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WILL SAWIN

Abstract. We give an axiomatic characterization of multiple Dirichlet series over the func-
tion field Fq(T ), generalizing a set of axioms given by Diaconu and Pasol. The key axiom,
relating the coe�cients at prime powers to sums of the coe�cients, formalizes an observation
of Chinta. The existence of multiple Dirichlet series satisfying these axioms is proved by
exhibiting the coe�cients as trace functions of explicit perverse sheaves, and using proper-
ties of perverse sheaves. The multiple Dirichlet series defined this way include, as a special
case, many that have appeared previously in the literature.
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1. Introduction

1.1. Background. Multiple Dirichlet series were originally defined as Dirichlet series in
multiple variables satisfying twisted muliplicativity properties and certain groups of func-
tional equations. These were first motivated by moments of L-functions [??], and have since
been successfully used to calculate a number of moments, with recent examples including
[????]. If one defines a Dirichlet L-function where the Dirichlet character is expressed as a
Legendre symbol, as in
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then it is natural to consider moments like
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A plausible strategy to analyze these moments is to first replace the coe�cients
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i=1

�
ni
m

�

by another set of coe�cients an1,...,nk,m which agrees with it for n1, . . . , nk,m squarefree and
relatively prime, but may di↵er for other values, which ensures the series has better analytic
properties, use these analytic properties to estimate suitable integrals of the series, and then
use a sieve to extract information about the corresponding integral with the original set of
coe�cients. Since the coe�cients
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satisfy a twisted multiplicativity analogous to

the multiplicativity of the coe�cients of classical Dirichlet series, one assumes the modified
coe�cients keep this twisted multiplicativity, i.e.
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as long as n1, . . . , nk,m are relatively prime to n
0
1, . . . , n

0
k,m. Generally the better analytic

properties one seeks to obtain are functional equations, and analytic continuation enabled
by those functional equations.

Most desirable would be meromorphic continuation to Cr, with r the number of variables,
with an explicit description of the poles. This can be obtained when one has a functional
equation in each variable generating a finite group of functional equations (typically a Weyl
group). However, some recent work has studied multiple Dirichlet series with an infinite
group of functional equations [?], where one expects only meromorphic continuation to a
certain region in Cr, and can only prove meromorphic continuation to a smaller region
directly from the functional equations. Still, obtaining continuation to the larger region is
sometimes possible [?], and could hold the key to estimating higher moments of L-functions
[??].

Since the multiplicativity is twisted, one does not have an expression of the multiple Dirich-
let series as an Euler product of local factors. However, twisted multiplicativity does still
reduce the choice of coe�cients for each tuple of numbers to the local choice of coe�cients
for each tuple of powers of a fixed prime. To obtain the desired functional equations, one
needs that the generating series of these prime power coe�cients satisfy certain analogous
functional equations. Because these local functional equations were used to define the coef-
ficients, the multiple Dirichlet series could only be uniquely defined when these functional
equations were su�cient to uniquely characterize the generating functions. ? first observed
that, when working over the function field Fq(t), there was a local-to-global symmetry re-
lating these generating functions to the multiple Dirichlet series. This could be proven by
observing that they were both determined by their functional equations, and then comparing
their functional equations.
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1.2. Summary of results. The goal of this paper is to provide a uniform construction of
multiple Dirichlet series over the function field Fq(t), parameterized simply by the finite field
Fq, a character � of Fq, and a symmetric integer matrix M , that includes many multiple
Dirichlet series separately constructed previously as well as new examples. In future work,
we hope to investigate these new examples, finding functional equations they satisfy, regions
to which they can be analytically continued, and applications to moments of L-functions.
Furthermore, it may be possible to define new multiple Dirichlet series in the number field
context by choosing the coe�cients at tuples of powers of a prime p to match the coe�cients
of the series defined here at powers of a polynomial over Fp, and then to investigate their
analytic properties also.

Our approach is inspired by ?, who showed that the local-to-global properties observed by
?, combined with the twisted multiplicativity, uniquely characterize the multiple Dirichlet
series by an inductive argument, and thus could be used as a definition of multiple Dirichlet
series. However, they were only able to show existence of the multiple Dirichlet series
satisfying these local-to-global properties in one particular family of cases, the one relating
to moments of quadratic Dirichlet L-functions, by a lengthy étale cohomology argument. In
these cases, ? was able to show that the functional equations follow from the local-to-global
properties.

We propose a new approach. We define multiple Dirichlet series that satisfy quite general
twisted multiplicativity relations involving arbitrary characters, which are uniquely char-
acterized by local-to-global properties. Here the matrix M and character � determine the
exact function we twist the multiplicativity relation by. However, we define and construct
the multiple Dirichlet series coe�cients as trace functions of certain perverse sheaves.

Using this local-to-global property, it is possible to show that our multiple Dirichlet series
include as a special case some multiple Dirichlet series that appear before in the literature.
We prove this for two series defined by ? (Corollary 4.3 and (4.20)) and one defined by
? (Proposition 4.8. For those defined by ? the proof is automatic since their axioms are
a special case of ours. It seems reasonable to expect, based on these examples, that every
multiple Dirichlet series defined in the literature whose values at relatively prime tuples of
squarefree numbers can be expressed in terms of Dirichlet characters, Jacobi symbols, and
Gauss sums, are also special cases of our construction, while those expressed using Fourier
coe�cients of higher rank automorphic forms, as summarized in [?], are not. However, it is
very plausible that multiple Dirichlet series related to higher rank automorphic forms could
arise from perverse sheaves constructed in a similar way using the Langlands parameter of
the automorphic form. In addition to the examples, these expectations are motivated by
the idea that the trace function of a perverse sheaf gives the best way to extend a function
from “generic” values like tuples of relatively prime squarefree numbers to all values, and
therefore that every extension that satisfies nice analytic properties likely comes from a
suitable perverse sheaf.

