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Abstract. For G and H1, . . . , Hn finite groups, does there exist a 3-manifold group with G

as a quotient but no Hi as a quotient? We answer all such questions in terms of the group
cohomology of finite groups. We prove non-existence with topological results generalizing the
theory of semicharacteristics. To prove existence of 3-manifolds with certain finite quotients
but not others, we use a probabilistic method, by first proving a formula for the distribution of
the (profinite completion of) the fundamental group of a random 3-manifold in the Dunfield-
Thurston model of random Heegaard splittings as the genus goes to infinity. We believe this is
the first construction of a new distribution of random groups from its moments.

1. Introduction

In this paper, we address the question of what finite quotients in what combinations the
fundamental group of a 3-manifold can have and not have. It is well-known that for any finite
group G, there exists a closed 3-manifold M with G as a quotient of ⇡1(M). However, we can
ask more detailed questions about the possible finite quotients of 3-manifold groups. If G and
H1, . . . , Hm are finite groups, does there exist a closed 3-manifold M with G as a quotient but
no Hi as a quotient? In this paper, we give an answer to all such questions in terms in the
cohomology of finite groups.

First, we prove a topological theorem that provides certain obstructions to the existence
of 3-manifold groups with certain quotients but not others. Then, we prove that whenever
these obstructions vanish, not only do such 3-manifolds exist, but that a positive proportion
of 3-manifolds (under a natural distribution on Heegaard splittings) have quotients and non-
quotients as desired. We do this by determining completely the asymptotic distribution of

profinite completions \⇡1(M) of random 3-manifold groups (as the genus of the Heegaard splitting
goes to infinity).

For example, if ⇡1(M) admits (F3)2 o SL2(F3) as a quotient, with SL2(F3) acting on (F3)2

by the standard representation, then it also admits (F3)4 o SL2(F3) as a quotient, with SL2(F3)
acting on (F3)4 by the sum of two copies of the standard representation (Proposition 8.13). For
an example of existence, we note that there is a group of order 120, the generalized quaternion
group Q(8, 3, 5), such that, for each natural number n, there exists a 3-manifold M such that
⇡1(M) admits Q(8, 3, 5) as a quotient and all finite groups of order  n that are quotients of
⇡1(M) are also quotients of Q(8, 3, 5) (Proposition 8.17). This is despite the fact that, by the
geometrization theorem, Q(8, 3, 5) itself is not the fundamental group of any 3-manifold.

We now define some notation to state our main result providing the obstructions discussed
above. For V a symplectic vector space over a finite field  of characteristic 2, we denote by
Sp


(V ) the group of -linear automorphisms of V preserving the symplectic form. Following

Gurevich and Hadani [GH12], we let 1 ! Z/4 ! H ! V ! 1 be the central extension of V by
Z/4 with extension class corresponding to the trace of the symplectic form on V (see Section 1.3),
and let the a�ne symplectic group ASp


(V ) be the group of automorphisms of H acting trivially

on Z/4 and on V by a -linear map, which lies in an exact sequence 1 ! Hom(V,F2) !

1
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ASp(V ) ! Sp

(V ) ! 1. We will see below there is a class cV 2 H3(ASp


(V ),F2) such that

the following theorem holds.

Theorem 1.1. Let M be a closed, oriented 3-manifold. Let V be an irreducible representation

of ⇡1(M) over a finite field . Then

(1) We have dimH1(⇡1(M), V ) = dimH1(⇡1(M), V _).
(2) For each nonzero ↵ 2 H2(⇡1(M), V ) there exists � in H1(⇡1(M), V _) where

R
M
(↵[�) 6=

0.
(3) If V is a symplectic representation and  has odd characteristic then dim H1(⇡1(M), V )

is even.

(4) If V is a symplectic representation,  has even characteristic, and if the map ⇡1(M) !
Sp


(V ) lifts to ASp


(V ), then dim H1(⇡1(M), V ) is congruent mod 2 to

R
M
cV .

Properties (1) and (2) are immediate consequences of Poincaré duality and the vanishing of
Euler characteristics for the cohomology of M , and the spectral sequence relating the cohomolo-
gies of M and ⇡1(M). Property (3) may be less familiar – it can be proved using a Heegaard
splitting of M and some algebraic arguments. Property (4) is even stranger, and its proof uses
cobordism. We will prove below in Theorem 1.5 a converse of a strengthening of Theorem 1.1
showing that the properties in Theorem 1.1 exactly describe the closure of the set of the profi-
nite completions of 3-manifold groups in the set of all profinite groups. This requires proving
existence of certain 3-manifolds, which we do using a probabilistic method.

Dunfield and Thurston [DT06] introduced the idea of considering a random 3-manifold con-
structed from a random Heegaard splitting. Briefly, the Heegaard splitting is given by a random
element in the mapping class group of genus g by taking a uniform random word of length L in
a set of generators (including the identity), and then letting L ! 1 and then g ! 1. Dun-
field and Thurston asked [DT06, §6.7] if the distribution of the number of surjections from the
random 3-manifold group to a fixed finite group Q has a limit as g ! 1. When Q is a simple
group, Dunfield and Thurston proved these statistics have a limiting distribution as g ! 1,
but they were not able to show this for general Q. In Corollary 9.5, we are able to answer their
question, and prove that these statistics have a limiting distribution for a general Q. We do so

as a consequence of a far more general result showing that the random profinite group \⇡1(M)
itself has a limiting distribution, which we describe explicitly, as g ! 1.

To describe this distribution, we need to give a topology on the set of relevant profinite groups.
Let C be a set of finite groups. We say a group is level-C if is contained in the smallest set of
finite groups containing C and closed under fiber products and quotients. Then for a group H,
we define HC to be inverse limit of all level-C quotients of H. We call HC the level-C completion

of H. For example, if C = {Z/pZ}, then ⇡1(M)C = H1(M,Z/pZ).
Let Prof be the set of isomorphism classes of profinite groups which have finitely many open

subgroups of index n for each natural number n, with a topology generated by the basic opens
UC,G = {X 2 Prof | XC ⇠= G} for finite sets C and finite groups G. We then describe the limiting

distribution of \⇡1(M) by giving the limiting probabilities that ⇡1(M)C ⇠= G for each finite C and
G.

Theorem 1.2. Let M be the random 3-manifold described above. As L ! 1 and then g ! 1,

the distributions of \⇡1(M) weakly converge to a probability distribution µ on Prof such that

(1.3) µ(UC,G) =
|H2(G,Z)||G|

|H1(G,Z)||H3(G,Z)||Aut(G)|

X

⌧ : H3(G,Q/Z)!Q/Z

nY

i=1

wVi
(⌧)

mY

i=1

wNi
(⌧),
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where the Vi, Ni are those kernels of surjections from level-C groups H to G that are also minimal

normal subgroups of H (so, e.g., the Vi are certain irreducible representations of G over certain

Fp), and the wVi
(⌧), wNi

(⌧) are constants defined in terms of the action of G on Vi, Ni in Tables

1 and 2 of Section 4.2, with Wi is the set of all the level-C extensions of G by Vi.

For example, let S be a finite set of primes, and write ⇡S

1
(M) for the pro-S completion of

⇡1(M) (i.e. ⇡1(M)C for C the set of all finite groups whose order is a product of powers of primes
in S). Theorem 1.2 implies

(1.4) lim
g!1

lim
L!1

Prob(⇡S

1
(M) is trivial) =

Y

p2S

1Y

j=1

(1 + p�j)�1
Y

N

e�
|H2(N,Z)|
|Out(N)| ,

where the second product is over non-abelian simple groups N whose order is a product of powers
of primes in S. One can check using the classification that there are only finitely many simple
S-groups, and let C be the set of these groups. Then ⇡S

1
(M) = 1 if and only if ⇡1(M)C = 1,

which allows one to deduce (1.4) from Theorem 1.2.
We can see from the definitions of the wVi

and wNi
that µ(UC,G) is positive if and only if it

contains a profinite group satisfying the four conditions of Theorem 1.1. Thus, from this explicit

limiting distribution we can determine the closure of {\⇡1(M)} in Prof. This follows a suggestion
of Dunfield and Thurston [DT06, §1.6] to use their model of random 3-manifolds for existence
results of 3-manifolds with certain properties.

Theorem 1.5. A group G 2 Prof lies in the closure of the set

{\⇡1(M) | M a closed, oriented 3-manifold}

if and only if there exists ⌧ : H3(G,Q/Z) ! Q/Z such that, for each irreducible continuous

representation V of G over a finite field ,

(1) We have dimH1(G, V ) = dimH1(G, V _).
(2) For each nonzero ↵ 2 H2(G, V ) there exists � in H1(G, V _) where ⌧(↵ [ �) 6= 0.
(3) If V is a symplectic representation and  has odd characteristic then dim H1(G, V ) is

even.

(4) If V is a symplectic representation,  has even characteristic, and the map G ! Sp

(V )

lifts to ASp

(V ), then dim H1(G, V ) is congruent mod 2 to 2⌧(cV ).

In particular, we can apply Theorem 1.5 to classify all finite groups in the closure of the set
of 3-manifold groups in Prof. In Proposition 8.20, we find such groups are either fundamental
groups of spherical 3-manifolds or Q(8a, b, c) ⇥ Z/d, where Q(8a, b, c) are certain generalized
quaternion groups.

We note that the topology on Prof is the most natural topology from a number of perspectives.
For example, it is the topology generated by the open sets {X | G is a quotient of X} for finite
groups G, along with their (open) complements. In particular, the set of X with G but none of
H1, . . . , Hn as a quotient is open in this topology, and thus by describing the closure of the set
of 3-manifold groups in Theorem 1.5, we answer the question of whether there is a 3-manifold
group with G but none of H1, . . . , Hn as a quotient.

Another natural question is: if G is a finite group and E1, . . . , Em are extensions of G, does
there exist a 3-manifold M with a surjection ⇡1(M) ! G that doesn’t lift to any Ei? (The
question from the last paragraph is a special case of this one by letting the Ei be all subgroups
of the G ⇥ Hi whose projections onto both factors are surjective.) Theorem 1.5 answers this
question in the same sense as above, but for some sets of extensions there are particularly
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nice direct answers as well (see Theorem 8.3). For example, if V is an absolutely irreducible
representation of G over a finite field  of odd characteristic, there is an oriented, closed 3-
manifold M where ⇡(M) has a surjection to G that does not lift to V o G if and only if
dimH1(G, V ) � dimH1(G, V _) and condition (3) of Theorem 1.5 is satisfied.

Our results also can be applied to answer other questions raised by Dunfield and Thurston.
For example, we show in Proposition 9.6 that, for each natural number n, the proportion of
3-manifolds arising from random Heegaard splittings which have a covering of degree n with
positive first Betti number goes to 0 as the genus of the Heegaard splitting goes to 1, addressing
the question set out at the start of [DT06, Section 9]. This shows that, in Agol’s Virtual First
Betti number Theorem [Ago13], it is crucial that the finite cover have arbitrarily large degree.

In Section 9.2, we show that our results can explain the discrepancies noted by Dunfield
and Thurston [DT06, §8] between the homology of a random 3-manifold and the abelianization
of a random group given by generators and random relations (see also [Kow08, Chapter 7]
for further discussion of this contrast), by consideration of the torsion linking pairing. We
show that the homology of a random 3-manifold, along with its torsion linking pairing, has
the distribution of the most natural distribution on abelian groups with symmetric pairings
(arising, e.g., in [CLP15, CKL+15, Woo17, Més20]). Let G be a finite abelian p-group and let
` : G ⇥ G ! Q/Z be a symmetric nondegenerate pairing. For a random 3-manifold ⇡1(M), we
show (in Proposition 9.3) the probability that the p-power torsion part of H1(M) = ⇡1(M)ab

is isomorphic to G, by an isomorphism sending the torsion linking pairing to `, is equal to
1

|G||Aut(G,`)| times a constant
Q1

j=1

1

1+p�j .

1.1. Previous work and new approaches. Dunfield and Thurston’s introduction of the
model of random Heegaard splittings [DT06] is a central motivation for our work. They proved
several results on this model, including those mentioned above, and that the limiting probability
of such a manifold having positive first Betti number was 0 [DT06, Corollary 8.5]. Moreover,
the proof of their Theorem 6.21 on the average of #Surj(⇡1(M), Q) (what we would call the
“moments” of the random group ⇡1(M)) is a key input into our Theorem 1.2. In this context,
the task to prove Theorem 1.2 is to show that (certain refinements of) these averages actually
determine entirely the distribution of random groups.

There is a significant history of work on this “moment problem” for random abelian groups.
Heath-Brown [Hea94] and Fouvry and Klüners [FK06] proved and applied moment problem
results for random F2-vector spaces to find the distribution of Selmer groups of quadratic twists
of the congruent number curve, and four ranks of class groups of quadratic fields, respectively. See
also [EVW16, LST20, WW21] for other number theoretic applications of the moment problem for
more general random abelian groups. The second author [Woo17] proved and applied moment
problem results for random finite abelian groups to find the distribution of Jacobians of random
graphs.

In the setting of non-abelian groups, Boston and the second author [BW17] proved and applied
a moment problem result for random pro-p-groups, to determine the pro-p completion of funda-
mental groups of random quadratic function fields as q and the genus go to infinity. The first
author [Saw20] proved a moment problem result for random profinite groups with an action of a
fixed finite group. All of these prior results prove the uniqueness aspect of the moment problem,
i.e. that two distributions with the same moments are the same (under various hypotheses).
They are applied in the setting where one knows some distribution and its moments and wishes
to show another distribution agrees because it has the same moments. In our setting, there was
no known conjectural distribution for the profinite completions of random 3-manifold groups,
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and so we have the more challenging task of constructing the distribution from the moments,
the existence aspect of the moment problem. One of the main achievements of this paper is the
development of a method that explicitly constructs a distribution on random groups from its
moments. We expect this method can be generalized and will be of use in many other contexts
(e.g. see below on our forthcoming work in number theory). To our knowledge, this paper is
the first that constructs a distribution on groups from given moments.

One of the challenges in this paper is that the moments of \⇡1(M) are in fact too large not
only to apply the results in [Saw20] to find that they determine a unique distribution, but in fact
they are too large to even determine a unique distribution in theory. To overcome this challenge
requires two new e↵orts. First, we provide a method that proves a nearly optimal results for
the non-abelian group moment problem, i.e. it is known that multiple distributions can give the
same moments just beyond our growth bound. Second, we confront cases in which the moments
are of a size where uniqueness in the moment problem fails. In these cases, we leverage the

information from Theorem 1.1, which shows that the groups \⇡1(M) have certain properties, and
in particular parity properties, that mean that we only seek a distribution on a smaller class
of profinite groups. On this class we are able to prove that the moments determine a unique
distribution using the nearly optimal result mentioned above.

Another major challenge is that the construction of the distribution from the moments involves
many infinite alternating sums of group cohomology of general finite groups, and one needs to
organize and simplify these sums su�ciently to be able to, e.g. prove analytic bounds on their
growth and detect if they are 0 or not.

Our proof of Theorem 1.1 (3) relies on understanding the sign of the action of elements in
the mapping class group on a homology group H1(⌃g, V ). This action is studied by Grunewald,
Larsen, Lubotzky, and Malestein [GLLM15], who use it to find quotients of ⇡1(⌃g) that are
finite index subgroups of a wide range of arithmetic groups. However our interest is in whether
the action is through a certain index 2 subgroup, information which is lost if one only considers
quotients up to finite index.

The parity properties Theorem 1.1(3-4), in the special case where V is an projective representa-
tion of a quotient G of ⇡1(M), were previously obtained in the topology literature [Lee73, DM89],
using the language of semicharacteristics. The connection to this prior work is explained in Ap-
pendix A.

Many others have considered the model of random Heegaard splittings introduced by Dunfield
and Thurston and proven asymptotic properties of these random 3-manifolds. Kowalski has
given quantitative results on the first homology groups of random Heegaard splittings [Kow08,
Proposition 7.19]. Maher [Mah10] found the distribution of the distance between the disk sets of
random Heegaard splittings, and thereby deduced that a random Heegaard splitting is hyperbolic
with asymptotic probability 1. Dunfield and Wong [DW11] found the distribution of certain
topological quantum field theories on a random Heegaard splitting. Rivin [Riv14] determined a
large number of properties of these random Heegaard splittings, including asymptotics for the size
of the first homology group, their Kneser-Matve’ev complexity, volume, Cheeger constant, and
the injectivity radius. Lubotzky, Maher, and Wu [LMW16] found the growth of splitting distance
and distribution of Casson invariants of random Heegaard splittings, and gave an improved
convergence bound for Maher’s earlier result of asymptotic hyperbolicity. Hamenstaedt and
Viaggi [HV21] have found information on the spectrum of the Laplacian of random Heegaard
splittings, including an upper bound on the smallest eigenvalue. Viaggi [Via21] has found the
asymptotic volume of random Heegaard splittings. Feller, Sisto, and Viaggi [FSV20] gave a
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constructive proof of hyperbolicity for random Heegaard splittings, and use it to find the diameter
growth rate and systole decay, as well as show asymptotically the 3-manifolds are not arithmetic
or in a fixed commensurability class. With the exception of [DT06, DW11], most of this previous
work has focused on Heegaard splittings of a fixed genus g, so the work is to understand the
limit as the random walk on the mapping class groups grows in length. In contrast, in our work,
the main interest and di�cultly is the limit as the genus goes to infinity. We remark that other
models of random 3-manifolds have also been studied; see [AFW15, Section 7.4] for an overview
of this broad area of work.

In subsequent work of the authors, the methods of this paper have been extended from the
study of profinite groups to pro-objects in a wide variety of categories [SW22], and applied to
give conjectures on the distributions of class groups of G-extensions of a fixed number field
[SW23], that in particular take into account the roots of unity in the number field. (As noted
by Malle [Mal08], the original conjectures of Cohen, Lenstra, and Martinet [CL84, CM90] need
to be modified under the presence of roots of unity.) In a forthcoming paper by the authors,
the same methods will be used to give results on the asymptotic distribution of ⇡0

1
(C), where C

is a random G-cover of P1

Fq
, and q ! 1 and then the genus of the cover goes to infinity. Here

⇡0
1
denotes the maximal quotient of ⇡1 of order relatively prime to |G| and q. This will lead to

conjectures on the distributions of non-abelian generalizations of class groups.

1.2. Outline of the paper. In Section 2, we prove Theorem 1.1 using, largely, methods of
algebraic topology. In Section 2.1, we prove several properties of the class cV that appears in
Theorem 1.1.

In Section 3, we review the definition by Dunfield and Thurston of a random model of 3-
manifolds, and slightly strengthen a result of Dunfield and Thurston by calculating the expected
number of surjections from the fundamental group of a random 3-manifold to a fixed finite group
Q (the Q-moments of the random group) that send the fundamental class of that manifold to a
fixed class in the group homology of Q.

In Section 4, we state a general probabilistic theorem (Theorem 4.2) that will imply Theo-
rem 1.2, and then give a proof of the theorem relying on results which will be proven in the
following few sections. We also give a heuristic description of the approach of our proof to
determine a distribution from its moments, and discuss the obstacles that arise.

In Section 5, we prove an inclusion-exclusion formula which expresses the number of surjections
from a 3-manifold group to a fixed finite group G that satisfy certain conditions (regarding not
extending to other surjections) as a linear combination of the number of surjections from a 3-
manifold groups to other finite groups H, without conditions on the surjections. Comparing the
expectations of both sides of this formula is a crucial step in our construction of a distribution
(whose probabilities are essentially the expectation of the number of surjections to G that don’t
extend to larger relevant groups) from its moments (which are the expectation of the number of
all surjections to H).

In Section 6, we show that the limiting H-moments of a sequence of random groups, when
all such limits exist, are equal to the H-moments of the limiting distribution. This convergence
theorem for the moments of a random group is an essential step in our determination of a limiting
distribution from the limits of moments. Additionally, it shows that there is no escape of mass
and that the limiting distribution we find is indeed a probability distribution. We expect our
convergence theorem will be useful in many other applications involving random groups.
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In Section 7, we evaluate a linear combination of the limits of the moments of a random 3-
manifold group by algebraic methods, in particular detailed analysis of the Lyndon-Hochschild-
Serre spectral sequence. This is where we find the particular formulas appearing in Theorem 1.2.
This also completes all the ingredients for the proof of Theorem 4.2.

In Section 8, we give general criteria for the existence of 3-manifold groups with certain finite
quotients but not others and prove Theorem 1.5. We also deduce from Theorems 1.1 and 4.2
several example results about the existence and non-existence of 3-manifolds with fundamental
groups with specific prescribed conditions on their finite quotients. Finally, we classify finite
groups in the closure of the set of 3-manifold groups in Prof.

In Section 9, we prove the probabilistic results that follow from Theorem 4.2, including Theo-
rem 1.2. We also give formulas for the distribution of the first homology of a random 3-manifold,
along with the torsion linking pairing, and the distribution of the maximal p-group or nilpotent
class s quotient of a random 3-manifold group. We show that for each finite G, the limiting
probability of a random 3-manifold group having a G-cover with positive first Betti number is
0.

In Section 10, we discuss questions for further research.

1.3. Notation. Topology: We always assume manifolds to be connected. All our 3-manifolds
will be oriented. For a 3-manifold M and a field , we denote the map H3(⇡1(M),) !

H3(M,) !  obtained by pullback and integrating against the fundamental class by
R
M
.

Moreover, in the context of a specified map ⇡1(M) ! G, we also denote the composite map
H3(G,) ! H3(⇡1(M),) !  by

R
M
.

Let Hg be a genus g handlebody and ⌃g its boundary. If � is an element of the mapping class
group of ⌃g, it describes a closed, oriented 3-manifold M� given by gluing two copies H1

g
, H2

g
of

Hg along their boundaries using the map �, identifying x on H1

g
with ��1(x) on H2

g
. We take

the orientation on M to be the one that restricts to the orientation on H1

g
.

Vector spaces and fields: For a vector space V over a field , we write ^2


V for the quotient

of V ⌦ V by the -subfield generated by v ⌦ v for each v 2 V . When the subscript is omitted,
it means  = Fp for some prime p. We write Fq for the finite field with q elements.

Representations: In this paper, when we say V is a representation of G, we always mean
that V is finite dimensional.

If V is a representation of a group G over a field , the dual representation is V _ :=
Hom(V,). Note if  is a finite field of characteristic p, the trace map gives an isomorphism
Hom(V,) ! HomFp

(V,Fp) = Hom(V,Q/Z). We say V is self-dual if we have an isomorphism
of G-representations V ⇠= V _. We occasionally view such a V as a vector space over a subfield
0 of  as well, and so when there may be any confusion, we write -dual and -self-dual. We
say that V is symplectic or -symplectic if there exists a G-invariant alternating, nondegenerate,
-bilinear form on V .

If V is a Fp-self-dual irreducible representation of a group G over Fp, and we let  :=
HomG(V, V ), then V is either -symplectic, symmetric if V is -self-dual but not -symplectic,
or unitary if V is not -self-dual.

If V is a representation of G over  with a G-invariant symmetric, nondegenerate, -bilinear
form, then we say V is symmetrically self-dual. In odd characteristic, if V is irreducible and
 = EndG(V ), then symmetrically self-dual equivalent to symmetric.

Groups and homomorphisms: For any abelian group V , we write V _ := Hom(V,Q/Z).
By a homomorphism of profinite groups, we always mean a continuous homomorphism.
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We write Surj(A,B) for the set of surjective morphisms from A to B (in whatever category
we are considering A and B).

A�ne symplectic group: Let p be a prime and V a vector space over Fp. The map � :
Hom(V ⌦Fp

V,Fp) ! Hom(V ⌦Fp
V,Fp) sending f 7! f � f t (where f t(a⌦ b) = f(b⌦ a)) gives a

surjection onto the group of alternating (i.e. f(v, v) = 0 for all v 2 V ) bilinear forms on V , and
the kernel is the subgroup of symmetric forms. There is also a map h : Hom(V ⌦Fp

V,Fp) !

H2(V,Z/p2Z), using the bilinear form as a cochain and the map Fp

⇥p

! Z/p2Z. One can check that
all symmetric forms are in ker(h) (even when p = 2), and so h��1 gives a map from alternating
bilinear forms on V to H2(V,Z/p2Z). (Note this is not the same as using the alternating form
as a cochain. Rather, one writes an alternating form ! as f � f t, and then uses f as a cochain.)
This is the association that is used in the construction of the a�ne symplectic group (and works
as written even if V is also a vector space over a larger finite field).

Levels: For a set C of groups, we have defined the set of level-C groups to be what is also
known as the formation of groups generated by C, i.e. the smallest set of isomorphism classes
of groups that contains C and is closed under taking quotients and fiber products. (Note fiber
products are the same as subdirect products.) What we call the the level-C completion, GC, is
also known as the pro-Ĉ completion, where Ĉ is the set of level-C groups.

Note that for G finitely generated, GC is finite ([Neu67, Corollary 15.72]). We will show that
for profinite G with finitely many open subgroups of each index, GC is finite (Lemma 8.8). When
GC is finite, it is a quotient of G [RZ10, Lemma 3.2.1], and it is the maximal quotient of G that
is level-C.

Our definition of level-C groups is slightly more general than the definition used in [LWZ19,
LW20]. Previously, one said the level-C groups are the smallest set of groups containing C and
closed under subgroups, quotients, and products (the variety of groups generated by C). It’s
possible to check that the level-C groups in the old sense are the level-D groups in the new sense,
where D consists of all subgroups of groups in C.

Recalling that we define a basic open subset in Prof to be the set of all X such that the
maximal level-C quotient of X is G for some C and G, we see that every basic open subset with
the old definition is a basic open subset in the new definition, but not vice versa (though they
induce the same topology). Thus, Theorem 1.2 giving a formula for the measure of each basic
open subset is more powerful with the new definition, motivating the change of notation.
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for Science and Engineering, NSF grants DMS-1652116 and DMS-2140043, the Radcli↵e Institute
for Advanced Study at Harvard University, and a MacArthur Fellowship.

2. Properties of the fundamental group of closed 3-manifolds

The goal of this section is to prove Theorem 1.1, i.e. to verify certain properties of the group
cohomology of representations of 3-manifold groups over finite fields. We start with an easy
lemma relating the cohomology of M to that of ⇡1(M).

Lemma 2.1. Let M be a manifold, and V a representation of ⇡1(M) over a field . The natural
map H1(⇡1(M), V ) ! H1(M,V ) is an isomorphism and the natural map H2(⇡1(M), V ) !

H2(M,V ) is an injection.
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Proof. Let M̃ be the universal cover of M . Then we have a Cartan-Leray spectral sequence
whose second page is Hp(⇡1(M), Hq(M̃, V )) converging to Hp+q(M,V ). The five-term exact
sequence

0 ! H1(⇡1(M), H0(M̃, V )) ! H1(M,V ) ! H0(⇡1(M), H1(M̃, V )) ! H2(⇡1(M), H0(M̃, V )) ! H2(M,V )

reduces to an exact sequence

0 ! H1(⇡1(M), V ) ! H1(M,V ) ! 0 ! H2(⇡1(M), V ) ! H2(M,V )

because H0(M̃, V ) = V and H1(M̃, V ) = 0. This gives both claims. ⇤
Lemma 2.1, together with Poincaré duality for M , gives Theorem 1.1(2). We can deduce

Theorem 1.1(1) by combining the following lemma with Lemma 2.1.

Lemma 2.2. Let M be a closed, oriented 3-manifold and let V be an irreducible representation

of ⇡1(M) over a field . We have

dimH1(M,V ) = dimH1(M,V _).

Proof. Because V is irreducible, we have

dimH0(M,V ) = dimH3(M,V ) =

(
1 if V ⇠= 

0 otherwise
.

Thus dimH2(M,V )�dimH1(M,V ) = �(M,V ) = (dimV )�(M) = 0. Hence by Poincaré duality
dimH1(M,V ) = dimH2(M,V ) = dimH1(M,V _). ⇤

We now work towards Theorem 1.1(3). We first prove the relatively straightforward charac-
teristic zero analogue.

Lemma 2.3. Let M be a closed manifold. Let V be a symplectic representation of ⇡1(M) over
a field  of characteristic 0, for which the action of ⇡1(M) factors through a finite group. Then

dim H1(M,V ) is even.

Our proof of Lemma 2.3 works for group cohomology of a representation V of a finitely-
generated group, instead of twisted cohomology of a manifold. Which statement to use is only
a matter of preference.

The fact that symplectic representations of finite groups over the complex numbers are quater-
nionic, crucial in the below proof, was earlier used, in a similar context but with completely
di↵erent language and notation, by [DM89] to control a semicharacteristic invariant. We discuss
the relationship between semicharacteristics and our work in Appendix A.

Proof. We may replace  with the field generated over Q by the matrix entries of generators of
⇡1(M) acting on a basis of V , and then, embedding this field in C, we may assume  = C. Let
n = dimV . Because the action on V factors through a finite group, some Hermitian form is
preserved, and because V has a nondegenerate alternating bilinear form, it is standard that if
V is irreducible then it has quaternionic structure. It follows that H1(M,V ) has a quaternionic
structure. If H1(M,V ) has dimension k over the quaternions, it has dimension 2k over the
complex numbers - in particular, this is always even.

If V is not irreducible, then since V has a nondegenerate invariant bilinear form, each irre-
ducible representation W must appear in V the same number of times as W_, and if W ⇠= W_

then either W has an an invariant nondegenerate alternating bilinear form (and thus is quater-
nionic) or W appears an even number of times in V . If H : W ⇠= W_ is the anti-linear morphism
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given by the preserved Hermitian form on W , then (v, f) 7! (�H�1(f), H(v)) gives a quater-
nionic structure on W ⇥W_. Thus V is quaternionic in any case, and the lemma follows. ⇤

We now reinterpret Lemma 2.3 as a result about the mapping class group, using Heegaard
splittings. We first show a suitable mapping class exists, and then relate the parity to a certain
determinant of the mapping class group element acting on a symmetrically self-dual representa-
tion. Because the determinant, which is always ±1, is preserved by reduction mod p for odd p,
we will use this to deduce the odd characteristic case, i.e. Theorem 1.1 (3).

Lemma 2.4. Let Q be a finite group. For su�ciently large g the following holds. Let Hg be a

handlebody with boundary ⌃g. Let ⇤ be a base point of ⌃g. For two surjections f1, f2 : ⇡1(Hg) ! Q
there is a mapping class of (⌃g, ⇤) that extends to a mapping class of (Hg, ⇤) and sends f1 to f2.

Proof. This was proven by Dunfield and Thurston in [DT06, Proposition 6.25], which shows that
the outer automorphism group of ⇡1(Hg) = Fg, the free group on g generators, acts transitively
on surjections ⇡1(Hg) ! Q up to conjugacy, and the discussion on the same page, which explains
that the mapping class group of Hg surjects onto this outer automorphism group. It follows that
the pointed mapping class group surjects onto the usual automorphism group of ⇡1(Hg), and
this automorphism group acts transitively on surjections. ⇤
Lemma 2.5. Let M be a closed 3-manifold with a fixed base point ⇤. Let Q be a finite group,

and let ⇡1(M) ! Q be a surjection. Let M = H1

g
[ H2

g
be a Heegaard splitting of M into

genus g handlebodies H1

g
, H2

g
whose intersection is equal to their boundary, a genus g surface ⌃g

containing ⇤.

For g su�ciently large with respect to Q, there exists an element � in the pointed mapping

class group of (⌃g, ⇤) that preserves the induced surjection ⇡1(⌃g) ! ⇡1(M) ! Q and such that

M is homeomorphic to M�, the Heegaard splitting associated to �, via a homemorphism that is

the identity on ⌃g (which we have inside M and M� each by virtue of writing them as a Heegaard

splitting).

Proof. Let �0 be a homeomorphism of (⌃g, ⇤) giving the Heegaard splitting. This element �0 may,
however, send a surjection f : ⇡1(⌃g) ! Q (that factors through ⇡1(M)) to a di↵erent surjection
f(�0)�1 : ⇡1(⌃g) ! Q. Both these surjections factor through ⇡1(H2

g
), so by Lemma 2.4 there is

a mapping class of ⌃g that extends to a homeomorphism of H2

g
and sends one to the other, and

by composing �0 with this mapping class, we obtain the desired �. ⇤
Conversely, given a finite group Q, a surface ⌃g of genus g with a base point ⇤, a surjection

f : ⇡1(⌃g) ! Q, a handlebody Hg with boundary ⌃g such that f factors through ⇡1(Hg), and a
mapping class � of (⌃g, ⇤) preserving f , Hg [⌃g

�(Hg) is a 3-manifold with a surjection from its
fundamental group to Q.

Given a surjection f : ⇡1(⌃g) ! Q and a representation V of Q, mapping classes � of
(⌃g, ⇤) that preserve f act on H i(⌃g, V ) for all i. Now we show the parity of dim H1(M,V ) is
determined by the sign of the determinant of a mapping class group element on H1(⌃g, V ).

