THE SIZE OF WILD KLOOSTERMAN SUMS IN NUMBER FIELDS AND
FUNCTION FIELDS

WILL SAWIN

ABSTRACT. We study p-adic hyper-Kloosterman sums, a generalization of the Kloosterman sum
with a parameter k that recovers the classical Kloosterman sum when k& = 2, over general p-adic
rings and even equal characteristic local rings. These can be evaluated by a simple stationary
phase estimate when k is not divisible by p, giving an essentially sharp bound for their size.
We give a more complicated stationary phase estimate to evaluate them in the case when k is
divisible by p. This gives both an upper bound and a lower bound showing the upper bound
is essentially sharp. This generalizes previously known bounds [3] in the case of Z,. The lower
bounds in the equal characteristic case have two applications to function field number theory,
showing that certain short interval sums and certain moments of Dirichlet L-functions do not,
as one might hope, admit square-root cancellation.

1. INTRODUCTION

Let R be a discrete valuation ring of prime residue characteristic p, 7 a uniformizer, n and
k positive integers, and ¢ a nondegenerate character R/7"R — C*. Fix k > 1 and define the

Kloosterman sum
k
Kl (z) = Z ¢<Z m2>
i=1

Z1,....x, ER/T" R
Hf:l Ti=T

The goal of this paper is to evaluate this sum (including determining when it is zero and
bounding it) in the case where n > 1. In particular, we will handle the trickier case where p
divides k. This problem is most classical over R = Z,,, but we will work with both more general
p-adic rings and rings of equal characteristic p in the interests of applications to function fields,
potential future applications to number fields, and the desirability of putting results in their
proper, most general context.

We begin by describing the obtained bounds. This requires introducing some notation:

Let v be the p-adic valuation of k. In mixed characteristic, let e be the m-adic valuation of p.
Let

(1)
CJ#HGI0< i <v—=1p(p—1)|e,e(v—j+ (@ +1)/(P" —p’)) <n—1} (mixed characteristic)
Y70 (equal characteristic)

and
k* = ged(k, [R/7| — 1)p*.

Note that w < v and ged(k, |R/m| — 1) < k/p” so we always have k* < k.
We always take 0 € N. Let

(2) ¢ =min{s € N | 7" *p*=" = 0 mod 7" for all r € N, r < v}
1
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(3) ¢ =min{s € N | 7" *5p"=" = 0 mod 7" ! for all r € N,r < v}.

The main results of this paper are the upper bound Theorem 1.1 and the lower bound Propo-
sition 1.2 showing that Theorem 1.1 is close to sharp.

Theorem 1.1 (Propositions 3.6 and 3.13). If n > 2, we have
’Klk(.ilf)‘ < k*‘R/W‘kn/2_c/2_E/2
Proposition 1.2 (Proposition 3.15). If n > 2, there ezists x € R/m™ such that
|Klk($>| > ’R/ﬂ_|kn/2—c/2—6/2
The estimate of 1.1 simplifies in two cases.

Corollary 1.3. If n > 2 and e = 1 we have

[Kli(2)] < ged(p, 2) ged(k, | R /| = )| R/al/> (")
where ged(p,2) is 1 if p £ 2 and 2 if p = 2.
When R = Z, so |R/x| = p, this estimate was obtained earlier in [3].

Proof. Since e = 1, we never have p/ (p—1) | e, unless p = 2 and j = 0, so k* = ged(k, |R/7|—1),
except in the p = 2 case where there is an extra factor of 2. Furthermore, we have ¢ =

max ([2=3=2],1) and ¢ = max ([25%],1) so that ¢ + & = max(n — v, 2).

O

Corollary 1.4. If n > 2 and R is a ring of equal characteristic,

(][]

kn
[Kli(z)| < k*|R/7]

k
Note that this upper bound is roughly of size |R/ ﬂ\(TP”lH)" and thus is worse than square-
root cancellation, which would be an exponent of (% — %) n.
Proof. We have ¢ = | -2 | and ¢ = [ 2=L]. O

In the general mixed characteristic case, the situation is more complicated than either of these.

We have

c=min{seN|(p"+1)s+e(v—r)>nforallre N,;r <v} = max [w—‘ :
re{0,...,v} pr+ 1
Depending on n, e, v, the maximum can be attained at any value of r, so there are many regimes
where the growth rate of sup, |Klx(z)| in n takes different values.

These estimates have interesting consequences for moments of L-functions in the function field
case. Let IF, be a finite field of characteristic p, F [T] the ring of polynomials in one variable
over F,, m a prime polynomial in F [T, F,[T]%, the set of monic polynomials in F,[T] prime to
7, and n a natural number. For f a polynomial write | f| = ¢%°¢/. For x a nontrivial Dirichlet
character (IF,[T]/7™)* — C*, we can define

Lis,) = Y x(HIfF

FeR[T1?,



THE SIZE OF WILD KLOOSTERMAN SUMS IN NUMBER FIELDS AND FUNCTION FIELDS 3

We say x is primitive if it does not factor through (IF[T']/7"~1)* and we say x is odd if x(F;) # 1.
We let F;,, be the set of primitive odd Dirichlet characters mod 7. We can consider moments
of L-functions such as

> ILz0r

XE]'—Tr,n

for a natural number k or more general shifted twisted moments such as

(4) > X(a)HL(1/2+0417X)L(1/2+04k+i,><)

XEFr,n

for a natural number k, shifts aq,...,ag € iR, and a € (F,[T]/7n")*. The CFKRS heuristics
[4] and their function field analogues [1] can be used to provide predictions for such moments.
However, in the case of twisted moments, they have usually been used to produce estimates with
error terms that are not uniform in the twist a [2], and in fact large secondary terms are known
to appear [5, Theorem 10]. We remedy this by producing a CFKRS-like estimate that could
plausibly have a uniform error term of square-root size, by including multiple main terms. We
show that for £ = 1 the error term is in fact of square-root size uniformly in a.

However, we use our lower bounds for Kloosterman sums to show that, for £k > p¥, the error
term of this estimate cannot have power savings better than 1/(p” 4+ 1), in the large n, fixed
7 limit (i.e. in the depth aspect). In particular, when k& > p one cannot obtain square-root
cancellation. We expect that this is a large characteristic phenomenon and cautiously predict
that uniform square-root cancellation should hold over function fields for £ < p and over the
integers for all k, in particular because this family of Dirichlet L-functions is harmonic (in the
sense of [8]) and there still seems to be no evidence that harmonic families over number fields
don’t admit square-root cancellation in their moments.

Another lower bound applies to sums of divisor-like functions in short intervals.

For f a monic polynomial over F, of degree k(n — 2), let d\">" 2 (f) be the number of k-
tuples fi, ..., fr of monic polynomials of degree n—2 such that Hle fi = f, which we think of as
either an analogue of the generalized divisor function dy(n) which counts the number of k-tuples
of positive integers whose product is n, or, more precisely, an analogue with factors of restricted

size Zm,...,nkeN,Hf:lnFn Hle 0(n;/N) for a smooth weight function 0. Define Ty ;_1)(n—2)-1 to

be {f +g|g€F,T]|g| < q* V=211 which we think of as a function field analogue of a
short interval.

A special case of [9, Theorem 4.5] is that for any g monic of degree k(n — 2) over a finite field
IF, of characteristic p,

Z d;ﬂn72,...,n72)<f) _ q(k—l)(n—2)—1 < 3(k + 2)(k+1)(n—2)+1q”2—+pl(k71)n‘
FE€Ly (k—1)(n—2)—1

This is an F,[T]-analogue of a power savings estimate for the sum of a divisor-like function
(with the size of the divisors restricted by smooth weights, say) in a short interval. It has power
savings, which approaches square-root cancellation as p — oo for fixed k, but not for p fixed.
Here square-root cancellation would be an error term of size ¢(*~D"/2,

As a consequence of our estimates for Kloosterman sums, we can show that this sum in fact
fails to admit square-root cancellation when k is divisible by p, and the upper bound is closer
than it might appear to being sharp when k£ = p and q is large.
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Proposition 1.5. For any integers k > 1 and n > 2 and a finite field F, of characteristic p, we

have R
Z dl(Cn—Q ..... n—2)(f) _ q(k—l)(n—Q)—l > q(Tm)n
TE€Ly (k—1)(n—2)-1

for at least one g monic of degree k(n — 2), with the constant depending only on q and k.

In the case £k =p, so v =1 and p* = 1, this gives an exponent of & — —— in ¢", which differs

from the upper bound 1%1(19 -1)=2-= Thus, the dlfference between the lower
P

2 by 2p(p+1
and upper bounds is less than the difference betvsgen )the upper bound and the GRH bound £
I would like to thank Mark Shusterman, Julio Andrade, Jon Keating, and Brian Conrey for
several helpful conversations and comments on this manuscript, as well as the anonymous referee
for many helpful comments. This research was supported by NSF grant DMS-2101491.

2. PRELIMINARIES
We begin with a bound for a general class of Gauss sums.
Lemma 2.1. Let k be a finite field, V a finite-dimensional vector space over k, and
p:V—o{zeC||z| =1}
a function. Let
p(v,w) = v+ w)p(v)e(w)e(0).