The idea that the trace function of a perverse sheaf gives a well-behaved function in
analytic number theory over function fields is most prominent in the geometric Langlands
program, where automorphic forms are expected, and in many cases known, to arise in this
way, but it can also be seen in more elementary situations. For example, the divisor function
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arises from a perverse sheaf. More generally, so do the coe�cients of the L-function of a
Galois representation.

The author also expects that these multiple Dirichlet series will satisfy functional equa-
tions analogous to those satisfied by existing series like the Weyl group multiple Dirichlet
series [?], and possibly more general ones, with the exact nature of the functional equations
depending on the parameters M,�. The same examples give some evidence of this: Propo-
sition 4.8 covers a Weyl group multiple Dirichlet series that satisfies an interesting group
of functional equations matching the Weyl group S3, suggesting that further special cases
of our construction may also satisfy similar functional equations. Furthermore (4.3) gives a
relation between the coe�cients of two multiple Dirichlet series that can be used to prove a
functional equation relating the series themselves, with the Fourier transform in that equa-
tion playing the same crucial role it does in the classical functional equations of the zeta
function and Dirichlet L-functions, again suggesting that more general functional equations
of this type should exist. Work in progress by the author and Ian Whitehead, as well as by
Matthew Hase-Liu, aims to prove these functional equations in greater generality. This work
will also enable us to realize further previously-defined multiple Dirichlet series as special
cases of the construction of this paper, as these series are uniquely determined by their func-
tional equations so it su�ces to check the newly-defined series satisfy the same functional
equations. It may also be possible to use this work to find new Dirichlet series calculable
using their functional equations, with possible applications to estimating new moments of
L-functions.

1.3. Notation. Let Fq[t] be the ring of polynomials in one variable over a finite field Fq.
Let Fq[t]+ be the subset of monic polynomials. Let f 0 be the derivative of f with respect to
t.

Fix a natural number n. We always let � : F⇥
q ! C⇥ be a character of order n. Let

�m : F⇥
qm ! C⇥ be the composition of � with the norm map Fqm ! Fq.

Define a residue symbol ✓
f

g

◆

�

for (f, g) 2 Fq[t] coprime as the unique function that is separately multiplicative in f and g

such that if g is irreducible of degree d,
✓
f

g

◆

�

= �

✓
f

qd�1
q�1

◆
,

where we use the fact that f
qd�1
q�1 in Fq[T ]/g = Fqd in fact lies in Fq.

Let Res(f, g) be the resultant of f and g (i.e. the product of the values of f at the roots
of g).

We define a “set of ordered pairs of Weil numbers and integers” to be a set J consisting
of ordered pairs j of a Weil number ↵j and an integer cj, such that no ↵j appears twice in
the set, and cj is never zero.

For J1, J2 two sets of ordered pairs, we define J1 [ J2 to be the union, except that if some
Weil number ↵ appears in both J1 and J2, we add the cjs together, and if the sum is zero,
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we remove them. In other words, J1 [ J2 is the unique set of ordered pairs of Weil numbers
and integers such that X

j2J1[J2

cj↵
e
j =

X

j2J1

cj↵
e
j +

X

j2J2

cj↵
e
j

for all integers e.
For a Weil number �, we take �J to be the set of ordered pairs (cj, �↵j), so thatP
j2�J cj↵

e
j = �

e
P

j2J cj↵
e for all integers e.

We say a function �(q,�) on pairs of a prime power q and character � of F⇥
q is a compatible

system of Weil numbers if
�(qe,�e) = �(q,�)e

for all q,�, e. For instance, the constant function 1 is a compatible system of Weil numbers.
We say that a function J(q,�) from pairs of a prime power q and a character � of F⇥

q to
sets of ordered pairs of Weil numbers and integers is a compatible system of sets of ordered
pairs if, whenever J(q,�) = {(↵j, cj)}, we have J(qe,�e) = {(↵e

j , cj)}, so that
X

j2J(qe,�e)

cj↵
r
j =

X

j2J(q,�)

cj↵
re
j .

We now define the general construction of sheaves that will be key for our paper. Fix once
and for all a prime ` invertible in Fq and an isomorphism between Q` and C (or just the fields
of algebraic numbers within each), with which we will freely identify elements of Q` and C.
Let X be an irreducible scheme of finite type over a field in which ` is invertible, generically
smooth of dimension d, and f a nonvanishing function on X. Let U be the maximal smooth
open set where f is invertible and let j : U ! X be the open immersion. We have a Kummer
map H

0(U,Gm) ! H
1(U, µq�1). The image of f under this map defines a µq�1-torsor. We

can twist the constant sheaf Q` by the image of this torsor under � : µq�1 = F⇥
q ! Q⇥

` ,
obtaining a lisse rank one sheaf L�(f) on U . Because U is smooth of dimension d, L�[d] is
a perverse sheaf on U . Let j⇤!(L�[d]) be its middle extension from U to X. Let

ICL�(f) = j⇤!(L�[d])[�d]

be this middle extension, shifted so it lies generically in degree zero.

1.4. Construction and main theorem. Let r be a natural number and let M be a sym-
metric r ⇥ r matrix with integer entries.

Let d1, . . . , dr be natural numbers. View Adi as the moduli space of monic polynomials of
degree di, so that

Qr
i=1 Adi is a moduli space of tuples (f1, . . . , fr) of monic polynomials. OnQr

i=1 Adi , define the polynomial function

Fd1,...,dr =
rY

i=1

Res(f 0
i , fi)

Mii
Y

1i<jr

Res(fi, fj)
Mij .

Let
Kd1,...,dr = ICL�(Fd1,...,dr

).