Lemma 2.6. Let M be a closed 3-manifold, expressed as H1

g
[⌃g

H2

g
for H i

g
copies of a handlebody

Hg of genus g and � a mapping class of the boundary ⌃g of Hg, fixing a base point ⇤ in ⌃g.

Let f : ⇡1(⌃g) ! Q be a surjection which factors through ⇡1(H1

g
) and is preserved by �, so

that f descends to a surjection ⇡1(M) ! Q.

Let V be a symplectic representation of Q over a field , of characteristic not equal to 2.
Then dim H1(M,V )+dim H0(M,V ) is even if and only if det(�, H1(⌃g, V )) is +1 and odd

if and only if det(�, H1(⌃g, V )) is �1.
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Proof. We have a non-degenerate bilinear form H1(⌃g, V ) ⇥H1(⌃g, V ) !  by taking the cup
product, using the symplectic structure of V , and integrating. Since the cup product on H1 is
alternating and V is symplectic, this is a symmetric bilinear form, which also gives a quadratic
form by evaluation on the diagonal. By Poincaré duality, it is non degenerate. Because �
preserves this symmetric bilinear form, it must have determinant ±1.

We can check that H1(H i

g
, V ) is a subspace of H1(⌃g, V ) for i = 1, 2 using the long exact

sequence of a pair. Then H1(H i

g
, V ) ⇢ H1(⌃g, V ) is an isotropic subspace for this quadratic

form because the cup product of two elements of H1(H i

g
, V ) lies in H2(H i

g
, V ⌦2), which vanishes.

We have

dimH1(H i

g
, V ) = (g � 1) dimV + dimH0(H i

g
, V ) = (g � 1) dimV + dimV Q

and

dimH1(⌃g, V ) = (2g � 2) dimV + 2dimH0(⌃g, V ) = (2g � 2) dimV + 2dimV Q

by Euler characteristic computations, so H1(H i

g
, V ) is a maximal isotropic subspace. The Mayer-

Vietoris sequence gives a long exact sequence

H0(M,V ) ! H0(H1

g
, V )�H0(H2

g
, V ) ! H0(⌃g, V )

! H1(M,V ) ! H1(H1

g
, V )�H1(H2

g
, V ) ! H1(⌃g, V ).

The maps H0(M,V ) ! H0(H i

g
, V ) ! H0(⌃g, V ) are induced by the natural maps V ⇡1(⌃g) !

V ⇡1(H
i
g) ! V ⇡1(M), which are isomorphisms because the maps ⇡1(⌃g) ! ⇡1(H i

g
) ! ⇡1(M) are

surjective. Hence the initial part H0(M,V ) ! H0(H1

g
, V ) � H0(H2

g
, V ) ! H0(⌃g, V ) is itself

short exact.
Furthermore, we have H1(H2

g
, V ) = �(H1(H1

g
, V )) as a subspace of H1(⌃g, V ). So we have an

exact sequence

0 ! H1(M,V ) ! H1(H1

g
, V )� �(H1(H1

g
, V )) ! H1(⌃g, V ).

In other words, H1(M,V ) is the intersection of the maximal isotropic subspace H1(H1

g
, V ) with

its image under �. The result then follows from the fact that dimH1(⌃g, V ) = (2g� 2) dimV +
2dimH0(M,V ) is congruent to 2 dimH0(M,V ) modulo 4 and the general observation that for an
even-dimensional quadratic space W , an orthogonal automorphism �, and a maximal isotropic
subspace S, we have dim(S \ �(S)) ⌘

dim(W )

2
mod 2 if det(�,W ) = 1 and dim(S \ �(S)) ⌘

1 + dim(W )

2
mod 2 if det(�,W ) = �1 [Con20, Example T.3.5 (see also Corollary T.3.4 and

Theorem L.3.1)]. ⇤
Lemma 2.7. Let ⌃g be a Riemann surface of genus g. Let Q be a finite group. Let V be a

symplectic representation of Q over C. Let f : ⇡1(⌃g) ! Q be a surjection. Suppose that f
factors through ⇡1(Hg) for some handlebody Hg with boundary ⌃g. Let � be a mapping class of

⌃g, together with its base point ⇤, that preserves f . Then

det
�
�, H1(⌃g, V )

�
= 1.

Proof. Since V is symplectic and over C, we have that dimH0(M,V ) = dimV Q is even. The
lemma follows from applying Lemmas 2.3 and 2.6 to the manifold M = Hg [ �(Hg). ⇤

We can now extend Lemma 2.7 from characteristic zero to odd characteristic:
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Lemma 2.8. Let ⌃g be a Riemann surface of genus g. Let Q be a finite group. Let V be a

self-dual representation of Q over a finite field . Let f : ⇡1(⌃g) ! Q be a surjection. Suppose

that f factors through ⇡1(Hg) for some handlebody Hg with boundary ⌃g. Let � be a mapping

class of ⌃g, together with its base point ⇤, that preserves f . Then

det
�
�, H1(⌃g, V )

�
= 1.

Proof. We will use algebraic properties of det(�, H1(⌃g,W )) that hold for a general representa-
tion W of Q over an arbitrary field . Note that det(�, H1(⌃g,W )) = det(�, H1(⌃g,W_))�1 by
Poincaré duality (which completes the proof of the lemma in characteristic 2). We now assume
the characteristic of  is odd.

First, for an exact sequence 0 ! W1 ! W2 ! W3 ! 1 of representations of Q, we have

det
�
�, H1(⌃g,W2)

�
= det

�
�, H1(⌃g,W1)

�
det
�
�, H1(⌃g,W3)

�
.

This follows from the long exact sequence on cohomology and the fact that H0(⌃g,W ) = WQ

and H2(⌃g,W ) = WQ are fixed by �. Thus, this determinant defines a homomorphism from the
representation ring to ⇥.

Second, note that det(�, H1(⌃g,W )) is preserved when we reduce a representation from char-
acteristic zero to characteristic p. More precisely, if Q acts on a free module M over a local
ring R with residue field  of characteristic p and fraction field K of characteristic 0, we have
det(�, H1(⌃g,M ⌦R )) = det(�, H1(⌃g,M ⌦R K)). This is because alternating products of de-
terminants on cohomology are preserved by change of coe�cients and, again, H0 and H2 don’t
contribute.

We note that the determinant is preserved under extension of the field of scalars. Thus we may
assume  is a splitting field for Q, and that  is a residue field at some prime } of a number field
K which is a splitting field for all subgroups and quotients of Q. Further, since the composition
series of a self-dual representation contains all non-self-dual irreducibles in equal multiplicity
with their duals, it su�ces to prove the theorem for irreducible self-dual representations.

If R is the ring of elements of K with positive valuation at }, every representation of Q
over K has a K-basis such that the action of Q is given by matrices over R, and thus can be
reduced modulo } to a representation of Q over  [CR62, Theorem 73.6]. Though the reduced
representation over  is not unique, its multiset of isomorphism classes of composition factors is
unique [CR62, Theorem 82.1]. It will thus su�ce for us to find irreducible representations Wi of
Q over K and coe�cients ci 2 Z such that this reduction sends

Q
i
W ci

i
to a representation over

 whose multiset of composition factors is an odd number of copies of V and such that
Y

i

det
�
�, H1(⌃g,Wi)

�ci = 1.

To do this, we use some ideas from modular representation theory, specifically, the decompo-
sition matrix and the Cartan matrix of Q. The decomposition matrix D is defined as the matrix
with one column for each irreducible representation over K and one row for each irreducible
representation over , with the entry giving the multiplicity of the representation over  in the
composition series of the reduction (as above) of the representation over K. The Cartan matrix
C is defined as DDT . The key fact we need is that detC is a power of the characteristic of ,
and in particular is odd [CR62, Theorem 84.17].

Thus

DTC�1(detC)
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is a matrix with integral entries. We let Wi be all the irreducible representations of Q over
K and let ci be the entry of DTC�1(detC) in the row corresponding to Wi and the column
corresponding to V . Then the reduction of

P
i
ci[Wi] mod p is (detC)[V ] because

DDTC�1(detC) = (detC)CC�1 = (detC)I

by definition. Because (detC) is odd, it remains to calculate

(2.9)
Y

i

det
�
�, H1(⌃g,Wi)

�ci .

Because reduction mod p commutes with duality, the matrix D is preserved by swapping rows
and columns with the rows and columns corresponding to dual representations. Because this
holds for D, it holds for C, and thus for DTC�1(detC). Because V is self-dual, it follows
that ci = cj if Wi

⇠= Hom(Wj,). Because H1(⌃g,Wj) and H1(⌃g,Hom(Wj,)) have inverse
determinants, the contributions of each representation to this product cancels the contribution
of its dual, leaving only the self-dual representations.

For the symmetrically self-dual representations Wi, cup product and integration define a
symplectic form on H1(⌃g,Wi), which is preserved by �, ensuring that the determinant of � is
1. For the symplectic representations, it follows from Lemma 2.7. Since K is a splitting field of
characteristic 0, every self-dual irreducible representation of Q is either symmetrically self-dual
or symplectic. Hence all the factors cancel, so the product (2.9) is 1, and thus the determinant
of � acting on H1(⌃g, V ) is 1, as desired. ⇤
Lemma 2.10. Let M be a closed, oriented 3-manifold. Let V be a symplectic representation of

⇡1(M) over a finite field  of odd characteristic. Then dim H0(M,V )+dim H1(M,V ) is even.

Proof. Because  is finite, V necessarily factors through a finite group Q. Choose a Heegaard
splitting of M whose genus is su�ciently large that Lemma 2.5 can be applied. The result then
follows from Lemma 2.6 and Lemma 2.8. ⇤

Combining Lemmas 2.1 and 2.10 and the fact that for an irreducible symplectic (and thus
non-trivial) representation V of ⇡1(M) we have H0(M,V ) = 0, we conclude Theorem 1.1(3).

We now turn to the characteristic 2 case of parity in order to prove Theorem 1.1(4). Our
proof of the parity condition in this case relies on cobordism. Rather than directly compute
dimH1(M,V ) mod 2, we will show that dimH1(M,V ) mod 2 depends only on the class of M
in a certain bordism group. We then calculate this bordism group.

For a CW complex X, the oriented bordism group of X in dimension n is the group generated
by classes [M ] for each n-dimensional oriented (smooth, closed) manifold with a map to X,
subject to the relations [M [ N ] = [M ] + [N ] and [M ] = 0 if M is the boundary of an n + 1-
dimensional closed, oriented manifold with boundary endowed with a map to X [Ati61]. We will
be interested in the case when X = BG for a finite group G (as described in [CF62, §2]). The
same argument will work for infinite discrete groups.

For the next lemma, we extend the definition of ASp

(V ) from finite fields  of characteristic 2

to arbitrary perfect fields  of characteristic 2 by defining H to be the central extension of V by
Z/4 with extension class corresponding to the composition of the symplectic form with a fixed
nonzero group homomorphism T :  ! 2Z/4Z and ASp


(V ) to be the group of automorphisms

of H acting trivially on Z/4 and -linearly on V .
Note if  is a finite field, then T is the composition of multiplication by � 2  and the trace

map. Then the isomorphism �1/2 : V ! V gives an isomorphism between the two Heisenberg
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groups and thus an isomorphism between their automorphism groups. In particular, in the finite
field case, we may as well assume T is the trace.

Lemma 2.11. Let n be a natural number and let V be an even-dimensional representation of

a discrete group G over a field  which has an invariant nondegenerate -bilinear form that is

symmetric if n is even and is symplectic if n is odd. If  has characteristic 2, we also assume

that n = 1, and  is perfect, and the homomorphism G ! Sp

(V ) lifts to the a�ne symplectic

group ASp

(V ).

Then the map that sends a 2n+1-dimensional closed oriented smooth manifold M with a map

to BG to
P

n

i=0
dim H i(M,V ) mod 2 depends only on the class of M in the oriented bordism

group of BG, and

[M ] !
nX

i=0

dim H
i(M,V ) mod 2

defines a homorphism from this oriented bordism group of BG to Z/2.

Proof. Because
P

n

i=0
dimH i(M,V ) mod 2 is certainly additive under disjoint unions of the

manifold, if it is a well-defined function then it is automatically a homomorphism.
Let M1 and M2 be two manifolds that are cobordant, i.e. there is a manifold M 0 whose

boundary is M1 [M2, with the orientation on M2 reversed. We follow the standard procedure
to express a cobordism as a series of Dehn surgeries, checking that it works in the presence of a
map to BG. We can define a function f on M 0 that takes the value 0 on M1, 1 on M2, and values
in (0, 1) on all other points of M 0. Perturbing f , we can assume that f is a Morse function, i.e.
has only simple critical points, and takes di↵erent values on these critical points.

The level sets of f between the critical values are then manifolds, so by induction among these
manifolds we may assume that f has exactly one critical point. Then M1 and M2 can be related
by Dehn surgery, i.e., removing a submanifold of M1 of the form Sk

⇥B2n+1�k and then gluing
a submanifold of the form Bk+1

⇥ S2n�k onto the same Sk
⇥ S2n�k boundary to obtain M2.

Furthermore, because the Dehn surgery arises from the local geometry of M 0 near the critical
point, we can trivialize the G-bundle near the critical point and so assume that it is trivial on
Sk

⇥ S2n�k.
We can relate the cohomology of the manifold before and after removing Sk

⇥B2n+1�k using
the Mayer-Vietoris sequence. Letting U be the complement of Sk

⇥ B2n+1�k in M1, we have a
long exact sequence

H i(M1, V ) ! H i(U, V )�H i(Sk
⇥ B2n+1�k, V ) ! H i(Sk

⇥ S2n�k, V ).

Because V is trivial on Sk
⇥ B2n+1�k, we have H i(Sk

⇥ B2n+1�k, V ) = V if i = 0 or k and 0
otherwise (unless k = 0, in which case it is V �V if k = 0). Similarly, H i(Sk

⇥S2n�k, V ) vanishes
unless i = 0, k, 2n� k, 2n. In particular, if k 6= n then Hn(Sk

⇥S2n�k, V ) = 0, so truncating the
long exact sequence in degree n and taking Euler characteristics, we obtain

nX

i=0

(�1)i dimH i(M1, V ) +
n�1X

i=0

(�1)i dimH i(Sk
⇥ S2n�k, V )

=
nX

i=0

(�1)i dimH i(U, V ) +
nX

i=0

(�1)i dimH i(Sk
⇥ B2n+1�k, V ).
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Since dimH i(Sk
⇥ S2n�k, V ) and

P
n

i=0
(�1)i dimH i(Sk

⇥B2n+1�k, V ) are divisible by dimV ,
which is divisible by 2, we obtain

nX

i=0

(�1)i dimH i(M1, V ) ⌘
nX

i=0

(�1)i dimH i(U, V ) mod 2.

Applying the same argument to M2, swapping k and 2n � k, we obtain the equality mod 2 in
the case k 6= n.

In the more di�cult case k = n, we obtain by the same argument the equality
nX

i=0

(�1)i dimH i(M1, V ) +
nX

i=0

(�1)i dimH i(Sk
⇥ S2n�k, V )

�(�1)n dim coker((Hn(U, V )�Hn(Sn
⇥ Bn+1, V )) ! Hn(Sn

⇥ Sn, V ))

=
nX

i=0

(�1)i dimH i(U, V ) +
nX

i=0

(�1)i dimH i(Sk
⇥ B2n+1�k, V ).

Subtracting the analogous formula for M2, it su�ces to check that

dim coker((Hn(U, V )�Hn(Sn
⇥ Bn+1, V )) ! Hn(Sn

⇥ Sn, V ))

⌘ dim coker((Hn(U, V )�Hn(Bn+1
⇥ Sn, V )) ! Hn(Sn

⇥ Sn, V )) mod 2.
(2.12)

Let ! be the nondegenerate form from the hypothesis. Under the identification Hn(Sn
⇥

Sn, V ) ⇠= V ⇥ V, there is a natural quadratic form Q on Hn(Sn
⇥ Sn, V ) given by Q(v1, v2) =

!(v1, v2). In particular, this quadratic form has associated bilinear form BQ((v1, v2), (w1, w2)) =
!(v1, w2) + !(w1, v2). Since ! is nondegenerate, BQ is nondegenerate. Thus, (by definition) the
quadratic form Q is nondegenerate.

We note that Hn(Sn
⇥Bn+1, V ) and Hn(Bn+1

⇥Sn, V ) are complementary maximal isotropic
subspaces of Hn(Sn

⇥Sn, V ) for the quadratic form Q. If we knew that im(Hn(U, V ) ! Hn(Sn
⇥

Sn, V )) was also maximal isotropic, we would obtain the parity condition (2.12). Indeed, it would
follow from the fact [Con20, Example T.3.5] that for W a vector space with a nondegenerate
quadratic form of dimension divisible by 4, W1,W2 complementary maximal isotropic subspaces,
and W3 a third maximal isotropic subspace,

dimW/(W1 +W3) ⌘ dimW/(W2 +W3) mod 2.

It remains to verify that im(Hn(U, V ) ! Hn(Sn
⇥ Sn, V )) is maximal isotropic. To find the

dimension of the image of Hn(U, V ), we can use the long exact sequence on relative cohomology
to obtain

H0

c
(U, V ) ! H0(U, V ) ! H0(Sn

⇥ Sn, V ) ! H1

c
(U, V ) !

· · · ! H2n(Sn
⇥ Sn, V ) ! H2n+1

c
(U, V ) ! H2n+1(U, V ).

By Poincaré duality, the first term in this sequence is dual to the last, and the second term dual
to the second-from last, and so on. Thus the rank of the first map in this sequence is equal to
the rank of the last map, and inductively the rank of the rth map is equal to the rank of the
rth from last map, so the two maps

Hn(U, V ) ! Hn(Sn
⇥ Sn, V ) ! Hn+1

c
(U, V )

have equal rank, and thus the image of Hn(U, V ) in Hn(Sn
⇥ Sn, V ) has half the dimension

of Hn(Sn
⇥ Sn, V ). It remains to check that the image of Hn(U, V ) is isotropic, which we
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do separately in the even and odd characteristic cases by giving additional formulas for the
quadratic form.

We can also check that the cup product map, followed by !, followed by integration:

Hn(Sn
⇥ Sn, V )⇥Hn(Sn

⇥ Sn, V )
[
! H2n(Sn

⇥ Sn, V ⌦ V )
!
! H2n(Sn

⇥ Sn,) ! 

is exactly BQ. Since the map H2n(�U,) ! H2n(U,) is the zero map, we see that BQ vanishes
on Hn(U, V ) ⇥Hn(U, V ), since the cup product of two classes in the image of Hn(U, V ) lies in
the image of H2n(U, V ⌦ V ) and thus, after applying !, lives in the image of H2n(U,), which
vanishes. In characteristic not 2, this implies that Hn(U, V ) is isotropic for Q.

When n = 1, we can give another construction of the quadratic form as follows. Let �̄ be a
bilinear form on V such that �̄� �̄T = !, and let � be the composite of �̄ with a homomorphism
T :  ! R for any abelian group R. Let H be the group extension of V by R corresponding to
the element in H2(V,R) whose co-cycle is given by �. Consider the map

H1(S1
⇥ S1, V ) ! H2(S1

⇥ S1, R) ! R,

given by the extension H followed by integration. If we identify H1(S1
⇥ S1, V ) ⇠= V ⇥ V and

H2(S1
⇥ S1,) !  (via integration), then we can compute that the above map sends (v, v0) 2

V ⇥ V to �(v1, v2)� �(v2, v1), which is T!(v1, v2), i.e. the composite map H1(S1
⇥ S1, V ) ! R

is TQ. If the action of ⇡1(U) on V can be extended to an action on H that is trivial on R, then
by the same consideration as above (integration on U over H2(�U,R) is 0), this realization of the
quadratic form allows us to see that TQ is 0 on Hn(U, V ). When the characteristic of  is 2, we
apply this with R = Z/4Z and T the fixed nonzero linear form  ! Z/2 ⇠= 2Z/4, so the group
ASp


(V ) gives automorphisms of H trivial on R. We have TQ(x) = 0 for all x 2 Hn(U, V ), and

for � 2 , we have an element
p
� 2 , and T (�Q(x)) = TQ(

p
�x) = 0. Since T is nonzero, we

have that Q(x) = 0 for all x 2 Hn(U, V ), as desired. ⇤
Lemma 2.13. For any CW complex X, the natural map from the oriented bordism group of

X in dimension 3 to the homology H3(X,Z) that sends a closed, oriented 3-manifold M to the

fundamental class of M inside X is an isomorphism.

Proof. The Atiyah-Hirzebruch spectral sequence of oriented bordism is a homological spectral se-
quence whose second page is Hp(X,⌃q) where ⌃q is the oriented cobordism group of q-manifolds,
and which converges to a complex whose p+ qth term is the p+ qth bordism group of X [CF62,
Theorem 1.2].

Now ⌃q = 0 for q = 1, 2, 3, so the only nonvanishing terms with p+ q < 3 have q = 0, all the
di↵erentials out of H3(X,⌃0) on the second and higher pages vanish. There are no di↵erentials
into H3(X,⌃0) on the second and higher pages, since the di↵erentials in a homological spectral
sequence decrease the first index and increase the second index.

So the third oriented bordism group is H3(X,Z). The fact that the fundamental class map
witnesses this isomorphism is [CF62, third sentence after Theorem 1.2]. ⇤

Finally, we can deduce Theorem 1.1(4) from the following corollary of Lemmas 2.11 and 2.13.

Corollary 2.14. For each vector space V over a finite field  of characteristic 2, endowed with a

symplectic form, there is a unique 2-torsion class cV in the group cohomology H3(ASp

(V ),Q/Z)

such that for any closed, oriented 3-manifold M with a homomorphism ⇡1(M) ! ASp

(V ), twice

the integral of cV over M is congruent to dim H1(M,V ) + dim H0(M,V ) modulo 2.

Since cV is 2-torsion, it necessarily arises from a class in H3(ASp

(V ),Z/2), although this

class is not necessarily unique. For the statement of Theorem 1.1(4), we choose an arbitrary
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preimage, and, abusing notation, refer to it also as cV , but in the body of the paper we will always
take cV 2 H3(ASp


(V ),Q/Z). Combining Corollary 2.14 and the fact that for an irreducible

symplectic (and thus non-trivial) representation V of ⇡1(M) we have H0(M,V ) = 0, we conclude
Theorem 1.1(4).

Proof. This follows immediately from combining Lemma 2.11 and Lemma 2.13, using the duality
between homology with coe�cients in Z and cohomology with coe�cients in Q/Z. ⇤
2.1. The a�ne symplectic group and the class cV . Throughout this subsection, we assume
that  is a finite field of characteristic 2. We will give an alternate description of the a�ne
symplectic group, show some stability properties of the class cV 2 H3(ASp


(V ),Q/Z), and

prove cV is non-trivial.
If V is a finite dimensional vector space of dimensional 2n over , with a symplectic form !,

then we can choose a standard basis ei of V (i.e. so !(ei, ej) = 0 unless j = i+ n (mod 2n), in
which case !(ei, ej) = 1). Let W := W2() be the ring of length two Witt vectors over . Then
we let V2 = W 2n, with basis ẽi so that V2/2V2 ! V is an isomorphism of -vector spaces taking
ẽi to ei. We define a symplectic form !̃ on V2 by !̃(ẽi, ẽj) = 0 unless j = i + n (mod 2n), in
which case !̃(ẽi, ẽj) = 1 if 1  i  n and !̃(ẽi, ẽj) = �1 if n+ 1  i  2n. We also view !̃ as a
2n⇥ 2n matrix over W in the usual way. Let Sp(V2) be the group of W -module automorphisms
of V2 that preserve !̃, and we can check that there is a surjection

Sp(V2) ! Sp(V )

induced by the reduction map V2 ! V . The kernel K of the above map consists of matrices
M 2 Sp(V2) such that M = I + 2A, or equivalently, 2n ⇥ 2n matrices M over W such that
M = I + 2A and 2!̃A is symmetric. So we see that K is isomorphic to the additive group
of symmetric 2n ⇥ 2n matrices over  via the map that sends I + 2A to the reduction of !̃A
mod 2. Symmetric forms in characteristic 2 have a natural homomorphism, evaluation on the
diagonal, whose kernel corresponds to matrices with 0 diagonal. This gives an exact sequence
1 ! N ! K ! Hom(V,) ! 1, where N is the set of M = I + 2A such that 2!̃(v, Av) = 0
for all v 2 V2. One can easily check that N is normal in Sp(V2), and we define ASp


(V ) to be

Sp(V2)/N, and have the exact sequence

1 ! Hom(V,) ! ASp

(V ) ! Sp


(V ) ! 1.

Lemma 2.15. For  a finite field, the definition above agrees with our definition of ASp

(V )

from the introduction.

Proof. Let T be the trace map W ! Z/4Z. Next, we let H̃ be the central extension of V2 by
Z/4Z whose class in H2(V2,Z/4Z) is given by the cocycle T !̃, i.e. as a set H̃ is V2 ⇥ Z/4Z and
(v, c)(w, d) = (v + w, c + d + T !̃(v, w)). Note that 2V2 ⇥ 0 is a normal subgroup of H̃, and we
can define H := H̃/(2V2 ⇥ 0). We have an exact sequence

1 ! Z/4Z ! H ! V ! 1.

Define the W -bilinear form B : V2⇥V2 ! W so that B(ei, ej) is 1 if j = i+n and is 0 otherwise.
Then B(v, w) � B(w, v) = !̃(v, w). We will now see that H is the same as the group H in the
definition of the a�ne symplectic group. For each element v 2 V , we choose a lift ṽ 2 V2, and
we can check that the element [(ṽ,�TB(ṽ, ṽ)] 2 H does not depend on the choice of lift ṽ. For
v, w 2 V2, we have the following equality in H,

[(v,�TB(v, v)][(w,�TB(w,w)] = [(v + w,�TB(v + w, v + w)][(0, 2TB(v, w))].
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Since 2B� 2Bt gives the symplectic form on V , we see that the cocycle in H2(V,Z/4Z) defining
the multiplication in H agrees with the cocycle defining the group H.

We now give an action of Sp(V2) on H by M · [(v, a)] = [(M · v, a)]. Because we defined the
equivalence relation and group operation solely in terms of addition and the symplectic form,
this action is well-defined. Since for M = I + 2A 2 N and v 2 V2 we have [(v + 2Av, 0)] =
[(v, T !̃(v, 2Av))] = [(v, 0)], we see that ASp


(V ) acts on H. Finally, we check that ASp


(V ) is

exactly the group of automorphisms of H preserving the central Z/4 which are -linear modulo
Z/4. Since ASp


(V ) surjects onto Sp


(V ), it su�ces to check this when restricting to elements

that act trivially on V . One can see directly from the definition of multiplication on H that the
automorphisms ofH acting trivially on V and on Z/4Z are exactly the maps [(v, 0)] 7! [(v,↵(v))],
where ↵ 2 Hom(V,Z/4Z), and that an element � 2 Hom(V,) (viewed as an element of
ASp


(V ) as above) is an automorphism of H such that ↵ = T�. Thus we can conclude that this

definition of ASp

(V ) agrees with our original definition. ⇤

This new description is convenient for making observations about the stability of the class cV .

(1) If V and V 0 are symplectic vector spaces over , then the above description of ASp


in terms of matrices of Witt vectors allows us to see that we have a map ASp

(V ) !

ASp

(V � V 0) (mapping M 7! [M 0

0 I
]). By the defining property of cV , we see that the

map H3(ASp

(V � V 0),Q/Z) ! H3(ASp


(V ),Q/Z) sends cV�V 0 7! cV .

(2) If we view a -symplectic vector space V as a representation over a subfield 0, we can
similarly use the descriptions in terms of matrices of Witt vectors to see we have a map
ASp


(V ) ! ASp

0(V ) and a corresponding mapH3(ASp
0(V ),Q/Z) ! H3(ASp


(V ),Q/Z).

By the defining property of cV , we have cV 7! [ : 0]cV in this map, and in particular if
[ : 0] is even then cV maps to 0, and if [ : 0] is odd, then cV is preserved.

(3) If we have a symplectic vector space V over , and 0 is a finite extension of , then
from the descriptions in terms of matrices of Witt vectors we can see we have a map
ASp


(V ) ! ASp

0(V ⌦ 0) and a corresponding map H3(ASp
0(V ⌦ 0),Q/Z) !

H3(ASp

(V ),Q/Z). By the defining property of cV , we have cV⌦

0 7! cV in this map.
(4) Since dim H i(M,V ) doesn’t depend on the lift of ⇡1(M) ! Sp


(V ) to ⇡1(M) !

ASp

(V ), for any finite group G with two maps �i : G ! ASp


(V ) that agree in the quo-

tient to Sp

(V ), then �⇤

1
(cV ) = �⇤

2
(cV ), where �⇤

i
: H3(ASp


(V ),Q/Z) ! H3(G,Q/Z).

Proposition 2.16. For any finite dimensional symplectic vector space V over a finite field  of

characteristic 2, we have that cV 2 H3(ASp

(V ),Q/Z) is non-zero.

Proof. Let G be the binary octahedral group, which has the quaternion group Q8 as a normal
subgroup with quotient S3. Consider M = S3/G, a spherical 3-manifold whose fundamental
group is G. Let W be the two-dimensional representation over F2 on which ⇡1(M) acts by
G ! S3 = GL2(F2). We have H0(M,W ) = W S3 = 0. We have H⇤(A3,W ) = 0 and hence
H⇤(S3,W ) = 0 by the Lyndon-Hochschild-Serre spectral sequence. This allows us to compute
dimH1(M,W ) = 1 from the Lyndon-Hochschild-Serre spectral sequence.

We will check that ASpF2
(W ) is S4. The group ASpF2

(W ) is some extension of S3 byW_ ⇠= W ,
compatible with the action of S3 onW . Restricted to A3, this extension must split as a semidirect
product because both groups appearing have relatively prime orders. The semidirect product
is A4, so ASpF2

(W ) contains A4 as an index 2 subgroup, but the only such group which also
surjects onto S3 is S4. Because the map S4 ! S3 admits a section, every surjection of any ⇡1(M)
to SpF2

(W ) automatically lifts onto ASpF2
(W ).
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Since dimH0(M,W )+dimH1(M,W ) = 1, Corollary 2.14 shows that cW inH3(ASpF2
(W ),Q/Z)

integrates nontrivially over M , and hence cW is non-zero. By stability properties (1) and (3),
the class cV is nontrivial for any V . ⇤
Remark 2.17. Note that the identity map S4 ! S4 and the composite S4 ! S3 ! S4 of the
section and the quotient are two maps ASpF2

(W ) ! ASpF2
(W ), that agree in the quotient to

SpF2
(W ). Thus by stability property (4) above, we have that cW 2 H3(ASpF2

(W ),Q/Z) pulls
back from cW 2 H3(SpF2

(W ),Q/Z), which has a unique non-zero 2-torsion class.

3. The Dunfield-Thurston random model and its moments

In this section we describe the Dunfield-Thurston model for a random 3-manifold and find the
moments of the random groups given by the fundamental group of these random 3-manifolds.

Dunfield and Thurston [DT06] proposed a model for random 3-manifolds, defined using Hee-
gaard splitting. Recall that an Heegaard splitting of a 3-manifold M is an expression of it as a
union of two copes of the genus g handlebody Hg after identifying their boundaries, each the
Riemann surface ⌃g of genus g. It is easy to see that the resulting 3-manifold only depends
on the choice of identification up to isotopy, i.e. on the mapping class. It is known that every
3-manifold M has a Heegaard splitting of some genus g. Thus, generating a random 3-manifold
from a random Heegaard splitting will not exclude without reason any class of 3-manifolds.

The mapping class group of genus g, i.e. the group of (oriented) homeomorphisms from ⌃g to
itself, up to isotopy, is known to be finitely generated. Fix a finite set T of generators, including
the identity. (It would be natural to choose the set T to be closed under inverses, but this is not
necessary for our results. We require that T includes the identity so that when we later apply
the Perron-Frobenius theorem we are in the setting of an aperiodic Markov chain on a finite
state space.)

Let the random variable �g,L in the mapping class group be a random word of length L in the
generators T , i.e. the product of L independent, uniformly random elements of T . We define
the Dunfield-Thurston random 3-manifold Mg,L := M�g,L

(as defined in the notation section, i.e.
the union of two copies of Hg after identifying their boundary with the mapping class �g,L). Our
results will all cover the statistical properties of Mg,L in the limit where, first, L is sent to 1,
and then, g is sent to 1.