Assume that w — o(v,w) is a group homomorphism V — C* for each v € V.
Let W be the kernel of ¢, i.e. the set of v € V with p(v,w) =1 for allw € V. Then

- A VIIW g 1s constant on W

0 otherwise
veV

Furthermore, in the special case p(v) = P(Q(v)) for ¢: F, — C* a nontrivial character and
Q:V — k a polynomial of degree < 2, the set W is a subspace of V', the kernel of the biliinear
form

B(v,w) = Q(v+w) — Qv) — Q(w) + Q(0)
and thus \/[VIW] = |k " 2 .

Proof. We have

> o)

veV

222 Zngv—l—w ng Z&(v,w).

v,weV veV weV veV weV

Since @(v, -) is a group homomorphism, >\, ¢(v,w) = 0 unless p(v,-) is trivial, i.e. v € W,
and equals |V if v € W. Thus

> w)| =

veV

VY ew)e(0)

veW

Since @ is symmetric, v — @(v,w) is a group homomorphism for each w, and since W is
the intersection of the kernels of all these group homomorphisms, it is also a finite group. For
v,w € W, we have

(v 4+ w)e(0) = o(v)(0)p(w)e(0)p(v, w) = w(v)e(0)p(w)e(0)
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so v = ¢(v)p(0) is a group homomorphism. Thus ), ¢(v)@(0) vanishes unless v — o (v)¢p(0)
is trivial, in which case it is |W/|, giving

> p(v)

veV

2

= [VI[w].

This gives the statement since v — ¢(v)p(0) is trivial on W if and only if ¢ is constant on
Ww.

In the quadratic polynomial case, we have ¢(v,w) = ¥(B(v,w)), and, since every nonzero
linear form is surjective and thus nonconstant when composed with v, we have v € W if and
only if v is in the kernel of B. U

The next few lemmas are devoted to finding the largest m-adic intervals on which the function
(0 ((k —1a+ a,f”—,l), which we will sum in (11), behaves like an additive character, so that we
can obtain cancellation in the sums when the character is nontrivial. We begin with a lemma
on the p-adic valuation of multinomial coefficients.

Lemma 2.2. For any i1,io > 0, there exists some r > 0 such that
(5) i >p 1

and

k+1 +1i9—2
> —r.
(6) Up(( ik 2 )) >v—r

Furthermore, we can choose r so that one of these inequalities is strict, (i1,12) = (p",1), or
(ilviQ) = (17p7”)

Proof. Choose 7 to be maximal such that i; + i, > p" + 1, so in particular i, + i, < p"™! and

S r+1 k+ir+ia—2)\ ; : _ ;
hence 71,io < p"™'. Then vp(( AP )) is the number of carries when adding k& — 2, 4y, and

io together in base p [10, Theorem 7]. For the first part, it suffices to check there is a carry in
every place from r + 1 to v.
There is a carry in the dth place if and only if we have

i1 mod p? + iy mod p? + (k — 2) mod p* > (k + 4, + 45 — d) mod p?

where mod p? is understood to be the operation that gives the unique representative of each
residue class between 0 and p? — 1. Fix any d with r + 1 < d < v, so in particular that p? | k.
Since 41,42 < p"' < p?, we have i; mod p? = 4; and i, mod p? = iy. Thus

i1 mod p® + iy mod p? + (k —2) mod p? > iy +ig +p? —2>1+1+p? -2
=p? > (k+ i1 + iy — d) mod p*
so indeed there is a carry in the dth place, as desired.

If (5) is not strict, then i; + iy = p” + 1. Unless one of iy, 45 is equal to 1, this implies there is
a carry when adding i; to iy in some place from 0 to r — 1, which means that (6) is strict. O

Lemma 2.3. For any a € R* and y1,y2 € TR, we have
(aty+y2)' ™ = (a+y) ™" = (a+yp) ™ +a' ™

- P A P/ W
= Z (_1)1+2< iy k2 y11y22a1 k—i1 2

i1,i9=1
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Proof. The Taylor series for (1 +y/a)™! gives

> (ki i —2
a—+ 4 1-k — -1 i1+1i9 o i1, 02 1—k—i1—1i2
(a+ 41 +y2) 2 < R I
i1,i2=0
and the result follows by cancelling terms. These series converge m-adically since the binomial
coefficients are integers while 3'y2 is divisible by 7% and so there are only finitely many

terms not divisible by a given power of . U
Lemma 2.4. Recall ¢ from (2). For a € R* and yy,y, € m°R we have
(a4+y1 +y) = (a+y)" = (a+y) " +a'"F =0mod 7"

k+i1+i2—2 i1 19
AP )yl Yy is divisible by 7" for all 41, %5.

Fix some 71,7, > 1. By Lemma 2.2, there exists r such that i; + i, < p" + 1 and (H““Q 2) is

Proof. By Lemma 2.3, it suffices to prove that (

- i1,i2,k—2
divisible by p’~", so (k:f;ﬁ_;) yi'y2 is divisible by p*~"m®"+D¢ and hence is divisible by 7 by
(2). O

Let S be the set of (a,7) € (R/7"R)? such that
- ") =1forallyen
(7) W y<k_1)+(a+y)k—1_a’€—1 =1foralyenR

Lemmas 3.3 and 3.10 will express Kli(x) as a sum over a with (a,x) € S, so understanding S
will be important. We begin with a couple of preparatory lemmas.

Lemma 2.5. For n even, if (a,7) € S then a* = x mod 7"/?

Proof. For y divisible by 72 (and thus automatically divisible by 7¢ since 7" | 7®"+bn/2 |
g0/ 2501 for all r € N, 7 < v), using O(y?) to denote an R-multiple of 2, we have

x T x xy(1 —k) 5 x
y(k—1) + (0T ) = ylk—1)+ e + o + O(y*) — s
ST I | Chull) BRI S n
=yk—1)+ e =y(k—1) <1 ak) mod 7
and supposing for contradiction that x/a* # 1 mod 72, we have (k; 1) (1— %) # 0 mod 7"
because 1) is nondegenerate, we can always find y where v (y( (1 - ) 1, contradlctlng
(7). O

Lemma 2.6. For any a € R/7"R, the congruence class of a* mod w21 depends only on the
congruence class of a modulo €. ~
If v > 0, it furthermore only depends on the congruence class of a modulo 7°¢, recalling ¢ from

(3).

Proof. Indeed, for z € m°R, (a + 2)" —a* = 38 (¥)2%a* and for p” < i < p'*! we have
vp(( )) = v —r. Using (2) and the fact that p” > 1 we have

" |pv—7’ﬂ_(pr+1)c | (pv—r,]rprc)2

- EN . .l
an/?] |pv—rﬂ_p c | (‘>Zzak’—z‘

which implies

1
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Because this holds for all i, we have 7[™/21 | (a + 2)*¥ — a*, so (a + 2)* and @* share the same
congruence class.

Substituting ¢ for ¢ in this argument, the only change is that p*~"7® "+ may be divisible
only by 7L To obtain the same conclusion, it thus suffices to check that (pv="7?"¢)? is divisible
by pU~"w® et This is true as long as v > 7 or p” > 1. If v > 0, one of these two cases always
occurs. U

Lemma 2.7. Let a,x,z € R/7"R. Suppose (a,x) € S. Then (a+ z,x) € S if and only if

> okt i —2\ .
11+1 i1 o 1—k—i1—1 o c
1/)( E (—1) 2( i k2 >y122a ! 2)—1]‘07’ally67rR.

i1 ig=1
Proof. By definition, (a + z,z) € S if and only if
o (y(k—1)+ ’ - = 1forall y € m°R
Y (a+z4+y* 1 (a+2)1) Y

which by (7) for (a,z) occurs if and only if

xr x T T .
w((a+z+y)k_1 - (a+ z)k1 - (@a+ )1 +ak’—1> =1forally € m°R

and by Lemma 2.3, the term inside the ) is

d - k+i1+i2—2) i o 1—k—i—i
8 _1 ’L1+Z2( . ' yzlzlzal k—i1 ’Lg.
) DO (P
Studying the sum (8) will be crucial to the next few lemmas.

Lemma 2.8. Whether or not (a,z) € S depends only on a modulo °.

Proof. Let z € 7°R. By Lemma 2.7, it suffices to check for each y € 7°R and each i;,i5 > 0
that (k+“+”_2)y“zi2 is divisible by 7. By Lemma 2.2, there exists r with i1 + 5 > p” + 1 and

) ‘il,iz,k’—Z
(Frive?) divisible by pU. -
Noting that ¢ > ¢ by definition, if ¢ = ¢ then (k;;’;;rlz?__;) y" 2% is divisible by p*~"7®"*+D¢ and
thus by (2) is divisible by 7", and if ¢ > ¢ then ¢ > ¢+ 1 so (k;;i;2+]:i;2)yilziz is divisible by
p? PV and thus by (3) is divisible by 7", O

Lemma 2.9. Let a,x,z € R. Let u be the w-adic valuation of z.
Suppose either (i) that (a,x) € S, (a+ z,x) €S, and 0 < u < ¢ or (ii) that w = ¢ < ¢ and

= i (B i =2 L s ki 5
i1+1 i1 Lio  1—k—i1—1 o ¢
¢< E (=)™ 2( i k2 >y122a ! 2>—lf0rally€7rR.

i1,i2=1

Then R is a ring of mized characteristic and u = pj++_pj for some j from 0 tov—1. Further-

more for each a,x,j, there are at most p possible values of z modulo w**+1.