Given a tuple of polynomials (f1, . . . , fr) of degrees d1, . . . , dr, let a(f1, . . . , fr; q,�,M) be
the trace of Frobenius acting on the stalk of Kd1,...,dr at (f1, . . . , fr).
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Define the multiple Dirichlet series

Z(s1, . . . , sr; q,�,M) =
X

f1,...,fr2Fq [t]+

a(f1, . . . , fr; q,�,M)Qr
i=1 q

�(deg fi)si
.

The main theorem of this paper, giving an axiomatic characterization of the coe�cients
of the geometrically defined multiple Dirichlet series Z(s1, . . . , sr; q,�,M), is as follows.

Theorem 1.1. For any fixed M ,

a(f1, . . . , fr; q,�,M)

is the unique function, that, together with a function J(d1, . . . , dr; q,�,M) from tuples of
natural numbers d1, . . . , dr, to compatible systems of sets of ordered pairs of Weil numbers,
satisfies the axioms

(1) If f1, . . . , fr and g1, . . . , gr satisfy gcd(fi, gj) = 1 for all i and j, then we have

a(f1g1, . . . , frgr; q,�,M)

= a(f1, . . . , fr; q,�,M)a(g1, . . . , gr; q,�,M)
Y

1ir

✓
fi

gi

◆Mii

�

✓
gi

fi

◆Mii

�

Y

1i<jr

✓
fi

gj

◆Mij

�

✓
gi

fj

◆Mij

�

.

(2) a(1, . . . , 1; q,�,M) = 1 and a(1, . . . , 1, f, 1, . . . , 1; q,�,M) = 1 for all linear polyno-
mials f .

(3)

a(⇡d1 , . . . , ⇡
dr ; q,�,M) =

✓
⇡
0

⇡

◆Pr
i=1 diMii

�

X

j2J(d1,...,dr;q,�,M)

cj↵
deg ⇡
j .

(4)
X

f1,...,fr2Fq [t]+

deg fi=di

a(f1, . . . , fr; q,�,M) =
X

j2J(d1,...,dr;q,�,M)

cj
q

Pr
i=1 di

↵j
.

(5) |↵j| < q

Pr
i=1 di�1

2 as long as
Pr

i=1 di � 2.

Here axioms (3) and (4) give the local-to-global principle, (1) is the twisted multiplicativity,
and (2) and (5) are normalizations needed to ensure the axioms define a unique set of
coe�cients, with (5) also ensuring that individual coe�cients are not so large that they
dominate the series.

Note that the condition that J be a compatible system relates di↵erent finite fields at
a time, so it is not possible to check these axioms working only in a specific finite field q.
Rather, one must calculate in all extensions of a fixed finite field Fq0 .

In the case � is quadratic, when M is the sum of a matrix with a row of ones and the rest
of the entries zero and its transpose, the existence and uniqueness part of Theorem 1.1 were
obtained in [?].
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1.5. Perverse Sheaves. The key geometric idea of this paper is that local-to-global prop-
erty described by axiom (3) and (4) are a consequence of duality properties of perverse
sheaves. The local-to-global property relates the sum of many coe�cients of the multiple
Dirichlet series to a single coe�cient, via the set of Weil numbers J . Geometrically, we in-
terpret this as a relation between the sum of the trace of Frobenius on the stalk of a perverse
sheaf over all the Fq-points of a variety and the value at a single point. The Lefschetz fixed
point formula relates the sum of the trace of Frobenius over all Fq-points to the compactly
supported cohomology of the variety with coe�cients in the perverse sheaf. Because there
is an action of the multiplicative group on the variety that fixes only that point, giving it a
conical structure, a generalization of the result that the cohomology of a cone matches the
cohomology of the point relates the stalk of that point to the usual cohomology. Verdier
duality for perverse sheaves then relates the usual and compactly-supported cohomology.

Furthermore axiom (1) will follow from a twisted multiplicativity property of the polyno-
mial functions Fd1,...,dr used to construct the perverse sheaves Kd1,...,dr . We then transform
this identity involving the polynomials Fd1,...,dr to an isomorphism involving the perverse
sheaves Kd1,...,dr , using fundamental properties of the intermediate extension construction,
which then implies an identity involving the trace functions a(f1, . . . , fr; q,�,M) of the per-
verse sheaves Kd1,...,dr .

Axiom (5) follows from the theory of weights and purity for perverse sheaves, which gives
bounds for the Frobenius eigenvalues in each degree

Characteristic zero analogues of the perverse sheaves ICL�(Fd1,...,dr
) used in our construction

have been studied before from the perspective of quantum groups and Nichols algebras [??].
Some of our (brief) calculations with these sheaves in Section 3 are characteristic p ana-
logues of results previously obtained in the characteristic zero setting in these works. This
connection between multiple Dirichlet series and quantum groups seems di↵erent from the
usual one, as the coe�cients of the multiple Dirichlet series correspond to traces of Frobenius
on stalks of the sheaves that can be computed from the cohomology of the positive part of
the small quantum group, and the Frobenius and cohomology don’t appear in the usual pic-
ture. Interestingly, no analogue of the expected functional equations seems to appear in the
quantum algebra literature (though they seem related to the Weyl groupoid defined by ?). I
learned of these connections thanks to helpful conversations with Jordan Ellenberg, Michael
Finkelberg, Mikhail Kapranov, Tudor Pădurariu, and Vadim Schechtman.

While writing this paper, the author served as a Clay Research Fellow and, later, was
supported by NSF grant DMS-2101491. I would like to thank Adrian Diaconu for helpful
conversations and Matthew Hase-Liu and River Sawin for helping me find typos.

2. Preliminaries

2.1. Further notations. We use ⇠ to refer to, when q is odd, the unique character ⇠ : F⇥
q !

C⇥ of order 2. If n is even, we have ⇠ = �
n/2.