An oriented group is a group G together with an element s 2 H3(G,Z), called the orientation,
and a morphism of oriented groups (G1, s1) ! (G2, s2) is a group homomorphism G1 ! G2 such
that the pushforward of s1 is s2. We will use the notation G to denote an oriented group with
underlying group G. We write ⌧G (or ⌧) for the morphism H3(G,Q/Z) ! Q/Z corresponding
to s, using the isomorphism H3(G,Q/Z) ⇠= Hom(H3(G,Z),Q/Z) from the Universal Coe�cient
Theorem, and the evaluation on s map Hom(H3(G,Z),Q/Z) ! Q/Z. We can also describe this
map H3(G,Q/Z) ! Q/Z as the map obtained by integrating along the homology class s. For
M an oriented, closed 3-manifold, let ⇡1(M) be the oriented group with underlying group ⇡1(M)
and with s the image of the fundamental class in the map H3(M,Z) ! H3(⇡1(M),Z).

We will find in Proposition 3.3 the limiting moments of the random oriented groups ⇡1(Mg,L).
We build o↵ of work of Dunfield and Thurston, who found the moments in the unoriented analog
[DT06, Theorem 6.21]. Having the oriented version will be essential to our work in this paper.
To make things precise, we will need to also consider the pointed mapping class group of (⌃g, ⇤),
i.e. oriented, pointed homeomorphisms of ⌃g, up to pointed isotopy.

Lemma 3.1. Let ⌃g be a surface of genus g, the boundary of a handlebody Hg, and fix a base

point ⇤ on ⌃g. Let Q be a finite group, and let f : ⇡1(⌃g) ! Q be a homomorphism. Let �1 and
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�2 be two pointed mapping classes of ⌃g, ⇤. Assume that f, f�1, f�1�2 : ⇡1(⌃g) ! Q all factor

through ⇡1(⌃g) ! ⇡1(Hg). Then [M�1�2
] = [M�1

] + [M�2
] in the oriented bordism group of BQ,

where M�1
and M�1�2

are given maps to BQ using f , and M�2
is given a map to BQ using f�1.

Proof. We do this by finding an explicit cobordism between M�1�2
and a disjoint union of M�1

,
M�2

, and a third manifold which we can separately check is cobordant to zero. Observe that each
of M�1�2

,M�1
, M�2

is a union of two copies of Hg, which we will call Hg and H 0
g
to distinguish

them. The map to BQ is given by f on the copy of Hg in M�1�2
and M�1

, by f�1 on the copy
of H 0

g
in M�1

and Hg in M�2
, and by f�1�2 on the copies of H 0

g
in M�2

and M�1�2
.

We start with M�1�2
⇥ [0, 1], M�1

⇥ [1, 2], and M�2
⇥ [1, 2].

We glue M�1�2
⇥ [0, 1] to M�1

⇥ [1, 2] by identifying Hg ⇥ 1 with Hg ⇥ 1 via the identity map.
We glue M�1�2

⇥ [0, 1] to M�2
⇥ [1, 2] by identifying H 0

g
⇥ 1 with H 0

g
⇥ 1 via the identity map.

This produces a connected four-manifold with boundary, whose boundary components are
M�1�2

⇥ 0 with negative orientation, M�1
⇥ 2 with positive orientation, M�2

⇥ 2 with positive
orientation, and a fourth component M 0, the union of the H 0

g
⇥1 from M�1

⇥ [1, 2] and the Hg⇥1
from M�2

⇥ [1, 2].
We can map this 4-manifold to BQ because our gluings were compatible with the maps to

BQ. This gives a relation [M�1�2
] = [M�1

]+[M�2
]+[M 0] in the bordism group of BQ. It remains

to check that [M 0] = 0.
This manifold M 0 is the union of two copies of Hg glued along the identity map of their bound-

aries. To check [M 0] = 0, we can use Lemma 2.13 to reduce to showing that the fundamental
class of M 0 vanishes in H3(BQ,Z), and note that this fundamental class lies in the image of
H3(⇡1(M 0),Z), but ⇡1(M 0) = ⇡1(Hg) = Fg is the free group on g generators and has no higher
homology. ⇤

Lemma 3.2. Let ⌃g be a surface of genus g, the boundary of a handlebody Hg, and fix a base

point ⇤ on ⌃g. Let Q be a finite group, and let f : ⇡1(⌃g) ! Q be a homomorphism. Assume

that f factors through ⇡1(⌃g) ! ⇡1(Hg). Let Mf,g be the subgroup of the pointed mapping class

group of (⌃g, ⇤) preserving f . For � 2 Mf,g, we have that f extends to a map ⇡1(M�) ! Q,

giving a map M� ! BQ.

The function sending � 2 Mf,g to the class of M� in the oriented bordism group of BQ
is a homomorphism. If g is su�ciently large depending on Q, and f is surjective, then this

homomorphism is surjective.

Proof. To prove the map is a homomorphism, we must check that for two mapping classes
�1, �2 2 Mf,g, that [M�1�2

] = [M�1
]+ [M�2

] in the oriented bordism group. This is a special case
of Lemma 3.1. Indeed, if f factors through ⇡1(⌃g) ! ⇡1(Hg) and �1 and �2 preserve f then f�1

and f�1�2 = f also factor through ⇡1(⌃g) ! ⇡1(Hg).
Let us check surjectivity. By Lemma 2.13 the bordism group is finite, so it su�ces to show

that each bordism class can arise for su�ciently large g. Each bordism class arises from a 3-
manifold M with a homomorphism ⇡1(M) ! Q. We can take the connect sum of M with many
manifolds of the form S2

⇥ S1, with homomorphisms from their fundamental group to Q, and
without changing the class in the bordism group we can thus assume that we have ⇡1(M) ! Q
surjective. By Lemma 2.5, for g su�ciently large we can split the 3-manifold M into a union of
two handlebodies Hg glued by a mapping class � of the boundary ⌃g, in such a way that the
homomorphism F : ⇡1(⌃g) ! ⇡1(M) ! Q is preserved by �. Thus the bordism class we are
considering is the image of � 2 MF,g.
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Furthermore, by Lemma 2.4, we can see that f = F�0 for some mapping class �0 of (Hg, ⇤).
It follows that the bordism class we are considering is the image of ��1

0
��0 2 Mf,g. Thus, for

any surjection f : ⇡1(Hg) ! Q, for g su�ciently large, any fixed bordism class arises from some
element of Mf,g, so the group homomorphism is surjective, as desired.

Thus the lemma follows for g large enough that each class in the bordism group is represented
by a 3-manifold that has a Heegaard genus at most g and also large enough for Lemmas 2.4 and
2.5 to hold for Q. ⇤
Proposition 3.3. For each g, L, let Mg,L be a random variable valued in 3-manifolds obtained

by taking the genus g Heegaard splitting arising from the mapping class of a uniform random

length L word �g,L in a fixed generating set (including the identity) for the genus g mapping

class group. For H a finite oriented group, we have

lim
g!1

lim
L!1

E [Surj(⇡1(Mg,L),H)] =
|H||H2(H,Z)|

|H1(H,Z)||H3(H,Z)| .

Proof. First fix g and L. Let ⌃g be a surface of genus g, with base point ⇤, and let Hg be
a handlebody with boundary ⌃g. Now, we will refine things slightly and consider lifts of our
generators of the mapping class group to the pointed mapping class group of (⌃g, ⇤) so that we
may lift �g,L to a pointed mapping class. Since the pointed mapping class group surjects onto
the usual mapping class group, this will not a↵ect the distribution of Mg,L. For � a mapping
class of ⌃g preserving ⇤, a surjection ⇡1(M�) ! H is a surjection f : ⇡1(⌃g) ! H, factoring
through ⇡1(Hg), whose pullback by � factors also through ⇡1(Hg).

The expectation of the number of surjections ⇡1(Mg,L) ! H is the sum over surjections
f : ⇡1(⌃g) ! Q factoring through ⇡1(Hg) of the fraction of words � of length L which send f to
another surjection factoring through ⇡1(Hg). As the word length grows, f� will equidistribute
in its mapping class group orbit by the Perron-Frobenius theorem, and so the limit as L goes
to 1 of this expectation is equal to the sum over f of the fraction of elements in the orbit of
f that factor through ⇡1(Hg). Dunfield and Thurston [DT06, Theorem 6.21] showed that the

limit (in L) converges to |H||H2(H,Z)|
|H1(H,Z)| as g goes to 1.

The expectation of the number of oriented surjections is the sum over f of the fraction of
� in the pointed mapping class group such that (1) f� factors through ⇡1(Hg) and (2) the
fundamental class f⇤[M�] is equal to s 2 H3(H,Z). When g is su�ciently large, by Lemma 3.2
and Lemma 2.13, for � in the stabilizer of f , taking the fundamental class of f⇤[M�] gives a
surjective homomorphism from the stabilizer of f to H3(H,Z). Thus � which stabilize f and
give fundamental class mapping to s form a coset for the kernel of Mf,g ! H3(H,Z).

In fact, the � that send f to any other fixed f 0 : ⇡1(⌃g) ! H factoring through ⇡1(Hg)
and give fundamental class mapping to s form a coset for the kernel of the homomorphism
Mf,g ! H3(H,Z). This follows from the previous claim after composing with a mapping class
of ⌃g sending f to f 0 and extending to a mapping class of Hg, whose existence is guaranteed by
Lemma 2.4.

So we fix a surjection f : ⇡1(⌃g) ! H. For su�ciently large g, the limit as L goes to 1

of the fraction of � of length L satisfying this condition for which f can be extended to an
oriented surjection ⇡1(M�) ! H is the number of surjections ⇡1(⌃g) ! H factoring through
⇡1(Hg) in the mapping class group orbit of f divided by the product of the size of the orbit
of f and |H3(H,Z)|. So the limit as L goes to 1 is the fraction of surjections in the orbit
factoring through ⇡1(Hg) divided by |H3(H,Z)|. Thus the limit as L goes to 1 of the expected
number of oriented surjections is the limit as L goes to 1 of the expected number of surjections,
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divided by |H3(H,Z)|. Using Dunfield and Thurston’s result, this converges as g goes to 1 to
|H||H2(H,Z)|

|H1(H,Z)||H3(H,Z)| . ⇤

4. The main theorem on the distribution

Now we turn to determining the distribution of the (oriented) group ⇡1(Mg,L) from its mo-
ments determined in Proposition 3.3. In this section we will state our main technical theorem
on the distribution of ⇡1(Mg,L) and set up the notation for the proof. We will first describe our
approach informally. Given a random group ⇡, suppose one wants to determine the probability
that ⇡ ⇠= G for a fixed group G. Certainly in such situations there is a surjection ⇡ ! G, in
fact |Aut(G)| of them, so E[| Surj(⇡, G)|]/|Aut(G)| provides an upper bound on this probability.
However, this is likely an overestimate. If a surjection ⇡ ! G is not an isomorphism, it factors
through a surjection ⇡ ! E, where E is a minimal non-trivial extension of G. Thus the moments
E[| Surj(⇡, E)|] over all E tell us about the extent to which this is an overestimate, and

E[| Surj(⇡, G)|]

|Aut(G)|
�

X

E

E[| Surj(⇡, E)|]

|Aut(E)|

| Surj(E,G)|

|Aut(G)|

is our next estimate for Prob(⇡ ⇠= G), which would be correct if ⇡ was supported only on G and
minimal non-trivial extensions of G. More generally one can work out that this second estimate
gives a lower bound on Prob(⇡ ⇠= G). The undercounting now is because ⇡ might surject onto
more than one minimal non-trivial extension of G, and one could add another term to account
for this, and continue on analogous to inclusion-exclusion, leading to an infinite sum. There
are two major obstacles to such an approach, the first algebraic and the second analytic. The
algebraic obstacle is that is it not at all clear how to evaluate an infinite sum involving a group,
its extensions, surjections between them, and automorphisms and group cohomology (appearing,
for us, in the moments) of the group and its extensions, for an arbitrary finite group G. The
second obstacle is that a priori it is not clear that this infinite sum converges, and indeed in
general it will not.

In this paper we overcome both obstacles. On the algebraic side, we relate the group coho-
mology of G and its minimal extensions with precise formulas structured in such a way that
we can evaluate the necessary infinite sum, and indeed express it as a product. Of course, the
group cohomology of G is obviously related to the group cohomology of its extensions, but the
work is in finding precise formulas that allow us to evaluate the infinite sum. This requirement
for workable formulas has necessitated our considering oriented groups.

On the analytic side, we must confront the fact that the infinite sums in some cases truly fail
to converge. This is where we use the topological input we have proven in Section 2, which shows
that the fundamental group of a 3-manifold is not an arbitrary group but rather has certain parity
restrictions on its group cohomology. These restrictions allow us to do the inclusion-exclusion
in a smaller category of G-extensions where the sum will actually converge.

As an example, let G be a finite group and V an absolutely irreducible symplectic represen-
tation of G over an odd characteristic finite field  such that dim H1(G, V ) is even. If ⇡1(M)
surjects onto V oG, then using Lemma 5.2 to compute H1(⇡1(M), V ) and using Theorem 1.1 to
show H1(⇡1(M), V ) is even dimensional, it follows that ⇡1(M) also surjects onto V 2 o G. One
can imagine how this kind of result allows us to skip steps in the inclusion-exclusion sketched
above to obtain a sum that might converge even if the original one did not.
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4.1. Definitions. Let G be a finite group. A [G]-group is a group H together with a homo-
morphism from G to Out(H). A morphism of [G]-groups is a homomorphism f : H ! H 0 such
that for each element g 2 G, for each lift �1 of the image of g from Out(H) to Aut(H), there
is a lift �2 of the image of g from Out(H 0) to Aut(H 0) such that �2 � f = f � �1. Note that
G acts on the set of normal subgroups of a [G]-group H, and we say a nontrivial [G]-group is
simple if it has no nontrivial proper fixed points for this action. If we have an exact sequence
1 ! N ! H ! G ! 1, then N is naturally a [G]-group. A normal subgroup N 0 of N is fixed
by the Out(G) action if and only if it is normal in H.

4.2. Setup. Fix a finite oriented group G. A minimal non-trivial extension of G (in the sense
that its map to G does not factor through any non-trivial quotients) is either by an irreducible
representation V of G over Fp for some prime p (a finite simple abelian [G]-group) or a finite
simple non-abelian [G]-group N . In the first case, H2(G, V ) classifies the di↵erent extensions,
and in the second case there is a unique extension up to isomorphism given by the fiber product
Aut(N)⇥Out(N)G (where Aut(N) and Out(N) here are automorphisms and outer automorphisms
of N in the category of groups). When we make our inclusion-exclusion argument, we will fix a
finite set of these minimal extensions, and determine the expected number of surjections from a
random 3-manifold group to G that don’t extend to our chosen extensions. Now we will choose
and name those extensions.

Fix a tuple V = (V1, . . . , Vn) of irreducible representations of G over fields Fpi
for primes pi.

Write i = EndG(Vi), a finite field, and qi = |i|, a prime power. For each i, fix also a i-subspace
Wi ✓ H2(G, Vi), forming a tuple W . We will only be avoiding extensions by Vi whose extension
class is in Wi. Fix a tuple N = (N1, . . . , Nm) of non-abelian finite simple [G]-groups.

We say the following (isomorphism classes of) extensions of G are minimally material.

• For 1  i  n, every extension 1 ! Vi ! H ! G ! 1 whose extension class lies in Wi.
• For 1  i  m, the extension Aut(Ni)⇥Out(Ni)

G ! G.

For an oriented group K, define LG,V ,W ,N(K) to be the number of surjective oriented mor-
phisms f : K ! G that do not factor through any minimally material extension H ! G. The
main case to keep in mind is the following.

Lemma 4.1. Let C be a finite set of finite groups and G a level-C oriented group. If the {Vi} are

the irreducible G-representations such that Vi oG is level-C, and Wi is the set of all the level-C

extensions of G by Vi, and the {Ni}i are the finite simple non-abelian [G]-groups N such that

Aut(N) ⇥Out(N) G is level-C, then (1) {Vi}i and {Ni}i are finite sets, and (2) if K is a finitely

generated oriented group, then LG,V ,W ,N(K) is |Aut(G)| when KC ⇠= G and 0 otherwise.

Proof. The first claim is shown in [LWZ19, Proof of Theorem 4.12]. The key feature required for
the second claim is that level-C groups are closed under fiber products and quotients. Note that
this implies the Wi as defined in the lemma are i-subspaces. Since K is finitely generated, KC

is finite and hence level-C. If KC
! G is a surjection that is not an isomorphism, then it factors

through some minimal non-trivial extension of G, and that extension, since it is a quotient of
KC, is level-C, which proves the lemma. ⇤

Our goal will now be to determine the asymptotics of E[LG,V ,W ,N(K)], which includes com-
puting the asymptotics of Prob(⇡1(Mg,L)

C ⇠= G).
Let ⌧ : H3(G,Q/Z) ! Q/Z be the map induced by integrating against the homology class

of G. Let �Ni
be the di↵erential d0,2

3
: H2(Ni,Q/Z)G ! H3(G,Q/Z) appearing in the Lyndon-

Hochschild-Serre spectral sequence computingHp+q(G⇥Out(Ni)
Aut(Ni),Q/Z) fromHp(G,Hq(Ni,Q/Z)).
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We define weights wNi
= wNi

(⌧) to be positive numbers depending on the above data, as in the
following table.

Table 1: Definition of the wNi

Condition wNi

⌧ � �Ni
= 0 e

�
|H2

(Ni,Q/Z)G|
|Z

Out(Ni)
(G)|

⌧ � �Ni
6= 0 1

Here ZOut(Ni)
(G) is the centralizer of the image of G in Out(Ni) (the outer automorphism group

of Ni as a group).
Next we will define analogous weights for the Vi. For any i, let W ⌧

i
consist of all those ↵ 2 Wi

such that ⌧(↵ [ �) = 0 for all � 2 H1(G, V _
i
). If Vi has odd characteristic p and is Fp-self-dual,

let ✏i be the Frobenius-Schur indicator, which is 1 if Vi is symmetric, 0 if Vi is unitary, and
�1 if Vi is i-symplectic (see Section 1.3 for definitions). If Vi has even characteristic and is
F2-self-dual, then either Vi is trivial, in which case we set ✏i = 1, or Vi is F2-symplectic, in which
case we let ✏i be �1 if the action of G on Vi lifts to ASp

i
(Vi), 0 if the action lifts to ASpF2

(Vi)
but not ASp

i
(Vi), and 1 if the action doesn’t lift to ASpF2

(Vi).
Regardless of characteristic, we will say that Vi is A-symplectic if ✏i = �1: in other words,

in odd characteristic, “A-symplectic” means the same thing as “i-symplectic”, and in even
characteristic, it refers to representations Vi lifting to ASp

i
(Vi). Note that whether Vi is A-

symplectic in even characteristic does not depend on a choice of symplectic form. Since Vi is
irreducible, it is only possible to change the symplectic form by multiplication by a scalar a 2 i,
and this is equivalent to multiplying each vector by

p
a 2 i and thus does not change whether

the action of G lifts to ASp
i
(Vi).

If ✏i = �1, define cVi
2 H3(ASp

i
(V ),Q/Z) as in Corollary 2.14 if the characteristic is even

and cVi
= 0 if the characteristic is odd. Then the weights wVi

= wVi
(⌧) are defined in the

following table.

Table 2: Definition of the wVi

Vi Fpi
-self-dual? Conditions wVi

yes W ⌧

i
6= 0 0

yes, ✏i > �1 W ⌧

i
= 0

Q1
j=1

(1 + q
�j� ✏i�1

2

i
)�1

yes, ✏i = �1 W ⌧

i
= 0, 2 - dimi

H1(G, Vi)� 2⌧(cVi
) 0

yes, ✏i = �1 W ⌧

i
= 0, 2 | dimi

H1(G, Vi)� 2⌧(cVi
)

Q1
j=1

(1 + q�j

i
)�1

no,
1Y

j=1

✓
1� q�j

i

|W ⌧

i
||H1(G, V _

i
)|

|H1(G, Vi)|

◆

V _
i

6⇠= Vj any j
no, V _

i
⇠= Vj W ⌧

i
= W ⌧

j
= 0,

Q1
k=1

(1� q�k

i
)1/2

for j 6= i dimH1(G, Vi) = dimH1(G, V _
i
)

no, V _
i

⇠= Vj W ⌧

i
6= 0 or W ⌧

i
6= 0 or 0

for j 6= i dimH1(G, Vi) 6= dimH1(G, V _
i
)

Note that wVi
vanishes in many cases. Notably, it vanishes whenever W ⌧

i
6= 0 and Vi is dual

to Vj for some j (regardless of whether i = j). Less obviously, if V _
i

6⇠= Vj for any j, then wVi
= 0

if dimH1(G, Vi) < dimW ⌧

i
+ dimH1(G, V _

i
).

Now with these weights defined we can state our main technical theorem on the distribution
of ⇡1(Mg,L). Let µg,L,C be the probability measure of the random variable ⇡C

1
(Mg,L), which is
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just slightly more convenient notation for (⇡1(Mg,L))C. Note that the level-C completion of an
oriented group is naturally oriented.

Theorem 4.2. For each g, L, let Mg,L be the Dunfield-Thurston random 3-manifold as defined

in Section 3. For every G, V ,W ,N as above,

lim
g!1

lim
L!1

E [LG,V ,W ,N(⇡1(Mg,L))] =
|G||H2(G,Z)|

|H1(G,Z)||H3(G,Z)|

nY

i=1

wVi

mY

i=1

wNi
.

In particular, for C a finite set of finite groups, and G, V ,W ,N as in Lemma 4.1,

lim
g!1

lim
L!1

µg,L,C(G) =
|G||H2(G,Z)|

|Aut(G)||H1(G,Z)||H3(G,Z)|

nY

i=1

wVi

mY

i=1

wNi
.

In the case that we take no Vi’s and Ni’s, then Theorem 4.2 is just Proposition 3.3. Taking all
possible Vi’s and Ni’s (relevant to a level-C) gives the second statement of the theorem. The first
statement is a general flexible result that allows one to interpolate between these two extremes.

4.3. Proof of Theorem 4.2 from the major inputs. Now we will state the main results
that go into the proof of Theorem 4.2 and show how the theorem follows from these inputs.

We first define the class of extensions of G that will arise in our inclusion-exclusion formula.
We call a G-extension H ! G material if it is a finite fiber product over G of finitely many
minimally material extensions, and a G-extension H ! G attainable if for each i such that Vi

is A-symplectic, we have dimi
H1(H, Vi) ⌘ 2⌧(cVi

) mod 2 (motivated by Theorem 1.1).
Next we will define the coe�cients that will appear in our inclusion-exclusion formula. Let

I be a set of finite oriented groups that includes exactly one from each isomorphism class. For
H 2 I, we define a path P from H to G to be sequence Hs,Hs�1, . . . ,H0 for some s � 0 with
Hi 2 I, with Hs = H and H0 = G, along with choices fi : Hi ! Hi�1 for each 1  i  s of
surjective oriented morphisms that are not isomorphisms, such that each composite mapHi ! G
is material. We write Path(H,G) for the set of such paths. We write |P | = s for the length of
the path and define

↵P :=
|P |�1Y

i=0

1

|Aut(Hi)|
�P :=

Y

j

Vj A-symplectic

dimj
H

1
(Hi,Vj)=dimj

H
1
(G,Vj)+1 for some i

1

qj
.

There is a path of length 0 from H to G if and only if H = G, and there is one path of length
0 from G to G.

For H 2 I, we define

TH :=
X

P2Path(H,G)

(�1)|P |↵P�P .

Here the precise ↵P factor is a necessary normalization. The exact value of �P factor is somewhat
arbitrary, but some such factor is necessary to improve the rate of convergence of certain sums
in the case where some Vj is A-symplectic (and without it these sums will not converge). One
can see many of the main ideas on a first read while ignoring the �P factor.

The following lemma is our basic inclusion-exclusion formula, which gives the number of
surjections from a 3-manifold group to G, not lifting to any minimally material extension, in
terms of total numbers of surjections to various extensions of G. We will prove Lemma 4.3 in
Section 5 using group theory.
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Lemma 4.3. Let G, V ,W ,N be as above. Assume G 2 I and G is an attainable G-extension.

If K is the (oriented) fundamental group of a 3-manifold, then we have

LG,V ,W ,N(K)

|Aut(G)|
=
X

H2I

TH

|Aut(H)|
Surj(K,H).

Given Lemma 4.3 and Proposition 3.3, to find E [LG,V ,W ,N(⇡1(Mg,L))] we naturally seek to
evaluate the sum in the following proposition. This is the most di�cult part of the argument,
and occurs in Section 7, where we do a detailed spectral sequence analysis.

Proposition 4.4. If G 2 I is an attainable G-extension, and if for any i such that V _
i

⇠= Vj

for some j we have W ⌧

i
= 0, then

X

H2I

TH

|Aut(H)|

|H||H2(H,Z)|
|H1(H,Z)||H3(H,Z)| =

|G||H2(G,Z)|
|Aut(G)||H1(G,Z)||H3(G,Z)|

rY

i=1

wVi

sY

i=1

wNi
,

and the sum is absolutely convergent.

However, to apply Proposition 4.4 to prove Theorem 4.2, we need to handle several analytic
questions of the existence of limits and whether they can be interchanged with infinite sums
in our particular situation. For this, we use Lemma 4.5 and Proposition 4.6, which are proven
in Section 6. Lemma 4.5 is relatively straightforward as it is only about limiting behavior in
L, but Proposition 4.6 involves some intricate group theory arguments along with the analytic
arguments.

Lemma 4.5. Let G, V ,W ,N be as above, let C be any finite set of finite groups, and let g � 1.
The limit

lim
L!1

µg,L,C(G),

exists. We define µg,1,C(G) to be the limit above.

We say an oriented group is level-C if and only if the underlying group is level-C. Let IC be a
set consisting of one representative of each isomorphism class of finite level-C oriented groups.

Proposition 4.6. For some finite set of finite groups C, for each K 2 IC, let pnK be a sequence

of nonnegative real numbers such that limn!1 pn
K

exists. Suppose that, for every H 2 IC, we
have

sup
n

X

K2IC

| Surj(K,H)|pn
K
< 1.

Then for every H 2 IC, we have that

lim
n!1

X

K2IC

| Surj(K,H)|pn
K
=
X

K2IC

| Surj(K,H)| lim
n!1

pn
K
.

Finally, our input results Lemma 4.3 and Proposition 4.4 require certain hypotheses on G,
but the following result, which follows from Lemmas 5.1 and 7.1, and is much easier than the
rest of the argument, shows that these are the only G relevant for our purposes.

Lemma 4.7. If G is not an attainable G-extension, or if for some i, j we have V _
i

⇠= Vj and

W ⌧

i
6= 0, then

LG,V ,W ,N(⇡1(Mg,L)) = 0.
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Proof of Theorem 4.2. When the hypothesis of Lemma 4.7 is satisfied, we can see from the
definition of the wVi

that the right-hand side of Theorem 4.2 is 0 as well, concluding the theorem
in those cases.

Now we may assume G is an attainable G-extension and that for any i such that V _
i

= Vj for
some j we have W ⌧

i
6= 0. Let C be any finite set of finite groups such that all minimally material

extensions of G are level-C. For the limit in g, it is not so clear that a limiting distribution of
µg,1,C even exists. However, by a diagonal argument, we can always consider a weak limit. Let
µ1,1,C be a weak limit of µg,1,C over a convergent sequence of g, i.e. a sequence gs chosen so
that for all K 2 IC, the limit lims!1 µgs,1,C(K) exists (and gs ! 1).

Since ⇡1(Mg,L)C is a quotient of ⇡C
1
(⌃g), which is finite, ⇡1(Mg,L)C takes finitely many possible

values, independently of L. Thus, given gs and C, there is finite subset of IC containing the
support of µgs,L,C for all L, and

lim
L!1

X

K2IC

| Surj(K,H)|µgs,L,C(K) =
X

K2IC

| Surj(K,H)|µgs,1,C(K).

We next apply Proposition 4.6 with ps
K

= µgs,1,C(K), using the above equality and Proposi-
tion 3.3 to check the hypothesis, and obtain, for any H 2 I,

(4.8) lim
s!1

X

K2IC

| Surj(K,H)|µgs,1,C(K) =
X

K2IC

| Surj(K,H)|µ1,1,C(K).

Combining the above two equations and Proposition 3.3 we have the following,
X

H2I

TH

|Aut(H)|

X

K2IC

| Surj(K,H)|µ1,1,C(K) =
X

H2I

TH

|Aut(H)|
lim
s!1

lim
L!1

X

K2IC

| Surj(K,H)|µgs,L,C(K)

=
X

H2I

TH

|Aut(H)|

|H||H2(H,Z)|
|H1(H,Z)||H3(H,Z)| ,

and moreover by Proposition 4.4, all these sums are absolutely convergent. So we can exchange
the order of summation and obtain

X

K2IC

µ1,1,C(K)
X

H2I

TH

|Aut(H)|
| Surj(K,H)| =

X

H2I

TH

|Aut(H)|

|H||H2(H,Z)|
|H1(H,Z)||H3(H,Z)| .

Thus by Lemma 4.3 we have

(4.9)
X

K2IC

µ1,1,C(K)
LG,V ,W ,N(K)

|Aut(G)|
=
X

H2I

TH

|Aut(H)|

|H||H2(H,Z)|
|H1(H,Z)||H3(H,Z)| .

In particular, in the case of main interest when the hypothesis of Lemma 4.1 is satisfied, we
use that lemma to see that Equation (4.9) says

(4.10) µ1,1,C(G) =
X

H2I

TH

|Aut(H)|

|H||H2(H,Z)|
|H1(H,Z)||H3(H,Z)| .

Since every weak limit of µg,1,C(G) is the same, it follows that limg!1 µg,1,C(G) exists and is
given as above, which can be combined with Proposition 4.4 to prove the second statement of
the theorem.

For general Vi,Wi, Ni, we must exchange our two limits with one final sum. We have

(4.11)
X

K2IC

µg,1,C(K)
LG,V ,W ,N(K)

|Aut(G)|
= lim

L!1

X

K2IC

µg,L,C(K)
LG,V ,W ,N(K)

|Aut(G)|
.
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because the only K which give nonzero terms in the sum on each side are those level-C groups
that can be generated by 2g elements, a finite set, and we may exchange finite sums with limits.
For the limit in s, Fatou’s lemma gives

(4.12)
X

K2IC

µ1,1,C(K)
LG,V ,W ,N(K)

|Aut(G)|
 lim inf

s!1

X

K2IC

µgs,1,C(K)
LG,V ,W ,N(K)

|Aut(G)|
.

Since LG,V ,W ,N(K)  |Surj(K,G)|, Fatou’s lemma also gives

X

K2IC

µ1,1,C(K)
Surj(K,G)� LG,V ,W ,N(K)

|Aut(G)|
 lim inf

s!1

X

K2IC

µgs,1,C(K)
Surj(K,G)� LG,V ,W ,N(K)

|Aut(G)|

which subtracted from (4.8) gives

(4.13)
X

K2IC

µ1,1,C(K)
LG,V ,W ,N(K)

|Aut(G)|
� lim sup

s!1

X

K2IC

µgs,1,C(K)
LG,V ,W ,N(K)

|Aut(G)|
.

Combining (4.12) and (4.13), we have

X

K2IC

µ1,1,C(K)
LG,V ,W ,N(K)

|Aut(G)|
= lim

s!1

X

K2IC

µgs,1,C(K)
LG,V ,W ,N(K)

|Aut(G)|
,

and then using Equation (4.11), we have

(4.14)
X

K2IC

µ1,1,C(K)
LG,V ,W ,N(K)

|Aut(G)|
= lim

s!1
lim
L!1

X

K2IC

µgs,L,C(K)
LG,V ,W ,N(K)

|Aut(G)|
,

Because (4.14) holds for any subsequence gs such that µgs,1,C converges weakly, we have

(4.15)
X

K2IC

µ1,1,C(K)
LG,V ,W ,N(K)

|Aut(G)|
= lim

g!1
lim
L!1

X

K2IC

µg,L,C(K)
LG,V ,W ,N(K)

|Aut(G)|
.

Indeed, if (4.15) is false, we can pass to a subsequence gs on which the right side either converges
to a di↵erent value or diverges to 1, then pass to a further subsequence on which µgs,1,C
converges, obtaining a contradiction with (4.14). This gives (4.15), which together with (4.9)
and Proposition 4.4 handles the general case. ⇤

5. Inclusion-exclusion lemma

The goal of this section is to prove Lemma 4.3, the identity we use for inclusion-exclusion. We
will first need one preliminary result, which is also used in the proof of Lemma 4.7, to settle the
non-attainable case of Theorem 4.2. When K is a 3-manifold (oriented) group and ⇢ : K ! G
a surjection, there is a maximal quotient of K that sees the material extensions of G.

Lemma 5.1. Let K be a 3-manifold (oriented) group, G a finite oriented group, and ⇢ : K ! G
a surjection. Let Q⇢ be the quotient of K by the intersection of the kernels of all surjective lifts

of ⇢ to minimally material extensions of G. Then Q⇢ is a finite, attainable, material extension

of G, and any lift of ⇢ to a material extension factors through K ! Q⇢.

