
savings, which approaches square-root cancellation as p ! 1 for fixed k, but not for p fixed.
Here square-root cancellation would be an error term of size q

(k�1)n/2.
As a consequence of our estimates for Kloosterman sums, we can show that this sum in fact

fails to admit square-root cancellation when k is divisible by p, and the upper bound is closer
than it might appear to being sharp when k = p and q is large.
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Proposition 1.5. For any integers k � 1 and n � 2 and a finite field Fq of characteristic p, we
have ���

X

f2Ig,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f)� q

(k�1)(n�2)�1
���� q

( k
2�

1
pv+1)n

for at least one g monic of degree k(n� 2), with the constant depending only on q and k.

In the case k = p, so v = 1 and p
v = 1, this gives an exponent of p

2 �
1

p+1 in q
n, which di↵ers

from the upper bound p+1
2p (p � 1) = p

2 �
1
2p by p�1

2p(p+1) . Thus, the di↵erence between the lower
and upper bounds is less than the di↵erence between the upper bound and the GRH bound p

2 .
I would like to thank Mark Shusterman, Julio Andrade, Jon Keating, and Brian Conrey for

several helpful conversations and comments on this manuscript, as well as the anonymous referee
for many helpful comments. This research was supported by NSF grant DMS-2101491.

2. Preliminaries

We begin with a bound for a general class of Gauss sums.

Lemma 2.1. Let  be a finite field, V a finite-dimensional vector space over , and

' : V ! {z 2 C | |z| = 1}
a function. Let

e'(v, w) = '(v + w)'(v)'(w)'(0).

Assume that w 7! e'(v, w) is a group homomorphism V ! C⇥ for each v 2 V .
Let W be the kernel of e', i.e. the set of v 2 V with e'(v, w) = 1 for all w 2 V . Then

�����
X

v2V

e'(V )

����� =
(p

|V ||W | if ' is constant on W

0 otherwise
.

Furthermore, in the special case '(v) =  (Q(v)) for  : Fq ! C⇥ a nontrivial character and
Q : V !  a polynomial of degree  2, the set W is a subspace of V , the kernel of the biliinear
form

B(v, w) = Q(v + w)�Q(v)�Q(w) +Q(0)

and thus
p

|V ||W | = ||
dimV +dimW

2 .

Proof. We have
�����
X

v2V

'(v)

�����

2

=
X

v,w2V

'(v)'(w) =
X

v2V

X

w2V

'(v + w)'(w) =
X

v2V

'(v)'(0)
X

w2V

e'(v, w).

Since e'(v, ·) is a group homomorphism,
P

w2V e'(v, w) = 0 unless e'(v, ·) is trivial, i.e. v 2 W ,
and equals |V | if v 2 W . Thus

�����
X

v2V

'(v)

�����

2

= |V |
X

v2W

'(v)'(0).

Since e' is symmetric, v 7! e'(v, w) is a group homomorphism for each w, and since W is
the intersection of the kernels of all these group homomorphisms, it is also a finite group. For
v, w 2 W , we have

'(v + w)'(0) = '(v)'(0)'(w)'(0)e'(v, w) = '(v)'(0)'(w)'(0)
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so v 7! '(v)'(0) is a group homomorphism. Thus
P

v2W '(v)'(0) vanishes unless v 7! '(v)'(0)
is trivial, in which case it is |W |, giving

�����
X

v2V

'(v)

�����

2

= |V ||W |.

This gives the statement since v 7! '(v)'(0) is trivial on W if and only if ' is constant on
W .

In the quadratic polynomial case, we have e'(v, w) =  (B(v, w)), and, since every nonzero
linear form is surjective and thus nonconstant when composed with  , we have v 2 W if and
only if v is in the kernel of B. ⇤

The next few lemmas are devoted to finding the largest ⇡-adic intervals on which the function
 
�
(k � 1)a+ x

ak�1

�
, which we will sum in (11), behaves like an additive character, so that we

can obtain cancellation in the sums when the character is nontrivial. We begin with a lemma
on the p-adic valuation of multinomial coe�cients.

Lemma 2.2. For any i1, i2 > 0, there exists some r � 0 such that

(5) i1 + i2 � p
r + 1

and

(6) vp

✓✓
k + i1 + i2 � 2

i1, i2, k � 2

◆◆
� v � r.

Furthermore, we can choose r so that one of these inequalities is strict, (i1, i2) = (pr, 1), or
(i1, i2) = (1, pr).

Proof. Choose r to be maximal such that i1 + i2 � p
r + 1, so in particular i1 + i2  p

r+1 and
hence i1, i2 < p

r+1. Then vp

��
k+i1+i2�2
i1,i2,k�2

��
is the number of carries when adding k � 2, i1, and

i2 together in base p [10, Theorem 7]. For the first part, it su�ces to check there is a carry in
every place from r + 1 to v.

There is a carry in the dth place if and only if we have

i1 mod p
d + i2 mod p

d + (k � 2) mod p
d
> (k + i1 + i2 � d) mod p

d

where mod p
d is understood to be the operation that gives the unique representative of each

residue class between 0 and p
d � 1. Fix any d with r + 1  d  v, so in particular that pd | k.

Since i1, i2 < p
r+1

< p
d, we have i1 mod p

d = i1 and i2 mod p
d = i2. Thus

i1 mod p
d + i2 mod p

d + (k � 2) mod p
d � i1 + i2 + p

d � 2 � 1 + 1 + p
d � 2

= p
d
> (k + i1 + i2 � d) mod p

d

so indeed there is a carry in the dth place, as desired.
If (5) is not strict, then i1 + i2 = p

r + 1. Unless one of i1, i2 is equal to 1, this implies there is
a carry when adding i1 to i2 in some place from 0 to r � 1, which means that (6) is strict. ⇤
Lemma 2.3. For any a 2 R

⇥ and y1, y2 2 ⇡R, we have

(a+ y1 + y2)
1�k � (a+ y1)

1�k � (a+ y2)
1�k + a

1�k

=
1X

i1,i2=1

(�1)i1+i2

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
y
i1
1 y

i2
2 a

1�k�i1�i2 .
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Proof. The Taylor series for (1 + y/a)�1 gives

(a+ y1 + y2)
1�k =

1X

i1,i2=0

(�1)i1+i2

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
y
i1
1 y

i2
2 a

1�k�i1�i2

and the result follows by cancelling terms. These series converge ⇡-adically since the binomial
coe�cients are integers while y

i1
1 y

i2
2 is divisible by ⇡

i1+i2 and so there are only finitely many
terms not divisible by a given power of ⇡. ⇤
Lemma 2.4. Recall c from (2). For a 2 R

⇥ and y1, y2 2 ⇡
c
R we have

(a+ y1 + y2)
1�k � (a+ y1)

1�k � (a+ y2)
1�k + a

1�k ⌘ 0 mod ⇡n
.

Proof. By Lemma 2.3, it su�ces to prove that
�
k+i1+i2�2
i1,i2,k�2

�
y
i1
1 y

i2
2 is divisible by ⇡n for all i1, i2.

Fix some i1, i2 � 1. By Lemma 2.2, there exists r such that i1 + i2  p
r + 1 and

�
k+i1+i2�2
i1,i2,k�2

�
is

divisible by p
v�r, so

�
k+i1+i2�2
i1,i2,k�2

�
y
i1
1 y

i2
2 is divisible by p

v�r
⇡
(pr+1)c and hence is divisible by ⇡n by

(2). ⇤
Let S be the set of (a, x) 2 (R/⇡

n
R)2 such that

(7)  

✓
y(k � 1) +

x

(a+ y)k�1
� x

ak�1

◆
= 1 for all y 2 ⇡

c
R

Lemmas 3.3 and 3.10 will express Klk(x) as a sum over a with (a, x) 2 S, so understanding S
will be important. We begin with a couple of preparatory lemmas.

Lemma 2.5. For n even, if (a, x) 2 S then a
k ⌘ x mod ⇡n/2.

Proof. For y divisible by ⇡
n/2 (and thus automatically divisible by ⇡

c since ⇡n | ⇡(pr+1)n/2 |
⇡
(pr+1)n/2

p
v�r for all r 2 N, r  v), using O(y2) to denote an R-multiple of y2, we have

y(k � 1) +
x

(a+ y)k�1
� x

ak�1
= y(k � 1) +

x

ak�1
+

xy(1� k)

ak
+O(y2)� x

ak�1

⌘ y(k � 1) +
xy(1� k)

ak
= y(k � 1)

⇣
1� x

ak

⌘
mod ⇡n

and supposing for contradiction that x/ak 6⌘ 1 mod ⇡n/2, we have (k�1)
�
1� x

ak

�
6⌘ 0 mod ⇡n, so

because  is nondegenerate, we can always find y where  
�
y(k � 1)

�
1� x

ak

��
6= 1, contradicting

(7). ⇤
Lemma 2.6. For any a 2 R/⇡

n
R, the congruence class of ak mod ⇡dn

2 e depends only on the
congruence class of a modulo ⇡c.

If v > 0, it furthermore only depends on the congruence class of a modulo ⇡c̃, recalling c̃ from
(3).

Proof. Indeed, for z 2 ⇡
c
R, (a + z)k � a

k =
Pk

i=1

�
k
i

�
z
i
a
k�i and for p

r  i < p
r+1 we have

vp

��
k
i

��
� v � r. Using (2) and the fact that pr � 1 we have

⇡
n | pv�r

⇡
(pr+1)c | (pv�r

⇡
prc)2

which implies

⇡
dn/2e | pv�r

⇡
prc |

✓
k

i

◆
z
i
a
k�i

.
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Because this holds for all i, we have ⇡dn/2e | (a+ z)k � a
k, so (a+ z)k and a

k share the same
congruence class.

Substituting c̃ for c in this argument, the only change is that p
v�r

⇡
(pr+1)c̃ may be divisible

only by ⇡n�1. To obtain the same conclusion, it thus su�ces to check that (pv�r
⇡
prc)2 is divisible

by p
v�r

⇡
(pr+1)c+1. This is true as long as v > r or pr > 1. If v > 0, one of these two cases always

occurs. ⇤
Lemma 2.7. Let a, x, z 2 R/⇡

n
R. Suppose (a, x) 2 S. Then (a+ z, x) 2 S if and only if

 

 1X

i1,i2=1

(�1)i1+i2

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
y
i1z

i2a
1�k�i1�i2

!
= 1 for all y 2 ⇡

c
R.