For a rational function f , let res(f) be its residue at 1, normalized so that res(1/t) = 1,
(i.e. the coe�cient of t�1 when f is expressed as a formal Laurent series in t

�1).
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For x 2 Fq, let  (x) = e
2⇡i tr

Fp
Fq x/p. Let G(�, ) =

P
x2F⇥

q
�(x) (x). Let

g�(f1, f2) =
X

h2Fq [t]/f2

✓
h

f2

◆

�

 

✓
res

✓
hf1

f2

◆◆
.

We say a function �(q,�) on pairs of a prime power q and character � of F⇥
q is a sign-

compatible system of Weil numbers if

��(qe,�e) = (��(q,�))e

for all q,�, e. For instance, the Hasse-Davenport identities imply that G(�r
, ) is sign-

compatible for any integer r.
We let

�(d1, . . . , dr; q,�,M) =
X

f1,...,fr2Fq [t]+

deg fi=di

a(f1, . . . , fr; q,�,M)

so that

Z(s1, . . . , sr; q,�,M) =
X

d1,...,dr2N

�(d1, . . . , dr; q,�,M)Qr
i=1 q

�disi
.

For ⇡ a prime polynomial, we let v⇡ be the ⇡-adic valuation of polynomials, i.e. v⇡(f) is
the maximum power of ⇡ dividing f .

2.2. Function field evaluations. Certain functions important in classical number theory,
such as the Möbius function, power residue symbol, and Gauss sums, admit alternate formu-
las in the function field Fq(t), that make clear their relationship to the algebra of polynomials.

Lemma 2.1. We have ✓
f

g

◆

�

= �(Res(f, g)).

Proof. Because the right side, by definition, is multiplicative in g, it su�ces to consider the
case where g is prime. Then for ↵ a root of g, the other roots are ↵q

, . . . ,↵
qd�1

. Hence the
product of the values of f at these roots is

d�1Y

i=0

f(↵qi) =
d�1Y

i=0

f(↵)q
i
= f(↵)

qd�1
q�1 .

Because ↵ is a root of g, we can evaluate this by setting ↵ = T and reducing mod g(T ),

which matches the definition of
⇣

f
g

⌘

�
. ⇤

Under this interpretation, the reciprocity law for power residue symbols is given by the
following fact:

Lemma 2.2. For monic f, g,

Res(f, g) = (�1)deg f deg g Res(g, f).
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Proof. For ↵1, . . . ,↵deg f the roots of f and �1, . . . , �deg g the roots of g,

Res(f, g) =
deg fY

i=1

deg gY

j=1

(�j � ↵i)

and

Res(g, f) =
deg fY

i=1

deg gY

j=1

(�j � ↵i)

so switching each term, we obtain deg f deg g factors of (�1). ⇤
Let �(f) be the discriminant of f . Let µ be the Möbius function.

Lemma 2.3. We have

(2.1) µ(f) = (�1)deg f⇠(�(f))

and

(2.2) �(f) = (�1)(deg f)(deg f�1)/2 Res(f 0
, f).

so

(2.3) µ(f) = (�1)deg f (�1)
deg f(deg f�1)(q�1)

4

✓
f
0

f

◆

⇠

Proof. (2.1) is Pellet’s formula. (2.2) follows from noting that for ↵1, . . . ,↵deg f the roots of
f , we have f

0(↵i) =
Q

j 6=i(↵i � ↵j) so

Res(f 0
, f) =

Y

1ideg f

Y

j 6=i

(↵i � ↵j) =
Y

1i<jdeg f

(↵i � ↵j)(↵j � ↵i)

= (�1)deg f(deg f�1)/2
Y

1i<jdeg f

(↵i � ↵j)
2 = (�1)deg f(deg f�1)/2�(f).

(2.3) follows from combining (2.1), (2.2), and the fact that ⇠(�1) = (�1)
q�1
2 . ⇤

Lemma 2.4. For f2 squarefree and f1 prime to f2,

(2.4) g�(f1, f2) = (�1)
deg f2(deg f2�1)(q�1)

4

✓
f
0
2

f2

◆

�

✓
f
0
2

f2

◆

⇠

✓
f1

f2

◆�1

�

(G(�, ))deg f2 .

Proof. Let tr be the trace Fq[t]/f2 ! Fq. First observe that because f2 is squarefree, f 0
2 is

invertible mod f2. The residue res(hf1f2
) is the sum of the residue of hf1

f2
at each root of f2,

which is the sum of the value of hf1
f 0
2
at each root of f2, which is tr hf1

f 0
2
. Thus

g�(f1, f2) =
X

h2Fq [t]/f2

✓
h

f2

◆

�

 

✓
res

✓
hf1

f2

◆◆

=
X

h2Fq [t]/f2

✓
h

f2

◆

�

 

✓
tr

hf1

f
0
2

◆
.
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If we change variables to h
⇤ = f1h/f

0
2, we have

⇣
h
f2

⌘

�
=
⇣

h⇤

f2

⌘

�

⇣
f 0
2

f2

⌘

�

⇣
f1
f2

⌘�1

�
so

g�(f1, f2) =

✓
f
0
2

f2

◆

�

✓
f1

f2

◆�1

�

X

h⇤2Fq [t]/f2

✓
h
⇤

f2

◆

�

 (trh⇤) .

The inner sum X

h⇤2Fq [t]/f2

✓
h
⇤

f2

◆

�

 (trh⇤)

is multiplicative in f2, and when f2 is a prime ⇡ takes the value �(�G(�, ))deg ⇡ by the
Hasse-Davenport relations. Hence the inner sum is equal to (�G(�, ))deg f2µ(f2). (2.4) then
follows from the last identity of Lemma 2.3.

⇤
The term Res(f 0

, f) that appears here has its own multiplicativity relation:

Lemma 2.5. We have

Res((fg)0, fg) = Res(f 0
, f) Res(g0, g) Res(f, g) Res(g, f).