Before giving the proof of Lemma 5.1, we record a basic fact of group cohomology that we
will use repeatedly.
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Lemma 5.2. Let ⇡ : H ! G be a surjection of groups. Non-zero morphisms of G-groups in

HomG((ker ⇡)ab, Vi) correspond exactly to surjections from H to extensions of G by Vi that are

compatible with the map to G. If S is the subset of those morphisms that correspond to trivial

extensions (along with the 0 morphism), then we have an exact sequence

1 ! H1(G, Vi) ! H1(H, Vi) ! S ! 1.

Also, the kernel of H2(G, Vi) ! H2(H, Vi) is the set of those extensions of G by V that occur as

quotients of H, compatibly with the map to G (along with 0).

Proof. We can use the Lyndon-Hochschild-Serre spectral sequence to compute H⇤(H, Vi). From
the edge maps, we have that H1(G, Vi) ! H1(H, Vi) is an injection whose cokernel is the kernel
of d0,1

2
: HomG(ker ⇡, Vi) ! H2(G, V ). The map d0,1

2
is the transgression [NSW00, Theorem

2.4.3], and we can check that d0,1
2
(�) = �⇤(↵), where ↵ 2 H2(G, ker ⇡ab) is the class of the

extension H. From this it follows that S = ker d0,1
2
. Further, the edge map gives that the kernel

of H2(G, Vi) ! H2(H, Vi) is im d0,1
2
, and the second claim follows. ⇤

Proof of Lemma 5.1. First, we must check that Q⇢ is finite. Because K is a 3-manifold group,
K is finitely generated, and thus there are finitely many surjections from K to each minimally
material extension of G. Since there are finitely many minimally material extensions, there are
finitely many lifts of ⇢ to minimally material extensions of G. Thus the quotient Q⇢ of K by the
intersection of the kernels of these lifts is finite.

Second, we must check that Q⇢ is a fiber product over G of minimally material extensions.
More generally, one can prove that any subgroup of a fiber product of minimal non-trivial
extensions that surjects onto each factor must be a fiber product of a subset of the extensions.
The argument is analogous to that in [LW20, Lemma 5.3].

Finally, we must check the conditions for attainability. Because K is isomorphic to the fun-
damental group of a 3-manifold, by Theorem 1.1 we have that K ! G is attainable. We apply
Lemma 5.2 to K ! Q⇢. Since K ! Q⇢ does not lift to K ! Vi oQ⇢ for an minimally material
extension Vi o G of G, we have that dimH1(Q⇢, Vi) = dimH1(K,Vi) for all such Vi and thus
Q⇢ ! G is attainable. ⇤
Proof of Lemma 4.3. We have

X

H2I

TH

|Aut(H)|
Surj(K,H) =

X

H2I

X

�2Surj(K,H)

X

P2Path(H,G)

(�1)|P |↵P�P

1

|Aut(H)|
.

Each term of the sum on the right defines a surjection ⇢ : K ! G, the composition of the map �
with the maps fi in the path P . By Lemma 5.1, we have that � factors through Q⇢. Note that
K has only finitely many surjections to G, and the corresponding Q⇢ have only finitely many
quotients. Thus in the sum on the right, there are only finitely many H for which the sum over
�, P is non-empty.

Now there are two possibilities for a term in the sum on the right. Either Q⇢ is isomorphic to
Hs, or it is not. Using the terms where Q⇢ is not isomorphic to Hs, we will cancel all the terms
where Q⇢ is isomorphic to Hs except for those where s = 0 and Q⇢

⇠= G, which will contribute
LG,V ,W ,N(K).

Consider a path where Hs is not isomorphic to Q⇢. We can adjust the path by adding the
unique member Hs+1 of I isomorphic to Q⇢. For morphisms, we replace � : K ! Hs with
a morphism �0 : K ! Hs+1 obtained by composing the projection K ! Q⇢ with one of the
|Aut(Hs+1)| isomorphisms Q⇢ ! Hs+1. We then take fs+1 to be the unique surjection Hs+1 !
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Hs whose composition with �0 is �, which exists because the kernel of �0 is the intersection of
the kernels of all surjections from K to material extension of G, and therefore is contained in
the kernel of �. Because G is attainable by assumption and Hs+1 is attainable by Lemma 5.1,
we have

dimH1(Hs+1, Vi) ⌘ 2⌧(cVi
) ⌘ dimH1(G, Vi)

and thus their di↵erence cannot be 1. Hence no additional factors of 1

qi
are added to �P by this

adjustment.
This adjustment has the e↵ect of raising |P | by 1, multiplying ↵P by 1

|Aut(Hs)| , and fixing

�P . Thus, the terms corresponding to the |Aut(Hs+1)| new paths exactly cancel the term
corresponding to the original path. Each term where Hs is isomorphic to Q⇢ arises exactly once
from this construction, via the truncated path obtained by removing Hs and replacing � with
fs � �, except for the terms where s = 0.

The remaining terms in the sum are those with s = 0 and Q⇢
⇠= H0 = G. Such terms

are simply given by oriented maps ⇢ : K ! G that induce an isomorphism Q⇢
⇠= G and have

(�1)|P |↵P�P = 1 · 1 = 1. The condition Q⇢
⇠= G means that every lift of ⇢ : K ! G to a

material extension of G fails to be surjective, so the number of surjections ⇢ with Q⇢
⇠= G is

LG,V ,W ,N(K). ⇤
Remark 5.3. By using a parity hypothesis in Lemma 4.3, we had the flexibility to introduce the
�P term into the sum, and indeed the lemma would hold if we replaced 1/qj, in the definition
of �P with anything else. The particular choice will only matter in Lemma 7.4, where it causes
TH to take a smaller value in the a�ne symplectic case. In Lemma 7.26 this smaller term gives
a convergent sum, which without the �P factor wouldn’t converge.

6. Convergence theorem for the moments

Proposition 3.3 found the limiting moments of our distributions of interest, and in this section,
we will show that the limiting moments agree with the moments of the limiting distribution
(assuming the limiting distribution exists), proving Proposition 4.6. This is a non-trivial analytic
question, as limits and infinite sums don’t always commute. The main challenge is to express
our group-theoretic sums in terms of something whose analytic behavior we can control. Also,
in Section 6.4, we will prove Lemma 4.5.

6.1. Definitions. A G-group H is a group with an action of G. A G-group is simple if it
contains no non-trivial, proper, normal subgroups that are fixed (setwise) by G. A G-group
is semisimple if it is a finite direct product of simple G-groups. A semisimple [G]-group is a
finite direct product of simple [G]-groups. If ⇡ : E ! G is a group homomorphism, we call ⇡
semisimple (resp. simple) if ⇡ is surjective and ker(⇡) is a semisimple (resp. simple) [G]-group
(or equivalently, a semisimple (resp. simple) E-group). If ⇡ : E ! G is a surjective group
homomorphism, we say that a surjective group homomorphism � : E ! R is a radical of ⇡ if if
ker� is the intersection of all maximal proper E-normal subgroups of ker⇡. Note in this case
⇡ factors through � and the resulting map R ! G is semisimple. Indeed, in this case every
intermediate quotient E ! Q ! G such that Q ! G is semisimple factors through E ! R.

6.2. Limit of moments is moments of limit for (unoriented) groups. We will first give
a result for unoriented groups, which we expect to be useful in other contexts, and then we
will show Proposition 4.6, for oriented groups, follows from it. For any two groups G,H, let
SG,H := | Surj(G,H)|. For a set C of finite groups, let JC be a set of groups consisting of one
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from each isomorphism class of finite level-C groups. The main result of this subsection is the
following.

Theorem 6.1. For some finite set of finite groups C, for each K 2 JC, let pnK be a sequence of

nonnegative real numbers such that limn!1 pn
K

exists. Suppose that, for every H 2 JC we have

(6.2) sup
n

X

K2JC

SK,Hp
n

K
< 1.

Then for every H 2 JC we have that

lim
n!1

X

K2JC

SK,Hp
n

K
=
X

K2JC

SK,H lim
n!1

pn
K
.

To prove Theorem 6.1 we need to exchange the sum with the limit. We will do this by breaking
it up into a series of sums and exchanging them with the limit one at a time. Each step will be
proven using the Fatou-Lebesgue theorem. The first step in breaking up our sum into a series
of sums is the following identity, for any finite group H,

(6.3)
X

K2JC

SK,Hp
n

K
=
X

R2JC

X

a : R!H
semisimple

X

K2JC

X

b : K!R

b=radical(a�b)

pn
K

|Aut(R)|

We will use the following result to check the hypothesis when we use the Fatou-Lebesgue
theorem.

Lemma 6.4. Let C be a finite set of finite groups. For all K 2 JC and n 2 N let pn
K

� 0 be a

real number. Suppose that, for every H 2 JC, Equation (6.2) holds. Then, for every H 2 JC, we
have

X

R2JC

X

a : R!H
semisimple

sup
n2N

⇣X

K2JC

X

b : K!R

b=radical(a�b)

pn
K

|Aut(R)|

�
< 1.

Proof. Given H, let (C1, a1), . . . (Cm, am) be pairs of a member Ci of JC together with a simple
morphism ai : Ci ! H. This set is finite by [LW20, Lemmas 6.1, 6.11]. For any semisimple
morphism a : R ! H, we can express a as a fiber product of simple morphisms and thus can
write R =

Q
m

i=1
Cei

i
for some natural numbers ei, with the products taken over H. Call this

fiber product Re and let ae be its projection to H. Let

C = sup
n2N

X

d2{0,1,2}m

X

G2JC

SG,Rd
pn
G
.

Given a group K 2 JC and a map b : K ! Re such that b = radical(ae�b), we obtain
Q

m

i=1

�
ei

di

�

distinct homomorphisms K ! Rd, by composing b with the projections of Re ! Rd onto di of
the ei factors of type Ci, for all i. If two surjections b, b0 give the same map c : K ! Rd then
b, b0 must be equal up to multiplication with an element of Aut(Re), since we can recover ker(b)
by composing c with ad and taking the radical. This implies, for fixed e,d,

X

K2JC

X

b : K!Re
b=radical(ae�b)

pn
K

|Aut(Re)|
·

mY

i=1

✓
ei
di

◆


X

K2JC

SK,Rd
pn
K
.
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Summing over d, we obtain

X

K2JC

X

b : K!Re
b=radical(ae�b)

pn
K

|Aut(Re)|
·

mY

i=1

2X

d=0

✓
ei
d

◆


X

d2{0,1,2}m

X

K2JC

SK,Rd
pn
K
 C.

Thus X

K2JC

X

b : K!Re
b=radical(ae�b)

pn
K

|Aut(Re)|


C
Q

m

i=1

P
2

d=0

�
ei

d

� .

Now since every pair R and a : R ! H semisimple is isomorphic to (Re, ae) for some e, we have
X

R2JC

X

a : R!H
semisimple

sup
n2N

⇣X

K2JC

X

b : K!R

b=radical(a�b)

pn
K

|Aut(R)|

�


X

e2Nm

sup
n2N

⇣X

K2JC

X

b : K!Re
b=radical(ae�b)

pn
K

|Aut(Re)|

�



X

e2Nm

C
Q

m

i=1

P
2

d=0

�
ei

d

� = C
mY

i=1

1X

e=0

1
P

2

d=0

�
e

d

� < 1,

as desired. ⇤
Given a sequence of maps K

b
! Rk

ak
! Rk�1 · · ·

a1
! R0, we say b, ak, . . . , a1 is a radical sequence

if for all 1  i  k, we have that ai+1�· · ·�ak�b : K ! Ri is a radical of ai�ai+1�· · ·�ak�b : K !

Ri�1. Lemma 6.4 will allow us to inductively prove the following result using the Fatou-Lebesgue
theorem, moving the limit further and further past the sum as k increases.

Lemma 6.5. Let C be a finite set of finite groups. For all K 2 JC and n 2 N, let pn
K
� 0 be a

real number. Suppose that Equation (6.2) holds for every finite group H. Then for every H 2 IC
and all natural numbers k we have

lim sup
n!1

X

K2JC

SK,Hp
n

K


X

R0,R1,...,Rk2JC
R0=H

X

ai : Ri!Ri�1

i=1,...k

semisimple

lim sup
n!1

X

K2JC

X

b : K!Rk

b,ak,...,a1 rad. seq.

pn
KQ

k

i=1
|Aut(Ri)|

.

Proof. The proof is by induction on k. The case k = 0 is trivial. Now we assume the lemma is
true for k. We have
X

K2JC

X

b : K!Rk

b,ak,...,a1 rad. seq.

pn
KQ

k

i=1
|Aut(Ri)|

=
X

Rk+12JC

X

ak+1 : Rk+1!Rk

semisimple

X

K2JC

X

b : K!Rk+1

b,ak+1,...,a1 rad. seq.

pn
KQ

k+1

i=1
|Aut(Ri)|

.

To complete the induction, it su�ces to show that

lim sup
n!1

X

Rk+1,ak+1

X

K,b

pn
KQ

k+1

i=1
|Aut(Ri)|



X

Rk+1,ak+1

lim sup
n!1

X

K,b

pn
KQ

k+1

i=1
|Aut(Ri)|

,

(where the sums are over the same sets as in the previous equation). This follows from the
Fatou-Lebesgue theorem, using Lemma 6.4 with H = Rk to check the hypothesis. (Our sum in
b is over a smaller set than in Lemma 6.4 since we require b, ak+1, . . . , a1 to be a radical sequence
and not just b, ak+1, but this only improves the upper bound.) ⇤

Finally, we will now show that, given C, for some k eventually the inner sums over K, b on the
right-hand side of Lemma 6.5 become trivial and we have fully exchanged the sum and limsup.



FINITE QUOTIENTS OF 3-MANIFOLD GROUPS 33

Lemma 6.6. Let C be a finite set of finite groups. If G1, G2 are finite groups such that Gi ! GC
i

are semisimple for i = 1, 2, then if S is a subdirect product of G1, G2, then S ! SC
is semisimple.

Proof. Let Ki = ker(Gi ! GC
i
). We have a commutative diagram

1 K S SC

1 K1 ⇥K2 G1 ⇥G2 GC
1
⇥GC

2
.

Since SC
! GC

i
is surjective, through that morphism, Ki is also a semisimple [SC]-group, and

thus Ki is also a semisimple S-group (under conjugation by elements of S). We have that K is
a S-subgroup of the semisimple S-group K1 ⇥ K2, and since S ! Gi is surjective, this means
that the projection of K to each Ki is normal in Ki. It follows that K is a semisimple S-group
(e.g. see [LW20, Lemma 5.3]), as desired. ⇤
Lemma 6.7. Let C be a finite set of finite groups. Let G be a finite group such that G ! GC

is

semisimple and let Q be a quotient of G. Then Q ! QC
is semisimple.

Proof. Let K = ker(G ! GC) and N = ker(G ! Q). Then G/(KN) is a quotient of GC and
hence is level-C, and is also a quotient of Q, so (G/KN) is a quotient of QC. Furthermore, since
KN ⇢ ker(G ! QC), we have that QC = G/(KN) and the kernel of Q ! QC is KN/N ⇠=
K/(K \ N). Since K is a semisimple G-group, K/(K \ N) is a semisimple G-group, thus,
because the action of G on it factors through Q, a semisimple Q-group. ⇤
Lemma 6.8. Let C be a finite set of finite groups, and let C

0
be a set of groups that contains

all proper quotients of groups in C. Then for a finite group G 2 JC, we have that G ! GC0
is

semisimple.

Proof. For G 2 C, if G is a simple group, then clearly G ! GC0
is semisimple. Otherwise, let N

be a minimal non-trivial normal subgroup of G. We have G ! GC0
! G/N , and so GC0

is either
G or G/N and in either case G ! GC0

is semisimple. Since any group of level-C is contained
in the closure of C under taking subdirect products and quotients, the conclusion follows from
Lemma 6.6 and Lemma 6.7. ⇤
Lemma 6.9. Let G be a finite group and N1, N2 ⇢ N3 be normal subgroups of G such that

G/N2 ! G/N3 is semisimple. Then G/(N2 \N1) ! G/N1 is semisimple, and so if G ! G/N4

is the radical of G/N1, then G ! G/(N2 \N1) and G ! G/N2 factor though G ! G/N4.

Proof. Since G/N2 ! G/N3 is semisimple, N3/N2 is a semisimple G-group. Since N1/(N2 \N1)
is a normal, G-invariant subgroup of N3/N2, we have that N1/(N2\N1) is a semisimple G-group
and hence G/(N2 \N1) ! G/N1 is semisimple. ⇤
Proposition 6.10. Let C be a set of finite groups each of order at most k. Then if K 2 IC and

b : K ! Rk and ai : Ri ! Ri�1 (for 1  i  k) are group homomorphisms such that b, ak, . . . , a1
is a radical sequence, then b is an isomorphism.

Proof. Let Ci be the set of all quotients of groups in C of order at most i. Let Ki be the image
of K in KCi ⇥ R0. We apply Lemma 6.9 with G = K and G/N2 = KCi+1 and G/N3 = KCi and
G/N1 = Ki, using Lemma 6.8 to see that KCi+1 ! KCi is semisimple. Then G/(N2\N1) = Ki+1

and so Ki+1 ! Ki is semisimple by the first part of Lemma 6.9.
We will show by induction that K ! Ki factors through ai+1 � . . . ak � b : K ! Ri. When

i = 1, we have K1 = R0, and this is automatic. For the induction step, assuming K ! Ki
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factors through K ! Ri, we apply the second part of Lemma 6.9 with G = K, G/N2 = Ki+1,
G/N3 = Ki, and G/N1 = Ki, and conclude that since K ! Ri+1 is the radical of K ! Ri, it
factors through Ki+1.

Thus we have thatK ! Kk = K factors through b : K ! Rk, and we conclude the lemma. ⇤
Putting this all together we can prove Theorem 6.1.

Proof of Theorem 6.1. Let k be the maximal order of a group in C. By Proposition 6.10, the
sums over G, b on the right-hand side of Lemma 6.5 are finite, and can be exchanged with the
limit and so we have

lim sup
n!1

X

K2JC

SK,Hp
n

K


X

R0,R1,...,Rk2JC
R0=H

X

ai : Ri!Ri�1

i=1,...k

semisimple

X

K2JC

X

b : K!Rk

b,ak,...,a1 rad. seq.

limn!1 pn
KQ

k

i=1
|Aut(Ri)|

=
X

K2JC

SK,H lim
n!1

pn
K
.

Fatou’s lemma gives

lim inf
n!1

X

K2JC

SK,Hp
n

K
�

X

K2JC

SK,H lim
n!1

pn
K
,

and the theorem follows. ⇤
6.3. Limit of moments is moments of limit for oriented groups. Now we will see that
Proposition 4.6, i.e. a version of Theorem 6.1 for oriented groups, follows directly from The-
orem 6.1 (as Fatou’s lemma gives one inequality, and we have equality after a finite sum over
orientations). For oriented groups K,H let SK,H denote the number of oriented surjections
Surj(K,H).

Proof of Proposition 4.6. For K 2 JC and s 2 H3(K,Z), let (K, s) denote the oriented group,
and let

pn
K
=

X

s2H3(K,Z)

|Aut(K, s)|

|Aut(K)|
pn
(K,s)

.

Then for H 2 JC,
X

K2JC

SK,Hp
n

K
=
X

K2JC

X

s2H3(K,Z)

SK,H

|Aut(K, s)|

|Aut(K)|
pn
(K,s)

=
X

K2JC

X

s2H3(K,Z)

X

t2H3(H,Z)

S(K,s),(H,t)

|Aut(K, s)|

|Aut(K)|
pn
(K,s)

=
X

t2H3(H,Z)

X

K2IC

SK,(H,t)p
n

K

because, given s, each surjection ⇡ : K ! K is a surjection (K, s) ! (H, t) of oriented groups
for exactly one t, and by the orbit-stabilizer theorem, each isomorphism class of (K, s) appears
|Aut(K)|
|Aut(K,s)| times in the sum. In particular, the hypothesis (6.2) holds by summing the hypothesis
of Proposition 4.6 over t and we have

lim
n!1

X

K2JC

SK,Hp
n

K
=
X

K2JC

lim
n!1

SK,Hp
n

K
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Also,
X

t2H3(H,Z)

lim inf
n!1

X

K2IC

SK,(H,t)p
n

K
 lim

n!1

X

t2H3(H,Z)

X

K2IC

SK,(H,t)p
n

K
= lim

n!1

X

K2JC

SK,Hp
n

K
.

So X

t2H3(H,Z)

lim inf
n!1

X

K2IC

SK,(H,t)p
n

K


X

K2JC

lim
n!1

SK,Hp
n

K
(6.11)

=
X

K2JC

SK,H

X

s2H3(K,Z)

|Aut(K, s)|

|Aut(K)|
lim
n!1

pn
(K,s)

=
X

t2H3(H,Z)

X

K2IC

SK,(H,t) lim
n!1

pn
K
.

By Fatou’s lemma, we have, for each t 2 H3(H,Z)

lim inf
n!1

X

K2IC

SK,(H,t)p
n

K
�

X

K2IC

SK,(H,t) lim
n!1

pn
K
.(6.12)

Since the sum over t of the inequalities in (6.12) is the opposite of the inequality in (6.11), all
of these inequalities must be equalities and we have, for each t 2 H3(H,Z),

lim inf
n!1

X

K2IC

SK,(H,t)p
n

K
=
X

K2IC

SK,(H,t) lim
n!1

pn
K
.

Since the same statement holds for any subsequence of n, the proposition follows. ⇤
6.4. Convergence in L: Proof of Lemma 4.5.

Proof of Lemma 4.5. Let Kg be the kernel of the map ⇡1(⌃g) ! ⇡1(Hg) . We have that ⇡1(Mg,L)
is the quotient of ⇡1(⌃g) by Kg and �g,L(K), where �g,L is the random element of the mapping
class group that we used to define Mg,L. Note that the mapping class group of ⌃g acts on ⇡C

1
(⌃g).

Let K̄g denote the image of Kg in ⇡C
1
(⌃g). From the definition of level-C completion, we have

⇡C
1
(Mg,L) =

�
⇡C
1
(⌃g)/(K̄g, �g,L(K̄g))

�C
.

Let us first check that the limit of the probability that ⇡C
1
(Mg,L) is isomorphic to G as an

unoriented group exists. To do this, we observe that ⇡C
1
(⌃g) is finite and the action of the

mapping class group on this group factors through a finite group. By the above equation, the
isomorphism class of ⇡C

1
(Mg,L) depends only on the image of �g,L in this finite group. That image

equidistributes by the Perron-Frobenius theorem, showing that a limiting probability exists.
We now consider oriented groups. Let Hg,C be the subgroup of the mapping class group

that fixes every element of ⇡C
1
(⌃g). By Lemma 3.2, there is a homomorphism from Hg,C to the

bordism group of B⇡C
1
(⌃g) that sends a mapping class � to the bordism class of the associated

3-manifold. Let Jg,C be the kernel of this homomorphism.
We claim that the isomorphism class of ⇡C

1
(Mg,L), together with its orientation, depends only

on �g,L modulo Jg,C. Having checked this, the Perron-Frobenius theorem will again imply that
a limiting measure exists (with equal mass placed on the isomorphism class arising from each
coset of Jg,C).

To check this claim, let �1 be any mapping class and let �2 be a mapping class in Jg,C. The
identity

⇡C
1
(M�) =

�
⇡C
1
(⌃g)/(K̄g, �(K̄g))

�C
,
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together with the fact that �2 acts trivially on ⇡C
1
(⌃g), gives an isomorphism between ⇡C

1
(M�1

)

and ⇡C
2
(M�1�2

), showing that both are isomorphic to
�
⇡C
1
(⌃g)/(K̄g, �1(K̄g))

�C
. Call this group

Q. It remains to check that this isomorphism preserves the orientation. Since the orientation
of a quotient Q of the fundamental group of a 3-manifold is determined by the bordism class
of that manifold in BQ, it su�ces to check that [M�1

] = [M�1�2
] in the third bordism group of

BQ. Now we apply Lemma 3.1 to the group Q and the homomorphism f : ⇡1(⌃g) ! ⇡C
1
(⌃g) !

Q. By definition of Q, this factors through ⇡1(Hg), as does its pullback under �1, and every
homomorphism ⇡1(⌃g) ! ⇡C

1
(⌃g) ! Q is preserved by �2, so Lemma 3.1 implies that

[M�1�2
] = [M�1

] + [M�2
].

By construction of Jg,C, the class of M�2
in the bordism group B⇡C

1
(⌃g) vanishes. Since Q is

a quotient of ⇡C
1
(⌃g), the map to BQ factors through the map to B⇡C

1
(⌃g), so the class [M�2

] in
the bordism group of BQ vanishes. This proves that [M�1

] = [M�1�2
], as desired. ⇤

7. Evaluation of the main group-theoretic sum

The goal of this section is to prove Proposition 4.4. We do this by partially evaluating the TH,
using detailed spectral sequence analysis to express the remaining sum as a q-series, and then
applying q-series identities. Theorem 1.1 places certain restrictions on the fundamental group of
a 3-manifold, and first we will see that we can avoid certain groups in our analysis, motivating
the hypothesis of Proposition 4.4.

Lemma 7.1. For any i, if V _
i

⇠= Vj for some j and W ⌧

i
6= 0, then

LG,V ,W ,N(⇡1(M)) = 0

for any 3-manifold M .

Proof. Consider a surjection f : ⇡1(M) ! G. Fix a nonzero class ↵ 2 W ⌧

i
✓ H2(G, Vi). By

Lemma 5.2, if f ⇤↵ 2 H2(⇡1(M), Vi) vanishes, then f lifts to an extension of G corresponding to
↵, which is minimally material.

If f ⇤↵ 2 H2(⇡1(M), Vi) 6= 0, by Theorem 1.1(2), there exists � 2 H1(⇡1(M), Vj) such that
⌧(f ⇤↵ [ �) 6= 0. Cochains representing H1(⇡1(M), Vj) exactly give splittings of Vj o ⇡1(M) !
⇡1(M), so � gives a splitting, which composes with f to give f 0 : ⇡1(M) ! Vj o G. By the
irreducibility of Vj, the image of f 0 is either surjective or isomorphic to G. If im f 0 is isomorphic
to G, that implies that � came from a splitting given by a �0

2 H1(G, Vj). Then, because f is
a map of oriented groups,

0 6=

Z

M

(f ⇤↵ [ �) =

Z

M

(f ⇤↵ [ f ⇤�0) = ⌧(↵ [ �0) = 0

because ↵ 2 W ⌧

i
, giving a contradiction. So, we conclude that ⇡1(M) ! Vj oG is a surjection.

Thus, in either case, the surjection f lifts to a surjection to a minimally material extension
and thus is not counted in LG,V ,W ,N . ⇤
Proof of Lemma 4.7. The case that for some i, j we have V _

i
⇠= Vj and W ⌧

i
6= 0 is Lemma

7.1. In the case that G is not an attainable G-extension, Lemma 5.1 gives for any surjection
f : ⇡1(M) ! G the existence of a quotient Q⇢ of ⇡1(M) that is a finite attainable material
extension of G. By definition of material, Q⇢ is a fiber product of minimally material extensions
of G, each a quotient of ⇡1(M). Since G is not attainable but Q⇢ is, Q⇢ 6⇠= G, thus this set of
minimally material extensions is nonempty, hence there is a minimally material extension of G
that f lifts to, therefore f does not contribute to LG,V ,W ,N . ⇤
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Next we give a lemma about when a surjection of groups can lift to an oriented map.

Lemma 7.2. Let 1 ! F ! H
⇡
! G ! 1 be an extension of groups, where G is oriented with

⌧ : H3(G,Q/Z) ! Q/Z corresponding to the orientation. We have ⌧(ker ⇡⇤) = 0, i.e. there is

an orientation on H compatible with ⇡, if and only if ⌧ � d1,1
2

= 0 and ⌧ � d0,2
3

= 0, where the dp,q
r

are the di↵erentials in the Lyndon-Hochschild-Serre spectral sequence to compute H3(H,Q/Z)
(from F and G). Further, we have ⌧ � d1,1

2
= 0 if and only if, for ↵ 2 H2(G,F ab) the extension

class of H, we have ⌧(↵ [ �) = 0 for all � 2 H1(G,Hom(F,Q/Z)).

Proof. The first claim follows from the edge map of the spectral sequence, and the second because
d1,1
2

: H1(G,F_) ! H3(G,Q/Z) is (up to sign) the cup product with ↵ [NSW00, Theorem
2.4.4]. ⇤

In the case W ⌧

i
= 0, we can deduce a useful consequence.

Corollary 7.3. If ⇡ : H ! G is a material oriented surjection and for some i we have W ⌧

i
= 0,

then dimH1(H, Vi) = dimH1(G, Vi) + dimHomG(ker ⇡, Vi).

Proof. Let F = ker ⇡ and ↵ 2 H2(G,F ab) be the extension class of H. Since W ⌧

i
= 0 and ⇡ is a

product of extensions with classes in the Wi, it follows from Lemma 7.2 that the image of ↵ in
H2(G, V ei

i
) is 0. Then in Lemma 5.2 we have S = HomG(ker ⇡, Vi). ⇤

Next, we will partially evaluate TH. To do this, first define, for ⇡ : H ! G a material G-
extension,

T⇡ :=
X

P2Path(H,G)

composite(P )=⇡

(�1)|P |↵P�P .

(The composite of a path of length 0 is the identity map.) Furthermore, for such ⇡, we can write
the [G]-group ker ⇡ as a product

Q
r

i=1
V ei

i
⇥
Q

s

i=1
N fi

i
for tuples e, f . In this setting, we say that

⇡ has type (e, f) (which in particular implies ⇡ is material). It will turn out that T⇡ depends
only on the type of ⇡.

For any i from 1 to r, if Vi is not A-symplectic, define Qi(ei) to be q
(ei

2
)

i
.

If Vi is A-symplectic, we define Qi(ei) to be q
(ei

2
)�ei

i
= q

ei(ei�3)

2

i
.

Lemma 7.4. Assume for each i such that Vi is A-symplectic that W ⌧

i
= 0.

Then, for a material non-trivial G-extension ⇡ of type (e, f), we have

T⇡ =
1

|Aut(G)|
(�1)

P
i
ei+

P
i
fi

Y

i

Qi(ei).

Proof. A path P 2 Path(H,G) of length t with composite ⇡ gives us a sequence ofKi = ker(H !

Hi), where the Ki are normal subgroups of H. The isomorphism type of each Hi is determined
by the Ki, but given the Ki, there are

Q
t�1

i=0
|Aut(Hi)| choices of path with these Hi that give

the appropriate kernels in H, and exactly
Q

t�1

i=1
|Aut(Hi)| of these choices have composite ⇡.

Furthermore, by Corollary 7.3, the factor 1

qi
appears in �P , if and only if, for some j, the

multiplicity of Vi in Kj is ei � 1. Thus letting

�K0,...,Kt
=

Y

i
Vi A-symplectic

multVi
(Kj)=multVi

(K0)�1 for some j

1

qi
,
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we have

(7.5) |Aut(G)|
X

P2Path(H,G)

composite(P )=⇡

(�1)|P |↵P�P =
X

1=Kt(Kt�1(···(K0=ker⇡

(�1)t�K0,...,Ks

where the latter sum is over chains of normal H-subgroups Ki of ker ⇡. We prove, by induction
on the number of simple factors of a semisimple H-group F that

(7.6)
X

1=Kt(Kt�1(···(K0=F

(�1)t�K0,...,Ks
= (�1)

P
i
ei+

P
i
fi

Y

i

Qi(ei)

where F ⇠=
Q

i
V ei

i
⇥
Q

i
N fi

i
. This is certainly true for trivial F . Now let F be nontrivial, so any

chain has t � 1.
We have Kt�1 =

Q
i
V

e
0
i

i
⇥
Q

i
N

f
0
i

i
for some e0

i
 ei and f 0

i
 fi. Given such e0 = (e0

1
, e0

2
, . . . )

and f 0 = (f 0
1
, f 0

2
, . . . ) there are

Q
i

�
ei

e
0
i

�
qi

⇥
Q

i

�
fi

f
0
i

�
ways of choosing a Kt with these multiplicities,

where
�
ei

e
0
i

�
qi

denotes the q-binomial coe�cient (see [LW20, Section 5] for the basics of semisimple

H-groups). So
X

1=Kt(Kt�1(···(K0=F

(�1)t�K0,...,Ks

=
X

e
0
,f

0

e
0
i
ei,f

0
i
fi

not all 0

Y

i

✓
ei
e0
i

◆

qi

Y

i

✓
fi
f 0
i

◆ X

Q
i
V

e
0
i

i
⇥
Q

i
G

f
0
i

i
(Kt�2(···(K0=

Q
i
V

ei

i
⇥
Q

i
G

fi

i

(�1)s�K0,...,Kt

=
X

e
0
,f

0

e
0
i
ei,f

0
i
fi

not all 0

Y

i

✓
ei
e0
i

◆

qi

Y

i

✓
fi
f 0
i

◆ X

0(K
0
t�2

(···(K
0
0
=
Q

i
V

ei�e
0
i

i
⇥
Q

i
G

fi�f
0
i

i

(�1)s�K0,...,Kt
,

where K 0
i
= Ki/Kt�1. We have multVi

(Kj) � multVi
(K0) = multVi

(K 0
j
) � multVi

(K 0
0
) for all j.