Proof. By definition, (a+ z, x) 2 S if and only if

 

✓
y(k � 1) +

x

(a+ z + y)k�1
� x

(a+ z)k�1

◆
= 1 for all y 2 ⇡

c
R

which by (7) for (a, x) occurs if and only if

 

✓
x

(a+ z + y)k�1
� x

(a+ z)k�1
� x

(a+ y)k�1
+

x

ak�1

◆
= 1 for all y 2 ⇡

c
R

and by Lemma 2.3, the term inside the  is

(8)
1X

i1,i2=1

(�1)i1+i2

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
y
i1z

i2a
1�k�i1�i2 .

⇤
Studying the sum (8) will be crucial to the next few lemmas.

Lemma 2.8. Whether or not (a, x) 2 S depends only on a modulo ⇡c̃.

Proof. Let z 2 ⇡
c̃
R. By Lemma 2.7, it su�ces to check for each y 2 ⇡

c
R and each i1, i2 > 0

that
�
k+i1+i2�2
i1,i2,k�2

�
y
i1z

i2 is divisible by ⇡n. By Lemma 2.2, there exists r with i1 + i2 � p
r + 1 and�

k+i1+i2�2
i1,i2,k�2

�
divisible by p

v�r.

Noting that c � c̃ by definition, if c = c̃ then
�
k+i1+i2�2
i1,i2,k�2

�
y
i1z

i2 is divisible by p
v�r

⇡
(pr+1)c and

thus by (2) is divisible by ⇡
n, and if c > c̃ then c � c̃ + 1 so

�
k+i1+i2�2
i1,i2,k�2

�
y
i1z

i2 is divisible by

p
v�r

⇡
(pr+1)c̃+1 and thus by (3) is divisible by ⇡n. ⇤

Lemma 2.9. Let a, x, z 2 R. Let u be the ⇡-adic valuation of z.
Suppose either (i) that (a, x) 2 S, (a+ z, x) 2 S, and 0 < u < c̃ or (ii) that u = c̃ < c and

 

 1X

i1,i2=1

(�1)i1+i2

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
y
i1z

i2a
1�k�i1�i2

!
= 1 for all y 2 ⇡

c̃
R.

Then R is a ring of mixed characteristic and u = e
pj+1�pj for some j from 0 to v� 1. Further-

more for each a, x, j, there are at most p possible values of z modulo ⇡u+1.

Proof. Choose j 2 {0, . . . , v} minimizing the ⇡-adic valuation of zp
j
p
v�j. In particular, in a

ring of equal characteristic p, we have j = v, and in a ring of mixed characteristic, we have
u � e

pj+1�pj unless j = v and u  e
pj�pj�1 unless j = 0.
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Let y have ⇡-adic valuation n�1� e(v� j)�up
j, so that yzp

j
p
v�j has ⇡-adic valuation n�1.

(Here e(v � j) is taken to be 0 if R has equal characteristic and thus v = j, even though e is
undefined in this case.)

Then in case (ii), we can check that y is divisible by ⇡
c̃. Since u = c̃ < c, we must have

z
(pr+1)

p
v�r not divisible by ⇡n for some r, so z

pr
⇡
c̃
p
v�r not divisible by ⇡n and thus zp

j
⇡
c̃
p
v�j is

not divisible by ⇡n, so y is divisible by ⇡c̃.
Similarly, in case (i), we can check that y is divisible by ⇡c. By (3), we have ⇡(pr+1)(c̃�1)

p
v�r

not divisible by ⇡n�1 for some r, so we have z
pr
⇡
c̃�1

p
v�r not divisible by ⇡n�1 for some r, so

z
pj
⇡
c̃�1

p
v�j is not divisible by ⇡n�1, so y is divisible by ⇡c̃. This gives the claim unless c > c̃, in

which case u  c � 2 and by (2), we have ⇡(pr+1)(c�1)
p
v�r not divisible by ⇡n for some r, so we

have zp
r
⇡
c�1

p
v�r not divisible by ⇡n�pr and in particular not divisible by ⇡n�1, so z

pj
⇡
c�1

p
v�j is

not divisible by ⇡n�1, so y is divisible by ⇡c.
In either case, it follows that

 

 1X

i1,i2=1

(�1)i1+i2

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
y
i1z

i2a
1�k�i1�i2

!
= 1,

using Lemma 2.7 in case (i).
Now we will show that almost all the terms in the sum (8) are divisible by ⇡n.
Indeed, given i1, i2, by Lemma 2.2 we may choose r so that i1 + i2 � p

r + 1 and
�
k+i1+i2�2
i1,i2,k�2

�

is divisible by p
v�r. Since the ⇡-adic valuation of z is less than the ⇡-adic valuation of y, unless

i1 = 1,

⇡
n | ⇡pv�j

yz
pj | ⇡pv�r

yz
pr | ⇡

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
y
1
z
i1+i2�1 |

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
y
i1z

i2 .

Even if i1 = 1, a similar reasoning works unless i2 = p
r. If i2 = p

r, the p-adic valuation of�
k+i1+i2�2
i1,i2,k�2

�
=
�
k+1+pr�2
1,pr,k�2

�
is exactly r, so

�
k+i1+i2�2
i1,i2,k�2

�
y
i1z

i2 =
�
k+1+pr�2
1,pr,k�2

�
y
1
z
pr has ⇡-adic valuation

exactly

(9) e(v � r) + p
r
u+ (n� 1� e(v � j)� p

j
u) � n� 1

by the definition of j.
Equality in (9) holds if and only if

e(v � r) + p
r
u = e(v � j) + p

j
u.

In particular, it holds for r = j, and because e(v� j) + p
j
u is a strictly convex function of j, for

at most one other value of j: for r = j � 1 if u = e
pj�pj�1 and for r = j + 1 if u = e

pj+1�pj .
If equality in (9) does not hold for any j 6= r, then (a + z, x) /2 S. Indeed, the sum in (8)

contains exactly one term which is nonvanishing mod ⇡n,

(�1)p
j+1

✓
k + 1 + p

j � 2

1, pj, k � 2

◆
yz

pj
a
�k�pj

,

and this term has ⇡-adic valuation n� 1. Thus, multiplying y by a unit, we can make this term,
and thus (8), be an arbitrarily element of ⇡n�1(R/⇡)⇥. Choosing the unit appropriately, we can
make  nontrivial on (8).

On the other hand, if equality in (9) holds for some j 6= r, then possibly after switching
r and j, we have r = j + 1 and u = e

pj+1�pj . (In particular, this is never satisfied if R has
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equal characteristic and thus e = 1.) In this case, (8) contains exactly two terms which are
nonvanishing mod ⇡n and thus is congruent mod ⇡n to

(�1)p
j+1

✓
k + 1 + p

j � 2

1, pj, k � 2

◆
yz

pj
a
�k�pj + (�1)p

j+1+1

✓
k + 1 + p

j+1 � 2

1, pj+1, k � 2

◆
yz

pj+1
a
�k�pj+1

.

Note that both terms have ⇡-adic valuation n � 1 by assumption. If their sum has ⇡-adic
valuation n� 1, then (a+ z, x) /2 S for the same reason. So (a+ z, x) 2 S only if

(�1)p
j+1

✓
k + 1 + p

j � 2

1, pj, k � 2

◆
yz

pj
a
�k�pj + (�1)p

j+1+1

✓
k + 1 + p

j+1 � 2

1, pj+1, k � 2

◆
yz

pj+1
a
�k�pj+1

⌘ 0 mod ⇡n
.

This condition depends only on z mod ⇡u+1, and hence can be viewed as an equation in R/⇡

satisfied by z/⇡
u. This equation has the form ↵(z/⇡u)p

j
+ �(z/⇡u)p

j+1 ⌘ 0 mod ⇡ for ↵, � 2
(R/⇡)⇥, and thus has at most p solutions. ⇤

Define k
0 = gcd(k, |R/⇡|� 1)pw

0
where

(10)

w
0 =

(
#{j | 0  j  v � 1, pj(p� 1) | e, e(v � j + (pj + 1)/(pj+1 � p

j)) < n� 1} (mixed characteristic)

0 (equal characteristic).

(10) di↵ers from the definition (1) of w only in including the strict inequality < n� 1 instead of
 n� 1, so that w0  w and thus k0  k

⇤.

Lemma 2.10. For x 2 (R/⇡
n
R), the number of congruence classes a mod ⇡c̃ with (a, x) 2 S is

at most k0.

Proof. First note that if (a1, x) and (a2, x) both lie in S then by Lemma 2.5, ak1 ⌘ x = a
k
2 mod

⇡
n/2 and so a

k
1 ⌘ a

k
2 ⌘ x mod ⇡.

For each x, there are at most gcd(k, |R/⇡| � 1) congruence classes modulo ⇡ satisfying this
equation, and thus at most gcd(k, |R/⇡|�1) congruence classes mod ⇡ containing a with (a, x) 2
S.

If R has equal characteristic p, then two a with (a, x) 2 S that are congruent mod ⇡ are
congruent mod ⇡c̃ by Lemma 2.9(i), so there are at most gcd(k, |R/⇡| � 1) congruence classes
mod ⇡c̃ containing a with (a, x) 2 S, as desired.

If R has mixed characteristic p, then for 0 < d < c̃�1, by Lemma 2.9(i) two a with (a, x) 2 S
that are congruent mod ⇡d are congruent modulo ⇡d+1, unless d = e/(pj+1� p

j) for some j from
0 to v � 1. For each special value of d, there are at most p congruence classes modulo ⇡d+1

containing such a in each congruence class modulo ⇡d. Thus, by induction on d, the number of
such a modulo ⇡d+1 is

gcd(k, |R/⇡|� 1)p#{j|0jv�1,pj(p�1)|e,e/(pj+1�pj)d}
.

and so the number of such a modulo ⇡c̃ is

gcd(k, |R/⇡|� 1)p#{j|0jv�1,pj(p�1)|e,e/(pj+1�pj)<c̃}
.

By (3), if e/(pj+1 � p
j) < c̃ then (pj + 1)e/(pj+1 � p

j) + e(v� j) < n� 1, so the number of such
a is at most

gcd(k, |R/⇡|� 1)p#{j|0jv�1,pj(p�1)|e,e(v�j+(pj+1)/(pj+1�pj))<n�1} = gcd(k, |R/⇡|� 1)pw
0
= k

0
.

⇤
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Lemma 2.11. For (a, x) 2 (R/⇡
n
R)2, whether or not (a, x) 2 S depends only on x modulo

⇡
n�c.
For each a 2 (R/⇡

n
R), there exists a unique congruence class of x mod ⇡n�c with (a, x) 2 S.