Proof. Choose j € {0,...,v} minimizing the m-adic valuation of 2P pv=3. In particular, in a
ring of equal characteristic p, we have j = v, and in a ring of mixed characteristic, we have
u > —— unless j = v and © < —5%— unless j = 0.

P P p’—=p
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Let y have m-adic valuation n — 1 —e(v — j) —up?, so that yz?' p*~J has m-adic valuation n — 1.
(Here e(v — j) is taken to be 0 if R has equal characteristic and thus v = j, even though e is
undefined in this case.)

Then in case (ii), we can check that y is divisible by 7°. Since u = ¢ < ¢, we must have

CU—T

2P D pv= not divisible by 7" for some r, so 2 7 not divisible by 7™ and thus 2 wepPI is
not divisible by 7", so y is divisible by 7¢.

Similarly, in case (i), we can check that ¥ is divisible by 7°. By (3), we have 7® +DE1pv=r
not divisible by 7"~* for some 7, so we have z' 7 1p*~" not divisible by 7"~ for some r, so
2P 7 1p?=J is not divisible by 7”71, so y is divisible by 7. This gives the claim unless ¢ > ¢, in

which case u < ¢ — 2 and by (2), we have 7®" +1)(c=Dpv=" not divisible by 7™ for some r, so we

have 2P 1< 1p*~" not divisible by 77" and in particular not divisible by 7", so 2#’ 7~ 1pv=7 is
not divisible by 7#"~!, so y is divisible by 7.
In either case, it follows that
> ki iy —2\ . -
_1 11+12 llzlgallfkfllflg — 1
¢<2< ) < g k—2 )Y ’
i1,i2=1
using Lemma 2.7 in case (i).
Now we will show that almost all the terms in the sum (8) are divisible by 7. o
Indeed, given 71,79, by Lemma 2.2 we may choose r so that iy + i, > p" + 1 and (kzz;;]zz_j)

is divisible by p”~". Since the m-adic valuation of z is less than the m-adic valuation of y, unless
i1 =1,

k+1 + 19 — 2)y12i1+’i2—1 | (/{ + 11+ ig — Q)yilzig‘

n v—j. v—r, p"
" | mpt Ty | mpt T yz |7T< NP i k9
11,02, K — 11,2, K —

Even if ¢; = 1, a similar reasoning works unless i, = p". If i3 = p", the p-adic valuation of

ktirtin—2\ _ (k+14pT—2) kbintion—2\, iy in _ (k14" =2\ 1 _p" Y '
( i k2 ) = ( Lo k2 ) is exactly r, so ( AP )y 2" = ( L b2 )y zP" has m-adic valuation

exactly
(9) e(v—r)+pu+n—1—elv—7) —pu)>n-1

by the definition of j.
Equality in (9) holds if and only if

e(v—r)+pu=elv—7j)+pu

In particular, it holds for r = j, and because e(v — j) + p’u is a strictly convex function of j, for
at most one other value of j: forr:j—lifu:pjf;;ﬂ-_1 andforr:j—i-lifu:m.

If equality in (9) does not hold for any j # r, then (a + z,z) ¢ S. Indeed, the sum in (8)
contains exactly one term which is nonvanishing mod 7",

i (E+1+p —2 i hep
—1)y» ' P’ o —k—p

and this term has m-adic valuation n — 1. Thus, multiplying y by a unit, we can make this term,
and thus (8), be an arbitrarily element of 7"~ !(R/7)*. Choosing the unit appropriately, we can
make 1 nontrivial on (8).

On the other hand, if equality in (9) holds for some j # r, then possibly after switching
r and 7, we have r = 7+ 1 and u = m. (In particular, this is never satisfied if R has
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equal characteristic and thus e = co.) In this case, (8) contains exactly two terms which are
nonvanishing mod 7" and thus is congruent mod 7" to
i (k+1+p =2 o w1 (E+H 1T+ p -2 1t
o p]Jrl p] k pJ o p] +1 p] k p]
=V < 1,pl k=2 >yz o+ ) < Lyt k-2 )Y
Note that both terms have m-adic valuation n — 1 by assumption. If their sum has m-adic
valuation n — 1, then (a + z,x) ¢ S for the same reason. So (a + z,z) € S only if

, -
(_1)pj+1 (k il—;]—;p] ; 2) yija_k_pj " (_1)pj+1+1 (k ;— 1]1—1]}:‘ ; 2) yzpj+1a_k_pj+1
) y v » P y v

= 0 mod 7".

1

This condition depends only on z mod 7**!  and hence can be viewed as an equation in R/7

satisfied by z/7". This equation has the form a(z/7*)* + B(z/7*)’" = 0 mod 7 for a,f €
(R/m)*, and thus has at most p solutions. O
Define k' = ged(k, |R/7| — 1)p*" where
(10)
o — #{j10<j<v—1,pP(p—1)]ee(lv—g+ @ +1)/(pP™" —p’)) <n—1} (mixed characteristic)
0 (equal characteristic).

(10) differs from the definition (1) of w only in including the strict inequality < n — 1 instead of
<n —1, so that v’ < w and thus k&’ < k*.

Lemma 2.10. For x € (R/7"R), the number of congruence classes a mod 7 with (a,x) € S is
at most k'.

Proof. First note that if (a;,z) and (az,x) both lie in S then by Lemma 2.5, a¥ = x = a4 mod
7™/% and so a¥ = af = 2 mod 7.

For each z, there are at most ged(k, |R/7| — 1) congruence classes modulo 7 satisfying this
equation, and thus at most ged(k, |R/7|—1) congruence classes mod 7 containing a with (a, z) €
S.

If R has equal characteristic p, then two a with (a,z) € S that are congruent mod 7 are
congruent mod 7¢ by Lemma 2.9(i), so there are at most ged(k, |R/7| — 1) congruence classes
mod 7¢ containing a with (a,z) € S, as desired.

If R has mixed characteristic p, then for 0 < d < ¢— 1, by Lemma 2.9(i) two a with (a,z) € S
that are congruent mod 7¢ are congruent modulo 741, unless d = e/(p’*! — p’) for some j from
0 to v — 1. For each special value of d, there are at most p congruence classes modulo 7!
containing such a in each congruence class modulo 7¢. Thus, by induction on d, the number of
such a modulo 7! is

ged(k, |R/7| — 1)p#{j|0§j§’v—17pj(p—1)|e,e/(pj+1—pj)§d}‘

and so the number of such @ modulo 7€¢ is
ged(k, |R/7| — 1)p#{j|0§j§v—l,pj(p—l)le,e/(pj“—pj)<5}_

By (3), if e/(p"™ — p?) < ¢ then (p? + 1)e/(p’™ — p/) + e(v — j) < n— 1, so the number of such
a is at most

ged(k, |R /7| — 1)p#{j|0§jSv—ij(p—l)|e7e(v—j+(pf+1)/(pj+1—pj))<n—1} = ged(k, |R/7| — 1)pw/ — k.
O
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Lemma 2.11. For (a,z) € (R/7"R)?, whether or not (a,x) € S depends only on x modulo
el
For each a € (R/m"R), there exists a unique congruence class of x mod "¢ with (a,x) € S.

Proof. There are three claims: depending only on x modulo 7"~ ¢, existence, and uniqueness.

To show it depends only on x mod 7"~ ¢, we note simply that W — ak%l is divisible by y,

— == modulo 7" depends only on x modulo 7

n—c

thus divisible by 7¢, so (

I
For uniqueness, suppose (a,x) and (a,x + z) both lie in S, where z is not divisible by 7"¢.
Then dividing (7) for z + z by (7) for z, we obtain

z z .
v ((a+y)’“1 B akl) = lforally € 7°R

Taking y of w-adic valuation n — 1 — v,(z), we see that zy has m-adic valuation n — 1, and thus,
modulo 7",

z z 1 1 1—-k
vt a1 Y\t et 4T T T med )

By multiplying y by a suitable element of (R/7)*, we can make zy (1 mod 7) into any element
of 7"~ 1(R/m)*, and thus we can ensure v is nontrivial on it, a contradiction.
For existence, it suffices by induction to show that if d > ¢ and x satisfies the equation

W) (y(k —-1)+ @ _I_xy)kl - G:Cl) =1 forall y € 7' R

then there exists 2’ satisfying the same equation for all y € 7¢R. Given such an z, by Lemma 2.4,

we see that ¢ (y(k —1)+ (a+5)k71 — akﬂ) is a homomorphism from 7R to C*, and since it takes
the value 1 on all y € 7' R, a homomorphism 7?R/7?'R — C*. Since 1) is nondegenerate,

any stich homomorphism can be written as y ~— 1(2y) for some z divisible by 7" 14, Take

CI,kZ

k—1

¥ =x+

to obtain

x akz x az >

o (o4 g~ i) =0 (0 0+ e e R R

(0 ) (i)

akz az akz az
v (e e )~ e )
_ az kzy*  k(k+1)zy? az '\
_w(zy+k—1_zy+ 20 6a2 +"'_k—1>_1

since all the terms that do not cancel are divisible by 232, hence divisible by 7"~1=4+2d — gntd-1

and thus divisible by 7. 0
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3. BOUNDS FOR KLOOSTERMAN SUMS

We begin with the proof of the upper bound Theorem 1.1 in the n even case, and then give the
proof in the n odd case, which is similar, but slightly more complicated, before finally proving
the lower bound (for all n).