Thus
�K0,...,Kt

�K
0
0
,...,K

0
t�1

=
Y

i
Vi A-symplectic

ei=e
0
i
=1

1

qi

since the contributions of i to �K0,...,Kt
and �K

0
0
,...,K

0
t�1

agree unless multVi
(Kt)�multVi

(K0) = 1
but multVi

(Kj) � multVi
(K0) = 0 for all j < t which happens exactly when ei = e0

i
= 1. Thus

by induction we have
X

1=Kt(Kt�1(···(K0=F

(�1)s�K0,...,Kt

=
X

e
0
,f

0

e
0
i
ei,f

0
i
fi

not all 0

Y

i

✓
ei
e0
i

◆

qi

Y

i

✓
fi
f 0
i

◆ Y

i
Vi A-symplectic

ei=e
0
i
=1

1

qi

X

0(K
0
t�2

(···(K
0
0
=
Q

i
V

ei�e
0
i

i
⇥
Q

i
G

fi�f
0
i

i

(�1)s�K
0
0
,...,K

0
t�1
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=
X

e
0
,f

0

e
0
i
ei,f

0
i
fi

not all 0

Y

i

✓
ei
e0
i

◆

qi

Y

i

✓
fi
f 0
i

◆ Y

i
Vi A-symplectic

ei=e
0
i
=1

1

qi
(�1)(�1)

P
i
(ei�e

0
i
)+

P
i
(fi�f

0
i
)
Y

i

Qi(ei � e0
i
)

=� (�1)(�1)
P

i
ei+

P
i
fi

Y

i

Qi(ei)

+
X

e
0
,f

0

e
0
i
ei,f

0
i
fi

Y

i

✓
ei
e0
i

◆

qi

Y

i

✓
fi
f 0
i

◆
(�1)(�1)

P
i
(ei�e

0
i
)+

P
i
(fi�f

0
i
)
Y

i

Qi(ei � e0
i
)

Y

i
Vi A-symplectic

ei=e
0
i
=1

1

qi
.

The final sum in the equation above factors over i. Let us check that each factor is 0 unless
the corresponding ei or fi is 0. For the fi factors, it follows from the binomial theorem thatP

f
0
i
fi

�
fi

f
0
i

�
(�1)fi�f

0
i = 0 if fi > 0. For the factors with Vi not A-symplectic, it follows from the

q-binomial theorem that
P

e
0
i
ei

�
ei

e
0
i

�
qi

(�1)ei�e
0
iq
(ei�e

0
i

2
)

i
= 0 if ei > 0. Finally, for the A-symplectic

factors, if ei > 1 we have

X

e
0
i
ei

✓
ei
e0
i

◆

qi

(�1)ei�e
0
iq
(ei�e

0
i

2
)�(ei�e

0
i
)

i
=

ei�1Y

j=0

(1� qj�1

i
) = 0

by the q-binomial theorem, and if ei = 1 we have
✓
1

0

◆

qi

q
(1
2
)�1

i
�

✓
1

1

◆

qi

q
(0
2
)�0

i

1

qi
= q�1

i
� q�1

i
= 0.

Thus we have proven (7.6) by induction. Combined with (7.5), this proves the lemma. ⇤
To prove Proposition 4.4, we need to evaluate

X

H2I

TH

|Aut(H)|

|H||H2(H,Z)|
|H1(H,Z)||H3(H,Z)| .

Using TH =
P

⇡:H!G
T⇡, and Lemma 7.4 we will calculate this via the following sums

M(e, f) =
X

H2I

X

⇡:H!G
type e,f

|H||H2(H,Z)|
|Aut(H)||H1(H,Z)||H3(H,Z)| ,

which will occupy most of the rest of this section.
Fix for now e and f , and let F be the [G]-group

Q
r

i=1
V ei

i
⇥
Q

s

i=1
N fi

i
. It will be convenient

to dualize, observing that |Hi(H,Z)| = |H i(H,Q/Z)|. For an exact sequence 1 ! F ! H !

G ! 1 (inducing the given [G]-action on F ), consider the Lyndon-Hochschild-Serre spectral
sequence calculating Hp+q(H,Q/Z). Its second page satisfies Ep,q

2
= Hp(G,Hq(F,Q/Z)). The

key di↵erentials for us in this spectral sequence are:

d0,1
2

: E0,1

2
! E2,0

2
d1,1
2

: E1,1

2
! E3,0

2
d0,2
2

: E0,2

2
! E2,1

2
d0,2
3

: E0,2

3
! E3,0

3
.

Given such an exact sequence, let AutF,G(H) be the group of automorphisms of H that are the
identity on F and fix the map H ! G. The next lemma explains how to calculate M(e, f) using
information about this spectral sequence.
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Lemma 7.7. For F =
Q

r

i=1
V ei

i
⇥
Q

s

i=1
N fi

i
, we have

(7.8)

|Aut[G](F )|M(e, f) =
|G||H2(G,Q/Z)|

|H1(G,Q/Z)||H3(G,Q/Z)|
|H1(G,H1(F,Q/Z))|

|H1(F,Q/Z)G|
X

1!F!H
⇡!G!1

⌧(ker⇡
⇤
)=0

|F |

|AutF,G(H)|

��E0,2

3

��.

In the sum in Lemma 7.7, F and G are fixed, and the sum is over isomorphism classes of
material extensions H of G by F compatible with the given [G]-structure on F , or equivalently,
classes ↵ 2 H2(G,F ab), such that for ⇡⇤ : H3(G,Q/Z) ! H3(H,Q/Z), we have ⌧(ker ⇡⇤) = 0.
Throughout the rest of the section, we will have similar sums over exact sequences, and they
will always mean the analogous thing, in particular requiring that the extensions are material.

Proof. Recall ⌧ 2 H3(G,Q/Z) ! Q/Z is the map given by the orientation of G. Let J be a set
of finite groups containing exactly one group from each isomorphism class. Given an H 2 J , we
have that Aut(H) acts on choices of ⌧H 2 H3(H,Q/Z)_, with orbits corresponding to H 2 I
and stabilizers Aut(H). So

M(e, f) =
X

H2J

X

⌧H2H3(H,Q/Z)

X

⇡:H!G
type e,f

⌧H�⇡⇤
=⌧

|H||H2(H,Z)|
|Aut(H)||H1(H,Z)||H3(H,Z)| .

We can extend a ⇡ : H ! G of type e, f to an exact sequence 1 ! F ! H ! G ! 1
in |Aut[G](F )| ways (compatible with the [G] structure on F ). Also, Aut(H) acts on these
exact sequences with orbits corresponding to isomorphism classes of extensions H of G by F
(compatible with the [G] structure on F ) and stabilizers AutF,G(H).

Thus we can rewrite

M(e, f) =
1

|Aut[G](F )|

X

1!F!H
⇡!G!1

1

|AutF,G(H)|

X

⌧H : H
3
(H,Q/Z)!Q/Z

⌧H�⇡⇤
=⌧

|H||H2(H,Q/Z)|
|H1(H,Q/Z)||H3(H,Q/Z)| .

Because none of the terms in the sum over ⌧H depend on ⌧H , we can replace this sum with
the count of ⌧H : H3(H,Q/Z) ! Q/Z that satisfy ⌧H � ⇡⇤ = ⌧ . Because H3(H,Q/Z) is a finite

group, this number is
|H3

(H,Q/Z)|
|Im⇡⇤| if ⌧ is trivial on ker⇡⇤ and 0 otherwise.

M(e, f) =
1

|Aut[G](F )|

X

1!F!H!G!1

⌧(ker⇡
⇤
)=0

1

|AutF,G(H)|

|H||H2(H,Q/Z)|
|Im ⇡⇤||H1(H,Q/Z)| .

Now

��H1(H,Q/Z)
�� =

��E0,1

1
����E1,0

1
�� =

��ker d0,1
2

����E1,0

2

�� =
��H1(F,Q/Z)G

��
��Im d0,1

2

��
��H1(G,Q/Z)

��.

Furthermore

��E2,0

1
�� =

��E2,0

3

�� =
��coker d0,1

2

�� = |H2(G,Q/Z)|��Im d0,1
2

�� ,
��E1,1

1
�� =

��E1,1

3

�� =
��ker d1,1

2

�� =
��E1,1

2

��
��Im d1,1

2

�� ,

E0,2

3
= ker d0,2

2
, and

��E0,2

1
�� =

��E0,2

4

�� =
��ker d0,2

3

�� =
��E0,2

3

��
��Im d0,2

3

�� .
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We therefore have

��H2(H,Q/Z)
�� =

��E2,0

1
�� ·
��E1,1

1
�� ·
��E0,2

1
�� = |H2(G,Q/Z)|��Im d0,1

2

�� ·

��E1,1

2

��
��Im d1,1

2

�� ·
��E0,2

3

��
��Im d0,2

3

��

We haveE3,0

1 = Im ⇡⇤ from the edge map of the spectral sequence. This means
��Im d1,1

2

����Im d0,2
3

��|Im ⇡⇤| =��E3,0

2

�� = |H3(G,Q/Z)|. This gives

|H2(H,Q/Z)|
|Im ⇡⇤||H1(H,Q/Z)| =

|H2(G,Q/Z)|
��E1,1

2

����E0,2

3

����Im d0,1
2

��

|Im ⇡⇤|
��Im d0,1

2

����Im d1,1
2

����Im d0,2
3

��|H1(F,Q/Z)G||H1(G,Q/Z)|

=
|H2(G,Q/Z)|

|H1(G,Q/Z)||H3(G,Q/Z)|

��E1,1

2

����E0,2

3

��
|H1(F,Q/Z)G| =

|H2(G,Q/Z)|
|H1(G,Q/Z)||H3(G,Q/Z)|

|H1(G,H1(F,Q/Z))|
|H1(F,Q/Z)G|

��E0,2

3

��.

Thus

|Aut[G](F )|M(e, f) =
X

1!F!H!G!1

⌧(ker⇡
⇤
)=0

|H|

|AutF,G(H)|

|H2(G,Q/Z)|
|H1(G,Q/Z)||H3(G,Q/Z)|

|H1(G,H1(F,Q/Z))|
|H1(F,Q/Z)G|

��E0,2

3

��

=
|G||H2(G,Q/Z)|

|H1(G,Q/Z)||H3(G,Q/Z)|
|H1(G,H1(F,Q/Z))|

|H1(F,Q/Z)G|
X

1!F!H!G!1

⌧(ker⇡
⇤
)=0

|F |

|AutF,G(H)|

��E0,2

3

��

where we use |H| = |F ||G|. ⇤

The next few lemmas let us write M(e, f) as a product of local factors by showing a multi-
plicativity property.

Lemma 7.9. For F =
Q

r

i=1
V ei

i
⇥
Q

s

i=1
N fi

i
, and H as in Lemma 7.7,

|F |

|AutF,G(H)|
=

rY

i=1

��V G

i

��ei

|H1(G, Vi)ei |

sY

i=1

|Ni|
fi .

Proof. The group H is a fiber product over G of the extensions by the V ei

i
and N fi

i
sepa-

rately, and any element of AutF,G(H) acts separately on the factors. The factors for N fi

i
have

no automorphisms fixing N fi

i
and H since the extension is canonically H ⇥

Out(N
fi

i
)
Aut(N fi

i
).

An automorphism of the extensions of H by V ei

i
is a cocycle in the standard presentation for

H1(G, V ei

i
), and it is a coboundary if and only if it acts as conjugation by an element of V ei

i
.

Conjugation by an element is a trivial automorphism if and only if the element is central, which
happens exactly if it is G-invariant, so |AutF,G(H)| is |H1(G, Vi)ei ||V

ei

i
|/
��V G

i

��ei . ⇤

Lemma 7.10. For F =
Q

r

i=1
V ei

i
⇥
Q

s

i=1
N fi

i
,

��Aut[G](F )
�� =

rY

i=1

|GLei
(i)|

sY

i=1

|Ni|
fi
��ZOut(Ni)

(G)
��fifi!.

Proof. An automorphism of F acts separately on each factor, so

��Aut[G](F )
�� =

rY

i=1

��Aut[G](V
ei

i
)
��⇥

sY

i=1

���Aut[G] .(N
fi

i
)
���.
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A G-endomorphism of V ei

i
is given by a ei ⇥ ei matrix over i and it is an automorphism if and

only if the matrix is invertible. A automorphism of N fi

i
is a [G]-automorphism if and only if its

image in Out(N fi

i
) commutes with G, so
���Aut[G](N

fi

i
)
��� = |Ni|

fi

���Z
Out(N

fi

i
)
(G)
��� = |Ni|

fi
��ZOut(Ni)

(G)
��fifi!.

⇤
Lemma 7.11. Let

1 F H G 1

1 F 0 H 0 G 1

⇢ id

be a commutative diagram of groups with both rows exact. Then the di↵erentials in the Lyndon-

Hochschild-Serre spectral sequences (E, d), (E 0, d0) computing Hp+q(H,Q/Z) and Hp+q(H 0,Q/Z),
respectively, from Hp(G,Hq(F,Q/Z)) and Hp(G,Hq(F 0,Q/Z)), respectively, are compatible with

the pullback map

⇢⇤ : Hp(G,Hq(F 0,Q/Z)) ! Hp(G,Hq(F,Q/Z)),
i.e. for all r � 2,

⇢⇤(d0)p,q
r

= dp,q
r
⇢⇤,

where pullback maps ⇢⇤ on pages past the second page are well-defined by the commutativity of

these diagrams on previous pages.

Proof. This follows from the definition of the spectral sequence as the spectral sequence of the
bicomplex Kp,q := HomG(Bp(G,HomF (Bq(H,Q/Z)))), where B⇤ denotes the bar resolution and
the di↵erentials of the bicomplex come from the di↵erentials on the bar resolutions (see [Mac95,
Section XI.10], [Hue81, Section 3]). The pullback map (K 0)p,q ! Kp,q induces the pullback maps
on all the pages of the spectral sequence and is compatible with the di↵erentials. ⇤
Lemma 7.12. Let Fa and Fb be [G]-groups that are each finite products of the Vi and Ni. Assume

that, for each irreducible representation Vi over Fp of G appearing in Fa, the dual representation

V _
i

:= Hom(Vi,Fp) does not appear in Fb. Then

X

1!(Fa⇥Fb)!H
⇡
ab!G!1

⌧(ker⇡
⇤
ab
)=0

��E0,2

3

�� =
 

X

1!Fa!H
⇡a!G!1

⌧(ker⇡
⇤
a)=0

��E0,2

3

��
! 

X

1!Fb!H
⇡
b!G!1

⌧(ker⇡
⇤
b
)=0

��E0,2

3

��
!
.

Proof. Every extension Hab of G by Fa ⇥ Fb is the fiber product of an extension Ha of G by Fa

and an extension Hb of G by Fb. Thus, matching terms on both sides, it su�ces to show that

(7.13) E0,2

3,Hab
= E0,2

3,Ha
⇥ E0,2

3,Hb

and ⌧(ker ⇡⇤
ab
) = 0 if and only if ⌧(ker ⇡⇤

a
) = 0 and ⌧(ker ⇡⇤

b
) = 0 .

In each of the spectral sequences we have E0,2

3
= ker(d0,2

2
). We first consider the E0,2

2
terms

and will check that the product of natural pullback maps

(7.14) H0(G,H2(Fa,Q/Z))⇥H0(G,H2(Fb,Q/Z)) ! H0(G,H2(Fab,Q/Z))
is an isomorphism. For any finite group F , the exact sequence 0 ! Z ! Q ! Q/Z ! 0
gives an isomorphism Hq(F,Q/Z) ⇠= Hq+1(F,Z) for q > 0. Because Fa and Fb are finite,
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H1(Fa,Z) = H1(Fb,Z) = 0, so, by the Künneth formula with principal ideal domain coe�cients,
and we have an exact sequence

1 ! H3(Fa,Z)⇥H3(Fb,Z) ! H3(Fa ⇥ Fb,Z) ! Tor1(H2(Fa,Z), H2(Fb,Z)) ! 1.

Thus, to prove (7.14), it su�ces to prove H0(G,Tor1(H2(Fa,Z), H2(Fb,Z))) = 0. We have
H2(Fa,Z) = H1(Fa,Q/Z) = Hom(Fa,Q/Z) is a product of vector spaces over finite fields, and
the same forH2(Fb,Z). For such finite abelian groups A,B, there is a isomorphism Tor1(A,B) !
A ⌦ B functorial in both A and B. It su�ces to check that Hom(Fa,Q/Z) ⌦ Hom(Fb,Q/Z)
contains no nontrivial element that G-invariant. Such an element would give a nontrivial G-
invariant Q/Z-valued bilinear form on Fa ⇥ Fb (again using that Fa, Fb are products of vector
spaces over finite fields), which cannot exist because of our assumption on the irreducible factors
of Fa and Fb.

More straightforwardly, the product of natural pullback maps

H1(Fa,Q/Z)⇥H1(Fb,Q/Z) ! H1(Fa ⇥ Fb,Q/Z)
is an isomorphism because these cohomology groups are the same as sets of homomorphisms to
Q/Z, hence

(7.15) Hp(G,H1(Fa,Q/Z))⇥Hp(G,H1(Fb,Q/Z)) ! Hp(G,H1(Fa ⇥ Fb,Q/Z))
is an isomorphism for all p.

Using (7.14), the p = 2 case of (7.15), and Lemma 7.11, it follows that

d0,2
2,ab

: H0(G,H2(Fab,Q/Z)) ! H2(G,H1(Fab,Q/Z))

is the product of d0,2
2,a

and d0,2
2,b
. Hence E0,2

3,Gab
= ker d0,2

2,ab
is the product of the kernel E0,2

3,Ga
of d0,2

2,a

and the kernel E0,2

3,Gb
of d0,2

2,b
, verifying (7.13).

We have ⌧(ker ⇡⇤
ab
) = 0 if and only if ⌧ � d1,1

2,ab
= 0 and ⌧ � d0,2

3,ab
= 0. Using Lemma 7.11 and

the p = 1 case of (7.15), the map d1,1
2,ab

is the sum of d1,1
2,a

and d1,1
2,b
, hence ⌧ � d1,1

2,ab
= 0 if and only

if ⌧ � d1,1
2,a

= 0 and ⌧ � d1,1
2,b

= 0. Similarly, using Lemma 7.11 and (7.13), d0,2
3,ab

is the sum of d0,2
3,a

and d0,2
3,b
, hence ⌧ � d0,2

3,ab
= 0 if and only if ⌧ � d0,2

3,a
= 0 and ⌧ � d0,2

3,b
= 0. ⇤

We now define the local factors that we will write M(e, f) as a product of.
For any Vi that is not dual to Vj for any j 6= i, let

Mi(ei) =
1

|GLei
(i)|

|H1(G, V _
i
)|ei

|H1(G, Vi)|
ei

X

1!V
ei

i
!H

⇡!G!1

⌧(ker⇡
⇤
)=0

��E0,2

3

��.

For Vi and Vi0 , dual to each other, and non-isomorphic, define

Mi,i0(ei, ei0) =
1

|GLei
(i)|

��GLe
i0 (i0)

��
��H1(G, Vi0)

��ei�e
i0
��H1(G, Vi)

��ei0�ei
X

1!(V
ei

i
⇥V

e
i0

i0 )!H
⇡!G!1

⌧(ker⇡
⇤
)=0

��E0,2

3

��.

For any Ni, let

⌘i(fi) =
1

��ZOut(Ni)
(G)
��fifi!

X

1!N
fi

i
!H

⇡!G!1

⌧(ker⇡
⇤
)=0

��E0,2

3

��.
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Lemma 7.16. We have

(7.17)

M(e, f) =
|G||H2(G,Q/Z)|

|H1(G,Q/Z)||H3(G,Q/Z)|
Y

i2{1,...,r}
V

_
i
6⇠=Vj for any j 6=i

Mi(ei)
Y

{i,i0}✓{1,...,r}
i 6=i

0

Vi
⇠=V

_
i0

Mi,i0(ei, ei0)
sY

i=1

⌘i(fi).

Proof. Combining Lemmas 7.7, 7.9, and 7.10, and noting that H1(F,Q/Z) =
Q

r

i=1
(V _

i
)ei , we

have

M(e, f)
|H1(G,Q/Z)||H3(G,Q/Z)|

|G||H2(G,Q/Z)|

=
rY

i=1

1

|GLei
(i)|

��V G

i

��ei

|(V _
i
)G|ei

|H1(G, V _
i
)|ei

|H1(G, Vi)|
ei

sY

i=1

|Ni|
fi

|Ni|
fi
��ZOut(Ni)

(G)
��fifi!

X

1!F!H!G!1

⌧(ker⇡
⇤
)=0

��E0,2

3

��

=
rY

i=1

1

|GLei
(i)|

|H1(G, V _
i
)|ei

|H1(G, Vi)|
ei

sY

i=1

1
��ZOut(Ni)

(G)
��fifi!

X

1!F!H!G!1

⌧(ker⇡
⇤
)=0

��E0,2

3

��

since the Vi are irreducible representations, so (Vi)G and (V _
i
)G are dual and have the same

order.
We inductively apply Lemma 7.12 to express the inner sum over extensions as a product of

sums associated to individual Vi and Ni factors or dual pairs of Vi. We then note that, by
definition, the Mi,Mi,i0 , ⌘i factors incorporate these sums together with the extra

rY

i=1

1

|GLei
(i)|

|H1(G, V _
i
)|ei

|H1(G, Vi)|
ei

sY

i=1

1
��ZOut(Ni)

(G)
��fifi!

terms. The lemma immediately follows. ⇤
The remaining subsections compute the local factors for di↵erent types of Ni, Vi, in order of

increasing di�culty.

7.1. Non-abelian groups. Recall �Ni
is the di↵erential d0,2

3
: H2(Ni,Q/Z)G ! H3(G,Q/Z) ap-

pearing in the Lyndon-Hochschild-Serre spectral sequence computingHp+q(G⇥Out(Ni)
Aut(Ni),Q/Z)

from Hp(G,Hq(Ni,Q/Z)).

Lemma 7.18. For any i from 1 to s, we have

X

1!N
fi

i
!H

⇡!G!1

⌧(ker⇡
⇤
)=0

��E0,2

3

�� =

8
><

>:

1 fi = 0

0 ⌧ � �Ni
6= 0 and fi > 0

(
��H2(Ni,Q/Z)G

��)fi ⌧ � �Ni
= 0

.

Proof. We have H1(N fi

i
,Q/Z) = 0 so Hp(G,H1(N fi

i
,Q/Z)) = 0 for all p. Thus the di↵eren-

tials d1,1
2

and d0,2
2

vanish. Note we have H0(G,H2(N fi

i
,Q/Z)) = H0(G,H2(Ni,Q/Z))fi , since

H1(Ni,Z) = H2(Ni,Z) = 0 implies there are no middle or Tor terms in the Künneth formula
for H2(N fi

i
,Z). Thus by Lemma 7.11, d0,2

3
can be computed by taking products over the dif-

ferential for the map when fi = 1. We then have ⌧(ker ⇡⇤) = 0 if and only if ⌧ � d0,2
3

= 0,
which happens if and only if ⌧ � �Ni

= 0 (at least for fi > 0). As another consequence, we have
E0,2

3
= H0(G,H2(Ni,Q/Z))fi . The lemma follows. ⇤
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Lemma 7.19. We have
1X

fi=0

(�1)fi⌘i(fi) = wNi

with the sum absolutely convergent.

Proof. By Lemma 7.18, if ⌧ � �Ni
6= 0 then

P1
fi=0

(�1)fi⌘i(fi) = 1, and we have defined wNi
= 1

in this case. If ⌧ � �Ni
6= 0 then

1X

fi=0

(�1)fi⌘i(fi) =
1X

fi=0

1

(fi)!

 
�
|H0(G,H2(Ni,Q/Z))|��ZOut(Ni)

(G)
��

!fi

= e
�
|H0

(G,H
2
(Ni,Q/Z))|

|ZOut(Ni)
(G)| = wNi

,

again by definition of wNi
. ⇤

7.2. Those representations whose dual representations do not appear. Recall W ⌧

i
is

the set of ↵ 2 Wi such that ⌧(↵[ �) = 0 for all � 2 H1(G, V _
i
). We start with a general lemma

on one term of the spectral sequence.

Lemma 7.20. Let F be finite abelian. Then E0,2

2
= H2(F,Q/Z)G = (^2F_)G (the implicit

tensor product is over Z).
Proof. We have a natural map Hom(F ⌦ F,Q/Z) ! H2(F,Q/Z) in which a bilinear form maps
to the cochain that evaluates it. One can check that the kernel of this map is the set of symmetric
bilinear forms, and we conclude that we have a natural injection ^

2(F_) ! H2(F,Q/Z). Since
H2(F,Q/Z) = Hom(H2(F,Z),Q/Z) and it is well-known that |H2(F,Z)| = | ^

2 F |, we see the
injection must be an isomorphism. ⇤

Now we have our next evaluation of one of our local factors.

Lemma 7.21. Let Vi be a representation such that V _
i

is not isomorphic to Vj for any j from

1 to r. Then

Mi(ei) =
1

|GLei
(i)|

✓
|W ⌧

i
||H1(G, V _

i
)|

|H1(G, Vi)|

◆ei

.

Proof. Let us first check in this case that, for any extension of G by V ei

i
,

(7.22) H0(G,H2(V ei

i
,Q/Z)) = 0.

By Lemma 7.20, we have E0,2

2
= (^2(V _

i
)ei)G. Even if p = 2, we have a natural injection

^
2(V _

i
)ei ! ((V _

i
)ei)⌦2 (given by a^ b 7! a⌦ b� b⌦ a) so if H2(V ei

i
,Q/Z) admits a nonzero G-

invariant vector then so must (V _
i
⌦V _

i
)e

2

i and hence also V _
i
⌦V _

i
. This would give a nontrivial

G-equivariant map V _
i

! Vi, necessarily an isomorphism because Vi is irreducible, making Vi

self-dual, contradicting our assumption. Thus (7.22) holds.

Hence E0,2

3
= 0 and therefore Mi(ei) is

1

|GLei
(i)|

✓
|H1

(G,V
_
i
)|

|H1(G,Vi)|

◆ei

times the number of material

extensions ⇡ : H ! G by V ei

i
, i.e. ↵ 2 W ei

i
, such that ⌧(ker ⇡⇤) = 0. Since d0,2

3
vanishes since

E0,2

2
does by (7.22), the lemma follows from Lemma 7.2. ⇤

Lemma 7.23. Let Vi be a representation such that V _
i

is not isomorphic to Vj for any j from

1 to r. Then we have
1X

ei=0

(�1)eiM(ei)Qi(ei) = wVi
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with the sum absolutely convergent.

Proof. Since Vi is not self-dual, it is certainly not A-symplectic, so by definition Qi(ei) = q
(ei

2
)

i
.

Using Lemma 7.21, we thus have

1X

ei=0

(�1)eiM(ei)Qi(ei) =
1X

ei=0

(�1)ei
q
(ei

2
)

i

|GLei
(i)|

✓
|W ⌧

i
||H1(G, V _

i
)|

|H1(G, Vi)|

◆ei

.

We have |GLei
(i)| =

Q
ei

j=1
(qei

i
�qei�j

i
) so

q
(ei2 )
i

|GLei
(i)|

= 1Qei

j=1
(q

j

i
�1)

. We now apply the q-exponential

identity
1X

e=0

(�1)e
ue

Q
e

j=1
(qj � 1)

=
1Y

j=1

(1� q�ju)

where the left side is absolutely convergent for q > 1 and any u because the numerators grow
exponentially and the denominators grow superexponentially, to obtain

1X

ei=0

(�1)eiM(ei)Qi(ei) =
1Y

j=1

✓
1� q�j

i

|W ⌧

i
||H1(G, V _

i
)|

|H1(G, Vi)|

◆
= wVi

by definition of wVi
. ⇤

7.3. Representations whose duals appear. If V _
i

= Vj for some j, then because of Lemma 7.1,
we are interested in the case when W ⌧

i
= 0, which by Lemma 7.2 means we are interested in the

case of the trivial extension, where H = F oG.

Lemma 7.24. If H = F oG, then d0,2
3

= 0.

Proof. Since F o G ! G has a section, the edge map H3(G,Q/Z) ! H3(F o G,Q/Z) of the
spectral sequence is injective, and thus d0,2

3
= 0. ⇤

Lemma 7.25. Let Vi be Fp-self-dual. Assume W ⌧

i
= 0. Then

Mi(ei) =
1

|GLei
(i)|

q
ei(ei�✏i)

2

i
.

Let Vi, Vi0 non-isomorphic dual representations of G. Assume W ⌧

i
= W ⌧

i0 = 0. Then

Mi,i0(ei, ei0) =
1

|GLei
(i)|

��GLe
i0 (i0)

��
|H1(G, Vi0)|

ei�e
i0

|H1(G, Vi)|
ei�e

i0
q
eiei0
i

.

Proof. Let F = V ei

i
or F = V ei

i
⇥ V

e
i0

i0 , depending on the case of the lemma. By Lemma 7.2, in
the sum over H in the definition of Mi(ei) (or Mi,i0(ei, ei0)), we only need to consider the trivial
extension H = F oG (which does appear in the sum by Lemma 7.24).

We have a map Vi o G ! V o G for each of the ei coordinate inclusions pj : Vi ! V ei

i

(and similarly for p0
j
: Vi0 ! V

e
i0

i0 ), and thus we can apply Lemma 7.11 and see that we have a
commutative diagram

H2(F,Q/Z)G H2(G,F_)

H2(Vi,Q/Z)G H2(G, V _
i
)

d
0,2

2

p
⇤
j

p
⇤
j

d
0,2

2



FINITE QUOTIENTS OF 3-MANIFOLD GROUPS 47

(and similarly for the p0
j
). Thus for � 2 H2(F,Q/Z)G we have d0,2

2
(�) =

P
j
d0,2
2
(p⇤

j
(�)) +

d0,2
2
((p0)⇤

j
(�)). From Lemma 7.20, it then follows that in the case that ^

2(Vi)G = 0, then

d0,2
2
(H2(F,Q/Z)G) = 0. So if F = V ei

i
and ^

2(Vi)G = 0, then ✏i = 1 and |E0,2

3
| = q

ei(ei�1)

2

i
, and

the lemma holds in this case. If F = V ei

i
⇥V

e
i0

i0 , then |E0,2

3
| = q

eiei0
i

, and the lemma holds in this
case.

Now we consider the case ^
2(Vi)G 6= 0,. There are three natural actions of ⇤

i
= AutG(Vi) on

(V _
i
⌦ V _

i
)G, via the left V _

i
, the right V _

i
, or both simultaneously (the double action). From

the fact that Vi is irreducible, we have that (V _
i
⌦ V _

i
)G is a one-dimensional i vector space

through the action on the left Vi, and that the action of � 2 ⇤
i
through the right Vi is the same

as the action of �(�) 2 ⇤
i
through the left Vi for some � 2 Aut(i) with �2 = 1 (because the

G-invariants are preserved under swapping the V _
i

factors). We have that � = 1 when Vi is
self-dual over , and �(�) = �p

d/2

, where d = [ : Fp], when Vi is not self-dual over i. The
functorial action of ⇤

i
on H2(Vi,Q/Z)G = (^2V _

i
)G agrees with the double action on (V _

i
⌦V _

i
)G

under the inclusion (^2V _
i
)G ⇢ (V _

i
⌦ V _

i
)G. Note when � = 1 the stabilizers of this action are

{±1} and when �(�) = �p
d/2

the stabilizers are the (pd/2 + 1)th roots of unity.
We choose a non-zero element ⇢ 2 H2(Vi,Q/Z)G. If Vi is not self-dual over , then there

are pd/2 � 1 elements in the  orbit of ⇢, all the non-zero elements of H2(Vi,Q/Z)G, as in
this case |(^2V _

i
)G| = pd/2. If V is self-dual over  and p = 2, there are pd � 1 elements in

the  orbit of ⇢, all the non-zero elements of H2(Vi,Q/Z)G. If V is self-dual over  and p is
odd, there are (pd � 1)/2 elements in the  orbit of ⇢, and their linear Fp-span must be all of
H2(Vi,Q/Z)G. In every case, we see that if d0,2

2
(⇢) = 0, then d0,2

2
(H2(Vi,Q/Z)G) = 0 and hence

d0,2
2
(H2(F,Q/Z)G) = 0, which gives |E0,2

3
| = q

ei(ei�⌫i)

2

i
, where ⌫i is �1 if (^2

i
Vi)G 6= 0, and is 0 if

(^2

i
Vi)G = 0.