Proof. There are three claims: depending only on x modulo ⇡n�c, existence, and uniqueness.
To show it depends only on x mod ⇡n�c, we note simply that 1

(a+y)k�1 � 1
ak�1 is divisible by y,

thus divisible by ⇡c, so x
(a+y)k�1 � x

ak�1 modulo ⇡n depends only on x modulo ⇡n�c.

For uniqueness, suppose (a, x) and (a, x + z) both lie in S, where z is not divisible by ⇡n�c.
Then dividing (7) for x+ z by (7) for x, we obtain

 

✓
z

(a+ y)k�1
� z

ak�1

◆
= 1 for all y 2 ⇡

c
R

Taking y of ⇡-adic valuation n� 1� v⇡(z), we see that zy has ⇡-adic valuation n� 1, and thus,
modulo ⇡n,

z

(a+ y)k�1
� z

ak�1
⌘ zy

✓
1

y(a+ y)k�1
� 1

yak�1
mod ⇡

◆
= zy

✓
1� k

ak
mod ⇡

◆
.

By multiplying y by a suitable element of (R/⇡)⇥, we can make zy
�
1�k
ak mod ⇡

�
into any element

of ⇡n�1(R/⇡)⇥, and thus we can ensure  is nontrivial on it, a contradiction.
For existence, it su�ces by induction to show that if d � c and x satisfies the equation

 

✓
y(k � 1) +

x

(a+ y)k�1
� x

ak�1

◆
= 1 for all y 2 ⇡

d+1
R

then there exists x0 satisfying the same equation for all y 2 ⇡
d
R. Given such an x, by Lemma 2.4,

we see that  
⇣
y(k � 1) + x

(a+y)k�1 � x
ak�1

⌘
is a homomorphism from ⇡

d
R to C⇥, and since it takes

the value 1 on all y 2 ⇡
d+1

R, a homomorphism ⇡
d
R/⇡

d+1
R ! C⇥. Since  is nondegenerate,

any such homomorphism can be written as y 7!  (zy) for some z divisible by ⇡n�1�d. Take

x
0 = x+

a
k
z

k � 1

to obtain

 

✓
y(k � 1) +

x
0

(a+ y)k�1
� x

0

ak�1

◆
=  

✓
y(k � 1) +

x

(a+ y)k�1
+

a
k
z

(k � 1)(a+ y)k�1
� x

ak�1
� az

k � 1

◆

=  

✓
y(k � 1) +

x

(a+ y)k�1
� x

ak�1

◆
 

✓
a
k
z

(k � 1)(a+ y)k�1
� az

k � 1

◆

=  (zy) 

✓
a
k
z

(k � 1)(a+ y)k�1
� az

k � 1

◆
=  

✓
zy +

a
k
z

(k � 1)(a+ y)k�1
� az

k � 1

◆

=  

✓
zy +

az

k � 1
� zy +

kzy
2

2a
� k(k + 1)zy3

6a2
+ · · ·� az

k � 1

◆
= 1

since all the terms that do not cancel are divisible by zy
2, hence divisible by ⇡n�1�d+2d = ⇡

n+d�1

and thus divisible by ⇡n. ⇤
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3. Bounds for Kloosterman sums

We begin with the proof of the upper bound Theorem 1.1 in the n even case, and then give the
proof in the n odd case, which is similar, but slightly more complicated, before finally proving
the lower bound (for all n).

We begin with a stationary phase analysis that reduces the even case to a one-variable sum.

Lemma 3.1. For n even, we have

(11) Klk(x) =
X

a2R/⇡n,ak⌘x mod ⇡n/2

 

⇣
(k � 1)a+

x

ak�1

⌘
|R/⇡|(k�2)n/2

.

Proof. Pick a set S of representatives of congruence classes in R/⇡
n/2. Write each xi as ai + bi

where ai 2 S and bi is divisible by ⇡n/2.
Then

Klk(x) =
X

a1,...,ak2SQk
i=1 ai⌘x mod ⇡n/2

X

b1,...,bk2⇡n/2R/(⇡n)Qk
i=1(ai+bi)=x

 

⇣ kX

i=1

ai +
kX

i=1

bi

⌘
.

Since bibj = 0 for all i, j, the equation
Qk

i=1(ai + bi) = x simplifies to

(12) x =
⇣
1 +

kX

i=1

bi

ai

⌘ kY

i=1

ai.

The sum over bi vanishes unless the character  
⇣Pk

i=1 ai +
Pk

i=1 bi

⌘
is constant over the a�ne

hyperplane of solutions (b1, . . . , bk) to (12), which occurs only if a1 = a2 = · · · = ak since if
ai 6= aj we can add a multiple of aj to bi and subtract a corresponding multiple of ai from bj to
change the value of the character.

Say the ai are equal to a. In this case, (12) implies that
kX

i=1

bi = a

 
x

Qk
i=1 ai

� 1

!
=

x

ak�1
� a

so

 

⇣ kX

i=1

ai +
kX

i=1

bi

⌘
=  

⇣
(k � 1)a+

x

ak�1

⌘
.

Furthermore (12) has exactly |R/⇡|(k�1)n/2 solutions since bk is uniquely determined by b1, . . . , bk�1.
Thus

Klk(x) =
X

a1,...,ak2SQk
i=1 ai⌘x mod ⇡n/2

X

b1,...,bk2⇡n/2R/(⇡n)Qk
i=1(ai+bi)=x

 

⇣ kX

i=1

ai +
kX

i=1

bi

⌘

=
X

a2S
ak⌘x mod ⇡n/2

X

b1,...,bk2⇡n/2R/(⇡n)Qk
i=1(a+bi)=x

 

⇣
(k � 1)a+

x

ak�1

⌘

=
X

a2S,
ak⌘x mod ⇡n/2

 

⇣
(k � 1)a+

x

ak�1

⌘
|R/⇡|(k�1)n/2

.
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Averaging over all possible systems of representatives, we get (11).
⇤

By a second stationary phase analysis, we show cancellation occurs whenever (a, x) /2 S.

Lemma 3.2. For n even and (a0, x) 2 (R/⇡
n)2, we have

X

a2R/⇡nR
a⌘a0 mod ⇡c

ak⌘x mod ⇡n/2

 

⇣
(k � 1)a+

x

ak�1

⌘
= 0

if (a0, x) /2 S, and this sum equals |R/⇡|n�c
 

⇣
(k � 1)a0 +

x
ak�1
0

⌘
if (a0, x) 2 S.

Proof. By Lemma 2.6, the condition a
k ⌘ x mod ⇡n/2 depends only on a mod ⇡c.

Thus if ak0 ⌘ x mod ⇡n/2, the sum simplifies as

X

a2R/⇡nR
a⌘a0 mod ⇡c

 

⇣
(k � 1)a+

x

ak�1

⌘
=

X

y2⇡cR/⇡n/2R

 

✓
(k � 1)(a0 + y) +

x

(a0 + y)k�1

◆

and otherwise the sum vanishes. If ak0 ⌘ x mod ⇡n/2 then (a0, x) /2 S by Lemma 2.5 and the
claim is automatically true, so we may assume a

k
0 ⌘ x mod ⇡n/2.

Now by Lemma 2.4, (k � 1)(a0 + y) + x
(a0+y)k�1 is a group homomorphism ⇡

c
R ! R/⇡

n plus

a constant. Thus  
⇣
(k � 1)(a0 + y) + x

(a0+y)k�1

⌘
is an additive character of y times a constant.

Hence the sum vanishes unless this additive character is trivial. This occurs exactly when
(a0, x) 2 S. ⇤

Lemma 3.3. For n even, we have

Klk(x) =
X

a2R/⇡n

(a,x)2S

 

⇣
(k � 1)a+

x

ak�1

⌘
|R/⇡|(k�2)n/2

.

Proof. This follows from Lemma 3.1 and Lemma 3.2. ⇤

We can immediately deduce a slightly weaker form of our main bound in the even case:

Lemma 3.4. For n even, we have

|Klk(x)|  k
0|R/⇡|kn/2�c̃

.

Proof. This follows from combining Lemma 3.3 and Lemma 2.10. ⇤

When c > c̃, we must improve this slightly.

Lemma 3.5. Fix (a0, x) 2 (R/⇡
n
R)2. For c 6= c̃, we have

�����
X

a2R/⇡nR
a⌘a0 mod ⇡c̃

(a,x)2S

 

⇣
(k � 1)a+

x

ak�1

⌘����� 
(p

k⇤/k0|R/⇡|n�
c
2�

c̃
2 if (a0, x) 2 S

0 otherwise
.
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Proof. Since c 6= c̃, we must have c = c̃+ 1.
By Lemma 2.8, whether (a, x) 2 S depends only on a modulo ⇡c̃, so the sum is empty and

the result is trivial if (a0, x) /2 S, and if (a0, x) 2 S, then (a, x) 2 S for every a in the sum. In
particular, this implies

 

✓
(k � 1)(a⇡c̃

t) +
x

(a+ ⇡c̃t)k�1

◆

depends only on t mod ⇡. Define ' : R/⇡ ! {z 2 C | |z| = 1} by

'(t) =  

✓
(k � 1)(a0⇡

c̃
t) +

x

(a0 + ⇡c̃t)k�1

◆
.

Then
X

a2R/⇡nR
a⌘a0 mod ⇡c̃

(a,x)2S

 

⇣
(k � 1)a+

x

ak�1

⌘
=
X

t2R/⇡

'(t)|R/⇡|n�c
.

In the notation of Lemma 2.1, we have

e'(t1, t2) =  

✓
x

(a0 + ⇡c̃(t1 + t2))k�1
� x

(a0 + ⇡c̃t2)k�1
� x

(a0 + ⇡c̃t2)k�1
� x

(a0)k�1

◆

=  

⇣ 1X

i1,i2=1

(�1)i1+i2

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
⇡
c̃(i1+i2)t

i1
1 t

i2
2 a

1�k�i1�i2
0

⌘

by Lemma 2.3. By Lemma 2.2 and (3) every term is divisible by ⇡
n�1, and furthermore is

divisible by ⇡n unless i1, i2 = (1, pr) or (pr, 1). Since tp
r
is an additive polynomial in t, it follows

that e' is a group homomorphism in each variable. So we may apply Lemma 2.1.
Here W consists of exactly those t1 so that

 

⇣ 1X

i1,i2=1

(�1)i1+i2

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
⇡
c̃(i1+i2)t

i1
1 t

i2
2 a

1�k�i1�i2
0

⌘
= 1

for all t2 2 R/⇡. Equivalently, these are t1 such that

 

⇣ 1X

i1,i2=1

(�1)i1+i2

✓
k + i1 + i2 � 2

i1, i2, k � 2

◆
(⇡c̃

t1)
i1y

i2a
1�k�i1�i2
0

⌘
= 1

for all y 2 ⇡
c̃
R.