Proof.
Res((fg)0, fg)

= Res((fg0 + f
0
g), f) Res((fg0 + f

0
g), g)

= Res(f 0
g, f) Res(fg0, g)

= Res(f 0
, f) Res(g, f) Res(f, g) Res(g0, g). ⇤

We record here also the multiplicativity relations for Gauss sums:

Lemma 2.6. If gcd(f2, f3) = 1 then

g�(f1f3, f2) =

✓
f3

f2

◆�1

�

g�(f1, f2).

Proof.

g�(f1f3, f2) =
X

h2Fq [t]/(f2

✓
h

f2

◆

�

 

✓
res

✓
hf1f3

f2

◆◆
.

Letting h
⇤ = hf3, we have

✓
h

f2

◆

�

=

✓
h
⇤

f2

◆

�

✓
f3

f2

◆�1

�

,

and we observe that this change of variables is a permutation, so

X

h2Fq [t]/(f2

✓
h

f2

◆

�

 

✓
res

✓
hf1f3

f2

◆◆
=

X

h⇤2Fq [t]/f2

✓
h
⇤

f2

◆

�

✓
f3

f2

◆�1

�

 

✓
res

✓
h
⇤
f1

f2

◆◆
=

✓
f3

f2

◆�1

�

g�(f1, f2).

⇤
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Lemma 2.7. If gcd(f1, f4) = gcd(f2, f4) = gcd(f2, f3) = 1 then

(2.5) g�(f1f3, f2f4) = g�(f1, f2)g�(f3, f4)

✓
f2

f4

◆

�

✓
f4

f2

◆

�

✓
f1

f4

◆�1

�

✓
f3

f2

◆�1

�

.

Proof.

g�(f1f3, f2f4) =
X

h2Fq [t]/(f2f4)

✓
h

f2f4

◆

�

 

✓
res

✓
hf1f3

f2f4

◆◆
.

As f2 and f4 are coprime, we can uniquely write h = h2f4 + h4f2 for h2 2 Fq[t]/f2 and
h4 2 Fq[t]/f4. We then have

✓
h

f2f4

◆

�

=

✓
h

f2

◆

�

✓
h

f4

◆

�

=

✓
h2f4

f2

◆

�

✓
h4f2

f4

◆

�

=

✓
h2

f2

◆

�

✓
f4

f2

◆

�

✓
h4

f4

◆

�

✓
f2

f4

◆

�

.

Furthermore we have

 

✓
res

✓
hf1f3

f2f4

◆◆
=  

✓
res

✓
h2f1f3

f2

◆◆
 

✓
res

✓
h4f1f3

f2

◆◆

Hence

g�(f1f3, f2f4) =

✓
f4

f2

◆

�

✓
f2

f4

◆

�

0

@
X

h22Fq [t]/f2

✓
h2

f2

◆

�

 

✓
res

✓
h2f1f3

f2

◆◆1

A

0

@
X

h42Fq [t]/f4

✓
h4

f4

◆

�

1

A

=

✓
f4

f2

◆

�

✓
f2

f4

◆

�

g�(f1f3, f2)g�(f1f3, f4).

Applying Lemma 2.6 to each factor, we get (2.5). ⇤
An identity to evaluate Gauss sums will help compare with the work of Chinta and Mohler.

Lemma 2.8. For � of order n, we have

g�(⇡
d1 , ⇡

d2) =

8
>>>>>><

>>>>>>:

1 if d2 = 0

(qdeg ⇡ � 1)q(d2�1) deg ⇡ if d2 ⌘ 0 mod n and d1 � d2

0 if d2 6⌘ 0 mod n and d1 � d2

�q
(d2�1) deg ⇡

�
⇡0

⇡

�d2
�
(�G(�d2 , ))deg ⇡ if d1 = d2 � 1

0 if d1 < d2 � 1

.

Proof. We begin by noting

(2.6) g�(⇡
d1 , ⇡

d2) =
X

h2Fq [t]/⇡d2

✓
h

⇡d2

◆

�

 
�
res
�
h⇡

d1�d2
��

.

First, if d2 = 0, the sum (2.6) has a single term and equals 1. Second,
�

h
⇡d2

�
�
depends only

on h mod ⇡, so if d1 < d2�1, the  term cancels in each residue class mod ⇡ and so the sum
(2.6) vanishes. If d1 � d2, the  term can be ignored and the sum (2.6) vanishes because
the multiplicative character cancels, unless d2 ⌘ 0 mod n, in which case the summand is 1
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if h is prime to ⇡ and 0 otherwise, and the value of the sum (2.6) is simply the number of h
prime to ⇡, which is (qdeg ⇡ � 1)q(d2�1) deg ⇡.

If d1 = d2 � 1, the sum (2.6) is equal to

q
(d2�1) deg ⇡

X

h2Fq [t]/⇡

✓
h

⇡

◆d2

�

 

✓
res

✓
h

⇡

◆◆
= q

(d2�1) deg ⇡
g�d2 (1, ⇡)

= q
(d2�1) deg ⇡(�1)

deg ⇡(deg ⇡�1)(q�1)
4

✓
⇡
0

⇡

◆d2

�

✓
⇡
0

⇡

◆

⇠

(G(�d2 , ))deg ⇡ = �q
(d2�1) deg ⇡

✓
⇡
0

⇡

◆d2

�

(�G(�d2 , ))deg ⇡

by Lemma 2.4 and (2.3), verifying the last remaining case. ⇤

2.3. `-adic sheaves. We have the following basic properties of ICL�(f).

Lemma 2.9. (1) For f a function on X and g an invertible function on X,

ICL�(fg)
⇠= ICL�(f) ⌦ L�(g).