Now we consider the case when d0,2
2
(⇢) 6= 0. Then d0,2

2
is injective on H2(Vi,Q/Z)G (since ⇢

above was an arbitrary non-zero element of H2(Vi,Q/Z)G). For � 2 H2(F,Q/Z)G, we conclude
that d0,2

2
(�) = 0 if and only if, for all j, we have p⇤

j
(�) = 0. We note (using Lemma 7.20), that

�jp⇤j : H
2(F,Q/Z)G !

L
j
H2(Vi,Q/Z)G is surjective. Thus, we compute |E0,2

3
| = q

ei(ei�1)

2

i
.

Let p be the characteristic of Vi. We can check that the map H2(Vi,Z/p2Z) ! H2(Vi,Q/Z)
has a G-equivariant homomorphic section, since all classes in H2(Vi,Q/Z) come from using
bilinear forms Vi ⌦ Vi ! Z/pZ as cochains (see the proof of Lemma 7.20) and symmetric forms
(which are exactly the forms representing the trivial class in H2(Vi,Q/Z)) can be checked to also
give the trivial class in H2(Vi,Z/p2Z). Thus i : H2(Vi,Z/p2Z)G ! H2(Vi,Q/Z)G is surjective,
and we have i(�) = ⇢ for some � 2 H2(Vi,Z/p2Z)G that can be represented using a bilinear
form as a cochain. Using the functoriality of the spectral sequence in the coe�cients, we see
that d0,2

2
� i = d00,2

2
, where d00,2

2
is the di↵erential in the analogous spectral sequences with Z/p2Z

coe�cients. (Here we use the fact that the natural map H1(Vi,Z/p2Z) ! H1(Vi,Q/Z) is an
isomorphism to identify the targets of the two di↵erentials.) Thus d0,2

2
(⇢) = 0 if and only if

d00,2
2
(�) = 0.

From the properties of the edge map, d00,2
2
(�) = 0 if and only if � is in the image of H2(V o

G,Z/p2Z). We define H and ASpFp
(Vi) as in the introduction (with 4 replaced by p2, and we let

the extension class � of H be the class associated to a fixed G-invariant symplectic form ! as in
Section 1.3, which can be represented using a bilinear form as a cochain). When p is odd, we can
use !/2 as the cochain for �, and thus see that SpFp

(Vi) acts on H and so ASpFp
(Vi) ! SpFp

(Vi)
has a section.
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Finally, we will show that d0,2
2
(⇢) = 0 if and only if the action of G on Vi factors through

ASpFp
(Vi). We have that � is in the image of H2(V oG,Z/p2Z) if and only if there is a central

extension 1 ! Z/p2Z ! H
f

! Vi o G ! 1 such that 1 ! Z/p2Z ! f�1(Vi)
f

! Vi ! 1
has extension class �. If there is such an extension, then G acts on f�1(Vi) via lifting and
conjugation, fixing Z/p2Z pointwise and respecting the action on Vi, so the action on G lifts
to ASpFp

(Vi). Conversely, if the action on G lifts to ASpFp
(Vi), then H o G provides such a

central extension. Note that an Fp-symplectic action G lifts to ASp
i
(Vi) if and only if it lifts

to ASpFp
(Vi) and it is i-symplectic.

In particular, if p is odd, then we always have d0,2
2
(⇢) = 0, and we note the ⌫i defined above

is the same as ✏i, and the lemma holds. If p = 2, then in the d0,2
2
(⇢) = 0 case, we have that G

acts through ASpFp
(Vi) and the ⌫i defined above agrees with ✏i, and in the d0,2

2
(⇢) 6= 0 case we

have ✏i = 1, and in all cases the lemma holds. ⇤
Lemma 7.26. Let Vi be a self-dual representation. Assume W ⌧

i
= 0 and G is an attainable

G-extension. Then we have
1X

ei=0

(�1)eiM(ei)Qi(ei) = wVi

with the sum absolutely convergent.

Proof. We first consider the case when Vi is not A-symplectic. Then by Lemma 7.25

Mi(ei) =
1

|GLei
(i)|

q
ei(ei�✏i)

2

i

and Qi(ei) = q
(ei

2
)

i
so,

1X

ei=0

(�1)eiM(ei)Qi(ei) =
1X

ei=0

q
ei(ei�✏i)

2
+(ei

2
)

i

|GLei
(i)|

=
1X

ei=0

q
ei(ei� 1+✏i

2
)

i

|GLei
(i)|

.

We evaluate this first term using the q-exponential identity
1X

e=0

(�1)e
qe

2

ue

|GLe(Fq)|
=

1Y

j=1

1

1 + uq1�j

applied with u = q
� 1+✏i

2

i
. This series is absolutely convergent because u < 1 (using that we are

not in the A-symplectic case). Thus
1X

ei=0

(�1)eiM(ei)Qi(ei) =
1Y

j=1

1

1 + q
�j� ✏i�1

2

i

= wVi
,

by definition of wVi
.

We now consider the case when Vi is A-symplectic. The same calculation of M(ei) applies,

with ✏i = �1, and we have Qi(ei) = q
ei(ei�3)

2

i
so

1X

ei=0

(�1)eiM(ei)Qi(ei) =
1X

ei=0

q
ei(ei+1)

2
+

ei(ei�3)

2

i

|GLei
(i)|

=
1X

ei=0

qei(ei�1)

i

|GLei
(i)|

.
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Using the same q-exponential identity as before, taking u = q�1

i
, we obtain

1X

ei=0

(�1)eiM(ei)Qi(ei) =
1Y

j=1

1

1 + q�j

i

= wVi
,

again by definition, using that G is attainable. ⇤

Lemma 7.27. Let Vi, Vi0 non-isomorphic dual representations of G. Assume W ⌧

i
= W ⌧

i0 = 0.
Then

(7.28)
1X

ei=0

1X

e
i0=0

(�1)ei+e
i0Mi,i0(ei, ei0)Qi(ei)Qi0(ei0) = wVi

wV
0
i
,

and the sum is absolutely convergent.

Proof. We have qi = qi0 . For simplicity, let q = qi = qi0 and  = i = i0 . Let v =
|H1

(G,V
i0 )|

|H1(G,Vi)| .

In this case, Vi and Vi0 are non self-dual and thus not (A-)symplectic, so Qi(ei) = q(
ei
2
) and

Qi0(ei0) = q(
e
i0
2
) Plugging in Lemma 7.25, we obtain

1X

ei=0

1X

e
i0=0

(�1)ei+e
i0Mi,i0(ei, ei0)Qi(ei)Qi0(ei0) =

1X

ei=0

1X

e
i0=0

(�1)ei+e
i0

1

|GLei
(i)|

��GLe
i0 (i0)

��v
ei�e

i0q(
ei
2
)+eiei0+(e

0
i
2
).

First we check that this sum is absolutely convergent. Each term in the sum is

O

 
vei�e

i0
q(

ei
2
)+eiei0+(

e
i0
2
)

qe
2

i
+e

2

i0

!
= O

✓
vei�e

i0q�
(ei�e

i0 )
2
+ei+e

i0
2

◆
= O

✓
q�

ei+e
0
i

2

◆

because vei�e
i0q�

(ei�e
i0 )

2

2 is bounded for any v, so the sum is absolutely convergent.
Next we observe that, by the definition of v, it is necessarily a power of q. If v is a positive

integer power of q, then we can arrange the sum as
(7.29)

1X

e
i0=0

(�1)ei0v�e
i0q(

e
i0
2
)

��GLe
i0 ()

��

1X

ei=0

(�1)eiveiqeiei0+(
ei
2
)

|GLei
()|

=
1X

e
i0=0

(�1)ei0v�e
i0q(

e
i0
2
)

��GLe
i0 ()

��

1Y

j=1

(1� vqei0q�j) = 0

because vqei0 is always equal to qj for some j. Symmetrically, if v is a negative integer power
of q, the sum vanishes. So the sum is nonvanishing only if v = 1, i.e. if dimH1(G, Vi0) =
dimH1(G, Vi). By definition, wVi

and wV
0
i
vanish when v 6= 1 and the identity (7.28) is auto-

matically satisfied.
We are thus reduced to the case v = 1. In this case, examining (7.29), we see that only the

ei0 = 0 term is nonvanishing, giving a value of
Q1

j=1
(1 � q�j). Correspondingly, in this case

wVi
= wV

i0 =
Q1

j=1
(1� q�j)1/2, so (7.28) is again satisfied. ⇤

7.4. Proof of Proposition 4.4.
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Proof. By Lemma 7.16 ,
X

e,f

M(e, f)
1

|Aut(G)|
(�1)

P
i
ei+

P
i
fi

Y

i

Qi(ei)

=
|G||H2(G,Q/Z)|

|H1(G,Q/Z)||H3(G,Q/Z)||Aut(G)|

X

e,f

(�1)
P

i
ei+

P
i
fi

Y

i

Qi(ei)

⇥

Y

i2{1,...,r}
V

_
i
6⇠=Vj for any j 6=i

Mi(ei)
Y

{i,i0}✓{1,...,r}
i 6=i

0

Vi
⇠=V

_
i0

Mi,i0(ei, ei0)
sY

i=1

⌘i(fi).

This sum now splits as a product over individual Vi’s, Ni’s and dual pairs, and we may apply
one of Lemma 7.19, Lemma 7.23, Lemma 7.26, and Lemma 7.27 to evaluate each term, obtaining
(7.30)
X

e,f

M(e, f)
1

|Aut(G)|
(�1)

P
i
ei+

P
i
fi

Y

i

Qi(ei) =
|G||H2(G,Q/Z)|

|H1(G,Q/Z)||H3(G,Q/Z)||Aut(G)|

rY

i=1

wVi

sY

i=1

wNi

and, in particular, obtaining that the individual terms in the product are absolutely convergent
and thus the entire sum is absolutely convergent.

Now note that we have the chain of identities (assuming all sums are absolutely convergent)
X

H2I

TH

|Aut(H)|

|H||H2(H,Z)|
|H1(H,Z)||H3(H,Z)| =

X

H2I

X

⇡ : H!G

T⇡

|Aut(H)|

|H||H2(H,Z)|
|H1(H,Z)||H3(H,Z)|(7.31)

=
X

e,f

X

H2I

X

⇡ : H!G
type e,f

1

|Aut(G)|
(�1)

P
i
ei+

P
i
fi

Y

i

Qi(ei)
1

|Aut(H)|

|H||H2(H,Z)|
|H1(H,Z)||H3(H,Z)|

=
X

e,f

M(e, f)
1

|Aut(G)|
(�1)

P
i
ei+

P
i
fi

Y

i

Qi(ei).

(In the second equality, we spread the Tid = 1 term out into |Aut(G)| terms, one for each
isomorphism ⇡ : G ! G.) Next observe that, since the last sum is absolutely convergent, then
the next-to-last sum is as well, because it is obtained by expanding out the sum defining M(e, f)
which is a sum of nonnegative terms and thus preserves absolute convergence. The third-to-last
and fourth-to-last sums are obtained from this by rearranging and grouping terms, respectively,
and these operations preserve absolute convergence as well.

Combining (7.31) and (7.30), we deduce the proposition. ⇤

8. Existential Theory

In this section, we see some consequences of our results for the existence or non-existence of
3-manifold groups with certain finite quotients but not others. In Section 8.1, we give general
necessary and su�cient conditions for when there exists a (closed, oriented) 3-manifolds with
fundamental group with a surjection to G that does not lift in certain ways, determine what
groups can be the level-C completion of a 3-manifold group, and prove Theorem 1.5 characterizing
the closure of the set of (profinitely completed) 3-manifold groups in the space of all profinite
groups. In Section 8.2, we give examples to see how these results play out in certain cases. In
Section 8.3, we find all finite groups that are in the closure of the set of (profinitely completed)
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3-manifold groups, i.e. all finite groups that can be arbitrarily approximated by 3-manifold
groups.

8.1. General necessary and su�cient conditions for existence of 3-manifold groups.

Definition 8.1. Let G be a finite oriented group. We say a pair consisting of an irreducible

representation V of G (over a finite field) with field of endomorphisms  and a -subspace W
of H2(G, V ) is spatial if

(a) We have dimH1(G, V ) � dimH1(G, V _) + dimW ⌧
where

W ⌧ = {↵ 2 W | ⌧(↵ [ �) = 0 for all � 2 H1(G, V _)}.

(b) If V has odd characteristic and is -symplectic, then dim H1(G, V ) is even.
(c) If V has even characteristic, is -symplectic, and the map G ! Sp


(V ) lifts to the a�ne

symplectic group ASp

(V ), then dim H1(G, V ) ⌘ 2⌧(cV ) mod 2.

The term “spatial” is used because these are the representations that will occur for 3-manifolds,
as we will see in the following results.

Remark 8.2. If the characteristic of V does not divide G, then V,W is always spatial. Also, if
V is a self-dual representation that is not -symplectic (e.g. a trivial representation), then V,W
is spatial if W = 0.

Recall from Section 4.2 that V1, . . . , Vn is a finite list of irreducible representations of G over
prime fields, Wi is a i-subspace of Vi for each i (where i = EndG(Vi)), and N1, . . . Nm is a finite
list of non-abelian finite simple [G]-groups. Theorem 8.3 is our main theorem on the existence
of 3-manifolds and gives a simple criterion that determines when there exists a 3-manifold group
with a surjection to G not lifting to specified spaces of minimal extensions.

Theorem 8.3. Let G be a finite oriented group. There exists a closed, oriented 3-manifold M
and an oriented surjection f : ⇡1(M) ! G such that

• For each i from 1 to n, for each extension 1 ! Vi ! H ! G ! 1 whose extension class

lies in Wi, the map f does not lift to a surjection from ⇡1(M) to H.

• For each i from 1 to m, the map f does not lift from to a surjection from ⇡ to Aut(Ni)⇥Out(Ni)

G.

if and only if, for each i from 1 to n, (Vi,Wi) is spatial.
Furthermore, in the “if” direction, we can take M to be a hyperbolic 3-manifold.

We give a group theory lemma first to clarify the argument.

Lemma 8.4. Let H be a profinite oriented group, G a finite oriented group, and f : H ! G an

oriented surjection. If V is an irreducible representation of G over some Fp, and W ⇢ H2(G, V )
a EndG(V )-subspace of extensions that f cannot be lifted to, then conditions (1), (2), (3), (4)

from Theorem 1.1 for H, V (over the endomorphism field of V ) imply conditions (a), (b), (c) in

Definition 8.1 for G, V .

Proof. From Lemma 5.2 and the condition on f not lifting, we obtain

(8.5) dimH1(G, V ) = dimH1(H, V ).

and that W ! H2(G, V ) ! H2(H, V ) is injective. As usual let W ⌧
⇢ W be the elements that,

via cup product and ⌧G, pair to 0 with every element of H1(G, V _). By condition (2) for H, for
each ↵ in W ⌧ there must exist � 2 H1(H, V _) with ⌧H(↵ [ �) 6= 0. This defines a surjection
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H1(H, V _) ! (W ⌧ )_. By the definition of W ⌧ , we have that H1(G, V _) must be in the kernel
of this surjection, so

dimW ⌧ + dimH1(G, V _) = dim(W ⌧ )_ + dimH1(G, V _)  dimH1(H, V _)

= dimH1(H, V ) = dimH1(G, V )

by condition (1) and (8.5), giving (a). Using (8.5), conditions (3) and (4) imply (b) and (c). ⇤
Proof of Theorem 8.3. We use separate arguments for the “if” and “only if” directions. The
“only if” direction is implied by Theorem 1.1 and Lemma 8.4.

For “if”, we use Theorem 4.2, which gives a formula for the limit of the expected number of
oriented surjections f : ⇡1(M) ! G as above for a random 3-manifold. Under the conditions
of the proposition, we can check from the chart of the wVi

and wNi
in Section 4.2 that the

limiting expectation is positive, and thus a 3-manifold with such a surjection must exist. Maher
has shown that a random Heegaard splitting of a fixed genus is hyperbolic with probability
! 1 as L ! 1 [Mah10, Theorem 1.1]. Thus, the limiting expectation of the number of such
surjections from hyperbolic 3-manifolds is positive, and we have a hyperbolicM with a surjection
as desired. ⇤

Using Theorem 8.3 and Lemma 4.1, we can describe the level-C completions of ⇡1(M) for any
C.

Definition 8.6. We say an irreducible representation V of G over Fp is level-C if V o G is

level-C. (Note that this is not necessarily equivalent to V being level-C as an abstract group.)

For such a V , let H2(G, V )C consist of extension classes such that the corresponding extension

of G by V is level-C.

Proposition 8.7. Let C be a finite set of finite groups and G a finite level-C oriented group.

There exists a closed, oriented 3-manifold M such that ⇡1(M)C ⇠= G if and only if for each

level-C irreducible representation V of G over any Fp, the pair (V,H2(G, V )C) is spatial.

Proof of Proposition 8.7 . This follows from combining Theorem 8.3 and Lemma 4.1, setting
Wi = H2(G, Vi)C for all level-C Vi. ⇤

Finally, to consider all levels at once, our next goal is to prove Theorem 1.5, which gives, in
the space of all relevant profinite groups, the closure of the set of 3-manifold groups. First we
have a lemma to help clarify that we have the correct space of profinite groups.

Lemma 8.8. For X 2 Prof, and C a finite set of finite groups, the level-C completion XC
of X

is a finite group.

Proof. Let Ci be the set of all quotients of groups in C of order at most i. We will show by
induction that XCi is finite for all i and conclude that XC is finite. Because C1 consists only of
the trivial group, XC1 is trivial and thus finite.

Thus we assume XCi�1 is finite. For Q a level-Ci quotient of X, we must have QCi�1 a quotient
of XCi�1 so there are finitely many possibilities for QCi�1 . By Lemma 6.8, we have Q ! QCi�1

semisimple, and thus Q is a fiber product of finitely many minimal extensions of QCi�1 , all level-C
quotients of X. By Lemma 4.1, there are only finitely many level-C minimal extensions of QCi�1 ,
and by the definition of Prof, there are only finitely many quotients of X isomorphic to one of
these finitely many extensions, so there are finitely many possibilities for Q, and thus XCi , the
inverse limit of all level-Ci quotients Q of X, is finite, completing the induction. ⇤
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Proof of Theorem 1.5. For “if”, assume that there exists ⌧ : H3(G,Q/Z) ! Q/Z satisfying the
conditions (1),(2),(3),(4) of Theorem 1.5 for every V . Let C be a finite set of finite groups.
We have an induced map ⌧GC : H

3(GC,Q/Z) ! H3(G,Q/Z) ! Q/Z. Let V be an irreducible
level-C representation of GC defined over Fp. By Lemma 8.4, (V,H2(GC, V )C) is spatial, and by
Proposition 8.7, this implies there exists a (closed, oriented) 3-manifold with ⇡1(M) ⇠= GC. So
G is in the closure as desired.

For “only if” direction, for each finite set C of finite groups, we have a 3-manifold M with
⇡1(M)C ⇠= GC, such that the orientation on M gives some ⌧GC : H3(GC,Q/Z) ! Q/Z. We
consider all such ⌧GC coming from manifolds at each level-C, and we have an inverse system of
non-empty finite sets, which is non-empty, and thus there is a ⌧ : H3(G,Q/Z) ! Q/Z such that
for every C the induced map H3(GC,Q/Z) ! Q/Z comes from a manifold (with an isomorphism
⇡1(M)C ⇠= GC). Thus by Proposition 8.7, for any level-C irreducible representation V of GC over
any Fp, we have (V,H2(GC, V )C) is spatial, using the orientation induced from ⌧ .

Now let V be an irreducible representation of G over some Fp with endomorphism field . We
will show conditions (1)-(4) of Theorem 1.5 for V over . For (1), let A be the image of G inside
Aut(V ) and take C to consist of V o A and V _ o A. Then A is a quotient of GC and thus V
descends to a representation of GC. Note V o GC = (V o A) ⇥A (GC) is level-C, and similarly
for V _ oGC. Thus

dimH1(GC, V ) � dimH1(GC, V _) + dimH2(GC, V )C,⌧ � H1(GC, V _)

� dimH1(GC, V ) + dimH2(GC, V _)C,⌧ � dimH1(GC, V )

so all inequalities appearing are equalities and hence

dimH1(GC, V ) = dimH1(GC, V _) and H2(GC, V )C,⌧ = H2(GC, V _)C,⌧ = 0(8.9)

and Lemma 5.2 implies dimH1(G, V ) = dimH1(G, V _).
For (2), fix ↵ 2 H2(G, V ) = limU✓G H2(G/U, V U), with the limit taken over open normal

subgroups, with ↵ 6= 0. Take B = G/U to be a finite quotient of G from which the class ↵
arises. Thus there is an extension H of B by V with class ↵, such that the pullback to G of ↵ is
↵. Take C to consist of V oA, V _ oA, and H. Then B is level-C and thus is a quotient of GC,
giving a class ↵ 2 H2(GC, V ) that pulls back to ↵. This class is nontrivial as it pulls back to the
nontrivial class ↵, and it lies in H2(GC, V )C because the extension group is given by H ⇥B GC.
From (8.9), H2(GC, V )C,⌧ = 0, so by definition there is � 2 H1(GC, V _) with ⌧(↵ [ �) 6= 0. The
pullback of � to G then gives the desired �.

For (3), take C to consist of V o A, and for (4), to consist of V o A together with the image
of G in the a�ne symplectic group of V . Then H1(G, V ) = H1(GC, V ) by Lemma 5.2 and so
the parity property for GC implies the desired parity property for G.

Note if (1), (2),(3),(4) are satisfied for a representation V over a field , then they are satisfied
for V ⌦ 0 for any field extension 0. Since every absolutely irreducible representation V 0 over a
finite field 0 is V ⌦ 0 for some irreducible representation V over Fp with endomorphism field
, we have (1), (2), (3), and (4) for every absolutely irreducible V .

Also, if (1),(2),(3),(4) are satisfied for a representation V over a field , then they are satisfied
for V viewed as a representation over a subfield 0. Every irreducible representation V over 0 is
an absolutely irreducible representation over its endomorphism field 0. Thus we have (1), (2),
(3), and (4) for any irreducible V over a finite field. ⇤

8.2. Concrete corollaries on non-existence and existence of 3-manifolds. We now give
some simple concrete consequences of Theorem 8.3, our main existence result. We begin with
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some negative results, showing that 3-manifolds which have a certain group as a quotient but
don’t have certain other groups as a quotient do not exist.

Proposition 8.10. Let M be a closed, oriented 3-manifold. Suppose that G = Z/5 o Z/4 is

a quotient of ⇡1(M), where the generator of Z/4 acts on Z/5 by multiplication by 2. Then

(Z/5)2 o Z/4 is a quotient of ⇡1(M), where the generator of Z/4 acts on Z/5 with eigenvalues

2 and 3.

Proof. Let G act on V = Z/5 with a generator of Z/4 acting by multiplication by 3. Then
H1(G, V ) = 0 but H1(G, V _) = Z/5 (e.g. by Lemma 5.2), so V,W = 0 is not spatial, failing
condition (a). By Theorem 8.3, any surjection ⇡1(M) ! G lifts to a surjection to V oG. ⇤
Proposition 8.11. Let M be a closed, oriented 3-manifold. Suppose that S3 is a quotient of

⇡1(M). Then one of S4, S3 ⇥ S2, or Z/3oZ/4 (the semidirect product taken with respect to the

unique nontrivial action) is a quotient of ⇡1(M).

Proof. Since H2(S3,F2) is cyclic, it only has a single nontrivial 2-torsion class c, and we divide
into cases based on whether ⌧(c) = 0. If ⌧(c) = 0, then the trivial representation V = F2, with
W = H2(S3,F2), is not spatial for (S3, ⌧), since V = (V )_ and W ⌧ = H2(S3,F2) = F2, and so
condition (a) fails. In this case, by Theorem 8.3, any surjection ⇡1(M) ! S3 lifts to a surjection
to one of the extensions of S3 by F2, which are S3 ⇥ S2 and Z/3o Z/4.

If ⌧(c) 6= 0, we let V = F2

2
and with action of S3 through the identification S3 = SpF2

(V ).
Recall from the proof of Proposition 2.16, that we have a splitting of ASpF2

(V1) ! SpF2
(V ) and

that H1(S3, V ) = 0. By Remark 2.17, we have that cV = c. Since ⌧(cV ) 6= 0 and H1(S3, V ) = 0,
we have that V,W = 0 is not spatial, as condition (c) fails. By Theorem 8.3, any surjection
⇡1(M) ! S3 lifts to a surjection to V o S3

⇠= S4. ⇤
The following result may be the simplest example that (1) involves only two groups and (2)

follows from the parity results and thus not purely from Poincaré duality and Euler characteristic
arguments. It does involve slightly larger groups than the previous two examples, although the
group G occurs in multiple contexts as the Mathieu group M9 and as PSU3(F2).

Proposition 8.12. Let Q8 be the 8-element quaternion group. Let V be the two-dimensional

irreducible representation of Q8 over F3. Let G = V o Q8, and H = V 2 o Q8. Any closed,

oriented 3-manifold such that G is a quotient of ⇡1(M) also has H as a quotient of ⇡1(M).

Proof. We have H1(G, V ) = F3 (by Lemma 5.2 since V is absolutely irreducible), but V is
F3-symplectic, so V ,W = 0 is not spatial, failing condition (b). Then apply Theorem 8.3. ⇤

The next example is similar, but involves parity of a non-projective representation and thus
doesn’t follow directly from semicharacteristic theory.

Proposition 8.13. Let V be the standard representation of SL2(F3) and G = V o SL2(F3), and
H = V 2oSL2(F3). Any closed, oriented 3-manifold such that G is a quotient of ⇡1(M) also has

H as a quotient of ⇡1(M).

Proof. As a representation of the subgroup Q8 of SL2(F3), V is absolutely irreducible, and
nontrivial and thus H0(Q8, V ) = 0, and since Q8 has order prime to 3, H i(Q8, V ) = 0 for
all i > 0. Since Q8 is a normal subgroup of SL2(F3) (with quotient Z/3), there is a spectral
sequence computing Hp+q(SL2(F3), V ) from Hp(Z/3, Hq(Q8, V )) = Hp(Z/3, 0) = 0, and so
H i(SL2(F3), V ) = 0 for all i. Note V is a symplectic representation of G. We then have
H1(G, V ) = F3, by Lemma 5.2. So V,W = 0, is not spatial, failing condition (b), and the result
is implied by Theorem 8.3. ⇤
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Now we turn to specific existence results that follow from Theorem 8.3. We obtain many
existence results from representations that are automatically spatial (see Remark 8.2). For a set
of primes S, an S-group is a finite group whose order is a product of primes in S.

Corollary 8.14. Let S be a finite set of primes, G a finite group whose order is not divisible

by primes in S. There exists a closed, oriented 3-manifold M such that ⇡1(M) has a surjection

⇡1(M) ! G that does not lift to any surjection ⇡1(M) ! H oG where H is an S-group.

The manifoldM with surjection ⇡1(M) ! G produced by Corollary 8.14 determines a covering
space M̃ ! M . By construction, M̃ has a free action of G and ⇡1(M̃) has no surjection to any
S-group. In particular, its mod p homology vanishes for any p /2 S, which unless S = ; forces
it to be a rational homology 3-sphere. This strengthens the main result of [CL00], which states
that G has a free action on a rational homology 3-sphere.

Pardon [Par80] proved a similar result in higher dimensions, showing that a finite group G of
order prime to p has a free action on a simply-connected mod p homology n-sphere for n > 3
odd. As pointed out in [AH19, Proposition 5], the same methods could be used to produce free
actions of G on 3-manifolds that are mod p homology 3-spheres (but not necessarily simply-
connected). Corollary 8.14 provides a stronger existence result since we can take |S| > 1, and
we also restrict non-abelian quotients of ⇡1.

Corollary 8.14 appears interesting even for groups as small as G = (Z/2)3.

Corollary 8.15. Let G be a finite group and V irreducible self-dual representation of G over

a prime field, not symplectic over its endomorphism field (e.g. V a trivial representation Fp).

There exists a closed, oriented 3-manifold M such that ⇡1(M) has a surjection ⇡1(M) ! G that

does not lift to any surjection ⇡1(M) ! V oG.

We can also give existence results for 3-manifolds whose fundamental groups display some
unusual properties.

Proposition 8.16. Let G be the (finite) fundamental group of a spherical 3-manifold and let n
be a natural number. There exists a closed, oriented hyperbolic 3-manifold M such that G is a

quotient of ⇡1(M) and every finite group of order  n that is a quotient of ⇡1(M) is a quotient

of G.

Proof. Let C be the set of all groups of order  n. We apply Proposition 8.7, showing there exists
a 3-manifold M such that ⇡1(M)C ⇠= G if and only if G satisfies certain conditions. Because
we can take M to be hyperbolic in Theorem 8.3, we can take M to by hyperbolic in the “if”
direction of Proposition 8.7, so it remains to check the conditions.

To check the conditions, we use the fact that there exists a manifold whose fundamental group
is G, that being the spherical one, so the conditions are necessarily satisfied by the “only if”
direction of Proposition 8.7. ⇤

While Proposition 8.16 follows quickly from our results, such an M could be constructed via
suitable Dehn surgery on a hyperbolic knot in S3/G (following [DG04, Remark 2.4]). However,
we can also produce 3-manifolds whose fundamental groups “approximate” arbitrarily well cer-
tain specific finite groups which are not themselves the fundamental groups of 3-manifolds. For
these it is not at all clear how such 3-manifolds could be constructed by without our probabilistic
theorem. For a set of primes S, the pro-S completion of a group G is the inverse limit of all
finite quotients whose order is a product of primes in S.



56 WILL SAWIN AND MELANIE MATCHETT WOOD

Proposition 8.17. Let a, b, c, d be relatively prime odd integers. Let Q(8a, b, c) be the semidirect

product (Z/a ⇥ Z/b ⇥ Z/c) o Q8, where Q8 is the 8-element quaternion group, we let �i be the

three non-trivial homomorphisms Q8 ! {±1}, and Q8 acts on Z/a⇥ Z/b⇥ Z/c by g(x, y, z) =
(x�1(g), y�2(g), z�3(g)).

Then for all finite sets S of primes including 2 and all primes dividing a, b, c, d, there exists

a closed, oriented 3-manifold M such that the G := Q(8a, b, c)⇥ Z/d is the pro-S completion of

⇡1(M).
However, unless two of a, b, and c, are equal to 1, G is not itself the fundamental group of a

closed, oriented 3-manifold.

We recall that a group G has periodic cohomology of period d 6= 0 if for all n > 0 we have
Hn(G,M) ⇠= Hn+d(G,M) for all G-modules M . By [Bro82, Ch. VI, Thm. 9.1], G has periodic
cohomology of period 4 if and only if H4(G,Z) ⇠= Z/|G|. By the universal coe�cient theorem
such a group has H3(G,Q/Z) ⇠= Z/|G|, and it is this latter condition that we will mostly use.

Proof. There are finitely many isomorphism classes of finite simple groups with order divisible
by only primes in S, so there are finitely many isomorphism classes of finite simple [Q(8a, b, c)]-
groups with order divisible by only primes in S. The group Q(8a, b, c) is the pro-S completion
of ⇡1(M) if and only if ⇡1(M) surjects onto Q(8a, b, c) and this surjection doesn’t lift to an
extension of Q(8a, b, c) by any of these groups. So it su�ces to check that there is a ⌧ satisfying
the conditions of Theorem 8.3 when the Vi are the set of irreducible representations of Q(8a, b, c)
over Fp, where p varies over the primes of S and Wi = H2(Q(8a, b, c), Vi).

Milnor [Mil57, p. 628] describes Q(8a, b, c) with a presentation, and in his presentation, our
Z/aZ is generated by y4 and the quaternion group is generated by x, ya. From [Mil57, Theorem
3], we see that G has periodic cohomology of period 4, and hence H3(G,Q/Z) ⇠= Z/(8abcd).

We fix ⌧ : H3(G,Q/Z) ⇠= Z/(8abcd) ! Q/Z an injection. Let us check that (G, ⌧) satisfies
the conditions of Theorem 8.3 for each irreducible representation V over Fp of G, i.e. that V is
spatial taking W = H2(G, V ).

Let  be the field of endomorphisms of V and p the characteristic of . Let us first restrict
attention to the special case p - bc. We split our argument further depending on whether the
subgroup Z/b⇥ Z/c acts trivially on V . This is a normal subgroup of Q(8a, b, c), with quotient
Q(8a, 1, 1)⇥ Z/d = Q8a ⇥ Z/d.