By Lemma 2.9(ii), this can only happen for t1 6= 0 if R is a ring of mixed characteristic and
c̃ = e

pj+1�pj for some j from 0 to v � 1. Furthermore, in that case there are at most p possible
values of t1. Thus |W | = 1 unless c̃ = e

pj+1�pj and |W |  p in that case.
So Lemma 2.1 implies that

���
X

t2R/⇡

'(t)
�� 

(p
p|R/⇡|

1
2 if c̃ = e

pj+1�pj for some 0  j  v � 1

|R/⇡|
1
2 otherwise

.
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If c̃ 6= e
pj+1�pj for all 0  j  v � 1, we obtain

�����
X

a2R/⇡nR
a⌘a0 mod ⇡c̃

(a,x)2S

 

⇣
(k � 1)a+

x

ak�1

⌘�����  |R/⇡|n�
c
2�

c̃
2

which gives the desired bound since k
0  k

⇤.
On the other hand, if c̃ = e

pj+1�pj , we have

(n� 1)  (pj + 1)c̃+ e(v � j) =
e(pj + 1)

pj+1 � pj
+ e(v � j) = e

✓
v � j +

p
j + 1

pj+1 � pj

◆

and because c̃ < c,

n�1 � (pr+1)c̃+e(v�r) =
e(pr + 1)

pj+1 � pj
+e(v�r) � e(pj + 1)

pj+1 � pj
+e(v�j) = e

✓
v � j +

p
j + 1

pj+1 � pj

◆

(because increasing r by one increases e(pr+1)
pj+1�pj + e(v � r) by

⇣
pr+1�pr

pj+1�pj � 1
⌘
which is  0 if r  j

and � 0 if r � j). Thus e
⇣
v � j + pj+1

pj+1�pj

⌘
= n � 1, which means that w � w

0 = 1 by (1) and

(10) and thus k0

k⇤ = p, giving the desired bound also in this case.
⇤

Proposition 3.6. For n even, we have

|Klk(x)|  k
⇤|R/⇡|

kn�c�c̃
2 .

Proof. If c = c̃ then this follows from Lemma 3.4 and k
0  k

⇤. Otherwise, it follows by combining
Lemma 3.3, Lemma 3.5, and Lemma 2.10. ⇤

We now begin the odd case in the same way as the even.

Lemma 3.7. For n odd we have

Klk(x) =
X

x1,...,xk2R/⇡nRQk
i=1 xi=x

x1⌘x2⌘···⌘xk mod ⇡
n�1
2

 

⇣ kX

i=1

xi

⌘
.

Proof. Pick a set S of representatives of congruence classes in R/⇡
n+1
2 R. Write each xi as ai+ bi

where ai 2 S and bi is divisible by ⇡
n+1
2 .

Then

Klk(x) =
X

a1,...,ak2S
Qk

i=1 ai⌘x mod ⇡
n+1
2

X

b1,...,bk2⇡
n+1
2 R/⇡nRQk

i=1(ai+bi)=x

 

⇣ kX

i=1

ai +
kX

i=1

bi

⌘
.

Since bibj = 0 for all i, j, the equation
Qk

i=1(ai + bi) = x simplifies to

(13) x =
⇣
1 +

kX

i=1

bi

ai

⌘ kY

i=1

ai.
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The sum over bi vanishes unless the character  
⇣Pk

i=1 ai +
Pk

i=1 bi

⌘
is constant over the a�ne

hyperplane of solutions (b1, . . . , bk) to (13), which occurs only if a1 ⌘ a2 ⌘ · · · ⌘ ak mod ⇡
n�1
2

because otherwise we can add a multiple of ai to bi and subtract the same multiple of aj from
bj to change the value of the character. Thus

Klk(x) =
X

a1,...,ak2S
Qk

i=1 ai⌘x mod ⇡
n+1
2

a1⌘a2⌘···⌘ak mod ⇡
n�1
2

X

b1,...,bk2⇡
n+1
2 R/⇡nRQk

i=1(ai+bi)=x

 

⇣ kX

i=1

ai +
kX

i=1

bi

⌘

=
X

x1,...,xk2R/⇡nRQk
i=1 xi=x

x1⌘x2⌘···⌘xk mod ⇡
n�1
2

 

⇣ kX

i=1

xi

⌘
.

⇤
Define the Gauss sum

Gk(↵, �) =
X

�1,...,�k�12R/⇡R

 

⇣
⇡
n�1
⇣
↵

k�1X

i=1

�i + �

X

1ijk�1

�i�j

⌘⌘

where ↵, � 2 R/⇡R.

Lemma 3.8. For n > 1 odd, we have

Klk(x) =
X

a2R/⇡nR

ak⌘x mod ⇡
n�1
2

 

⇣
(k � 1)a+

x

ak�1

⌘
Gk

✓
a
k � x

x⇡
n�1
2

,
1

a

◆
|R/⇡|

(n�1)(k�1)�n�1
2 .

Proof. For each x1, . . . , xk such that x1 ⌘ x2 ⌘ · · · ⌘ xk mod ⇡
n�1
2 there exist exactly |R/⇡|

n+1
2

values of a 2 R/⇡
n
R such that a ⌘ x1 ⌘ x2 ⌘ · · · ⌘ xk mod ⇡

n�1
2 . This, combined with

Lemma 3.7, gives

Klk(x) =
X

a,x1,...,xk2R/⇡nRQk
i=1 xi=x

a⌘xi mod ⇡
n�1
2 for all i

 

⇣ kX

i=1

xi

⌘ 1

|R/⇡|
n+1
2

.

For this condition to be satisfied, we must have ak ⌘ x mod ⇡
n�1
2 . When this is satisfied, we can

write each xi uniquely as ai + ⇡
n�1
2 bi for some bi 2 R/⇡

n+1
2 R. This gives

Klk(x) =
X

a2R/⇡nR

ak⌘x mod ⇡
n�1
2

X

b1,...,bk2R/⇡
n+1
2 R

Qk
i=1(a+⇡

n�1
2 bi)=x

 

⇣ kX

i=1

(a+ ⇡
n�1
2 bi)

⌘ 1

|R/⇡|
n+1
2

.

Now
kX

i=1

(a+ ⇡
n�1
2 bi) =

k�1X

i=1

(a+ ⇡
n�1
2 bi) +

x
Qk�1

i=1 (a+ ⇡
n�1
2 bi)
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=
k�1X

i=1

(a+ ⇡
n�1
2 bi) +

x

ak�1
�

k�1X

i=1

x⇡
n�1
2 bi

ak
+

X

1ijk�1

x⇡
n�1

bibj

ak+1

= (k � 1)a+
x

ak�1
+ ⇡

n�1
2

⇣
1� x

ak

⌘ k�1X

i=1

bi + ⇡
n�1 x

ak+1

X

1ijk�1

bibj

where we may truncate the Taylor expansion to second-order since the higher-order terms are

divisible by ⇡
3(n�1)

2 and 3(n�1)
2 � n because n � 3. Furthermore bk is uniquely determined by

b1, . . . , bk�1 and the equation
Qk

i=1(a+ ⇡
n�1
2 bi) = x. This gives

Klk(x) =
X

a2R/⇡nR

ak⌘x mod ⇡
n�1
2

 

⇣
(k � 1)a+

x

ak�1

⌘
⇥

X

b1,...,bk�12R/⇡
n+1
2 R

 

 
⇡

n�1
2

⇣
1� x

ak

⌘ k�1X

i=1

bi + ⇡
n�1 x

ak+1

X

1ijk�1

bibj

!
1

|R/⇡|
n+1
2

.

Next note that ak is congruent to x modulo ⇡
n�1
2 and so 1� x

ak is divisible by ⇡
n�1
2 and thus

⇡
n�1
2

�
1� x

ak

�
is divisible by ⇡n�1. Since each coe�cient is divisible by ⇡n�1, the term summed

over bi depends only on bi modulo ⇡. Since for each i, each residue class mod ⇡ occurs for

|R/⇡|
n�1
2 possible bi,

X

b1,...,bk�12R/⇡
n+1
2 R

 

 
⇡

n�1
2

⇣
1� x

ak

⌘ k�1X

i=1

bi + ⇡
n�1 x

ak+1

X

1ijk�1

bibj

!

= |R/⇡|
(n�1)(k�1)

2

X

�1,...,�k�12R/⇡R

 

 
⇡

n�1
2

⇣
1� x

ak

⌘ k�1X

i=1

�i + ⇡
n�1 x

ak+1

X

1ijk�1

�i�j

!

= |R/⇡|
(n�1)(k�1)

2 Gk

✓
a
k � x

ak⇡
n�1
2

,
x

ak+1

◆
= |R/⇡|

(n�1)(k�1)
2 Gk

✓
a
k � x

x⇡
n�1
2

,
1

a

◆

which gives

Klk(x) =
X

a2R/⇡nR

ak⌘x mod ⇡
n�1
2

 

⇣
(k � 1)a+

x

ak�1

⌘
Gk

✓
a
k � x

x⇡
n�1
2

,
1

a

◆
|R/⇡|

(n�1)(k�1)�n�1
2 . ⇤

Lemma 3.9. For n > 1 odd and (a0, x) 2 (R/⇡
n
R)2, we have

X

a2R/⇡nR
a⌘a0 mod ⇡c

ak⌘x mod ⇡
n�1
2

 

⇣
(k � 1)a+

x

ak�1

⌘
Gk

✓
a
k � x

x⇡
n�1
2

,
1

a

◆
= 0

if (a0, x) /2 S, and this sum equals |R/⇡|n�c
 

⇣
(k � 1)a0 +

x
ak�1
0

⌘
Gk

⇣
ak0�x

x⇡
n�1
2
,

1
a0

⌘
if (a0, x) 2 S.
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Proof. By Lemma 2.6, the condition a
k ⌘ x mod ⇡

n�1
2 depends only on a mod ⇡c. Furthermore,

by the same lemma, the congruence class of ak�x

x⇡
n�1
2

mod ⇡ depends only on a mod ⇡c, and, since

c � 1, 1
a mod ⇡ depends only on a mod ⇡c, so Gk

⇣
ak�x

x⇡
n�1
2
,
1
a

⌘
depends only on a mod ⇡c.