We begin with a stationary phase analysis that reduces the even case to a one-variable sum.

Lemma 3.1. For n even, we have

(11) Kiy(z) = 3 " ((k: ~1a+ a,il) |R /|22,

a€R/m™,aF=x mod /2

Proof. Pick a set S of representatives of congruence classes in R/ 72 Write each z; as a; + b;
where a; € S and b; is divisible by 77/2.
Then

k k
ki@ =Y > (e yn)
at,...,a€S bi,....bpex™ 2R/ (x™) 1=1 i=1
H?:l a;=z mod /2 le (a;j+bi)=x

Since b;b; = 0 for all ¢, j, the equation Hle(ai + b;) = x simplifies to
Eop ok
=1 =1
The sum over b; vanishes unless the character 1 (Zle a; + Zle bi> is constant over the affine

hyperplane of solutions (by,...,b;) to (12), which occurs only if a; = as = -+ = ay since if
a; # a; we can add a multiple of a; to b; and subtract a corresponding multiple of a; from b; to
change the value of the character.

Say the a; are equal to a. In this case, (12) implies that

i x x
Zbi:a Hk .—1 =

=1

SO
k k
x
(S50 - (- )
Furthermore (12) has exactly | R/x|* ™™ solutions since by, is uniquely determined by by, . .., by_1.

Thus

k k
PACTES SHEED SHY) S o
a1,...,ax €S b1,...,bk€ﬂ'n/2R/(ﬂ'n) =1 =1

Hle a;=z mod 7"/?

15, (aitbi)==

- ¥ 3 ¢((k—1)a+a,f_1)

bi,....bpen™/ 2R/ (x")
Hle(a—&-bi):z

= Y o= Vet ) R/

a€eSs,
a*=z mod =

k n/2

a®"=x mod 7w

n/2
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Averaging over all possible systems of representatives, we get (11).

By a second stationary phase analysis, we show cancellation occurs whenever (a,z) ¢ S.

T
k71> =0

Lemma 3.2. Forn even and (ag,z) € (R/7™)?, we have

> (k-

a€R/T"R
a=ag mod 7€

akF=z mod n"/2

if (ag,x) & S, and this sum equals |R/7|" " “¢ ((k — Dag + ak&) if (ag,x) € S.

Proof. By Lemma 2.6, the condition ¢ = 2 mod 7"/? depends only on a mod 7°.

Thus if af = 2 mod 72, the sum simplifies as

S w(k-nas )= X e (G-t )

a€ER/T"R yEmeR/m"/2R
a=ag mod 7w¢

and otherwise the sum vanishes. If af = z mod 72 then (ag,z) ¢ S by Lemma 2.5 and the

claim is automatically true, so we may assume af = x mod /2,

Now by Lemma 2.4, (k — 1)(ap + y) + TanTy7=T 18 & group homomorphism 7R — R/7™ plus

W) is an additive character of y times a constant.

Hence the sum vanishes unless this additive character is trivial. This occurs exactly when

a constant. Thus v ((k —1)(ao+y) + (

(ag,z) € S. O
Lemma 3.3. For n even, we have
Ki(w)= > o ((k ) R
a€ER/T™
(a,x)eS
Proof. This follows from Lemma 3.1 and Lemma 3.2. U

We can immediately deduce a slightly weaker form of our main bound in the even case:
Lemma 3.4. For n even, we have
K ()] < KR/
Proof. This follows from combining Lemma 3.3 and Lemma 2.10. U
When ¢ > ¢, we must improve this slightly.
Lemma 3.5. Fiz (ag,z) € (R/7"R)?. For ¢ # ¢, we have
> w (ke )| < {OV’“*—/’“"R/”'"_;_S if (a0, 7) €S

Tyl otherwise

a=ap mod ¢
(a,x)eS
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Proof. Since ¢ # ¢, we must have ¢ = ¢ + 1.

By Lemma 2.8, whether (a,7) € S depends only on a modulo 7¢, so the sum is empty and
the result is trivial if (ag,z) ¢ S, and if (ag,x) € S, then (a,z) € S for every a in the sum. In
particular, this implies

" <(k ~ D)(an't) + #)

(a + mét)k—1
depends only on ¢t mod 7. Define ¢: R/m — {2 € C| |z| = 1} by

o0) = (6= Dlawr'®) + e ).

(o + wet)i 1

Then
x n—c
> w(k=Da+ =)= D )R/
a€ER/T"R teER/m
a=ag mod 7w°¢
(a,x)eS

In the notation of Lemma 2.1, we have

@(tlﬂb)—?ﬁ( R _ z - v - m_)
(ag + w(ty + t2))5=1  (ag + 7ta)k=1  (ag + wta)k—1  (ag)h!

— N ivrin (B0 02 = 2N o) iy i 1-k—iy—i
_Q/’(AZ(_” ( iny ok — 2 )W( Vit ag )
i1,i2=1
by Lemma 2.3. By Lemma 2.2 and (3) every term is divisible by 7#"~!, and furthermore is
divisible by 7™ unless iy,i, = (1,p") or (p”, 1). Since t*" is an additive polynomial in ¢, it follows
that ¢ is a group homomorphism in each variable. So we may apply Lemma 2.1.
Here W consists of exactly those t; so that

> (ki i — 2\ a iy e g
w( Z (_1>z1+zz( ; 22'12 kli , )WC(21+’L2)t7ilt;2aé k—i1 22> -1
11,2=1 ? e

for all t € R/m. Equivalently, these are t; such that

= i1+1 k+l +Z _2 é 11,0 —k—1i1—12
?ﬁ(z (—1)1+2( i ;2 kiQ >(7Tt1)1y2a(1) k >:1

i1,02=1

for all y € 7°R.

By Lemma 2.9(ii), this can only happen for ¢; # 0 if R is a ring of mixed characteristic and
c = pj++—pj for some j from 0 to v — 1. Furthermore, in that case there are at most p possible
values of t;. Thus |[W| =1 unless ¢ = and |W| < p in that case.

So Lemma 2.1 implies that

¢
pIt1l—pi

‘Z <p(t)|<{\/ﬁ|R/7T|é if ¢ = —f—y for some 0 < j <w—1

teR/n |R/m |% otherwise
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Ifé#mforallOﬁjSv—l,weobtain

X n—<c—¢
> (=Dt )| < |R/al
a€ER/T"R
a=ap mod 7¢
(a,x)eS
which gives the desired bound since k' < k*.
On the other hand, if ¢ = m, we have
: _ L e +1) . |
(n=1) < (@ +1)c+e(v—7j) :m+€<v—]) ZG(U—J+ij—_pj

and because ¢ < ¢,

n—1> (" +1)é+e(v—r) = ;(.i—j—l—e(v—r) > ;J(.]i——i__z—l—e(v—j) =e (v—j—l— p7——|—1)

(because increasing r by one increases Ltk R e(v—r) by (

L) i 1) which is < 0 if r < j

pIt1l—pJ

pitl—pi

and > 0 if r > 7). Thus e (v -7+ ke ) = n — 1, which means that w —w’ =1 by (1) and
(10) and thus ]’:—l = p, giving the desired bound also in this case.
O

Proposition 3.6. For n even, we have

kn—c—¢

| Kl ()] < K*[R/m| 2.

Proof. If ¢ = ¢ then this follows from Lemma 3.4 and k¥’ < k*. Otherwise, it follows by combining
Lemma 3.3, Lemma 3.5, and Lemma 2.10. 0

We now begin the odd case in the same way as the even.

Lemma 3.7. For n odd we have

T1,..., e, ER/T"R =1
k
H'L:l Ti=T
n—1
r1=r2=-=x) mod 7 2

Proof. Pick a set S of representatives of congruence classes in R/ 7"% R. Write each x; as a; + b;
+1

where a; € S and b; is divisible by 772 .

Then
k k

Kly(z) = S 3 w(z at+ Y b)

+1 = i—
i it biybpen T R/a" R =1
[1;- ai=x mod = 2 H?:l(ai'i‘bi):ﬂc

Since b;b; = 0 for all 4, j, the equation Hle(ai + b;) = x simplifies to

k

(13) = (1+§22—>Ha

=1
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The sum over b; vanishes unless the character 1 (Zle a; + Zle bi> is constant over the affine

n—1

hyperplane of solutions (by,...,b;) to (13), which occurs only if a; = ay =+ = ay mod 7 =
because otherwise we can add a multiple of a; to b; and subtract the same multiple of a; from
b; to change the value of the character. Thus

Kli(x) = 3 3 w(ﬁ: ai+ i bi)

n+41
a1,,0k €S n41 bi,...,bpET 2 R/W"R

k _ o2
A L= 2 k

[Tiz1 ai=z mod = - izq (ai+bs)=x

a1=a2=---=ap mod ™ 2

= ) w( 1‘)
Z1,.., 2, ER/T"R =1
k
Hi:l Ti=x
n—1
r1=xo=--=x) mod ™ 2

Define the Gauss sum

Gilap)= Y ¢<w”1<a§5i+ﬁ > 65))

51,...,6k,1€R/7TR 1<i<j<k-1
where o, 8 € R/7R.