(2) For s : X ! Y a smooth map and f a function on Y ,

ICL�(f�s)
⇠= s

⇤
ICL�(f).

(3) For X and Y two varieties, f a function on X and g a function on Y ,

ICL�((x,y) 7!f(x)g(y))
⇠= ICL�(f) ⇥ ICL�(g).

(4) For f a function on X, with X of dimension d, and D the Verdier dual

DICL�(f)
⇠= ICL��1 (f)[2d](d).

Proof. These all are proved by combining a basic property of middle extension with a prop-
erty of the sheaves L� that follows in a straightforward way from their definition.

(1) follows from the fact that middle extension is compatible with tensor product with
lisse sheaves, and the fact that L�(f)⌦ L�(g) = L�(fg).

(2) follows from the fact that middle extension is compatible with smooth pullback (once
shifts are taken into account) and s

⇤
L�(f) = L�(f � s).

(3) follows from the fact that both middle extension and L� are compatible with ⇥.
(4) follows from the fact that middle extension is compatible with Verdier duality and L�

is dual to L��1 as a lisse sheaf, hence DL�(f) = L��1(f)[2d](d).
These middle extension compatibilities follow from the, even more standard, compatibili-

ties of j! and j⇤ with these operations
⇤

We need also a slightly more complicated observation along the same lines. First, we
define and describe the notion of the Weil restriction of a complex of sheaves, building on
the notion of a tensor direct image of sheaves defined by ?.

Definition 2.10. Let k
0
/k be a finite Galois field extension. Let X be a variety over k

0.
The Weil restriction WR

k
k0X is defined as the variety over k whose R points for a k-algebra

R are the R⌦k k
0-points of X.
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For R a k
0-algebra, the natural map R⌦k k

0
! R defines a map from R-points of WR

k
k0X

to R-points of X, defining a map ⇢ : (WR
k
k0X)k0 ! X.

Let ⇡ : (WR
k
k0X)k0 ! WR

k
k0X be the natural map.

For K 0 a complex on (WR
k
k0X)k0 , ?, Definition 2 on p. 133 defines the tensor direct image

⇡⌦⇤K
0 as the unique complex on WR

k
k0X whose pullback to (WR

k
k0X)k0 is isomorphic toN

⌧2Gal(k0/k) ⌧
⇤
K

0 where the natural action of Gal(k0
/k) on the pullback is equal to the natural

action of Gal(k0
/k) permuting the factors (which exists and is unique by [?, Proposition 8

on p. 133]).
For K a complex on Xk0 , define the Weil restriction WR

k
k0K by

WR
k
k0K = ⇡⌦⇤⇢

⇤
K.

Remark 2.11. Note that this definition uses complexes of sheaves rather than the derived
category of sheaves because the descent argument needed to prove existence and uniqueness
would, in the derived category, require checking higher compatibilities of the action. If K is
an ordinary sheaf, or a perverse sheaf, up to shift, these subtleties can be avoided, as these
categories satisfy étale descent. We will only apply this in the case of perverse sheaves up
to shift.

Lemma 2.12. Let X be a variety over Fqd. Let K be a perverse sheaf on X. Then the trace

of Frobenius on the stalk of WR
Fq

Fqd
K at an Fq-point is equal to the trace of Frobenius on the

stalk of K at the corresponding Fqd-point, using the natural bijection X(Fqd) = WR
Fq

Fqd
X(Fq).

Proof. By definition and [?, Proposition 9 on p. 133], the trace of Frobq on the stalk of

WR
Fq

Fqd
K at an Fq-point x is the trace of Frobqd on the stalk of ⇢⇤K on the Fqd-point ⇡

�1(x).

The stalk of ⇢⇤K at ⇡�1(x) is the stalk of K at ⇢(⇡�1(x)), which is the corresponding
Fqd-point of X. ⇤
Lemma 2.13. Let k0

/k be a finite Galois field extension of fields containing µq�1. Let X be
a variety over k

0 and f a function on X. Let WR
k
k0X be the Weil restriction from k

0 to k

of X. The function f on X induces a map WR
k
k0X ! WR

k
k0A1, which we can compose with

the norm map WR
k
k0A1

! A1 to obtain a function Nf on WR
k
k0X. Let WR

k
k0ICL�(f) be the

Weil restriction of ICL�(f). Then

(2.7) WR
k
k0ICL�(f)

⇠= ICL�(Nf).

Proof. Since k
0
/k is Galois, we have an isomorphism

(WR
k
k0X)k0 =

Y

⌧2Gal(k0/k)

X

with the projection onto the ⌧ ’th factor given by ⇢ � ⌧ .
By definition the pullback of WR

k
k0ICL�(f) to k

0 is given by
O

⌧2Gal(k0/k)

⌧
⇤
⇢
⇤
ICL�(f) = ⇥⌧2Gal(k0/k)ICL�(f) = ICL�(

Q
⌧2Gal(k0/k) f�⇢�⌧) = ICL�(Nf)

by Lemma 2.9(3) and the identity
Q

⌧2Gal(k0/k) f � ⇢ � ⌧ = Nf on (WR
k
k0X)k0 . So the two

complexes in (2.7) are isomorphic after pullback to k
0.
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Since ICL�(Nf) is the middle extension of a lisse sheaf of rank one, it follows thatWR
k
k0ICL�(f)

is the middle extension of a lisse sheaf of rank one as well. To check they are isomorphic over
k, it su�ces to check the lisse sheaves are isomorphic, for which, because they are isomor-
phic over k0, it su�ces to check that their stalks at a single point are isomorphic as Galois
representations.