Thus if ak0 ⌘ x mod ⇡
n�1
2 , the sum simplifies as

Gk

✓
a
k
0 � x

x⇡
n�1
2

,
1

a0

◆ X

a2R/⇡nR
a⌘a0 mod ⇡c

 

⇣
(k � 1)a+

x

ak�1

⌘

= Gk

✓
a
k
0 � x

x⇡
n�1
2

,
1

a0

◆ X

y2⇡cR/⇡n/2R

 

✓
(k � 1)(a0 + y) +

x

(a0 + y)k�1

◆

and otherwise the sum vanishes. If a
k
0 6⌘ x mod ⇡

n�1
2 then (a0, x) /2 S is not satisfied by

Lemma 2.5 and the claim is automatically true, so we may assume a
k
0 ⌘ x mod ⇡

n�1
2 .

Now by Lemma 2.4, (k � 1)(a0 + y) + x
(a0+y)k�1 is a group homomorphism ⇡

c
R ! R/⇡

n plus

a constant. Thus  
⇣
(k � 1)(a0 + y) + x

(a0+y)k�1

⌘
is an additive character of y times a constant.

Hence the sum vanishes unless this additive character is trivial. This occurs exactly when
(a0, x) 2 S. ⇤
Lemma 3.10. For n > 1 odd, we have

Klk(x) =
X

a2R/⇡n

(a,x)2S

 

⇣
(k � 1)a+

x

ak�1

⌘
Gk

✓
a
k � x

x⇡
n�1
2

,
1

a

◆
|R/⇡|

(n�1)(k�1)�n�1
2 .

Proof. This follows from Lemma 3.8 and Lemma 3.9. ⇤
Next, we will need to understand the Gauss sum Gk(↵, �).

Lemma 3.11. Fix ↵, � 2 R/⇡R with � 6= 0. If p - k then

|Gk(↵, �)| = |R/⇡|
k�1
2

and if p | k and p is odd or k is a multiple of 4 then

|Gk(↵, �)| =
(
|R/⇡|

k
2 if ↵ = 0

0 if ↵ 6= 0

while if p = 2, 2 | k, and 4 - k, we have

|Gk(↵, �)| =
(
|R/⇡|

k
2 if ↵2 = �

2
�

0 if ↵2 6= �
2
�

where � 2 R/⇡R is the unique element satisfying  (⇡n�1
x
2) =  (⇡n�1

�x) for all x.

Proof. We use Lemma 2.1, applied to the phase

'(�) =  (⇡n�1
Q(�))

where

Q(�) =
k�1X

i=1

�i + �

X

1ijk�1

�i�j.
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whose associated bilinear form is

B(�, �) = Q(� + �)�Q(�)�Q(�) +Q(0)

= �

X

1ijk�1

((�i + �i)(�j + �j)� �i�j � �i�j + 0) = �

X

1ijk�1

(�i�j + �j�i)

= �

X

1i,jk�1

�i�j + �

X

1ik�1

�i�i.

Viewing symmetric bilinear forms as arising from symmetric matrices in the usual way, the
second term arises from � times the identity matrix while the first arises from � times the all
1s matrix. The all-ones matrix has one eigenvalue k� 1 and the rest 0, and adding the identity
matrix gives one eigenvalue k and the rest 1, while multiplying by � gives one eigenvalue �k and
the rest �.

Since � 6= 0, we see if p - k that B is nondegenerate and so W = 0. This gives the estimate
in the first case.

If p | k, this matrix has eigenvalue 0 with multiplicity one and thus its kernel is one-
dimensional. We can see immediately that the kernel is generated by the all 1s vector, i.e.
consists of vectors with �i = � for all i. Thus, W is the subspace generated by the all-1s vector,
and we obtain an estimate q

k
2 if  (⇡n�1

Q(�)) is constant on W and 0 otherwise. It remains to
determine when this restriction is constant.

Restricting Q to W , we get

Q(�, . . . , �) = ↵(k � 1)� + �

✓
k

2

◆
�
2
.

If p is odd or p = 2 and k is a multiple of 4 then p divides
�
k
2

�
so Q(�, . . . , �) = �↵� and thus

 (⇡n�1
Q(�)) is constant if and only if ↵ = 0.

If p = 2 and k is not a multiple of 4 then
�
k
2

�
⌘ 1 mod 2 so Q(�, . . . , �) = ↵� + ��

2, and, after
composing with  (⇡n�1(·)), we get

 (⇡n�1(↵� + ��
2)) =  (⇡n�1(↵ + �

p
�)�)

which is constant if and only if ↵ + �
p
� = 0, which happens if and only if ↵2 = �

2
�. ⇤

Lemma 3.12. For n > 1 odd, we have

|Klk(x)|  k
0|R/⇡|kn/2�c̃

.

Proof. By Lemma 3.10, Lemma 3.11, and Lemma 2.10, we have

|Klk(x)| =

�����
X

a2R/⇡n

(a,x)2S

 

⇣
(k � 1)a+

x

ak�1

⌘
Gk

✓
a
k � x

x⇡
n�1
2

,
1

a

◆
|R/⇡|

(n�1)(k�1)�n�1
2

�����


X

a2R/⇡n

(a,x)2S

|R/⇡|
k
2 |R/⇡|

(n�1)(k�1)�n�1
2  k

0|R/⇡|n�c̃|R/⇡|
k
2 |R/⇡|

(n�1)(k�1)�n�1
2

= k
0|R/⇡|

nk
2 �c̃

.

⇤
Again, a slight improvement can be made if c > c̃.
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Proposition 3.13. For n > 1 odd, we have

|Klk(x)|  k
⇤|R/⇡|

kn�c�c̃
2 .

Proof. If c = c̃ this follows from Lemma 3.12 and the bound k
0  k

⇤. If c 6= c̃ then c = c̃+ 1.
If k is not divisible by p then we repeat the argument of Lemma 3.12, saving an additional

factor of |R/⇡|
1
2 in the application of Lemma 3.11, obtaining the conclusion since c = c̃+ 1.

If c = c̃ + 1 and k is divisible by p, by the second case of Lemma 2.6, ak�x

x⇡
n�1
2

mod ⇡ depends

only on a mod ⇡c̃. The same is true for 1
a mod ⇡, so Gk

⇣
ak�x

x⇡
n�1
2
,
1
a

⌘
depends only on a modulo

⇡
c̃.
Hence we can apply Lemma 3.5 to obtain

|Klk(x)| =

�����
X

a2R/⇡n

(a,x)2S

 

⇣
(k � 1)a+

x

ak�1

⌘
Gk

✓
a
k � x

x⇡
n�1
2

,
1

a

◆
|R/⇡|

(n�1)(k�1)�n�1
2

�����


X

a2R/⇡c̃

(a,x)2S

p
k⇤/k0|R/⇡|n�

c
2�

c̃
2

����Gk

✓
a
k � x

x⇡
n�1
2

,
1

a

◆����|R/⇡|
(n�1)(k�1)�n�1

2


X

a2R/⇡c̃

(a,x)2S

p
k⇤/k0|R/⇡|n�

c
2�

c̃
2 |R/⇡|

k
2 |R/⇡|

(n�1)(k�1)�n�1
2

 k
0
p

k⇤/k0|R/⇡|n�
c
2�

c̃
2 |R/⇡|

k
2 |R/⇡|

(n�1)(k�1)�n�1
2

=
p
k⇤k0|R/⇡|

nk�c�c̃
2 ,

giving the desired bound since k
⇤ � k

0.
⇤

Finally, we prove the lower bound. To do this, we prove Klk(x) vanishes for most x, and then
evaluate the `2 norm of Klk, showing it must take a large value on some point

Lemma 3.14. For n � 2, we have Klk(x) = 0 for all but at most |R/⇡|c+c̃�1(|R/⇡|� 1) values
of x.

Proof. The size of S is at most |R/⇡|n�1(|R/⇡|�1) times the maximum over a of the number of x
with (a, x) 2 S. By Lemma 2.11, this maximum is |R/⇡|c, so |S| is at most |R/⇡|n+c�1(|R/⇡|�1).
By Lemma 2.8, if (a, x) 2 S for at least one a then (a, x) 2 S, for at least ⇡n�c̃ values of a, so
the number of x with (a, x) 2 S for at least one a is at most |S| divided by ⇡n�c̃, and thus at
most |R/⇡|c+c̃�1(|R/⇡|� 1).

Finally, by Lemma 3.3 in the n even case and Lemma 3.10 in the k odd case, Klk(x) = 0
unless there is at least one a with (a, x) 2 S. ⇤

Proposition 3.15. For n � 2, we have |Klk(x)| > |R/⇡|
kn�c�c̃

2 for at least one value of x.

Proof. Otherwise, we would have
X

x2(R/⇡n)

|Klk(x)|2 
X

x2(R/⇡n)
Klk(x) 6=0

|R/⇡|kn�c�c̃
< |R/⇡|kn
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by Lemma 3.14. On the other hand,
X

x2(R/⇡n)

|Klk(x)|2 = |R/⇡|kn

by opening the sum and eliminating variables in pairs. ⇤

4. A uniform CFKRS heuristic for twisted moments

Let Fq be a finite field with q elements and ⇡ an irreducible polynomial in Fq[T ]. Recall that
Fq[T ]

+
⇡0 is the set of monic polynomials relatively prime to ⇡.

We give a prediction for the value of the twisted moment (4) of L-functions of Dirichlet
characters over Fq[T ] to fixed modulus, in the depth aspect of large n, fixed ⇡. Thus, we will
always assume n � 2, but a similar prediction could also be given for small n.