Lemma 3.8. Forn > 1 odd, we have
k

x a*—z 1 (=D)(k—1)-n-1
ki@ = 3w (e ) G (S ) Iy

3 a
a€ER/T"R xrm
k n—1
a®=x mod 7w 2

n— . ntl
=...=x, mod 77 there exist exactly |R/7| 2
values of @ € R/m"R such that a = 21 = 29 = -+ = 2 mod 5 This, combined with
Lemma 3.7, gives

Proof. For each z1,...,x; such that x; =

&
I

k

1
Ki(z) = 3 o(X )
a,r1,....kx, R/ R =1 |R/7T| ?
[T, wi=
n—1
a=x; mod w2 for all ¢

For this condition to be satisfied, we must have a* = = mod 77" . When this is satisfied, we can

write each x; uniquely as a; + WnT_lbi for some b; € R/ 75 R. This gives

Klp(r)= > > ¢(i(a+ﬂn215i)>;n+l-

n +1 ] — R T 2

) a€R/7 R by beeR/a"F R =1 |12/
= 2 n—1

a®=x mod 7 71?:1(@ T2 bz) x

Now
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i T it T b, 1 bb;
7 § : 17
E (a —|— m 2 b ) F —_ E T _|_ T

i=1 i=1 1<i<j<k—1

= (k=la+—+77 (1——)Zb+7r 3 by

1<i§j§k—1

where we may truncate the Taylor expansion to second-order since the higher-order terms are
3(n 1)

divisible by 725 and > n because n > 3. Furthermore b is uniquely determined by
bi,...,bx_1 and the equatlon Hle(a + 72 b;) = x. This gives

xz
Kly(z) = Z (G ((k —1la+ F) X
a€R/T" R
ak=z mod wnT_l

> @b( _1<1——>Zb+7r > bibj);n;l

+1 <i<j<k—
b1,...,bk_1€R/7Tn2 R Isisjsk—1

Next note that a” is congruent to  modulo 7 and so 1 — =% 1s divisible by 77 and thus

s ( — a%) is divisible by 7”71, Since each coefficient is divisible by 7"~ !, the term summed
over b; depends only on b; modulo 7. Since for each 7, each residue class mod 7 occurs for

]R/W[n%l possible b,

k-1
S (S SRR T
=1

1 L -
by, br_1€R/7"T R 1<i<j<k—1

k—1
LD zﬂ(”(l—%)mw—% > aiaj)
=1

51,...75k_1ER/WR 1<i<j<k—1

k k
(=1k-1) a“—x x (=1)=1) a“—z 1
= R G (S o ) = i e ()

akm xm2z  Q

which gives

Kh@) = Y v(k-1)

a€R/T"R
k n—1

k
a (no1)1)-
k_1>Gk (ﬁ:‘) | R /| : O
T2
a"=x mod w2

Lemma 3.9. Forn > 1 odd and (ag,z) € (R/7"R)?, we have

" —z 1
> w(th- ot ) G () =0
a€R/TR xrm 2 a
a=ag mod 7w°¢

k n—1
a"=x mod w2

if (ag,x) & S, and this sum equals |R/7|" ™ “¢ ((k‘ —1)ag + a(’jx_*) G, ( a—a i) if (ag,7) € S.

n—1
xm 2 ao
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k —

Proof. By Lemma 2.6, the condition a” = x mod e depends only on @ mod 7¢. Furthermore,

by the same lemma, the congruence class of A" ~1 mod depends only on a mod 7¢, and, since

:1:71'?

a—ac

c>1, % mod 7 depends only on a mod 7¢, so G ( —, a) depends only on a mod 7°
2

Thus if af = z mod 77, the sum simplifies as

ak—x 1

a(“F) X (e
oz A0/ g
a=ag mod 7€

N (= D S (R ey

p)
n yETCR/m"/2R

and otherwise the sum vanishes. If af # z mod 7"z then (ag,x) ¢ S is not satlsﬁed by

Lemma 2.5 and the claim is automatically true, so we may assume af = z mod 7 e

Now by Lemma 2.4, (k — 1)(ap + y) + TanTy7=T 18 & group homomorphism 7R — R/7™ plus

ﬁ)k_l is an additive character of y times a constant.
Hence the sum vanishes unless this additive character is trivial. This occurs exactly when

(ag,z) € S. O
Lemma 3.10. Forn > 1 odd, we have
Kle(w) = > v (k=)
a€ER/T™
(a,x)eS

Proof. This follows from Lemma 3.8 and Lemma 3.9. U

a constant. Thus v ((k —1)(ao+y) + (

z a*—x 1 (n=1)(k=1)=n-1
;H> G <ﬁ5) |R/m| 2

Next, we will need to understand the Gauss sum Gy(a, ).
Lemma 3.11. Fiz o, f € R/mR with B # 0. If p{ k then
k=1
|Gr(e, B)| = |R/m| >
and if p | k and p is odd or k is a multiple of 4 then
k
R/m|2 ifa=0
Guler §)] = § 1F/TIT e
0 if a #£ 0
while if p=2, 2 | k, and 41 k, we have
k
R/m|? if a® = \?
Gl B)| = /I il = X0
0 if a® # N
where A\ € R/ R is the unique element satisfying (7" 1x?) = (7" A\x) for all x.
Proof. We use Lemma 2.1, applied to the phase

p(8) = (7" Q(9))

Za +8 ) 6

1<i<j<k—1

where
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whose associated bilinear form is

B(v,6) =Q(y+6) — Q(v) — Q(d) + Q(0)
=8 Y. (G4 w)G+) —0d; =y +0) =8 > (6 +6m)

1<i<j<k—1 1<i<j<k—1

=p Z 0iv; + Z 0iYi-
1<i,j<k—1 1<i<k—1
Viewing symmetric bilinear forms as arising from symmetric matrices in the usual way, the
second term arises from [ times the identity matrix while the first arises from S times the all
1s matrix. The all-ones matrix has one eigenvalue £ — 1 and the rest 0, and adding the identity
matrix gives one eigenvalue k and the rest 1, while multiplying by 8 gives one eigenvalue Sk and
the rest 3.

Since 5 # 0, we see if p { k that B is nondegenerate and so W = 0. This gives the estimate
in the first case.

If p | k, this matrix has eigenvalue 0 with multiplicity one and thus its kernel is one-
dimensional. We can see immediately that the kernel is generated by the all 1s vector, i.e.
consists of vectors with ¢; = 9 for all 7. Thus, W is the subspace generated by the all-1s vector,
and we obtain an estimate ¢ if (7" 'Q(8)) is constant on W and 0 otherwise. It remains to
determine when this restriction is constant.

Restricting @ to W, we get

Q.6,....0) =a(k— 1)5+B(§>52

If pis odd or p = 2 and k is a multiple of 4 then p divides (g) so Q(6,...,0) = —ad and thus
(7" 1Q(4)) is constant if and only if o = 0.

If p =2 and k is not a multiple of 4 then (g) =1mod2so Q(4,...,8) = ad + 62, and, after
composing with ¥(7"71(+)), we get

Y(r"Had + 55%) = (" (o + A/B)9)
which is constant if and only if a + A\y/3 = 0, which happens if and only if a? = \28. O
Lemma 3.12. Forn > 1 odd, we have
Kl (z)| < K'|R/m|"">°

Proof. By Lemma 3.10, Lemma 3.11, and Lemma 2.10, we have

ak (n=1)(k-1) -1
Kio)l = | 3 vk )6 (S ) i
a€ER/T™ xrm 2
(a,x)eS
k % n— 1)(k 1)—
< > |R/x*|R/x| < K|R/a|"|R/x|%|R /x|
aER/T™
(a,x)eS

= K| R/m|" .

Again, a slight improvement can be made if ¢ > ¢.
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Proposition 3.13. Forn > 1 odd, we have
| Kl (z)| < k"

Proof. If ¢ = ¢ this follows from Lemma 3.12 and the bound & < k*. If ¢ # ¢ then ¢ = ¢ + 1.
If k£ is not divisible by p then we repeat the argument of Lemma 3.12, saving an additional

factor of |R/ 7r|% in the application of Lemma 3.11, obtaining the conclusion since ¢ = ¢ + 1.
If c=¢+ 1 and k is divisible by p, by the second case of Lemma 2.6, - mod 7 depends

x7r2

only on @ mod 7. The same is true for é mod m, so Gy, ( "kn_xl , a> depends only on a modulo
2

T

€.