For WR
k
k0ICL�(f), the stalk at a geometric point x 2 WR

k
k0X where Nf is nonzero is

naturally the tensor product of a one-dimensional vector space for each ⌧ 2 Gal(k0
/k), and

on each one-dimensional vector space the action is the same as on an n’th root of f(⇢(⌧(x)).
For ICL�(Nf), the Galois action is the same as the Galois action on the nth root of Nf(x).
Because Nf(x) =

Q
⌧2Gal(k0/k) f(⇢(⌧(x)), and the nth root of the product is the product of

the nth roots of the factors, these are the same. ⇤
Lemma 2.14. Let X be a variety with an action of Gm described by a map a : X⇥Gm ! X.
Let f be a function on X and r an integer such that f(a(x,�)) = f(x)�r for all x 2 X and
� 2 Gm.

If r is divisible by n, then ICL�(f) is Gm-invariant, in the sense that a⇤ICL�(f) = ICL�(f)⇥
Q`. In particular, this always happens if we compose a with the n’th power homomorphism
Gm ! Gm.

If r is not divisible by n, then the stalk of ICL�(f) vanishes at every Gm-invariant point.

Proof. Because a is smooth, we have by Lemma 2.9(2,3)

a
⇤
ICL�(f)

⇠= ICL�(f�a)
⇠= ICL�(f(x)�r)

⇠= ICL�(f) ⇥ ICL�(�r).

If r is divisible by n, then IC�r is the middle extension of the constant sheaf, hence is
simply the constant sheaf.

If r is not divisible by the order of �, then restricting this identity to P ⇥ Gm for a
Gm-fixed point P , we have (ICL�(f))P ⌦ Q` = (ICL�(f))P ⌦ L�(�r). Because one side has
trivial monodromy and the other nontrivial, they cannot be isomorphic unless they both
vanish. ⇤
Lemma 2.15. Let B be a scheme of finite type over a field, Y = B⇥A1, u : B⇥Gm ! B⇥A1

the inclusion, ⇡ : B⇥A1
! B the projection, K a complex on B⇥Gm, and N 6= 0 an integer.

Assume that B is invariant for the action of Gm on B ⇥ Gm given by a((b,�1),�2) =
(b,�1�N2 ) for all b 2 B,�1,�2 2 Gm.

Then ⇡⇤u!K = 0.

Proof. Let ⇡ : A1
! pt be the projection and u : Gm ! A1 the inclusion, so that u = id⇥ u

and ⇡ = id⇥ ⇡. Let ⇢ : Gm ! Gm be the Nth power map. Let i : pt ! Gm be the inclusion
of the identity.

Restricting the Gm-invariance property to the locus where � = 1 , we see that (id⇥⇢)⇤K =
((id⇥i)⇤K)⇥Q`. Since ⇢ is finite, it follows thatK is a summand of (id⇥⇢)⇤((id⇥i)⇤K)⇥Q`,
so it su�ces to prove the vanishing of

⇡⇤u!(id⇥ ⇢)⇤(((id⇥ i)⇤K)⇥Q`) = (id⇥ ⇡)⇤(id⇥ u)!(id⇥ ⇢)⇤(((id⇥ i)⇤K)⇥Q`).

But by the Künneth formula in the form [?, Corollary 9.3.5], together with its compactly
supported version [?, Corollary 7.4.9], we have

(id⇥ ⇡)⇤(id⇥ u)!(id⇥ ⇢)⇤(((id⇥ i)⇤K)⇥Q`) = (id⇥ ⇡)⇤(id⇥ u)!(((id⇥ i)⇤K)⇥ ⇢⇤Q`)
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= (id⇥ ⇡)⇤(((id⇥ i)⇤K)⇥ u!⇢⇤Q`) = ((id⇥ i)⇤K)⇥ ⇡⇤u!⇢⇤Q`

so it su�ces to prove
⇡⇤u!⇢⇤Q` = 0,

but ⇡⇤u!⇢⇤Q` is a complex on a point, given by the cohomology groups H⇤(A1
, u!⇢⇤Q`).

By Artin’s theorem [?, Corollary 7.5.2], this cohomology vanishes in all degrees but zero
and one. All global sections of u!⇢⇤Q` vanish at zero, hence vanish in a neighborhood of
zero, hence vanish everywhere because u!⇢⇤Q` is lisse away from zero, so H

0 vanishes. By
the Grothendieck-Ogg-Shafarevich Euler characteristic formula [?, Theorem 7.1], the Euler
characteristic of u!⇢⇤Q` is zero, so H

1 vanishes as well. ⇤
Lemma 2.16. Let X be an a�ne scheme over a field with a Gm-action such that all noncon-
stant Gm-homogeneous functions on X have positive degree. Let P be the unique Gm-fixed
point of X. Let K be a Gm-invariant complex on X. Then

H
⇤(X,K) ⇠= KP .

Proof. Let x1, . . . , xn be generators of the ring of functions on X of degrees d1, . . . , dn. Let
d be the least common multiple of d1, . . . , dn. Then (xd/d1

1 , . . . , x
d/dn
n ) defines a finite Gm-

equivariant map from X to An, where Gm acts on An by multiplying all coordinates by
the dth power. Because the map is finite, and P is the unique point in the inverse image
of 0 2 An, both H

⇤(X.K) and Kp are preserved by pushing forward along this map, and
because this map is Gm-equivariant, the Gm-invariance is preserved. So we can reduce to
the case where X = An.

Let j be the inclusion from An
� {0} to An. From the excision exact sequence j!j

⇤
K !

K ! Kp, it su�ces to prove H⇤(An
, j!j

⇤
K) = 0. Let Y be the blowup of An at the origin, let

u : An
�{0} be the inclusion, b : Y ! An the blowup map, and ⇡ : An

! Pn�1 the projection
onto the exceptional fiber. We have j = b � u and b is proper so

H
⇤(An

, j!j
⇤
K) = H

⇤(An
, b!u!j

⇤
K) = H

⇤(An
, b⇤u!j

⇤
K) = H

⇤(Y, u!j
⇤
K) = H

⇤(Pn�1
, ⇡⇤u!j

⇤
K).