To motivate this, note that orthogonality of characters gives, for g, h 2 Fq[T ]
+
⇡0 , that

X

�2F⇡,n

�(a)�(h)�(g) = 0

unless a ⌘ �g/h mod ⇡n�1 for some � 2 F⇥
q . When a ⌘ �g/h mod ⇡n�1 for some (necessarily

unique) �, set
(14)

Cg,h =
X

�2F⇡,n

�(a)�(h)�(g) = |⇡|n�2 ⇥
(

q�2
q�1 if � = 1

� 1
q�1 if � 6= 1

⇥
(
(|⇡|� 1)2 if ↵ = �g/h mod ⇡n

�(|⇡|� 1) if ↵ 6= �g/h mod ⇡n

by another orthogonality calculation. Also write N = n deg ⇡ � 1. Let Q be the set of pairs
(g, h) 2 (Fq[T ]

+
⇡0)2 ⇥ F⇥

q with gcd(g, h) = 1 and a ⌘ �g/h mod ⇡n�1. Then we predict

Prediction 4.1. There exists � > 0 such that for all ↵1, . . . ,↵2k imaginary and a 2 (Fq[T ]/⇡n)⇥

X

�2F⇡,n

�(a)
kY

i=1

L(1/2 + ↵i,�)L(1/2 + ↵k+i,�)

=
X

(g,h)2Q
|g||h|qN/|⇡|2

X

S✓{1,...,2k}
|S|=k

q

N(
X

i2S

↵i �
kX

i=1

↵i) X

f1,...,f2k2Fq [T ]+
⇡0

g
Q

i/2S fi=h
Q

i2S fi

Cg,h

Y

i2S

|fi|�
1
2�↵i

Y

i/2S

|fi|�
1
2+↵i +O(|⇡|(1��)n)

(15)

where the sum over f1, . . . , f2k in the right-hand side is interpreted as a meromorphic function
in ↵1, . . . ,↵2k, analytically continued from the domain where it is absolutely convergent.

Moreover, we will be interested in the particular value of � in Prediction 4.1. If (15) holds for
all � < 1/2 then we say (15) admits square-root cancellation.

(15) looks similar to the predictions of [2, 5] for similar moments, except that those works
summed over the “diagonal” g

Q
i/2S fi = h

Q
i2S fi for a single pair g, h, while we sum over

multiple diagonals. In this section, we briefly explain this choice, then show that (15) admits
square-root cancellation in the k = 1 case. We omit the step-by-step derivation of (15) as it is
relatively standard, except for the use of multiple diagonals.

When a can be written as g/h for g, h small, one need only to consider the diagonal associated
to g, h, but if the residue class a has multiple representations as a ratio, there is no clear reason to
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prioritize one over another. Summing over multiple diagonals is the simplest way to incorporate
them into the estimate. The fact that it works in k = 1, as we will see below, is evidence that
it is the right approach in general. Furthermore, one can see from the k = 1 estimate that if
we ignore one diagonal, then it will produce a larger-than-square-root error term, preventing
us from obtaining uniform square-root cancellation, and explaining the error term found in [5,
Theorem 10].

On the other hand, if we summed over all representations of a as a ratio, our predicted main
term would not necessarily be any simpler than the original moment problem. So it is necessary
to sum only over g, h below some cuto↵. We have chosen |g||h|  q

N
/|⇡|2 as our cuto↵ because

it simplifies our calculation in the k = 1 case. Any cuto↵ which is close to N should do the
trick. We also include the monicity and coprimality conditions to avoid double-counting.

A key advantage of this is that the number of diagonals we need to sum over to obtain the
main term is only of logarithmic size. Indeed if (g1, h1) and (g2, h2) both satisfy the conditions in
the sum of (15), and in addition deg h1 = deg h2, then �1g1/h1 ⌘ a ⌘ �2g2/h2 mod ⇡n�1 implies
⇡
n�1 | �1g1h2 � �2g2h1. Also

|g1||h2| = |g1||h1|  q
N
/|⇡|2 < |⇡|n�1

and the same is true for |g2||h1|, and these together give �1g1h2 = �2g2h1, and then by coprimality
and monicity we have h1 = h2, g1 = g2, �1 = �2. So the number of possibilities is at most
(n� 2) deg ⇡.

Shifting the cuto↵ far below q
N would cause us to miss diagonal contributions of above-square-

root size, while shifting it far above qN would cause our “main term” to be a sum of polynomially
many diagonals each of below-square-root size. Both are undesirable.

4.1. The case k = 1. We now establish (15) for all � < 1/2 if k = 1. In fact, we will give
an error term of O(n|⇡|

n
2 ) for fixed ⇡. Our strategy is to express both sides (ignoring the error

term on the right side) as polynomials in q
�↵1 and q

↵2 and compare their coe�cients. Since the
variables q�↵1 and q

↵2 have absolute value 1, the di↵erence between the polynomials is bounded
by the sum over degrees d1, d2 of the di↵erence between their coe�cients. So it su�ces to show
the sum of the absolute values of the di↵erences of the coe�cients is O(n|⇡|

n
2 ).

Let
ad(�) = q

� d
2

X

f12Fq [T ]+
⇡0

deg f=d

�(f)

so that

L(s,�) =
NX

d=0

adq
d
2�ds

and the functional equation, whose constant ✏� satisfies |✏�| = 1, implies ad = ✏�aN�d. Let Ad

be the number of monic polynomials of degree d prime to �. We have Ad = 0 for d < 0.
We have

L(1/2 + ↵1,�)L(1/2 + ↵2,�) =
NX

d1=0

NX

d2=0

ad1(�)ad2(�)q
�d1↵1+d2↵2

so that

(16)
X

�2F⇡,n

�(a)L(1/2 + ↵1,�)L(1/2 + ↵2,�) =
NX

d1=0

NX

d2=0

X

�2F⇡,n

�(a)ad1(�)ad2)(�)q
�d1↵1+d2↵2 .
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Lemma 4.2. For any d1, d2 � 0, we have
X

�2F⇡,n

�(a)ad1(�)ad2(�) = q
� d1+d2

2

X

(g,h)2Q
deg g�deg h=d2�d1

Cg,hAd2�deg g

Proof. We have
X

�2F⇡,n

�(a)ad1ad2 =
X

�2F⇡,n

�(a)q�
d1+d2

2

X

f1,f22Fq [T ]+
⇡0

deg fi=di

�(f1)�(f2).

Then (14) gives

X

�2F⇡,n

�(a)�(f1)�(f2) =

(
Cf2,f1 if a ⌘ �f2/f1 mod ⇡n�1 for some � 2 F⇥

q

0 otherwise

Letting g = f2/ gcd(f1, f2) and h = f1/ gcd(f1, f2) then g and h are coprime to each other and
⇡, monic, and satisfy g/h = f2/f1 so that (g, h) 2 Q. Furthermore, from any (g, h) 2 Q, we can
make f2, f1 by multiplying by a polynomial of degree e coprime to ⇡, as long as deg g = d2 � e

and deg h = d1 � e, so the number of terms (f1, f2) that give any pair (g, h) is Ad2�deg g as long
as d2 � d1 = deg g � deg h. This gives the statement. ⇤

On the other hand, we can evaluate the k = 1 case of the inner sum on the right hand side of
(15).

Lemma 4.3.

(17)
X

S✓{1,2}
|S|=1

q

N((
X

i2S

↵i)� ↵1 ) X

f1,f22Fq [T ]+
⇡0

g
Q

i/2S fi=h
Q

i2S fi

Y

i2S

|fi|�
1
2�↵i

Y

i/2S

|fi|�
1
2+↵i

is a polynomial in q
�↵1 and q

↵2 whose coe�cient of q�d1↵1+d2↵2 is

(18)

8
><

>:

0 if deg g � deg h 6= d2 � d1

q
� d1+d2

2 Ad2�deg g if deg g � deg h = d2 � d1 and d1 + d2  N

q
d1+d2

2 �N
AN�d1�deg g if deg g � deg h = d2 � d1 and d1 + d2 > N

Proof. Since S = {1} or S = {2}, (17) equals
X

f1,f22Fq [T ]+
⇡0

gf2=hf1

|f1|�
1
2�↵1 |f2|�

1
2+↵2 + q

N(↵2�↵1)
X

f1,f22Fq [T ]+
⇡0

gf1=hf2

|f1|�
1
2+↵1 |f2|�

1
2�↵2

.

We may uniquely express f1 = gm and f2 = hm in the first sum for some m 2 Fq[T ]
+
⇡0 , and

f1 = hm, f2 = gm similarly in the second sum. This gives

=
X

m2Fq [t]
+
⇡0

|g|�
1
2+↵2 |h|�

1
2�↵1 |m|�1�↵1+↵2 + q

N(↵2�↵1)
X

m2Fq [t]
+
⇡0

|g|�
1
2+↵1 |h|�

1
2�↵2 |m|�1+↵1�↵2

=
1X

e=0

|g|�
1
2+↵2 |h|�

1
2�↵1

Aeq
(�1�↵1+↵2)e + q

N(↵2�↵1)
1X

e=0

|g|�
1
2+↵1

Ae|h|�
1
2�↵2

q
e(�1+↵1�↵2).
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A truncated version of this sum

=
X

eN�deg g�deg h
2

|g|�
1
2+↵2 |h|�

1
2�↵1

Aeq
(�1�↵1+↵2)e+q

N(↵2�↵1)
X

e<N�deg g�deg h
2

|g|�
1
2+↵1

Ae|h|�
1
2�↵2

q
e(�1+↵1�↵2).

is easily seen to be a polynomial in q
�↵1 and q

↵2 . Extracting the coe�cients, we obtain (18).
The remaining terms are given by

=
X

e>N�deg g�deg h
2

|g|�
1
2+↵2 |h|�

1
2�↵1

Aeq
(�1�↵1+↵2)e+q

N(↵2�↵1)
X

e�N�deg g�deg h
2

|g|�
1
2+↵1

Ae|h|�
1
2�↵2

q
e(�1+↵1�↵2).

Since Ae = q
e(1 � |⇡|�1) for e � N�deg g�deg h

2 , both sums are geometric series. Evaluating the
geometric series as meromorphic functions, we see that they cancel each other. ⇤

Hence the right hand side of (15) (ignoring the big O term) is a polynomial in q
�↵1 and q

↵2

whose coe�cient of q�d1↵1+d2↵2 is

(19)
X

(g,h)2Q
deg g�deg h=d2�d1

|g||h|qN/|⇡|2

Cg,h

(
q
� d1+d2

2 Ad2�deg g if d1 + d2  N

q
d1+d2

2 �N
AN�d1�deg g if d1 + d2 > N

.

We now bound the di↵erences between the coe�cients.
For d1 + d2  N , by (18) and Lemma 4.2, the coe�cient of q�d1↵1+d2↵2 in the left-hand side

of (15) is X

(g,h)2Q
deg g�deg h=d2�d1

q
� d1+d2

2 Ad2�deg g

so by (19) the di↵erence of the coe�cients is

(20)
X

(g,h)2Q
deg g�deg h=d2�d1

|g||h|>qN/|⇡|2

Cg,hq
� d1+d2

2 Ad2�deg g.

We have |Cg,h|  |⇡|n and |Ae|  q
e so that

q
� d1+d2

2 |Ad2�deg g|  q
d1�deg g� d1+d2

2 = q
d1�d2

2 �deg g = q
deg g�deg h

2 �deg g = q
�deg g+deg h

2  |⇡|
q

N
2

=
|⇡|q 1

2

|⇡|
n
[ 2
.