If Z/b⇥Z/c acts trivially on V then the map H i(Q8a⇥Z/d, V ) ! H i(G, V ) is an isomorphism,
because the kernel of the quotient G ! Q8a ⇥Z/d has order bc prime to the characteristic of V .
The same is true for the dual representation and, in characteristic 2, for the 2-torsion part of the
cohomology with coe�cients in Q/Z. The existence of the 3-manifold S3/(Q8a ⇥ Z/d) [Mil57,
Theorem 2] implies that V is spatial for Q8a⇥Z/d, and hence V is also spatial for G. (Note that
both the ⌧ : H3(Q8a⇥Z/d,Q/Z) ! Q/Z inherited from our choice above and the ⌧ coming from
the fundamental class of S3/(Q8a ⇥Z/d) are injections. So in either case, a class is nontrivial if
and only if its image under ⌧ is nontrivial. With this guaranteed, the spatial condition does not
depend on the choice of ⌧ , so it is not necessary to check the ⌧ ’s are the same.)

On the other hand, if Z/b⇥ Z/c acts nontrivially on V then

H i(G, V ) = H i(Q8a ⇥ Z/d, V Z/b⇥Z/c) = H i(Q8a ⇥ Z/d, 0) = 0

for all i since the subgroup Z/b ⇥ Z/c is normal so it does not fix any vectors when it acts
nontrivially on an irreducible representation. The same is true for V _. Examining the conditions
that make a representation spatial, we see that H i(G, V ) = H i(G, V _) = 0 for all i ensures that
V is spatial unless p = 2, V is a�ne symplectic, and ⌧(cV ) 6= 0.
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Combining these two paragraphs, we see that if p - bc, then V is spatial unless p = 2, Z/b⇥Z/c
acts nontrivially on V , V is a�ne symplectic, and ⌧(cV ) 6= 0.

The isomorphism class of the group G is invariant under permutations of a, b, c, since Q8 has
automorphisms that permute the three characters �1,�2,�3. Thus, by symmetry, it follows that
if p - ac, then V is spatial unless p = 2, Z/a⇥Z/c acts nontrivially on V , V is a�ne symplectic,
and ⌧(cV ) 6= 0, and a similar statement follows for ab.

We are now ready to prove that any V is spatial. First assume p odd. Then since a, b, c are
relatively prime, p divides at most one of a, b, c, and thus doesn’t divide the product of the other
two. Since p 6= 2, it follows that V is spatial.

Next assume p = 2. Then p - a, b, c, so if V is not spatial it follows that V is a�ne symplectic,
⌧(cV ) 6= 0, and Z/a ⇥ Z/b, Z/a ⇥ Z/c, and Z/b ⇥ Z/c all act nontrivially on V . We will show
that this is impossible. Let 0 be an extension of  containing all the abcd’th roots of unity.
Then V ⌦ 0 remains irreducible and satisfies all the other conditions from this paragraph.

We will now describe the representation V as an induced representation. The central subgroup
Z/2 of Q8 acts trivially on Z/a⇥Z/b⇥Z/c, so G contains a normal subgroup N = Z/a⇥Z/b⇥
Z/c⇥Z/2⇥Z/d with quotient (Z/2)2. By construction of 0, the restriction of V to N contains a
one-dimensional irreducible representation U of N (with character �U : N ! (0)⇤) so V admits
a map from the induced representation IndG

N
U . Either this map is an isomorphism, or the orbit

of the character �U under the conjugation action of Z/2 ⇥ Z/2 has less than four elements.
The second case happens only when �U factors through Z/a⇥ Z/2⇥ Z/d, Z/b⇥ Z/2⇥ Z/d, or
Z/c⇥Z/2⇥Z/d. If �U factors through Z/a⇥Z/2⇥Z/d, then Z/b⇥Z/c acts trivially on IndG

N
U

and thus on V , contradicting our assumption, and similarly for the other possible factorizations,
so the second case cannot occur, and V ⇠= IndG

N
U .

Using this, we will check that ⌧(cV ) = 0, contradicting another assumption. Since the kernel
G ! Q8 has odd order, H3(Q8,Q/Z) ! H3(G,Q/Z) is an isomorphism on the 2-torsion part,
so the pullback map H3(G,Q/Z) ! H3(Q8,Q/Z) using the semidirect product structure must
be an isomorphism on the 2-torsion part, and it su�ces to show that the pullback of cV to
H3(Q8,Q/Z) is trivial.

We do this by applying Theorem 1.1 to S3/Q8. The representation V , restricted to Q8, is the
induced representation of the trivial representation from the central Z/2, so H i(S3/Q8, V ) ⇠=
H i(S3/(Z/2),). This cohomology group has dimension 1 for both i = 0 and i = 1, so the sum of
the dimensions is 2, which is even, so the integral of cV over S3/Q8 vanishes. Using the spectral
sequence computing the cohomology of S3/Q8 from Hp(Q8, Hq(S3,Q/Z)), the integration map
H3(Q8,Q/Z) ! Q/Z is injective, so the pullback of cV is zero, as desired.

Since the conditions are satisfied in every case, such an M exists for every S.
On the other hand, if G were itself the fundamental group of a 3-manifold, then by Perelman’s

Elliptization Theorem, G would be a subgroup of SO(4) with no fixed points on S3. However,
G is not such a subgroup, unless two of a, b, c are 1 [Mil57, Theorem 3]. ⇤

8.3. Classification of unobstructed groups. We can generalize the results of the last sub-
section. We call a finite group unobstructed if it lies in the closure of the set

{\⇡1(M) | M a closed, oriented 3-manifold, }

and obstructed otherwise. Theorem 1.5 gives a necessary and su�cient condition for groups to
be unobstructed in terms of their cohomology. If a finite group G is obstructed, by examining
its cohomology groups to find for which representations V which condition of Theorem 1.5 fails
for which values of ⌧ , one can produce an explicit list of representations Vi and subspaces Wi
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such that the condition of Theorem 8.3 fails, hence produce an explicit list of extensions of Gi by
Vi such that every surjection ⇡1(M) ! G lifts to at least one of these extensions. The previous
results give explicit examples of obstructed and unobstructed groups. In this subsection, we will
give a complete classification of unobstructed groups, using the group cohomological conditions
of Theorem 1.5.

Certainly every G that is itself the fundamental group of a 3-manifold is unobstructed. These
are classified as a consequence of the geometrization theorem. There is one further family of
unobstructed groups constructed in Proposition 8.17. In this subsection we will show that these
are the only examples.

Lemma 8.18. Let G be an unobstructed finite group. Then G has periodic cohomology of period

4.

Proof. Let V1, . . . , Vn be all the irreducible representations of G of characteristic dividing |G|.
Let Wi = H2(G, Vi). By Theorem 8.3, since G is unobstructed, there exists a manifold M and a
surjection ⇡1(M) ! G which does not lift to any extension of G by an irreducible representation
of G of characteristic dividing |G|. Fix one such M , and note that ker(⇡1(M) ! G)ab is a
finitely-generated abelian group. Thus ker(⇡1(M) ! G)ab is a finite abelian group of order
prime to |G|, or else it would have a non-trivial elementary abelian p-group quotient for some
p | |G| and ⇡1(M) ! G would lift to an extension by one of the Vi.

Let M̃ be the G-covering of M induced by this surjection. Then M̃ is a closed 3-manifold with
fundamental group this kernel. Thus H1(M̃) is finite of order prime to |G|. Thus H0(M̃,Z) =
H3(M̃,Z) = Z, H1(M̃,Z) = 0, and H2(M̃,Z) is finite of order prime to |G|.

There is a spectral sequence whose second page is Ep,q

2
= Hp(G,Hq(M̃,Z)) converging to

Hp+q(M,Z). By the above calculations, we see that Ep,q vanishes for q 6= 0, 2, 3 and for q = 2
vanishes for p > 0. Because of this vanishing, the only possibly nontrivial di↵erentials (i.e.
di↵erentials whose source and target both may be nonzero) are

dp,3
4

: Ep,3

4
! Ep+4,0

4
and d0,2

3
: E0,2

3
! E3,0

3

although d0,2
3

must vanish because the source is finite of order prime to |G| and the target is
|G|-torsion.

Since dp,3
4

are the only nonvanishing di↵erentials, we have Ep,q

4
= Hp(G,Hq(M̃,Z)), and

Ep,3

1 = ker dp,3
4
, and Ep+4,0

1 = coker dp,3
4
. This gives a long exact sequence

H3(M,Z) ! H0(G,H3(M̃,Z)) ! H4(G,H0(M̃,Z)) ! H4(M,Z)

Using H4(M,Z) = 0 and the fact that G acts trivially on H3(M̃,Z), we see that H4(G,Z) =
H4(G,H0(M̃,Z)) is the cokernel of the map H3(M,Z) ! H3(M̃,Z), which is equal to the
pullback map on cohomology.

Since M and M̃ are closed oriented 3-manifolds and M̃ ! M is a degree |G| covering, this
map is the multiplication-by-|G| map Z ! Z, so its cokernel is Z/|G|, as desired. ⇤

The following lemma, which gives an alternate way of seeing that cV is non-trivial, will help
us show that many finite groups with periodic cohomology are obstructed.

Lemma 8.19. Let Dn be the dihedral group with 2n elements for n odd. Let V be a representation

of Dn that is an induced representation of any faithful character of Z/n over a characteristic

2 finite field. Then V is -symplectic and the induced map Dn ! Sp

(V ) lifts to ASp


(V ).

Further, cV is non-trivial in H3(Dn,Q/Z) and pulls back from H3(Z/2Z,Q/Z).
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Proof. Because V is two-dimensional, it is symplectic if and only if its determinant is the trivial
representation. The determinant of V has trivial action of the subgroup Z/n ⇢ Dn, and thus
the action of Dn factors through Z/2Z. Since the determinant of V is one-dimensional over a
characteristic 2 field, the action of Dn on the determinant must be trivial, and V is -symplectic.

To check that V lifts to the a�ne symplectic group, it su�ces to check that the pullback to
H2(Dn, V _) of the extension class in H2(Sp


(V ), V _) of the a�ne symplectic group vanishes. In

fact, we will check that H i(Dn, V _) vanishes for all i when n � 3. To see this, by the spectral
sequence, it su�ces to check that H i(Z/n, V _) vanishes for all i. Since Z/n has order prime to
2, its cohomology with coe�cients in a characteristic 2 representation vanishes in degrees above
0, and in degree 0 is equal to the Z/n-invariants, which vanish when n � 3. For n = 1, we can
factor the map D1 ! D3 ! Sp


(V ) and thus see it lifts to the a�ne symplectic group.

The natural map Dn ! Z/2 has kernel a group of order prime to 2 and thus the induced map
H i(Z/2,Q/Z) ! H i(Dn,Q/Z) is an isomorphism on 2-power torsion for all i. We will check cV is
nontrivial by restricting to a subgroup S ⇠= Z/2 of Dn, and checking it remains nontrivial there,
where V becomes isomorphic to the regular representation of Z/2 over . To do this, it su�ces to
find a 3-manifold with a homomorphism ⇡1(M) ! Z/2 such that dimH0(M,V )+dimH1(M,V )
is odd. An example is provided by M = RP3, taking the homomorphism to be the unique
isomorphism ⇡1(RP3) ⇠= Z/2. Since V is the regular representation over , we have H0(M,V ) =
H0(S3,) =  and H1(M,V ) = H1(S3,) = 0, so the sum of their dimensions is indeed
odd. Thus by Corollary 2.14 cV is non-trivial in H3(S,Q/Z), where it is pulled back from
cV 2 H3(Dn,Q/Z), and hence the latter must be non-trivial. ⇤

Finally we have the classification of unobstructed groups.

Proposition 8.20. The unobstructed finite groups are exactly the finite subgroups of SO(4)
acting freely on S3

and the groups of the form Q(8a, b, c) ⇥ Z/d where a, b, c, d are odd and

pairwise relatively prime.

Some works toward the classification of finite groups that appear as the fundamental groups
of 3-manifolds highlighted Q(8a, b, c)⇥Z/d as examples of groups that could not be ruled out by
their methods [Mil57, Lee73]. Indeed, these were the only groups that could not be ruled out as
fundamental groups of 3-manifolds before Perelman’s Geometrization Theorem. Proposition 8.20
gives a heuristic explanation for this, as it shows these groups are arbitrarily close to 3-manifold
groups in our topology, and they are the only such finite groups that aren’t 3-manifold groups
themselves.

Remark 8.21. If S is a finite set of primes, and G a finite group that is the maximal S-group
quotient of a closed, oriented 3-manifold, then by Remark 8.2 and Theorem 8.3, G must be
unobstructed.

Proof. First assume G is unobstructed. By Lemma 8.18, G has periodic cohomology with period
4. Such groups are classified. See, for example [Nic21, between Proposition 6.9 and Theorem
7.10] for a convenient list whose notation we will use. Of these classes given in [Nic21], those
listed as (i)’, (iii)’, (iv’), and (v’) are known to be finite subgroups of SO(4) acting freely on S3

(see, e.g., [Mil57, Theorem 2]). It su�ces to show that G cannot be any of the remaining ones,
except Q(8a, b, c)⇥ Z/d.

Generalizing our previous definition of Q(8a, b, c), for odd coprime positive integers a, b, c, and
n � 3, we define Q(2na, b, c) = (Z/a⇥Z/b⇥Z/c)oQ2n where Q2n is the generalized quaternion
group of order 2n of presentation hx, y|x2

n�1

= y4 = 1, x2
n�2

= y2, yxy�1 = x�1
i, and Q2n acts
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on Z/a ⇥ Z/b ⇥ Z/c as follows. Let �i be the three non-trivial homomorphisms Q2n ! {±1},
with �1(x) = 1, and the action is given by g(x, y, z) = (x�1(g), y�2(g), z�3(g)).

The remaining groups with periodic cohomology of period 4 from the list in [Nic21] are as
follows (in each case, we also take the product with a cyclic group C of coprime order):

(ii)’ Dn, the dihedral group of order 2n, for n � 3 odd (which Nicholson and Milnor call D2n).
(vi)’ P 00

48n
, the extension of the binary octahedral group Õ (SmallGroup(48,28)) by the cyclic

group Cn such that the extension has cyclic Sylow 3-subgroup and the action of Õ on
Cn is through the order 2 quotient of Õ and sending x 2 Cn to x�1, for n � 3 and odd.

(vii)’ Q(2na, b, c), for n � 3 and a, b, c odd coprime integers with b > c.

We will show that each group G on this list except those in the last case with n = 3 are
obstructed. Let Vm be a representation of Dm that is an induced representation of any faithful
character of Z/m over a characteristic 2 finite field. For m > 1, we can check that Vm is
irreducible, and by Lemma 8.19, Vm is a�ne symplectic. We will find maps G ! Dm with
H1(G, Vm) = 0. Since H3(G,Q/Z) ⇠= Z/|G|, we have that H3(G,Q/Z) has a unique non-trivial
2-torsion element (which we will identify as cVm

). Using Lemma 8.19 and Theorem 1.5, we will
prove that G is obstructed.

In case (ii)’, G = Dn⇥C and we take the projection G ! Dn and let V = Vn. By Lemma 8.19,
H3(G,Q/Z) has Sylow 2-subgroup of order 2, and cV is non-trivial in H3(G,Q/Z). We can see
that H1(Dn ⇥ C, V ) = 0 because, restricting to the normal subgroup Z/n, we already have
H⇤(Z/n, V ) = 0 because V has characteristic coprime to n and no Z/n-invariants (as n > 1).
By Theorem 1.5 (4), if G was unobstructed for a particular ⌧ , then ⌧ would vanish on the
2-torsion of H3(G,Q/Z). However, then with V = F2, since H2(G,F2) = F2, we see that
Theorem 1.5(2) cannot be satisfied. Thus we conclude that G is obstructed.

In case (vi), G = P 00
48n

⇥ C. We note that both D3n and Õ have unique normal subgroups
with quotient S3, and we can check the fiber product D3n ⇥S3

Õ satisfies the definition of P 00
48n

.
We take the projection G ! D3n and let V = V3n. We have a normal subgroup Z/nZ of D3n

and G. As in the previous case, we have H⇤(Z/n, V ) = 0 for all i and thus H1(G, V ) = 0.
Next, we will show that the pullback of the generator of H3(Z/2,Q/Z) to H3(G,Q/Z) is

nonzero. The map G ! Õ has kernel prime to 2 and thus the map H3(Õ,Q/Z) ! H3(G,Q/Z)
is an isomorphism on 2-power torsion. The kernel of the map Õ ! Z/2Z is T̃ , the binary
tetrahedral group. In the spectral sequence computing Hn(Õ,Q/Z) from Hp(Z/2, Hq(T̃ ,Q/Z)),
we have that E1,1

2
= H1(Z/2,Z/3Z) = 0 and E0,2

2
= H0(Z/2, 0) = 0. Thus E3,0 = H3(Z/2,Q/Z)

receives no non-trivial di↵erentials and H3(Z/2,Q/Z) ! H3(Õ,Q/Z) is an injection. So by
Lemma 8.19, cV is non-zero in H3(G,Q/Z).

By Theorem 1.5 (4), if G was unobstructed for a particular ⌧ , then since H1(G, V ) = 0,
we would have ⌧(cV ) = 0. Further, since cV is the unique non-trivial 2-torsion element of
H3(G,Q/Z), then ⌧ vanishes on the 2-torsion of H3(G,Q/Z). However, then with V = F2,
since H2(G,F2) = H2(Õ,F2) = F2, we see that Theorem 1.5(2) cannot be satisfied. Thus we
conclude that G is obstructed.

In case (vii)’, G = Q(2na, b, c) ⇥ C. We have Db as a quotient of Q(2na, b, c) using a map
(Z/a ⇥ Z/b ⇥ Z/c) o Q2n ! Z/b o Z/2 which sends Q2n to Z/2 under the quadratic character
�2 by which Q2n acts on Z/b. Let V = Vb. We have a normal subgroup Z/b of G. As before,
H⇤(Z/b, V ) = 0 and thus H1(G, V ) = 0. (Here we use b > c � 1 to ensure V has no Z/b-
invariants, and later it will ensure that V is irreducible.)
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Next we will show that the pullback of the generator of H3(Z/2,Q/Z) under the above map
G ! Z/2 is nontrivial. Since the projection G ! Q2n has kernel prime to 2, it su�ces to check
that the pullback of the generator of H3(Z/2,Q/Z) to H3(Q2n ,Z/2) via �2 is nontrivial. One can
do this directly, but we give a di↵erent argument. Let K = ker�2, and note when n > 3, we have
K ⇠= Q2

n�1

. Let W = IndQ2n

K
F2. The action of Q2n on W factors through �2. By Lemma 8.19

(for n = 1), we have that W is a�ne symplectic. We then have cW 2 H3(S3/Q2n ,Q/Z). We
can compute H0(S3/Q2n ,W ) = H0(S3/K,F2) = F2 and H1(S3/Q2n ,W ) = H1(S3/K,F2) =
H1(K,F2) = F2

2
(using n > 3). By Corollary 2.14, we then note that the integral of cW

over S3/Q2n is non-trivial so cW 2 H3(Q2n ,Q/Z) must be non-trivial and it factors through
H3(Z/2,Q/Z) via �⇤

2
. We then conclude that the map G ! Z/2 above induces an injection

H3(Z/2,Q/Z) ! H3(G,Q/Z). It follows that for n > 3, we have that cV is non-trivial in
H3(G,Q/Z).

By Theorem 1.5 (4), if G was unobstructed for a particular ⌧ , then since H1(G, V ) = 0,
we would have ⌧(cV ) = 0. Further, since cV is the unique non-trivial 2-torsion element of
H3(G,Q/Z), then ⌧ vanishes on the 2-torsion of H3(G,Q/Z). However, then with V = F2,
since H2(G,F2) = H2(Q2n ,F2), and the latter has a non-trivial 2-torsion subgroup (from the
universal coe�cient theorem), we see that Theorem 1.5(2) cannot be satisfied. Thus we conclude
that G is obstructed.

Having eliminated all cases but Q(8a, b, c) ⇥ C, we see that an unobstructed group must
be of the claimed types of the proposition. In Proposition 8.17, we showed Q(8a, b, c) ⇥ C
is unobstructed, and the finite subgroups of SO(4) acting freely on S3 are 3-manifold groups
themselves, which proves the proposition. ⇤

9. Probabilistic Theory

Theorem 4.2 gives a complete description of the limiting distribution of \⇡1(Mg,L) and hence has
many probabilistic consequences, some of which we give in this section. In particular we can use
it to give the distribution of the maximal p-group or nilpotent class s quotient of ⇡1(Mg,L) (see
Section 9.1) or the distribution of H1(M,Zp) with its torsion linking pairing (see Section 9.2). In
Section 9.3 we prove Theorem 1.2 on the existence of a limiting distribution, and in Section 9.4
we show the limiting probability of a G-cover with positive first Betti number is 0.

9.1. Maximal p-group and nilpotent class c quotients. If one is interested in, for example,
the distribution of the maximal p-group quotient of ⇡1(Mg,L), then one can apply Theorem 4.2
and obtain formulas that simplify substantially from the general case.

Proposition 9.1. Let p be a prime and let s be a natural number or 1. Let P be a finite

p-group of nilpotency class  s. The limiting probability that P is is the maximal quotient of

⇡1(Mg,L) that is a p-group of nilpotency class  s (in the limit as L goes to 1 and then g goes

to 1), is equal to

|H2(P,Z)||P |

|H1(P,Z)||Aut(P )|

Ns(P )

|H3(G,Z)|

1Y

j=1

(1 + p�j)�1

where Ns(P ) is the number of ⌧ : H3(P,Q/Z) ! Q/Z such that for all nonzero ↵ 2 H2(P,Z/p)
whose induced extension 1 ! Z/p ! P̃ ! P ! 1 has nilpotency class  s, there exists

� 2 H1(P,Z/p) such that ⌧(↵ [ �) 6= 0.

We note that N1(P ) = 0 unless P is cyclic or generalized quaternion Q2k for k � 3 by
Remark 8.21.
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The same argument works to show the generalization of Proposition 9.1 for the maximum S-
group of nilpotence class s quotient for S a finite set of primes, where S-groups are defined to be
the groups whose order is divisible only by the primes lying in S, and the resulting probabilities
are as above but with a

Q
p2S before the product over j.

Proof. We will apply Theorem 4.2 with V1 = Z/p, and W1 the subspace of H2(P,Z/p) corre-
sponding to extensions 1 ! Z/p ! P̃ ! P ! 1 of nilpotency class  s, and no other Vis or
Gis. Then a surjection ⇡1(M) ! P is an isomorphism beween the maximal p-group quotient of
⇡1(M) of nilpotency class  s if and only if it does not lift to any extension P̃ of P by Z/p of
nilpotency class  s, since any nontrivial extension of p-groups factors through an extension of
Z/p.

We sum Theorem 4.2 and sum over each orientation of P , equivalently, each ⌧ 2 H3(P,Q/Z)_.
Because V1 is symmetrically self-dual, we have wV1

= 0 unlessW ⌧

1
= 0 and wV1

=
Q1

j=1
(1+p�j)�1

if W ⌧

1
= 0. Furthermore, by definition, W ⌧

1
= 0 if and only if, for all nonzero ↵ 2 H2(P,Z/p)

whose induced extension P̃ of P has nilpotency class  s, there exists � 2 H1(P,Z/p) such that
⌧(↵ [ �) 6= 0. Thus the sum over ⌧ of wV1

(⌧) is equal to
Q1

j=1
(1 + p�j)�1 times the number of

⌧ satisfying that condition, as desired. ⇤

9.2. The distribution of the torsion linking pairing. We can give an even simpler formula
in the s = 1 case, i.e. with the p-part of the abelianization of ⇡1(M). It turns out that ⌧ , in this
setting, carries the information of the torsion linking pairing, and the equidistribution result will
be particularly convenient to state in terms of this pairing. We begin with a lemma:

Lemma 9.2. Let G be a finite abelian group. Consider the pairing H1(G,Q/Z)⌦H1(G,Q/Z) !
H3(G,Q/Z) that is defined by taking the Bockstein map H1(G,Q/Z) ! H2(G,Z) (associated to

1 ! Z ! Q ! Q/Z ! 1) in the second variable and then taking the cup product.

This map is symmetric, and the induced map Sym2(H1(G,Q/Z)) ! H3(G,Q/Z) is injective.

Proof. The symmetry follows from the standard argument that the Bockstein map satisfies the
Leibniz rule.

For injectivity, consider a nonzero class ↵ 2 Sym2(H1(G,Q/Z)). If we write G as
Q

i
Z/ni for

n1 | n2 | · · · , then ↵ consists of, for each pair i, j, an element aij 2 Z/gcd(ni, nj). Let us check
that G has a cyclic subgroup, restricted to which, this class remains nontrivial. This is clearly the
case if aii 6= 0 for any i, so we may assume aii = 0 for all i and thus that aij 6= 0 for some distinct
i, j. Without loss of generality ni | nj, and then pulling ↵ back to the subgroup Z/ni embedded
diagonally by x 7! (x, (nj/ni)x) we obtain a non-trivial element of Sym2(H1(Z/ni,Q/Z)).

By pulling back to this cyclic subgroup, we may reduce to the case when G is a cyclic group.
Since H3(G,Q/Z) ⇠= G, it su�ces to show a generator of Sym2(H1(G,Q/Z)) is sent to a gen-
erator of H3(G,Q/Z) by this map. Since a generator of H1(G,Q/Z) is sent by Bockstein to a
generator of H2(G,Z), and cupping with a generator of H2(G,Z) gives the periodicity isomor-
phism H i(G,Q/Z) ! H i+2(G,Q/Z), this follows. ⇤

For M a 3-manifold, the torsion linking pairing of classes a, b 2 H1(M,Q/Z) is defined by
(a, b) 7!

R
M
(a [Bb) where B : H1(M,Q/Z) ! H2(M,Z) is the Bockstein map. If H1(M,Q/Z)

is finite, this is a nondegenerate symmetric pairing, and regardless it becomes nondegenerate
after quotienting by the divisible subgroup DM of H1(M,Q/Z). If TM is the torsion subgroup of
H1(M,Z), then note T_

M
is naturally isomorphic toH1(M,Q/Z)/DM , so we have a nondegenerate

pairing T_
M

⌦ T_
M

! Q/Z, which is equivalent to an isomorphism T_
M

⇠= TM , and, by taking the
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inverse of that isomorphism, is equivalent to a nondegenerate pairing TM ⌦ TM ! Q/Z. This
latter pairing is what is usually called the torsion linking pairing.

Theorem 4.2 in fact gives the complete distribution on the homology groups H1(⇡1(Mg,L),Zp)
(where Zp is the p-adic integers), along with the torsion linking pairings on these homology
groups. In addition it gives these distributions simultaneously for any finite set of primes p, as
we see below.

Proposition 9.3. Let S be a finite set of primes and ZS =
Q

p2S ZS. Let G be a finite abelian

S-group and let ` : G_
⇥G_

! Q/Z be a nondegenerate symmetric pairing. Then

lim
g!1

lim
L!1

Prob [H1(Mg,L,ZS) ⇠= G, torsion linking going to `] =
1

|G||Aut(G, `)|

Y

p2S

1Y

j=1

1

1 + p�j
.

Dunfield and Thurston [DT06, §8] found the limiting distribution ofH1(Mg,L,Z/p), and Propo-
sition 9.3 enriches this by extending to Zp coe�cients and tracking the torsion linking pairing.
Dunfield and Thurston discussed the fact that the distribution on elementary abelian p-groups
that they found from H1(Mg,L,Z/p) does not match the limiting distribution if one takes a
quotient of a free group on g generators by g relations. This latter model of a random group, a
“random balanced presentation,” was studied in [DT06, §3], as well as by Friedman and Wash-
ington [FW89] and the second author [Woo19] in connection to the Cohen-Lenstra heuristics,
and in the Cohen-Lenstra philosophy [CL84] is the natural distribution on finite abelian groups
(that have no additional structure). We see from Proposition 9.3 that the groups H1(Mg,L,Zp)
are distributed as the pushforward of a natural distribution on abelian p-groups with sym-
metric pairings, where a group with pairing appears with probability inversely proportional to
|G||Aut(G, `)|. This distribution was first introduced by Clancy, Leake, and Payne [CLP15, §4]
in their study of Jacobians of random graphs, which are also groups with a natural symmetric
pairing, following the Cohen-Lenstra philosophy that random groups should be considered with
all of their additional structure.

Proof. The group H1(Mg,L,ZS) is the maximal abelian S-group quotient of ⇡1(Mg,L). Any
surjection ⇡1(Mg,L) ! G not lifting to any abelian extension 1 ! Z/p ! H ! G ! 1 with
p 2 S must be an isomorphism between H1(Mg,L,ZS) and P . This isomorphism sends the
linking pairing to ` if and only, if, for a, b 2 H1(G,Q/Z), we have `(a, b) = ⌧(a [ Bb). So we
may apply Theorem 4.2, summing over possible values of ⌧ , with Vi = Z/pi, for pi 2 S, and Wi

the set of classes in H2(G,Z/pi) corresponding to abelian extensions, and no other Vi’s or Gi’s.
Because Vi is symmetric, we have wVi

= 0 unless W ⌧

i
= 0 and wVi

=
Q1

j=1
(1+ p�j

i
)�1 if W ⌧

i
= 0.

Let N`(G) be the number of ⌧ : H3(G,Q/Z) ! Q/Z such that `(a, b) = ⌧(a [Bb) for all a, b,
and, for all i and all nonzero ↵ 2 Wi, there exists � 2 H1(G,Z/pi) such that ⌧(↵[�) 6= 0. Then
the limiting probability that H1(Mg,L,ZS) is isomorphic to G by an isomorphism sending ` to
the torsion linking pairing is

|H2(G,Z)|
|Aut(G, `)|

N`(G)

|H3(G,Z)|
Y

p2S

1Y

j=1

(1 + p�j)�1.

Next we evaluate N`(G). First we note that Wi is the image of H1(G,Q/Z) under the Bock-
stein map H1(G,Q/Z) ! H2(G,Z/pi), as every abelian extension of G by Z/pi adds a pith root
to a character in the dual group of G, and taking the image of that character under Bockstein
gives the extension class.
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We will show the second condition in N`(G) is superfluous, i.e. if ⌧(a [ Bb) = `(a, b) for
all a, b 2 H1(G,Q/Z), then, for all nonzero ↵ 2 Wi, there exists � 2 H1(G,Z/pi) such that
⌧(↵ [ �) 6= 0. For ↵ 2 Wi ⇢ H2(Vi,Z/pi), we have ↵ = B� for some � 2 H1(G,Q/Z), by
the previous paragraph. Since ↵ is nonzero, � is not divisible by p. For any � 2 H1(G,Fp) ✓
H1(G,Q/Z) we have ⌧(↵[�) = ⌧(B�[�) = ⌧(�[B�) = `(�, �). Because the linking pairing is
nondegenerate and � is not divisible by p, we can choose a p-torsion � making `(�, �) nonzero.

So N`(G) is simply the number of linear forms ⌧ that restrict to ` on classes of the form a[Bb.
By Lemma 9.2, the classes of the form a [Bb generate a submodule of H3(G,Q/Z) isomorphic

to Sym2(G_), and so ` extends to exactly
|H3

(G,Q/Z)|
|Sym2

(G_)|
forms ⌧ . This gives the formula for the

probability
|H2(G,Z)|

|Aut(G, `)|
��Sym2(G_)

��
Y

p2S

1Y

j=1

(1 + p�j)�1.

It is well-known that |H2(G,Z)| = |^
2(G_)|, and we can easily compute

��Sym2(G_)
�� = |^

2(G_)||G|,
proving the proposition.

⇤
9.3. Proof of Theorem 1.2. We now prove Theorem 1.2. The main thing remaining to show is
that there is no escape of mass in the limit of distributions, and the essential ingredient for that
is Proposition 4.6. Note that the support of the probability distribution of Theorem 1.2 is equal
to the closure of the set of profinite completions of fundamental groups of oriented 3-manifolds.
So there are no open subsets of Prof with zero measure that contain 3-manifold groups.

Proof of Theorem 1.2. We first construct a probability measure µ on the space OrProf of (iso-
morphism classes of) oriented profinite groups in Prof. We use the Borel �-algebra for the
topology generated by the basic opens UC,G = {K|KC ⇠= G} indexed by C a finite set of finite
groups and G an oriented finite group. We can define a pre-measure µ on the algebra A of sets
generated by the basic opens UC,G by

µ(A) := lim
g!1

lim
L!1

µg,L(A).