Hence we can apply Lemma 3.5 to obtain

a* —x 1 (n=DED)=n-
K@) =] > ¢< >Gk (ﬁ )|R/7T|
aER/T™ Trm =2
(a,x)eS
T not_Z a" —z 1 (D)o
~ T )
a€ER/m°
(a,x)eS
nf——— %
< N VEJFIR/7|" 3| R/x|* R/
a€R/7¢
(a,x)eS
n—1)(k—1)—n—
< kvk*/k’IR/?rI”""IR/ﬂl |R/w|$

k*k'

giving the desired bound since k* > E'.
O

Finally, we prove the lower bound. To do this, we prove Kl(x) vanishes for most z, and then
evaluate the £2 norm of K, showing it must take a large value on some point

Lemma 3.14. For n > 2, we have Kly(z) = 0 for all but at most |R/x|""* " (|R/n| — 1) values
of .

Proof. The size of S is at most |R/x[""'(|R /7| —1) times the maximum over a of the number of =
with (a,2) € S. By Lemma 2.11, this maximum is |R/7|, so |S| is at most |R/x|"** "' (|R/x|-1).
By Lemma 2.8, if (a,7) € S for at least one a then (a,z) € S, for at least 7"¢ values of a, so
the number of x with (a,z) € S for at least one a is at most |S| divided by 7#"~¢, and thus at
most |R/x| " (|R/x| —1).

Finally, by Lemma 3.3 in the n even case and Lemma 3.10 in the k odd case, Kly(z) = 0
unless there is at least one a with (a,z) € S. U
Proposition 3.15. Forn > 2, we have |Kl(x)| > |R/7r| for at least one value of x.

Proof. Otherwise, we would have

Yo K@< Y R/ < R/
ze(R/m™) z€(R/7™)
Kl (x)#0
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by Lemma 3.14. On the other hand,
> K@) = R/
ze(R/m™)

by opening the sum and eliminating variables in pairs. U

4. A UNIFORM CFKRS HEURISTIC FOR TWISTED MOMENTS

Let F, be a finite field with ¢ elements and 7 an irreducible polynomial in Fy[T]. Recall that
F,[T17, is the set of monic polynomials relatively prime to 7.

We give a prediction for the value of the twisted moment (4) of L-functions of Dirichlet
characters over I [T'] to fixed modulus, in the depth aspect of large n, fixed 7. Thus, we will
always assume n > 2, but a similar prediction could also be given for small n.

To motivate this, note that orthogonality of characters gives, for g, h € F,[T]7,, that

3 v@)x(W)x(g) = 0

unless a = Bg/h mod 7"~ for some 3 € Fx. When a = 3g/h mod 7"~ for some (necessarily

unique) f, set
(14)

Con =Y xla)x(h)x(g) = ||~ x

XEFr,n

Z%f if =1 (|7| = 1)* if @ = Bg/h mod 7"
_q%l ifﬁ#lx —(|r| = 1) if o # Bg/h mod 7"

by another orthogonality calculation. Also write N = ndegm — 1. Let Q be the set of pairs
(9,h) € (Fg[T]})? x Fy with ged(g, h) = 1 and a = fg/h mod 7"~*. Then we predict

Prediction 4.1. There exists § > 0 such that for all a, ..., asy, imaginary and a € (F,[T]/7")*

(15)
k
S (@ [ /2 + a0 VI3 + areox)
XEFn,n i=1
k
N(ZC!Z‘*ZQ,’) 1 1 ) 1-5
= > Yooa = = > Con [T1E 2 [T 1= + O(lx =)
(g,h)eQ  SC{1,...,2k} f1,~~-,f2k;€]Fq[T];r‘—/ 1€S ¢S
lgl|RI<q™ /Ix|*  ISI=k 91Ligs fi=h]lies fi
where the sum over fi,..., for in the right-hand side is interpreted as a meromorphic function
n i, ..., Q, analytically continued from the domain where it is absolutely convergent.

Moreover, we will be interested in the particular value of ¢ in Prediction 4.1. If (15) holds for
all § < 1/2 then we say (15) admits square-root cancellation.

(15) looks similar to the predictions of [2, 5] for similar moments, except that those works
summed over the “diagonal” gHi¢S fi = h]lcq fi for a single pair g, h, while we sum over
multiple diagonals. In this section, we briefly explain this choice, then show that (15) admits
square-root cancellation in the £ = 1 case. We omit the step-by-step derivation of (15) as it is
relatively standard, except for the use of multiple diagonals.

When a can be written as g/h for g, h small, one need only to consider the diagonal associated
to g, h, but if the residue class a has multiple representations as a ratio, there is no clear reason to



THE SIZE OF WILD KLOOSTERMAN SUMS IN NUMBER FIELDS AND FUNCTION FIELDS 21

prioritize one over another. Summing over multiple diagonals is the simplest way to incorporate
them into the estimate. The fact that it works in k& = 1, as we will see below, is evidence that
it is the right approach in general. Furthermore, one can see from the k = 1 estimate that if
we ignore one diagonal, then it will produce a larger-than-square-root error term, preventing
us from obtaining uniform square-root cancellation, and explaining the error term found in [5,
Theorem 10].

On the other hand, if we summed over all representations of a as a ratio, our predicted main
term would not necessarily be any simpler than the original moment problem. So it is necessary
to sum only over g, h below some cutoff. We have chosen |g||h| < ¢V /|7|* as our cutoff because
it simplifies our calculation in the £ = 1 case. Any cutoff which is close to N should do the
trick. We also include the monicity and coprimality conditions to avoid double-counting.

A key advantage of this is that the number of diagonals we need to sum over to obtain the
main term is only of logarithmic size. Indeed if (g1, h1) and (go, ho) both satisfy the conditions in
the sum of (15), and in addition deg h; = deg hs, then $1g1/h1 = a = [292/hy mod 7"~ implies
7" 1| Bigihe — Bagahy. Also

g1llha| = |gallla| < ¢/ |m* < |m*

and the same is true for |gs||h1|, and these together give 81g1hs = [2g2h1, and then by coprimality
and monicity we have hy = ho, g1 = ¢o,81 = 2. So the number of possibilities is at most
(n—2)deg.

Shifting the cutoff far below ¢ would cause us to miss diagonal contributions of above-square-
root size, while shifting it far above ¢" would cause our “main term” to be a sum of polynomially
many diagonals each of below-square-root size. Both are undesirable.

4.1. The case k = 1. We now establish (15) for all § < 1/2 if k = 1. In fact, we will give
an error term of O(n|r|?) for fixed 7. Our strategy is to express both sides (ignoring the error
term on the right side) as polynomials in ¢~ and ¢** and compare their coefficients. Since the
variables ¢~ and ¢** have absolute value 1, the difference between the polynomials is bounded
by the sum over degrees d;, dy of the difference between their coefficients. So it suffices to show
the sum of the absolute values of the differences of the coefficients is O(n|m|?).

Let ]
alx)=q¢* >, x(f)
fLEF[TTE,
deg f=d
so that
N
L(s,x) = Z%CI2 e
d=0

and the functional equation, whose constant €, satisfies |e¢,| = 1, implies a; = ¢,an—_g. Let Ay
be the number of monic polynomials of degree d prime to xy. We have A; = 0 for d < 0.
We have

L(1/2+011,X)L<1/2+042, Z Zadl a/d2 q d1a1+d20¢2

=0 d2=0
so that

(16) Y x(a)L(1/2+ a1, x)L(1/2 + az, ) ZZ S X(@)am (ag) (g herties,

XEFr,n d1=0d2=0 XEF 7 n
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Lemma 4.2. For any di,dy > 0, we have

— dy+dg
Z X(a)adl (X)adQ(X) =q 2 Z Cg,hAdzfdegg

XEFr,n (g,h)EQ
deg g—deg h=da—d;

Proof. We have
Y x@agam= > x@e TS (xR,

XEFr.n XEFm,n fr.f2€F[TH,
deg fZ:dz

Then (14) gives

Z x(@)x(f)x(f2) =

XEFr,n

Letting g = fo/ ged(f1, f2) and h = f1/ ged(f1, f2) then g and h are coprime to each other and
7, monic, and satisfy g/h = fo/ f1 so that (g,h) € Q. Furthermore, from any (g, h) € Q, we can
make f5, fi by multiplying by a polynomial of degree e coprime to 7, as long as degg = dy — €
and deg h = d; — e, so the number of terms (fi, f2) that give any pair (g, h) is Ag,—degq as long
as dy — dy = deg g — deg h. This gives the statement. U

Ct,p, ifa=pfa/fi mod 7"t for some § € Fx
0 otherwise

On the other hand, we can evaluate the £ = 1 case of the inner sum on the right hand side of
(15).

Lemma 4.3.