Each pair (g, h) 2 Q contributes to (20) for at most deg ⇡ pairs d1, d2, and only if deg g+deg h 
d1 + d2  N , so the sum over d1 + d2  N of (the absolute value of) (20) is bounded by
deg ⇡q

1
2 |⇡|

n
2+1 times the number of (g, h) 2 Q for which q

N
/|⇡|2 < |g||h|  q

N .

Lemma 4.4. The number of (g, h) 2 Q for which q
N
/|⇡|2 < |g||h|  q

N is at most n deg ⇡(q �
1)|⇡|.

Proof. For each pair g, h, the congruence class of the ratio g/h mod ⇡n must reduce modulo ⇡n�1

to a/� for � 2 F⇥
q and thus can take at most (q�1)|⇡| possible values. There are N+1 = n deg ⇡

possible values of deg h, so it su�ces to check that for each such congruence class, and each value
of deg h, there can be at most one pair (g, h) satisfying all the conditions.

If g1/h1 ⌘ g2/h2 mod ⇡n, deg h1 = deg h2, and deg g1 + deg h1, deg g2 + deg h2  N then
g1h2 = g2h1 mod ⇡n. Furthermore deg(g1h2) = deg g1 + deg h2 = deg g1 + deg h1  N and
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similarly deg(g2h2)  N . Thus we have g1h2 = g2h1. Then because gcd(g1, h1) = gcd(g2, h2) = 1
and all the polynomials are monic, we must have g1 = g2 and h1 = h2, as desired. ⇤

Hence the sum over d1 + d2  N of (20) is bounded by n(deg ⇡)2q
1
2 (q� 1)|⇡|

n
2+2 = O(n|⇡|

n
2 ).

For d1+d2 > N , by (18), the functional equation, and Lemma 4.2, the coe�cient of q�d1↵1+d2↵2

in the left-hand side of (15) is
X

�2F⇡,n

�(a)ad1ad2 =
X

�2F⇡,n

�(a)aN�d1aN�d2 = q
d1+d2

2 �N
X

(g,h)2Q
gcd(g,h)=1

deg g�deg h=d2�d1

Cg,hAN�d1�deg g.

The di↵erence between this and (19) is

(21)
X

(g,h)2Q
deg g�deg h=d2�d1

|g||h|>qN/|⇡|2

Cg,hq
d1+d2

2 �N
AN�d1�deg g.

The bound for this sum is almost identical to the d1 + d2  N case. We start with

q
d1+d2

2 �N |AN�d1�deg g|  q
d1+d2

2 �N
q
N�d1�deg g = q

d2�d1
2 �deg g = q

deg g�deg h
2 �deg g = q

�deg g+deg h
2  |⇡|

q
N
2

.

and then observe that each pair (g, h) contributes to (20) for at most deg ⇡ pairs d1, d2, and only
if deg g+deg h  (N � d1) + (N � d2) < N , so the sum over d1 + d2 > N of (20) is bounded by
deg ⇡q

1
2 |⇡|

n
2+1 times the number of relatively prime pairs g, h with a ⌘ �g/h mod ⇡n�1 for some

� 2 F⇥
q and q

N
/|⇡|2 < |g||h|  q

N and thus is O(n|⇡|
n
2 ).

5. Function field applications

5.1. Application to short interval sums. Let Fq be a finite field with q elements, Recall for
g 2 Fq[T ] that Ig,(k�1)(n�2)�1 is the set of f 2 Fq[T ] such that f�g has degree < (k�1)(n�2)�1.

We now provide the application to short interval sums of divisor-like functions. We first relate
these to Kloosterman sums:

Lemma 5.1. let R = Fq[[T�1]], and take ⇡ = T
�1. Let  : R/⇡

n
R ! C⇥ be defined by extracting

the coe�cient of T 1�n and then applying a nontrivial additive character of Fq.
Then we have the identity

X

f2Ig,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f) = q

(k�1)(n�2)+1 +
1

qk

X

a2F⇥
q

Klk(ag/T
(n�2)k).

Proof. Any polynomial, divided by T
m, gives an element of R as long as its degree is at most

m, and this element lies in ⇡d
R as long as the degree is at most m� d, i.e. < m+ 1� d. Since

(n� 2)k + 1� n = (k � 1)(n� 2)� 1, we have
X

f2Ig,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f)

= #{f1, . . . , fk 2 Fq[T ]
+ | deg(fi) = n� 2, deg(

kY

i=1

fi � g) < (k � 1)(n� 2)� 1}
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= #{f1, . . . , fk 2 Fq[T ]
+ | deg(fi) = n� 2,

kY

i=1

(fi/T
n�2)� g/T

(n�2)k 2 ⇡
n
R}

An element y 2 R/⇡
n
R has the form f/T

n�2 for some monic f of degree n if and only if y ⌘
1 mod ⇡ and  (ay) = 1 for all a 2 Fq, and f , if it exists, is unique. This is because we may write
x = c0 + c1T

�1 + · · ·+ cn�1T
n�1, the first condition is equivalent to c0 = 1, the second condition

is equivalent to cn�1 = 0, and then the unique f that works is c0T
n�2 + c1T

n�3 + · · · + cn�2.
Thus X

f2Ig,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f)

= #{y1, . . . , yk 2 R/⇡
n
R | yi ⌘ 1 mod ⇡, (ayi) = 1 for all a,

kY

i=1

yi ⌘ g/T
(n�2)k mod ⇡n

R}

=
1

qk

X

a1,...,ak2Fq

X

y1,...,yk2R/⇡nR
yi⌘1 mod ⇡,Qk

i=1 yi⌘g/T (n�2)k mod ⇡nR

 (
kX

i=1

aiyi).

We now consider the inner sum. If all ai are zero, the inner sum is trivial, and equal to
q
(k�1)(n�1) as there are q

n�1 possibilities for each yi and the equation uniquely determines yk in
terms of the other yi. This term contributes q(k�1)(n�1)�k = q

(k�1)(n�2)�1. If aj = 0 for some j

but not for all j, then as yj is uniquely determined by the equation from the other yi, we can
eliminate the variable, at which point the sum splits as a product

Q
i 6=j

P
yi2R/⇡nR
yi⌘1 mod ⇡

 (aiyi) which

is zero since the factor corresponding to any i with ai 6= 0 vanishes. This gives

X

f2Ig,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f) = q

(k�1)(n�2)�1 +
1

qk

X

a1,...,ak2F⇥
q

X

y1,...,yk2R/⇡nR
yi⌘1 mod ⇡,Qk

i=1 yi⌘g/T (n�2)k mod ⇡nR

 (
kX

i=1

aiyi).

Now writing xi = aiyi, using the fact that each element of (R/⇡
n)⇥ arises as aiyi for a unique

ai 2 F⇥
q and yi 2 R/⇡n congruent to 1 mod ⇡, and

Qk
i=1 xi =

Qk
i=1 ai

Qk
i=1 yi = ag/T

(n�2)k for
some g 2 F⇥

q , we obtain

X

f2Ig,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f) = q

(k�1)(n�2)�1 +
1

qk

X

a2F⇥
q

X

x1,...,xk2(R/⇡nR)⇥Qk
i=1 xi⌘ag/T (n�2)k mod ⇡nR

 (
kX

i=1

xi).

We recognize the inner sum as a Kloosterman sum. ⇤
Lemma 5.2. We have X

f2Ig,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f) = q

(k�1)(n�2)+1

for all but at most qd
n

pv+1 e+d n�1
pv+1 e�1(q�1) choices of g modulo polynomials of degree < (k�1)(n�

2)� 1.

Note that the choice of g modulo polynomials of degree < (k � 1)(n � 2) � 1 is the same as
the choice of interval.
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Proof. By Lemma 5.1, this identity holds unless Klk(ag/T (n�2)k) 6= 0 for some a 2 F⇥
q . Each

value of ag/T (n�2)k can occur for only one choice of (monic) g modulo polynomials of degree
< (k� 1)(n� 2)� 1, so it su�ces to bound the number of x 2 R/⇡

n for which Klk(x) 6= 0. We
then apply Lemma 3.14, and observe that |R/⇡| = q, c = d n

pv+1e, and c̃ = d n�1
pv+1e. ⇤

Lemma 5.3. We have���
X

f2Ig,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f)� q

(k�1)(n�2)+1
��� � q

1
2(k(n�3)�d n

pv+1 e�d n�1
pv+1 e+1)(q � 1)

k�1
2

for at least one value of g.

Proof. Let G be the group (1 + T
�1Fq[[T�1])⇥/(1 + T

�nFq[[T�1]])⇥ of elements congruent to 1
mod T

�1 in Fq[[T�1]]/T�nFq[[T�1]], whose elements may be uniquely expressed as 1 + c1T
�1 +

· · · + cn�1T
1�n for c1, . . . , cn�1 2 Fq. Given such a tuple c, let xc be the corresponding element

1+ c1T
�1+ · · ·+ cn�1T

1�n, and let Tm
xc = T

m+ c1T
m�1+ · · ·+ cn�1T

m+1�n
. By the Plancherel

formula applied to G, we have
X

c2Fn�1
q

���
X

f2I
Tk(n�2)xc,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f)� q

(k�1)(n�2)+1
���
2

=
1

qn�1

X

� : G!C⇥

���
X

c2Fn�1
q

�(1+c1T
n�1+· · ·+cn�1T

1�n)
⇣ X

f2I
Tk(n�2)xc,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f)�q

(k�1)(n�2)+1
⌘���

2

=
1

qn�1

X

� : G!C⇥

���
X

f1,...,fk2Fq [T ]+

deg fi=n�2

�

⇣ kY

i=1

fi

T n�2

⌘
�
X

c2Fn�1
q

�(1 + c1T
n�1 + · · ·+ cn�1T

1�n)q(k�1)(n�2)+1
���
2

.