Note when A = UC,G, Theorem 4.2 gives the limiting value, and µ is additive because finite
sums commute with the limits. If we take C` to be the set of all groups of order at most `, by
Proposition 4.6 in the special case H = 1, we have that

(9.4)
X

G2IC`

µ(UC`,G
) = lim

g!1
lim
L!1

X

G2IC`

µg,L(UC`,G
) = 1.

Now, [LW20, Proof of Theorem 9.1], using (9.4) in place of [LW20, Theorem 9.2], shows that µ
is countably additive on A. Then, Carathéodory’s extension theorem implies µ extends uniquely
to a measure on the Borel �-algebra. Since any open set in our topology is a disjoint union of
basic opens, for any open U by Fatou’s lemma we have

µ(U)  lim inf
g!1

lim inf
L!1

µg,L(U),

which proves the weak convergence of µg,L to µ. We obtain the theorem by pushing forward the
distribution to Prof and summing over ⌧ . ⇤
Corollary 9.5. For every finite group G and natural number k, the limit

PG,k := lim
g!1

lim
L!1

Prob[⇡1(Mg,L) has exactly k surjections to G]
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exists, and for each G, the PG,k give a probability distribution on the natural numbers k.

Proof. Let C = {G}. The number of surjections ⇡1(Mg,L) ! G is the same as the number of
surjections ⇡1(Mg,L)C ! G. Let VC,k be the set of groups K in Prof with KC having exactly k
surjections to G. Then VC,k is the union of UC,Gi

for some Gi, and the complement of the union
of UC,G0

i
for some other G0

i
, and thus is open and closed. Thus it follows from Theorem 1.2 that

lim
g!1

lim
L!1

Prob[⇡1(Mg,L) 2 VC,k] = µ(VC,k),

and the corollary follows. ⇤

9.4. The limiting probability of a G-cover with positive first Betti number is 0. Dun-
field and Thurston introduced their model of random Heegaard splittings in order to shed light
on the Virtual Haken Conjecture, and the stronger Virtual Positive Betti Number Conjecture
(prior to Agol’s Theorem [Ago13]). Dunfield and Thurston showed that for a fixed abelian group
Q, the limit in L of the probability that M2,L has a Q-cover with positive first Betti number is
0, and Rivin [Riv14, Theorem 11.5] generalizes this to solvable groups and fixed g > 1. In the
limit as g ! 1, the following result addresses this question for G-covers for any finite group G.

Proposition 9.6. For all n,

lim
g!1

lim
L!1

Prob[Mg,L has a degree  n cover with positive first Betti number] = 0.

Proof. We will first prove, for each finite group G,

lim
p!1
p prime

lim
g!1

lim
L!1

Prob[⇡(Mg,L) has surjection to G with kernel that has quotient Z/p] = 0.

To do this, we bound the probability that ⇡1(Mg,L) has a surjection by the expected number
of such surjections. Furthermore, we represent the expected number of such surjections as the
expected number of surjections to G minus the expected number of surjections to G whose kernel
does not have a surjection to Z/p.

By [DT06, Theorem 6.21], the triple limit of the expected number of surjections to G is
|H2(G,Z)||G|
|H1(G,Z)| . The number of surjections from ⇡1(Mg,L) toG whose kernel does not have a surjection

to Z/p is the sum over oriented groups G with underlying group G of LG,V ,W ,N where V consists
of all irreducible representations of G mod p, W of all extension classes of these representations,
and N is empty. Indeed, the kernel has a surjection to Z/p if and only if it has a G-equivariant
surjection to some irreducible mod p representation, which happens if and only if ⇡1 surjects
onto some extension of G by that representation.

Thus, by Theorem 4.2, the expected number of surjections to G whose kernel does not have
a surjection to Z/p is

|H2(G,Z)||G|

|H1(G,Z)||H3(G,Z)|
X

⌧ :H3(G,Q/Z)!Q/Z

Y

i

wVi
(⌧).

It su�ces to prove
Q

i
wVi

(⌧) converges to 1 as p goes to 1, as then this sum will converge to
|H2(G,Z)||G|
|H1(G,Z)| and so the di↵erence will converge to 0, as desired.
Because we are taking a limit as p goes to 1, we restrict attention to the case that p does

not divide 2|G|. We then have dimH1(G, Vi) = dimH2(G, Vi) = 0 for all representations Vi

of characteristic p. Hence the condition for wVi
(⌧) to be nonzero is automatically satisfied, so
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wVi
(⌧) =

Q1
k=1

(1� q�k

i
)�1/2 if Vi is not self-dual,

Q1
j=1

(1+ q�j

i
)�1 if Vi is self-dual with ✏i = ±1,

or
Q1

j=1
(1 + q

�j� 1

2

i
)�1 if ✏i is 0.

All these factors converge to 1 as qi goes to 1. Since qi is at least the characteristic p of
Vi, they converge to 1 as p goes to 1. The number of factors in

Q
i
wVi

(⌧) is the number
of isomorphism classes of irreducible representations of G over Fp, which is bounded by the
number of isomorphism classes of irreducible representations of G over C and thus bounded
independently of p, so the product goes to 1, as desired, and thus the limiting probability of a
surjection to G whose kernel has a surjection to Z/p is 0.

Since a group with a surjection to Z has a surjection to Z/p for all p, it follows that

lim
g!1

lim
L!1

Prob[⇡(Mg,L) has surjection to G with kernel that has quotient Z] = 0.

Summing over all G of order  n!,

lim
g!1

lim
L!1

Prob[⇡(Mg,L) has a normal subgroup of index  n! that has quotient Z] = 0.

Because every subgroup H of index  n contains a normal subgroup N of index  n!, and if H
has a surjection to Z then so does N , we have

lim
g!1

lim
L!1

Prob[⇡(Mg,L) has a subgroup of index  n that has quotient Z] = 0.

Finally, Mg,L has a covering of degree  n with positive first Betti number if and only if ⇡1(Mg,L)
has a subgroup of index n whose kernel has a surjection to Z. ⇤

10. Some Further Directions

10.1. Algorithms. It may be possible to obtain from our results an algorithm which, given finite
groups G1, . . . , Gn, H1, . . . , Hm, returns whether there exists a 3-manifold whose fundamental
group admits G1, . . . , Gn as a quotient but not H1, . . . , Hm. This happens if and only if there
exists a finite level-C group, with G1, . . . , Gn as a quotient but not H1, . . . , Hm, that satisfies
the criteria of Proposition 8.7, for C = {G1, . . . , Gn, H1, . . . , Hm}. These criteria are straightfor-
wardly computable for a given group. Thus the main di�culty is that there are infinitely many
level-C group.

10.2. Other random groups. On the probabilistic side, it would be interesting to generalize
this work to other models of random 3-manifolds (e.g. see [AFW15, Section 7.4], [PR22]). Do
they produce the same probability measure? If not, can our methods, or other new methods,
be applied to find the new distribution? There are some models, such as the mapping torus of
a random element of the mapping class group, that certainly give di↵erent distributions, as the
fundamental groups of mapping tori always surject onto Z and thus onto Z/n for all n.

Are there other topological, geometric, or algebraic constructions of random groups that
give the distribution found in this paper? Liu [Liu22, Appendix A] constructs a random pro-`
group by taking a quotient of the pro-` completion of a surface group defined using a random
automorphism of the group. She proves these groups have the same limiting (non-oriented)
moments as pro-` completions of random Heegaard splittings, and we expect our methods will
show this implies they have the same limiting distribution.

In particular, we wonder what are other ways to give a natural random oriented group, i.e. a
groupG with a specified element ofH3(G,Z)? And what distributions arise from such groups? In
the abelian case, there is a universality theorem [Woo17] that says many di↵erent constructions
of random abelian groups with symmetric pairings have the same limiting distribution (which
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the the same as the limiting distribution of H1(Mg,L) in this paper). Is there a non-abelian
version of this universality?

10.3. Questions on the limiting measure µ. In addition to questions that have direct rele-
vance to 3-manifolds, we can ask about properties of the limiting measure on Prof obtained from
the fundamental groups of random 3-manifolds, or its support, that are not necessarily logically
related to the same question for 3-manifolds.

A starting point is Dunfield and Thurston’s question [DT06, Section 9], for a fixed finite group
G, about the probability that a random Heegaard splitting has a G-cover with positive first Betti
number. Proposition 9.6 shows these limiting probabilities are 0, and so by countable additivity
a random group according to µ has an open subgroup with a surjection to Ẑ with probability
zero. Because this condition is neither a closed nor an open condition, Theorem 1.2 gives no
logical implication between this question of µ and the limit of the analogous question for the
distribution of ⇡1(Mg,L). Indeed, Agol’s Theorem [Ago13] shows that most 3-manifolds have a
subgroup of finite index with a surjection to Z.

Thus, while random groups according to µ behave like 3-manifold groups in various ways,
the analogy is not perfect. Some analogous questions have di↵erent answers on the two sides.
It would be interesting to investigate how often this happens. In other words, to take prop-
erties of groups known or suspected to hold for all or almost all 3-manifold groups, detectable
by the profinite completion, and ask with what probability they hold for µ-random profinite
groups. Owing to the great recent progress in the theory of 3-manifold groups, we will find more
interesting questions of this form taking known properties rather than suspected ones.

Poincaré duality - One question along these lines has to do with Poincaré duality. For V
a representation of ⇡1(M), we have by Poincaré duality the cup product and fundamental class
give a perfect pairing H i(M,V ) ⇥ H3�i(M,V _) ! Q/Z. If M is irreducible and has infinite
fundamental group, then M is aspherical, so H i(M,V ) = H i(⇡1(M), V ) and thus we have a
perfect pairing H i(⇡1(M), V ) ⇥ H3�i(⇡1(M), V _) ! Q/Z. Because ⇡1(M) is automatically a
good group in the sense of Serre, we have H i(⇡1(M), V ) = H i(⇡̂1(M), V ), so we have a perfect
pairing H i(⇡̂1(M), V )⇥H3�i(⇡̂1(M), V _) ! Q/Z.

Does something similar hold for G a random group according to the measure µ? In other
words, for every representation V of G, is ⌧(↵ [ �) : H i(G, V )⇥H3�i(G, V _) ! Q/Z a perfect
pairing? For i > 3, this is just the statement that H i(G, V ) should vanish.

Surface subgroups -Most 3-manifolds are hyperbolic, and hyperbolic 3-manifolds are known
to contain plentiful subgroups isomorphic to the fundamental group of a hyperbolic surface
⌃g. Because these hyperbolic 3-manifold groups are LERF, this produces an injective map on
profinite completions ⇡̂1(⌃g) ! ⇡̂1(M).

For G a µ-random group, with what probability do we have an injection ⇡̂1(⌃g) ! G?
Something weaker, an injection ⇡1(⌃g) ! G, exists with probability 1: By [BGSS06, Theorem

1.1], it su�ces to check that G admits an injection from a free group with probability 1. In fact,
with probability 1, two random elements of G generate a free group, which one can check using
the fact that G has infinitely many distinct finite simple quotients with probability 1.

Topological finite generation - The fundamental groups of 3-manifolds are topologically
generated, so their profinite completions are topologically finitely generated. Does the same
hold for random groups according to the measure µ? Since 3-manifolds of Heegard genus g can
require up to g generators, and µ is obtained by a large g limit, it is not clear what to expect.
(This question was suggested by Mark Shusterman and Jordan Ellenberg.)
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Groups with special structure - In Section 8.3, we found all finite groups in the support of
the measure µ. One could seek a stronger version of this result by replacing the condition “finite”
with a weaker condition such as virtually abelian, virtually nilpotent, or virtually solvable. All
virtually solvable fundamental groups of 3-manifolds are known [AFW15, Theorem 1.11.1], but
as in the finite case, there may be new examples that are limits of 3-manifold groups but not
themselves 3-manifold groups. One could also ask similar questions for other restricted classes
of groups.

Linear representations - Hyperbolic 3-manifold groups are subgroups of SL2(C), and thus
have two-dimensional linear representations with image dense in SL2. These can be defined over
a number field K, so we obtain representations of the profinite fundamental group into SL2(Kv)
for the completion Kv of K at each place v. We can ask whether a µ-random group has such
representations, and more generally what representations over p-adic fields it has.

Appendix A. Semicharacteristics

Let M be a manifold of dimension 2n + 1 and  a field. The semicharacteristic of M with
coe�cients in  is

P
n

i=0
(�1)i dimHi(M,).

Generalizing this, for M a manifold with a surjection ⇡1(M) ! G and associated cover-
ing M̃ ! M (equivalently, for M̃ a manifold with a free action of G), Lee [Lee73, Definition
2.3] defined a semicharacteristic class

P
n

i=0
(�1)i[Hi(M̃,)] taken in the Grothendieck group of

representations of G over  modulo a certain subspace depending on the parity of n and the char-
acteristic of . The main result of [Lee73] is that, modulo this subspace, the semicharacteristic
is a bordism invariant [Lee73, Theorem 2.7 and Theorem 3.8].

This result bears an obvious similarity to Lemma 2.11. The di↵erence is that [Lee73] considers
the cohomology of the cover in K-theory, while we consider cohomology twisted by a represen-
tation. Cohomology twisted by a representation is the more powerful invariant: Recall that
representations of a group are equivalent to modules of the group algebra and a module P is
projective if the functor Hom(P,�) is exact. We will check that the dimension of the ith coho-
mology twisted by each indecomposable projective module for the group algebra determines the
class of the ith cohomology of the cover in K-theory. However, the K-theory does not determine
the cohomology of non-projective modules.

Using this, we will show that our result implies the main result of [Lee73] in the cases where
they both apply. It would be interesting to find a suitable generalization of our result (equiva-
lently, strengthening of Lee’s) to the higher-dimensional even characteristic case.

We begin by formally defining the subspace we quotient the Grothendieck group by. For  of
characteristic 6= 2, and n odd, the semicharacteristic is valued in the quotient of the Grothendieck
group by the subspace generated by all symmetrically self-dual representations together with the
regular representation, while for  of characteristic 6= 2, and n even, the semicharacteristic is
valued in the quotient of the Grothendieck group by the subspace generated by all symplectic
representations together with the regular representation [Lee73, Definitions 2.1 and 2.3]. For 
of characteristic 2, the semicharacteristic is valued in the quotient of the Grothendieck group
by the subspace generated by all even representations together with the regular representation
[Lee73, Theorem 3.8], where the even representations V are those admitting a nondegenerate
symmetric bilinear G-invariant form � such that �(x, tx) = 0 for all x 2 V and all t 2 G of order
exactly 2 [Lee73, p. 190].



FINITE QUOTIENTS OF 3-MANIFOLD GROUPS 69

We next recall that for V an irreducible representation of a finite group G over a field , there is
a unique indecomposable projective module P(V ) for [G] that admits V as a subrepresentation.
This is also the unique indecomposable projective module for [G] that admits V as a quotient.

Lemma A.1. For V a absolutely irreducible representation of G over , the number of times V
appears in the Jordan-Hölder decomposition of Hi(M̃,) is equal to dimH i(M,P(V )).

Proof. Since projective modules are stable under duality, projective modules are also injective.
Because P(V ) is injective, H i(M,P(V )) = HomG(Hi(M̃,),P(V )).

So it su�ces to prove that for a representation W , the number of times V appears in the
Jordan-Hölder decomposition of W is equal to dimHomG(W,P(V )).

Again because P(V ) is injective, both sides are additive in exact sequences, so we may
reduce to the case when W is irreducible, and the statement is that for W,V irreducible,
HomG(W,P(V )) ⇠=  if W ⇠= V and 0 if W 6⇠= V , which is standard. ⇤
Lemma A.2. For V a absolutely irreducible representation of G over a field  of characteristic

not two, V is symmetrically self-dual if and only if P(V ) is, and V is symplectic if and only if

P(V ) is.
For V a absolutely irreducible representation of G over a field  of characteristic two, P(V )

is symplectic if and only if V is self-dual but not an even representation.

Proof. Fix V an absolutely irreducible representation of G.
Let f be a homomorphism P(V ) ! [G] of left [G]-modules. Then f defines an embedding

V ! P(V ) ! [G]. Any such embedding must have the form x 2 V 7!
P

g2G af (g�1
· x)[g]

for some linear form af 2 V _. Furthermore, composition with f defines a linear map V ⇠=
Hom([G], V ) ! Hom(P(V ), V ) ⇠= Hom(V, V ) = , and thus a linear form bf on V .

We claim that bf = �af for some � 2 ⇥. To see this, note that both f 7! af and f 7! bf are
nontrivial homomorphisms Hom(P(V ),[G]) ! V _ that are equivariant for the right G action
of [G]. As a right G-module, Hom(P(V ),[G]) ⇠= P(V )_ ⇠= P(V _) has a unique quotient
isomorphic to V _, so any two such homomorphisms di↵er by a G-invariant automorphism of
V _, i.e. by scalar multiplication.

Now fix one such f that is a split injection. The pullback of any bilinear form on [G] along
f gives a bilinear form on P(V ). (All bilinear forms we consider will be G-invariant.) The
pullback of a symmetric bilinear form is symmetric, and the pullback of a symplectic bilinear
form is symplectic. Furthermore, because f is split, every symmetric bilinear form on P(V ) arises
by pullback along f from a symmetric bilinear form on [G], and similarly with symplectic forms.
Thus, to test when V is symmetrically self-dual, we will calculate all symmetric bilinear forms on
[G] and check when the pullback of one along f is symmetric, and similarly in the symplectic
case.

We first describe the bilinear forms on [G]. These are parameterized by tuples d = (dg)g2G
of coe�cients in  associated to g 2 G, and are given by the formula

h

X

g2G

ag[g],
X

g2G

bg[g]id =
X

g2G

X

h2G

agbhdh�1g.

Then
h

X

g2G

ag[g],
X

g2G

bg[g]id = h

X

g2G

bg[g],
X

g2G

ag[g]id

where
dg = dg�1
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so h, id is symmetric if dg = dg�1 for all g and symplectic if dg = �dg�1 for all g with, in
characteristic 2, the additional condition de = 0 where e is the identity.

Now a bilinear form P(V ) ⇥ P(V ) !  is nondegenerate if and only if the induced map
P(V ) ! P(V )_ is injective, i.e. if its kernel is zero, which happens if and only if the induced
map V ! P(V ) ! P(V )_ is injective. Thus, the pullback of h, id is nondegenerate if and only
if there exists x 2 V and y 2 P(V ) such that hf(x), f(y)id 6= 0.

Now the map Lf : [G] ! V _ that sends ↵ 2 [G] to the linear form x 7! hf(x),↵id is
G-equivariant since f and h, id are. Thus it defines an element of V _. We calculate this element
by evaluating at ↵ = [e] 2 [G].

For x 2 V , f(x) =
P

g2G af (g�1x)[g] by definition. Thus

Lf ([e])(x) = hf(x), [e]id =
X

g2G

af (g
�1

· x)dg = af
⇣X

g

dgg
�1

· x
⌘
.

The pullback of the bilinear form h, id is nondegenerate if and only if the composition of Lf

with f : P(V ) ! [G] is nonzero.
If V is not self-dual, then the homomorphism P(V ) ! [G] ! V _ automatically vanishes

and thus there is no such nondegenerate bilinear form. So suppose that V is self-dual, so in
particular there is a map � : V _

! V . The isomorphism Hom([G], V ) ⇠= V sends a linear map
L to L([e]) so it sends � � Lf to

�(Lf ([e])) = �(x 7! af (
X

g

dgg
�1

· x)) =
X

g2G

dgg · �(af ) 2 V.

So by the definition of bf , the composition � � Lf � f : P(V ) ! [G] ! V _
! V is nonzero if

and only if

bf
⇣X

g2G

dgg · �(af )
⌘
6= 0

and a nondegenerate symmetric (or symplectic) bilinear form exists if and only if bf (
P

g2G dgg ·
�(af )) 6= 0 for some d satisfying the conditions to be symmetric (or symplectic). To simplify
this, note that bf (x) = h�(bf ), xiV for h, iV the bilinear form on V , and recall bf = �af so we
can express the nonvanishing condition more simply as

X

g2G

dgh�(af ), g · �(af )iV 6= 0.

We now specialize to particular cases. In characteristic not two,

X

g2G

dgh�(af ), g·�(af )iV =
X

g2G

dghg
�1
·�(af ), �(af )iV =

X

g2G

dgh�(af ), g
�1
·�(af )iV ·

(
1 V symmetric

�1 V symplectic

=
X

g2G

dgh�(af ), g · �(af )iV ·

(
1 V symmetric

�1 V symplectic
·

(
1 h, id symmetric

�1 h, id symplectic
.

If V is symmetric and h, id is symplectic, or vice versa, then the signs don’t match and
so
P

g2G dgh�(af ), g · �(af )iV is equal to its own negation and thus vanishes. Since a self-
dual absolutely irreducible representation is either symmetric or symplectic, we see there is no
nondegenerate symmetric form on P(V ) unless V is symmetric and no nondegenerate symplectic
form on P(V ) unless V is symplectic. Conversely, for any nonzero �(af ), there is always some
h such that h�(af ), h · �(af )iV 6= 0 by irreducibility of V . In this case, we can take dh = 1, and
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dh�1 = 1 if V is symmetric or dh�1 = �1 if V is symplectic, and dg = 0 for g 6= h, h�1, and this
ensures

P
g2G dgh�(af ), g · �(af )iV 6= 0 .

In characteristic 2, the unique bilinear form on V is necessarily symmetric. Thus if h, id is
symplectic, the contributions of g and g�1 to the sum

P
g2G dgh�(af ), g · �(af )iV are equal.

Thus these contributions cancel each other unless g = g�1, i.e. if g has order dividing 2. Since
de = 0, we need only consider the contribution from g of exact order 2. If V is even, then
the contribution vanishes by definition and so there are no nondegenerate symplectic forms.
Conversely, if V is not even then for some g and x we have hx, g · xiV is nonzero. Since g
has order 2, hx, g · xiV defines a Frobenius-semilinear form, so it vanishes for all x outside
a proper subspace. Choose h such that h · �(af ) is not in that subspace, and observe that
h�(af ), h�1gh · �(af )iV = hh�(af ), gh · �(af )iV 6= 0, so choosing d supported on h�1gh we
construct a nondegenerate symplectic form. ⇤

We are now ready to describe how the semicharacteristic studied by Lee is determined by the
cohomology groups controlled in Lemma 2.11, and thus to deduce Lee’s theorem (except in the
even characteristic n > 1 case) from Lemma 2.11.

Lemma A.3. Let G be a finite group and  a finite splitting field for G. Let n be a natural num-

ber. We will always take M to be a 2n+1-dimensional oriented manifold with a homomorphism

⇡1(M) ! G.

(1) If n is odd and  has characteristic 6= 2, the class of
P

n

i=0
(�1)i[Hi(M,)] in the Grothendieck

group of representations of G over , modulo the classes of symmetrically self-dual repre-

sentations, is determined by
P

n

i=0
(�1)i dimH i(M,V ) mod 2 for even-dimensional sym-

plectic representations V of G over  that are projective. In particular, it is an invariant

of the class of M in the oriented bordism group of BG.

(2) If n is even and  has characteristic 6= 2, the class of
P

n

i=0
(�1)i[Hi(M,)] in the

Grothendieck group of representations of G over , modulo the classes of symplectic rep-

resentations and the regular representation, is determined by
P

n

i=0
(�1)i dimH i(M,V )

mod 2 for even-dimensional symmetrically self-dual representations V of G over  that

are projective. In particular, it is an invariant of the class of M in the oriented bordism

group of BG.

(3) If n is odd and  has characteristic 6= 2, the class of
P

n

i=0
(�1)i[Hi(M,)] in the Grothendieck

group of representations of G over , modulo the classes of even representations, is de-

termined by
P

n

i=0
(�1)i dimH i(M,V ) mod 2 for even-dimensional symplectic represen-

tations V of G over  that are projective and lift to ASp

(V ). In particular, if n = 1

then it is an invariant of the class of M in the oriented bordism group of BG.

In the first and third cases, it is not necessary to mod out by the regular representation as
the regular representation is symmetrically self-dual and, in characteristic 2, even.

Proof. We handle part (1) first, then describe how the arguments in the remaining cases di↵er.
A class in the Grothendieck group can be represented as

P
V
mV [V ], the sum taken over

irreducible representations V of G over , for some integers mV .
Note that V � V _ is always symmetrically self-dual. Thus, two classes arising from two

tuples of integers mV ,m0
V
are equivalent modulo the symmetrically self-dual representations if

mV � mV _ = m0
V
� m0

V _ for all irreducible representations V and mV � mV 0 is even for all
V self-dual but not symmetrically self-dual. Indeed, in this case, the di↵erence between the
classes is a sum of irreducible symmetrically self-dual representations, sums of a non-self-dual
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representation and its dual, and even multiples of a symplectic representation, which are sums
of a representation and its dual (itself).

When representing the class of
P

n

i=0
(�1)i[Hi(M,)] in the Grothendieck group this way,

mV (M) =
P

n

i=0
(�1)i multV Hi(M,) . So to show this class, modulo symmetrically self-dual

representations is determined by
P

n

i=0
(�1)i dimH i(M,V ) mod 2 for even-dimensional symplec-

tic representations of G over  that are projective, it su�ces to show that mV (M)�mV _(M) is
determined, as is mV mod 2 for irreducible representations that are self-dual but not symmet-
rically self-dual.

For the first part, the fact that mV (M) = mV _(M) was already proven by Lee, using Euler
characteristic and Poincaré duality arguments. For the second part, if V is irreducible and
self-dual but not symmetric, then it must be symplectic so by Lemma A.2, P(V ) is symplectic
Because P(V ) is symplectic, it is even-dimensional. Thus by Lemma A.1,

mV (M) =
nX

i=0

(�1)i multV Hi(M,) =
nX

i=0

(�1)iH i(M,P(V )) mod 2

so mV (M) mod 2 is determined by
P

n

i=0
(�1)iH i(M,P(V )) mod 2, and P(V ) satisfies all of

the assumed properties.
Finally, by Lemma 2.11,

P
n

i=0
(�1)iH i(M,P(V )) mod 2 is determined by the bordism class

of M .
For part (2), the argument is similar, except for the following: First, we use the fact that

V � V _ is always symplectic. Second, we prove that P(V ) is symmetrically self-dual, and so we
can no longer use the fact that P(V ) is symplectic to guarantee it is even-dimensional. Instead
we use the fact that we need only determine

P
n

i=0
(�1)i[Hi(M,)] in the Grothendieck group

modulo both the symmetrically self-dual representations and the regular representation.
Adding a copy of the regular representation does not a↵ect mV � mV _ , but it swaps the

parity of mV if V is self-dual of odd multiplicity in [G]. Since the multiplicity of an irreducible
representation V in [G] is equal to dimP(V ), adding a copy of the regular representation
swaps the parity of mV for all irreducible representations V with dimP(V ) odd. Thus, to
determine the class modulo symplectic representations and the regular representation, it su�ces
to know mV �mV _ for all irreducible representations V , mV mod 2 for all symmetrically self-
dual irreducible representations V with dimP(V ) even, and mV +mW mod 2 for all pairs V,W
of symmetrically self-dual irreducible representations with dimP(V ), dimP(W ) odd.

Thus, in the second part, it su�ces to know
P

n

i=0
H i(M,P(V )) mod 2 where P(V ) is pro-

jective, symmetrically self-dual, and even-dimensional, and in the third part, it su�ces to knowP
n

i=0
H i(M,P(V )�P(W )) mod 2 where P(V )�P(W ) is projective, symmetrically self-dual,

and even-dimensional. So we still need consider only representations that satisfy all the assumed
properties. Then we use Lemma 2.11 the same way.

For part (3) it is again similar to part (1). We now use the fact that V � V _ is even, which
may be less familiar – the form h(x1, y1), (x2, y2)i = x1 · y2 + x2 · y1 is symmetric, and for g of
order 2,

h(x, y), g · (x, y)i = h(x, y), (gx, gy)i = x · gy + gx · y = x · gy + x · g�1y = x · gy + x · gy = 0

where we use g = g�1 and the fact that the characteristic is two, so this form is even.
We can again use the argument that symplectic representations must be even-dimensional,

but we now face the di�culty that Lemma A.2 ensures that P(V ) is symplectic but we want
the action of G to lift to ASp


(V ). However, the obstruction to such a lift is contained in
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H2(G,P(V )) which vanishes since P(V ) is projective, so a lift always exists. Finally, here
Lemma 2.11 is restricted to the n = 1 case only. ⇤

By combining Lemma 2.10 and Lemma A.3, we can check that the semicharacteristic vanishes
in the odd characteristic n = 1 case. Again, this requires only the projective case of Lemma 2.10,
and the general case may be significantly stronger.
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[Més20] András Mészáros. The distribution of sandpile groups of random regular graphs. Transactions of the

American Mathematical Society, 373(9):6529–6594, September 2020.
[Mil57] John Milnor. Groups which act on S

n without fixed point. American Journal of Mathematics,
79(3):623, July 1957.

[Neu67] Hanna Neumann. Varieties of Groups. Springer Berlin Heidelberg, 1967.
[Nic21] John Nicholson. On CW-complexes over groups with periodic cohomology. Transactions of the Amer-

ican Mathematical Society, 374(09):6531–6557, May 2021.
[NSW00] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of Number Fields, volume

323 of Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences]. Springer-Verlag, Berlin, 2000.
[Par80] William Pardon. Mod 2 semi-characteristics and the converse to a theorem of Milnor. Mathematische

Zeitschrift, 171:247–268, 1980.
[PR22] Bram Petri and Jean Raimbault. A model for random three–manifolds. Commentarii Mathematici

Helvetici, 97:729–768, 2022.
[Riv14] Igor Rivin. Statistics of random 3-manifolds occasionally fibering over the circle.

https://arxiv.org/abs/1401.5736, 2014.
[RZ10] Luis Ribes and Pavel Zalesskii. Profinite Groups, volume 40 of Ergebnisse Der Mathematik Und Ihrer

Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and

Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin,
second edition, 2010.

[Saw20] Will Sawin. Identifying measures on non-abelian groups and modules by their moments via reduction
to a local problem. arXiv:2006.04934 [math], June 2020.



FINITE QUOTIENTS OF 3-MANIFOLD GROUPS 75

[SW22] Will Sawin and Melanie Matchett Wood. The moment problem for random objects in a category.
arXiv:2210.06279, October 2022.

[SW23] Will Sawin and Melanie Matchett Wood. Conjectures for distributions of class groups of extensions
of number fields containing roots of unity. (arXiv:2301.00791), January 2023.

[Via21] Gabriele Viaggi. Volumes of random 3-manifolds. Journal of Topology, 14(2):504–537, 2021.
[Woo17] Melanie Matchett Wood. The distribution of sandpile groups of random graphs. Journal of the Amer-

ican Mathematical Society, 30(4):915–958, 2017.
[Woo19] Melanie Matchett Wood. Random integral matrices and the Cohen Lenstra Heuristics. American

Journal of Math., 141(2):383–398, 2019.
[WW21] Weitong Wang and Melanie Matchett Wood. Moments and interpretations of the Co-

hen–Lenstra–Martinet heuristics. Commentarii Mathematici Helvetici, 96(2):339–387, June 2021.

Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton,
NJ 08540 USA

Email address: wsawin@math.princeton.edu

Department of Mathematics, Harvard University, Science Center Room 325, 1 Oxford Street,
Cambridge, MA 02138 USA

Email address: mmwood@math.harvard.edu


	1. Introduction
	1.1. Previous work and new approaches
	1.2. Outline of the paper
	1.3. Notation
	Acknowledgements

	2. Properties of the fundamental group of closed 3-manifolds
	2.1. The affine symplectic group and the class cV

	3. The Dunfield-Thurston random model and its moments
	4. The main theorem on the distribution
	4.1. Definitions
	4.2. Setup
	4.3. Proof of Theorem 4.2 from the major inputs

	5. Inclusion-exclusion lemma
	6. Convergence theorem for the moments
	6.1. Definitions
	6.2. Limit of moments is moments of limit for (unoriented) groups
	6.3. Limit of moments is moments of limit for oriented groups
	6.4. Convergence in L: Proof of L:llim

	7. Evaluation of the main group-theoretic sum
	7.1. Non-abelian groups
	7.2. Those representations whose dual representations do not appear
	7.3. Representations whose duals appear
	7.4. Proof of Proposition 4.4

	8. Existential Theory
	8.1. General necessary and sufficient conditions for existence of 3-manifold groups
	8.2. Concrete corollaries on non-existence and existence of 3-manifolds
	8.3. Classification of unobstructed groups

	9. Probabilistic Theory
	9.1. Maximal p-group and nilpotent class c quotients
	9.2. The distribution of the torsion linking pairing
	9.3. Proof of intro-prob
	9.4. The limiting probability of a G-cover with positive first Betti number is 0

	10. Some Further Directions
	10.1. Algorithms
	10.2. Other random groups
	10.3. Questions on the limiting measure 

	Appendix A. Semicharacteristics
	References