N((Zai)_al) —l—oc' —l—&-oa-
(17) Yo oa = DR UV i | A7
SC{1,2} f1,f2€F,[T]%, €S ¢S
1S]=1 gnigsfi:hn:esfi

is a polynomial in ¢~ and ¢™* whose coefficient of q~he1td202 g

0 if degg—degh # dy — d;
_ditdy

(18) ¢ 2 Ady—degg if degg—degh=dy —dy and dy +dy < N
QW*NAN,dI,degg if degg —degh =dy —dy and dy +dy > N

Proof. Since S = {1} or S = {2}, (17) equals
Do AR N ST

f1.f2€F[TTF, f1,12€F4[TTY,
gfa=hf1 gfi=hf2

+

)

We may uniquely express fi = gm and fo = hm in the first sum for some m € F,[T]’,, and

fi = hm, fo = gm similarly in the second sum. This gives
_ Z ’g’—%—kaz'hl—%—al‘m’—l—aﬁ-az _i_qN(agfal) Z ‘g|—%+a1’h’—%—cm’m‘—l—i-al—oﬂ
meF, [t]i, mqu[t};r/

D D D
e=0 e=0
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A truncated version of this sum
1

D DR e L e e D S B 1 A M e

e< Nfdeggfdegh Nfdegzgfdegh

e<

is easily seen to be a polynomial in ¢~ and ¢*2. Extracting the coefficients, we obtain (18).
The remaining terms are given by

D DI i e P A D W I A W T I i

e> Nfdeg2gfdegh e> Nfdegégfdegh

Since A, = ¢°(1 — |x|™") for e > w, both sums are geometric series. Evaluating the
geometric series as meromorphic functions, we see that they cancel each other. 0

Hence the right hand side of (15) (ignoring the big O term) is a polynomial in ¢~—** and ¢*?
whose coefficient of g~#1@1+d202 jg

dy+d '

(19) T o, 10 :dz * Adydex g ifd +dy <N
9 dytdy . .

(g:h)eQ q 2 NAN—dl—degg if di +dy > N

deg g—deg h=d2—d1
lgllh|<gN /|m|?

We now bound the differences between the coefficients.
For d; + dy < N, by (18) and Lemma 4.2, the coefficient of g~@@1+9292 in the left-hand side

of (15) is
di+d
Z q_ 12 2Ad2—degg

(g:h)eQ
deg g—deg h=d2—d;

so by (19) the difference of the coefficients is

_d1+d2
(20) > Cond™ 2 Ady—degg-
(g,h)€Q
deg g—deg h=d2—d;

lg||h|>gN /|7 |?

We have |Cy | < |7|" and |Ae| < ¢° so that
1
_ditdy di —deg g— d1td2 di—da g degg—degh g _deggtdegh |7T| |7T|q5

s g — egg _ egg _ _
q 2 ’Adzfdegglgql 2 =q 2 =q 2 =q 2 < N = D)
gz ||t

Each pair (g, h) € Q contributes to (20) for at most deg 7 pairs d;, da, and only if deg g+deg h <
di + dy < N, so the sum over d; + dy < N of (the absolute value of) (20) is bounded by

degmqz|7|2 " times the number of (g, h) € Q for which ¢V /|x|* < |g||h| < ¢~.

Lemma 4.4. The number of (g,h) € Q for which ¢~ /|x|* < |g||h| < ¢~ is at most ndegm(q —
1)|n|.

Proof. For each pair g, h, the congruence class of the ratio g/h mod 7™ must reduce modulo 7"~

to a/f for § € F;* and thus can take at most (¢—1)|r| possible values. There are N+1 = ndegn
possible values of deg h, so it suffices to check that for each such congruence class, and each value
of deg h, there can be at most one pair (g, h) satisfying all the conditions.

If 91/h1 = gg/hg mod 7Tn, deg hl = deg hg, and deggl + deg hl,degQQ + deg hg < N then
gihs = gohy mod 7. Furthermore deg(gihs) = degg; + deghy = deggy + deghy < N and
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similarly deg(gahs) < N. Thus we have g1hy = gohy. Then because ged(gy, hy) = ged(ge, ho) =1
and all the polynomials are monic, we must have g; = go and hy; = hso, as desired. 0
).

Hence the sum over dy +dy < N of (20) is bounded by n(deg7)2qz (¢ — 1)|x|2 ™% = O(n|x|?
For dy+d, > N, by (18), the functional equation, and Lemma 4.2, the coefficient of g~d1@1+d2az
in the left-hand side of (15) is

d1+d
Y x(@anas = Y x(@av-gan-a, =9 * " > ConAN—di—degg-

XEJ:W,n XGJ:TF,TL (g7h)€Q
ged(g,h)=1
deg g—deg h=da—d1

The difference between this and (19) is

dy+do _N
(21) ) Cong = " AN-di—degg-
(g,h)€Q
deg g—deg h=da—d1
|g|Ih|>g™ /|x|?

The bound for this sum is almost identical to the d; + dy < N case. We start with

ditds  pr ditdy N N_di—de da—dy 4 degg—degh 4 __degg+tdegh ‘7T|
g9 €gg €egg __
q 2 ’AN—dl—degg‘ Sq 2 q ! =q 2 =dq 2 =dq 2 S N *
q?2

and then observe that each pair (g, h) contributes to (20) for at most deg 7 pairs dy, do, and only
if degg+degh < (N —d;) + (N —dy) < N, so the sum over dy +dy > N of (20) is bounded by
deg Tq? |7r\%Jrl times the number of relatively prime pairs g, h with a = 8g/h mod 7"~ for some
B € FX and ¢/|7* < |g]|h] < ¢~ and thus is O(n|r|?).

5. FUNCTION FIELD APPLICATIONS

5.1. Application to short interval sums. Let [F; be a finite field with ¢ elements, Recall for
g € Fy[T) that T (x—1)(n—2)—1 is the set of f € F¢[T] such that f—g has degree < (k—1)(n—2)—1.

We now provide the application to short interval sums of divisor-like functions. We first relate
these to Kloosterman sums:

Lemma 5.1. let R =F,[[T7 Y]], and take m = T~*. Let¢: R/7"R — C* be defined by extracting
the coefficient of T*™™ and then applying a nontrivial additive character of F,.
Then we have the identity

1

n—2,...m—2 —1)(n— n—

E dé )(f) = gD P E Kly(ag/T" ")
FE€Ly (k—1)(n-2)—1 a€Fy

Proof. Any polynomial, divided by T™, gives an element of R as long as its degree is at most
m, and this element lies in 7R as long as the degree is at most m — d, i.e. <m + 1 — d. Since
(n—2)k+1—n=(k—1)(n—2)—1, we have

Z dgcn72 ..... n72)(f)

= #{f1,. . fr €FT]" | deg(fi) =n — 2, deg([[ fi —9) < (k= 1)(n —2) — 1}
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k
= #{f1,- - Se € BT | deg(fi) = n =2, [ [(fi/T"?) = g/T""P" € 7" R}
i=1

An element y € R/7"R has the form f/T"2 for some monic f of degree n if and only if y =
1 mod 7 and ¢(ay) = 1 for all a € F,, and f, if it exists, is unique. This is because we may write
r=co+c T 4+ +c,_1T"!, the first condition is equivalent to ¢y = 1, the second condition
is equivalent to ¢,_; = 0, and then the unique f that works is co7" 2 + ;T3 + -+ + ¢,_o.

Thus
n—2,...,n—2

FE€Ly (k—1)(n-2)—1
k
=#{y1,...,yr € R/m"R | y; = 1 mod 7, ¢ (ay;) = 1 for all a, Hyi = ¢/T" 2% mod 7" R}

=1
k
= % > > (O a).
ai,...,ax€Fq Y1, Y ER/TR i=1

y;=1 mod T,
[T, vi=g/T"=2* mod 7" R
We now consider the inner sum. If all a; are zero, the inner sum is trivial, and equal to
g* D=1 a5 there are ¢"~' possibilities for each y; and the equation uniquely determines yj, in
terms of the other y;. This term contributes ¢*~D®=1)- F=)(n=2)=1 1f q; = 0 for some j
but not for all j, then as y; is uniquely determined by the equation from the other y;, we can
eliminate the variable, at which point the sum splits as a product [], 4 > wer/xr Y(a;y;) which

y;=1 mod 7
is zero since the factor corresponding to any i with a; # 0 vanishes. This gives

n—2,...,n—2 1) (n—2)— 1
E : dl(c )(f) = g D=7l g & E E 1/)(5 a;li)-
F€Ly, (k1) (n-2)—1 a,...,ax€F Y1,y ER/TR i=1
yi=1 mod m,

Hf:l vi=g/T"=2* mod 7" R

g

Now writing x; = a;y;, using the fact that each element of (R/7™)* arises as a;y; for a unique

a; € Fy and y; € R/7" congruent to 1 mod , and ez =TT a1 v = ag/T™2* for

some g € F, we obtain
k

Z dr=2m=2) () = g Dn-2)1 +qlk Z Z w(z ;).

f€Zy (k-1 (n—2)-1 a€lFy o1, oL E(R/T"R)* i=1
Hle zi=ag/T("=2* mod 7" R

We recognize the inner sum as a Kloosterman sum. 0

Lemma 5.2. We have
ST A = g

FELY (k—1)(n-2)—1

for all but at most q[z’”’lﬁ]ﬂﬁ]fl(q— 1) choices of g modulo polynomials of degree < (k—1)(n—
2) — 1.

Note that the choice of g modulo polynomials of degree < (k — 1)(n —2) — 1 is the same as
the choice of interval.
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Proof. By Lemma 5.1, this identity holds unless Kli(ag/T"2*) # 0 for some a € Fx. Each

value of ag/T™ 2* can occur for only one choice of (monic) g modulo polynomials of degree
< (k—=1)(n—2) —1, so it suffices to bound the number of z € R/7" for which Klj(x) # 0. We

then apply Lemma 3.14, and observe that |R/7| = ¢, ¢ = [p[;ﬂ, and ¢ = [p”vjrll] O

Lemma 5.3. We have

N drTI(f) — g s e (TR ) (1)

el (k—1)(n—-2)-1

for at least one value of g.