For � trivial, we have
P

f1,...,fk2Fq [T ]+

deg fi=n�2

�

⇣Qk
i=1

fi
Tn�2

⌘
= q

k(n�1) and
P

c2Fn�1
q

�(xc)q(k�1)(n�2)+1 =

q
k(n�1), so these terms cancel. For � nontrivial,

P
c2Fn�1

q
�(xc)q(k�1)(n�2)+1 = 0. This gives

X

c2Fn�1
q

���
X

f2I
Tk(n�2)xc,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f)� q

(k�1)(n�2)+1
���
2

=
1

qn�1

X

� : G!C⇥

� 6=1

���
X

f1,...,fk2Fq [T ]+

deg fi=n�2

�

⇣ kY

i=1

fi

T n�2

⌘���
2

=
X

� : G!C⇥

� 6=1

���
X

f2Fq [T ]+

deg f=n�2

�

⇣
f

T n�2

⌘���
2k

� 1

qn�1

1

(qn�1 � 1)k�1

⇣ X

� : G!C⇥

� 6=1

���
X

f2Fq [T ]+

deg f=n�2

�

⇣
f

T n�2

⌘���
2⌘k

by Hölder’s inequality. Now by Plancherel again
X

� : G!C⇥

� 6=1

���
X

f2Fq [T ]+

deg f=n�2

�

⇣
f

T n�2

⌘���
2

=
X

� : G!C⇥

���
X

f2Fq [T ]+

deg f=n�2

�

⇣
f

T n�2

⌘���
2

�q
2(n�2) = q

n�1
X

x2G

���
X

f2Fq [T ]+

deg f=n�2
f/Tn�2=x

1
���
2

�q
2(n�2)

= q
n�1

q
n�2 � q

2(n�2) = (q � 1)q2(n�2)
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so
X

c2Fn�1
q

���
X

f2I
Tk(n�2)xc,(k�1)(n�2)�1

d
(n�2,...,n�2)
k (f)�q

(k�1)(n�2)+1
���
2

� q
2k(n�2)(q � 1)k

qn�1(qn�1 � 1)k�1
� q

k(n�3)(q�1)k.

By Lemma 5.2, the summand can be nonvanishing for at most qd
n

pv+1 e+d n�1
pv+1 e�1(q � 1) values of

c, so one value of c must contribute at least

q
k(n�3)�d n

pv+1 e�d n�1
pv+1 e+1(q � 1)k�1

to the sum, meaning the error term has size at least

q
1
2(k(n�3)�d n

pv+1 e�d n�1
pv+1 e+1)(q � 1)

k�1
2 .

⇤
Proof of Proposition 1.5. This follows from Lemma 5.3 after inputting d n

pv+1e  n
pv+1 and then

collecting all the terms depending only on q, k into the implicit constant. ⇤
5.2. Application to moments of Dirichlet L-functions. Finally, we explain why the error
term for (15) cannot admit square-root cancellation.

We note that L(s,�) can be expressed as a polynomial in q
�s with constant term 1 and leading

term ✏�q
n deg ⇡�1

2 q
�(n deg ⇡�1)s, where ✏� is the constant in the functional equation of L(s,�). Using

this polynomiality, we obtain the contour integral evaluations

log q

2⇡i

Z 2⇡i
log q

0

L(1/2 + ↵,�)d↵ = 1

and
log q

2⇡i

Z 2⇡i
log q

0

q
(n deg ⇡�1)↵

L(1/2 + ↵,�)d↵ = ✏�

which together imply that, setting v = blog k/ log pc,
✓
log q

2⇡i

◆2k Z 2⇡i
log q

0

· · ·
Z 2⇡i

log q

0

q

Ppv

i=1(n deg ⇡�1)↵i

kY

i=1

L(1/2 + ↵i,�)L(1/2 + ↵k+i,�)d↵1 . . . d↵2k = ✏
pv

�

so that

✓
log q

2⇡i

◆2k Z 2⇡i
log q

0

· · ·
Z 2⇡i

log q

0

q

Ppv

i=1(n deg ⇡�1)↵i
X

�2F⇡,n

�(a)
kY

i=1

L(1/2 + ↵i,�)L(1/2 + ↵k+i,�)d↵1 . . . d↵2k

=
X

�2F⇡,n

�(a)✏p
v

� .

(22)

Assuming (15) with a given power savings �, we may contour integrate both sides against

q
Ppv

i=1 N↵i and thus obtain an estimate for (22).
Contour integrating the error termO(|⇡|(1��)n) of (15) simply gives an error term ofO(|⇡|(1��)n).

Contour integrating the main term of (15) against q
Ppv

i=1 N↵i has the e↵ect of cancelling all
terms where the coe�cient of ↵i in the exponent of q is not equal to �N for some i  p

v

or not equal to 0 for some i > p
v. In particular, it cancels terms where the sum over i of

the coe�cient of ↵i in the exponent of q is not equal to �Np
v. However, using the equation
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g
Q

i/2S fi = �gh
Q

i2S fi to obtain deg g +
P

i/2S deg fi = deg h +
P

i2S deg fi and using |S| = k,
we see that this exponent is deg h � deg g. Since deg g + deg h  N � 2 deg ⇡ < N , we have
|deg h� deg g| < N , so we cannot have deg h � deg g = �Np

v. Thus all the terms cancel and
the contour integral vanishes.

Thus (15) with any power savings � implies (22) is O(|⇡|(1��)n).
We now estimate the right side of (22) in terms of Kloosterman sums.
Let R = Fq[T ]⇡ be the localization of Fq[T ] at ⇡. Let  : Fq[T ]/⇡nFq[T ] ! C⇥ be defined by

extracting the coe�cient of T n deg ⇡�1 and then applying a nontrivial additive character of Fq.

Lemma 5.4. We have

X

�2F⇡,n

�(a)✏p
v

� =
q
� pv(n deg ⇡+1)

2

|⇡|n�1(|⇡|� 1)

X

�1,...,�pv2F⇥
q

 

⇣ pvX

i=1

�iT
n deg ⇡�1

⌘
Klk

 Qpv

i=1 �i

a

!
.

Proof. We first express ✏� in terms of Gauss sums. We have

✏� = q
�n deg ⇡�1

2

X

f2Fq [T ]+

deg f=n deg ⇡�1

�(f) = q
�n deg ⇡+1

2

X

�2Fq

 (��T n deg ⇡�1)
X

f2Fq [T ]/⇡n

�(f) (�f)

= q
�n deg ⇡+1

2

X

�2F⇥
q

 (��T n deg ⇡�1)
X

f2Fq [T ]/⇡n

�(f) (�f)

= q
�n deg ⇡+1

2

X

�2F⇥
q

 (��T n deg ⇡�1)�(��1)
X

f2Fq [T ]/⇡n

�(f) (f).

Thus X

�2F⇡,n

�(a)✏p
v

�

= q
� pv(n deg ⇡+1)

2

X

�2F⇡,n

�(a)
⇣X

�2F⇥
q

 (��T n deg ⇡�1)�(��1)
⌘pv⇣ X

f2Fq [T ]/⇡n

�(f) (f)
⌘pv

= q
� pv(n deg ⇡+1)

2

X

� : (Fq [T ]/⇡n)⇥!C⇥

�(a)
⇣X

�2F⇥
q

 (��T n deg ⇡�1)�(��1)
⌘pv⇣ X

f2Fq [T ]/⇡n

�(f) (f)
⌘pv

=
q
� pv(n deg ⇡+1)

2

|⇡|n�1(|⇡|� 1)

X

�1,...,�pv2F⇥
q

 

⇣ pvX

i=1

�iT
n deg ⇡�1

⌘ X

f1,...,fpv2Fq [T ]/⇡n

a
Qpv

i=1 fi=
Qpv

i=1 �i

 

⇣ pvX

i=1

fi

⌘

=
q
� pv(n deg ⇡+1)

2

|⇡|n�1(|⇡|� 1)

X

�1,...,�pv2F⇥
q

 

⇣ pvX

i=1

�iT
n deg ⇡�1

⌘
Klk

 Qpv

i=1 �i

a

!
,

since
P

�2F⇥
q
 (��T n deg ⇡�1)�(��1) vanishes for � even and

P
f2Fq [T ]/⇡n �(f) (f) vanishes for �

imprimitive. ⇤
Lemma 5.5. The moment

P
�2F⇡,n

�(a)✏p
v

� = is nonvanishing for at most

|⇡|d
n

pv+1 e+d n�1
pv+1 e�1(q|⇡|� 1)(q � 1)

choices of a 2 (Fq[T ]/⇡n)⇥.
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Proof. By Lemma 5.4, if the moment is nonvanishing, then Klk(�/a) 6= 0 for some � 2 F⇥
q .

Each value of �/a can occur for exactly q� 1 choices of a, so it su�ces to bound the number of
x 2 R/⇡

n for which Klk(x) 6= 0 and then multiply by q � 1. We then apply Lemma 3.14, and
observe that |R/⇡| = |⇡|, c = d n

pv+1e, and c̃ = d n�1
pv+1e. ⇤

Lemma 5.6. There exists a 2 (Fq[T ]/⇡n)⇥ such that
���
X

�2F⇡,n

�(a)✏p
v

�

��� � |⇡|(1�
1

pv+1)nC

where C is a constant depending only on q, deg ⇡, v and not on n.

Since the trivial bound is the length of the sum |⇡|n, because the individual terms are bounded
by 1, this represents a power savings of only 1

pv+1 .

Proof. We have

X

a2(Fq [T ]/⇡n)⇥

���
X

�2F⇡,n

�(a)✏p
v

�

���
2

= |⇡|n�1(|⇡|� 1)
X

�2F⇡,n

|✏�|2p
v

= |⇡|n�1(|⇡|� 1)
X

�2F⇡,n

1 = |⇡|n�1(|⇡|� 1) · |⇡|n�2(|⇡|� 1)(|⇡|� 2).

By Lemma 5.5, the number of nonvanishing terms of the sum over a is at most |⇡|d
n

pv+1 e+d n�1
pv+1 e�1(|⇡|�

1)(q � 1), so one of the terms must be at least

|⇡|2n�2�d n
pv+1 e�d n�1

pv+1 e)(|⇡|� 1)(q|⇡|� 2)(q � 1)�1
.

Hence one of the values of
P

�2F⇡,n
�(a)✏p

v

� must be at least

|⇡|
1
2 (2n�2�d n

pv+1 e�d n�1
pv+1 e)

p
(|⇡|� 1)(|⇡|� 2)(q � 1)�1 � |⇡|(1�

1
pv+1)nC

where C is a constant depending only on q, deg ⇡, v. ⇤
In particular, (15) cannot hold with � > 1

pv+1 .
One could try to recover square-root cancellation by replacing ✏-factors by their average with-

out taking the limit as n ! 1, in which case the averages would give these Kloosterman sums.
In particular, if the nonvanishing Kloosterman sums were supported on a “diagonal set” that
has a description independent of ⇡n, and given by a simple formula on that set, one could use
this to extract a (conjectural) secondary main term. However, it does not seem that the set
where Klk(x) 6= 0 admits such a nice description.
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