Proof. Let G be the group (1 + T7'F [[T'])*/(1 + T "F,[[T1]])* of elements congruent to 1
mod T~ in F [[T!)]/T~"F,[[T']], whose elements may be uniquely expressed as 1+ ¢;T~' +

o dcp TV for e, ..., o1 € [F,. Given such a tuple c, let z, be the corresponding element
1+ TP+ 4TV and let Twe = T+, T™ 4+ - -+ ¢, T™ 1", By the Plancherel
formula applied to G, we have

2
) D D DR e OB L

c€Fy ! S€L k(n=2) 10 (k-1)(n—2)—1

x: G=C* ceFyt fEITk(n_Q)zc,(k—l)(n—Z)—l

k

= qn11 Z ’ Z X(H Tf2> _ Z X(1+61Tn—1_|_..'_l_Cn_lTl—n)q(k—l)(n_2)+1‘2'

X: G=CX fy,. fr€Fg[T)T  i=1 cerg !
deg fi=n—2

For y trivial, we have Zfl,...,fkqu[Tﬁ X(Hle T7{32> — qk(n—l) and Zcemﬂ X<xc)q(k—1)(n—2)+1 _
deg fi=n—2

, so these terms cancel. For x nontrivial, 37 pm-1 X(1)gF D=2+ = . This gives

2
S| X ey e

CGFg_l feITk(”72)xc,(k—l)(n—Q)—l

qk(nfl)

k

2k
D S D DR | e )| = )!
x: GoCX fi,.. ,fkeJFq[T]+ i=1 x: G=C*  feFR,[T]+
x#1 deg fi= x#1l  deg f=n—2

> e 2 | X (E=)l)

n—1
q (q x: G—=CX fGFq[T]+
x#1 deg f=n—2

by Holder’s inequality. Now by Plancherel again

S Y =) - XX @) e Y e

x: G=CX feFq[T] x: G—=CX  feF,[T]+ z€G  feF,[T]T
X#1 deg f=n—2 deg f=n—2 deg f=n—2
f/Tn72:l,

— qn—lqn—2 - q2(n—2) — (q o 1)q2(n—2)

X[ et e (Y g

2



THE SIZE OF WILD KLOOSTERMAN SUMS IN NUMBER FIELDS AND FUNCTION FIELDS 27

SO
2 2k(n=2) (g — 1
nN—z,...,n— — n— q q n—
S| degegee [ DO g
ceFg ™t FEL k(n=2) oo (h—1)(n—2)—1

[ 1+l 11

By Lemma 5.2, the summand can be nonvanishing for at most ¢ (¢ — 1) values of

c, so one value of ¢ must contribute at least
¢ 3)—Tﬁ1—(ﬁ%1+l<q — )Rt
to the sum, meaning the error term has size at least
qg(k(n 3)41;7“14,,’%11“)(61 _ 1)%‘
O

Proof of Proposition 1.5. This follows from Lemma 5.3 after inputting [I)WLH} < 7 and then

collecting all the terms depending only on ¢, k£ into the implicit constant. 0

5.2. Application to moments of Dirichlet L-functions. Finally, we explain why the error
term for (15) cannot admit square-root cancellation.

We note that L(s, x) can be expressed as a polynomial in ¢~* with constant term 1 and leading
term eandcgzﬂ_l g (rdegm™1)s where €, is the constant in the functional equation of L(s, x). Using

this polynomiality, we obtain the contour integral evaluations

27
logq [Tosa
— L(1/2 dao=1

and

27i

l lo
0ogq / gq q(ndegw—l)aL(l/Q +a, X)da =€,
2m Jy

which together imply that, setting v = |log k/logp],

27

27 k
1 lo, lo, v »
( qu) / . / £ i:l(ndegﬂ-il)aiHL(1/2+C¥Z',X)L(1/2+Od]g+i,X)dC(1...dOéQk :Gi
=1

271

SO that

27i k
l logq log q
(qu> [ [ e S @) ] £01/2 + 00 T2 T w0l o

211 ,
XEFr,n i=1

= X(a)ex :
XEFm.n
Assuming (15) with a given power savings J, we may contour integrate both sides against
¢S Nei and thus obtain an estimate for (22).
Contour integrating the error term O(|x|" =™ of (15) simply gives an error term of O(||=m).

Contour integrating the main term of (15) against qzz=1 Nai has the effect of cancelling all
terms where the coefficient of «; in the exponent of ¢ is not equal to —N for some ¢ < p’
or not equal to 0 for some ¢ > p¥. In particular, it cancels terms where the sum over ¢ of
the coefficient of a; in the exponent of ¢ is not equal to —Np”. However, using the equation
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91 1igs fi = Byh [1ies fi to obtain degg + Zigs deg f; = degh + ), g deg f; and using [S| = &,
we see that this exponent is degh — degg. Since degg + degh < N — 2degm < N, we have
|deg h — deg g| < N, so we cannot have degh — degg = —Np". Thus all the terms cancel and
the contour integral vanishes.

Thus (15) with any power savings § implies (22) is O(|x|*™9").

We now estimate the right side of (22) in terms of Kloosterman sums.

Let R = F,[T], be the localization of F,[T] at w. Let ¢: F,[T]/7"F,[T] — C* be defined by
extracting the coefficient of Tm4™1 and then applying a nontrivial additive character of FF,,.

Lemma 5.4. We have

_p“(n deg m+1)

a)el’ = g i 3 N\ Trdee™ 1) i, —Hil Ai).
o =y, X v ) ( 7

XEFrn ALy Apv EF =1

Proof. We first express €, in terms of Gauss sums. We have

=T Y X = T Y wArEm ) ST ()

FERGTT AeF, fEFGT)/m™
deg f=ndegm—1

= ET N p(=arriEm ) ST (M)

AEF feRG[T)/m
ndeg m+1 n deg 71— _
=g T DT (AT E (AT YT ().
AeF JeFq[T] /"
Thus
> xl)e
XEFn,n
_pY(ndegm+1) n deo 7m— _ pY pY
=g Y M@ (X weart =) (X xe))
XEFr,n )\GIF; JFEFG[T] /7™
_pY(ndegmi1) o dos PR P
=g > @Y e ) (Y )
x: (Fq[T]/7")* —CX AEF fEFL[T]/m™

_pY(ndegn41)

p¥ pY
— 4 ? ndegm—1
— ey 2 A S e()
Ao Apo €FY i=1 f1,...,vfpv€Fq[TJ/7r” i=1
a H§:1 fi:H?:1 A

_ pY(ndegm+1)

— q 2 - n deg m— Hfl )‘Z
= |7T|n_1(|ﬂ-| - 1) Z w<z T deg 1>Klk (- —al ) )

Ao Apo €FY i=1

since 3, cpx (=T ™= 1)y (X\71) vanishes for x even and > reryr)/an X(F)Y(f) vanishes for x
imprimitive. l
Lemma 5.5. The moment }_ .z x(a)e" = is nonvanishing for at most

P (gl — 1)~ 1)
choices of a € (F,[T]/m")*.
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Proof. By Lemma 5.4, if the moment is nonvanishing, then Klz(A/a) # 0 for some A\ € F).
Each value of A/a can occur for exactly ¢ — 1 choices of a, so it suffices to bound the number of
x € R/m" for which Kli(x) # 0 and then multiply by ¢ — 1. We then apply Lemma 3.14, and

observe that |R/7| = ||, c = [ 7], and ¢ = [ 75 ]. -

Lemma 5.6. There exists a € (F,[T]/n™)* such that

‘ > x@)er

XEFr,n

> |x| (e

where C' 1s a constant depending only on q,degm,v and not on n.

Since the trivial bound is the length of the sum |7|", because the individual terms are bounded
by 1, this represents a power savings of only —

pU+l’
Proof. We have

SIS x@] = ) Y e

GJG(Fq[T}/ﬂ'n)X Xej:ﬂ',n Xe]:ﬂ',n
=[x" ([ = 1) Y 1=I|al"" (x| = 1) 7" (|w] = V(|7 - 2).
XEFm,n

n n—1
By Lemma 5.5, the number of nonvanishing terms of the sum over a is at most ||l 7+ Tl 17 (|7|—

1)(g — 1), so one of the terms must be at least
2 D | — 1) glr] — 2)(a — )7

Hence one of the values of 37 > x(a)e?” must be at least

n

|2 D ] = 1) (] - 2)(g — D > || )ne
where C'is a constant depending only on ¢, deg 7, v. O

In particular, (15) cannot hold with § > pvlﬂ.

One could try to recover square-root cancellation by replacing e-factors by their average with-
out taking the limit as n — oo, in which case the averages would give these Kloosterman sums.
In particular, if the nonvanishing Kloosterman sums were supported on a “diagonal set” that
has a description independent of 7", and given by a simple formula on that set, one could use
this to extract a (conjectural) secondary main term. However, it does not seem that the set
where Kl (x) # 0 admits such a nice description.
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