Thus it su�ces to show that ⇡⇤u⇤
K

0 is zero for a Gm-equivariant sheaf K 0 on An
� {0}.

Locally on Pn�1, Y is an A1-bundle, ⇡ the structure map, u the inclusion of the complement
of the 0 section, and the Gm action is by multiplication by the nth power. To prove this
vanishing, we work locally on Pn�1, where we are in the setting of Lemma 2.15. We take B

to be an open subset of Pn�1 where this bundle can be trivialized and let K be the pullback
of K 0 along this trivialization. By Lemma 2.15, ⇡⇤u⇤

K
0 = 0. ⇤

3. Proofs of the Axioms

We are now ready to check that the function a satisfies the axioms of Theorem 1.1.

Lemma 3.1. If f1, . . . , fr and g1, . . . , gr satisfy gcd(fi, gj) = 1 for all i and j, then we have

a(f1g1, . . . , frgr; q,�,M)

= a(f1, . . . , fr; q,�,M)a(g1, . . . , gr; q,�M)
Y

1ir

✓
fi

gi

◆Mii

�

✓
gi

fi

◆Mii

�

Y

1i<jr

✓
fi

gj

◆Mij

�

✓
gi

fj

◆Mij

�

.



16 WILL SAWIN

Proof. Let di = deg fi and ei = deg gi. Consider the map µ :
Qr

i=1 Adi ⇥
Qr

i=1 Aei !Qr
i=1 Adi+ei by polynomial multiplication.
Observe that

Res(figi, fjgj) = Res(fi, fj) Res(gi, gj) Res(gi, fj) Res(fi, gj)

and by Lemma 2.5

Res((figi)
0
, figi) = Res(f 0

i , fi) Res(g
0
i, gi) Res(fi, gi) Res(gi, fi)

so that, letting

G =
Y

1ir

Res(fi, gi)
Mii Res(gi, fi)

Mii
Y

1i<jr

Res(fi, gj)
Mij Res(gi, fj)

Mij

we have

(3.1) F (f1g1, . . . , frgr) = F (f1, . . . , fr)F (g1, . . . , gr)G.

Note also that µ is étale, hence smooth, on the open set U ✓
Qr

i=1 Adi ⇥
Qr

i=1 Aei where
gcd(fi, gj) = 1 for all i and j, and that G has no zeroes or poles on that set.

Hence by applying Lemma 2.9(1,2,3) to (3.1), we obtain an isomorphism

µ
⇤
Kd1+e1,...,dr+er

⇠= (Kd1,...,dr ⇥Ke1,...,er)⌦ L� (G)

on U . Taking trace functions of both sides, and applying Lemma 2.1 to evaluate the trace
function �(G) of L�(G), we get the stated identity. ⇤
Lemma 3.2. a(1, . . . , 1, f, 1, . . . , 1; q,�,M) = 1 for all linear polynomials f .

Proof. In this case, all resultants and discriminants are 1, so F = 1, thus K0,...,0,1,0,...,0 is the
constant sheaf Q`, hence its trace function is 1. ⇤

To check the remaining axioms, it will be useful to describe the translation and dilation
symmetries of the function F .

Lemma 3.3. (1) We have

F (�d1f1(x/�), . . . ,�
drfr(x/�)) = �

Pr
i=1 di(di�1)Mii+

P
1i<jr didjMij

(2) All nonconstant polynomials on
Qr

i=1 Adi which are homogeneous for the action of
Gm on

Qr
i=1 Adi which acts by dilation of polynomials, i.e. fi ! �

difi(x/�), have
positive degree in �.

Proof. (1) follows from the definition of the resultant of a monic polynomial as a product of
di↵erences of roots, since dilation multiplies each root by �, hence each di↵erence of roots
by �, and thus a product of N di↵erences of roots by �N .

(2) follows because the ring of functions is generated by the coe�cients of fi, which all
have positive degree in �. ⇤
Lemma 3.4. The complex Kd1,...,dr is invariant under the action of Ga on

Qr
i=1 Adi given

by ((f1, . . . , fr),↵) 7! (f1(T + ↵), . . . , fr(T + ↵)).
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Proof. This follow from Lemma 2.9 and the identity

Fd1,...,dr(f1(T + ↵), . . . , fr(T + ↵)) = Fd1,...,dr(f1, . . . , fr)

which is immediate from the definition of F . ⇤
For each finite field Fq, character �, and natural numbers d1, . . . , dr, let J(d1, . . . , dr; q,�,M)

be the finite set of ordered pairs of Weil numbers given by the eigenvalues of Frobq on the
stalk of Kd1,...,dr at (T d

1 , . . . , T
dr), together with their signed multiplicities.

Lemma 3.5. For each finite field Fq, character �, natural numbers d1, . . . , dr, and prime
polynomial ⇡ over Fq, we have

(3.2) a(⇡d1 , . . . , ⇡
dr ; q,�,M) =

✓
⇡
0

⇡

◆Pr
i=1 diMii

�

X

j2J(d1,...,dr;q,�,M)

cj↵
deg ⇡
j .

Proof. This follows from the definition when ⇡ = T , and then follows from Lemma 3.4 when
⇡ = T � x for x 2 Fq.

Let us handle the case when ⇡ has a higher degree. To do this, let e be the degree of
⇡, and consider the Weil restriction WR

Fq

Fqe

Qr
i=1 Adi of

Qr
i=1 Adi from Fqe to Fq. This Weil

restriction admits a map norm to
Qr

i=1 Aedi given by taking norms of polynomials. For x a
root of ⇡, the image of ((T � x)d1 , . . . , (T � x)dr) under norm is (⇡d1 , . . . , ⇡

dr). Thus

a(⇡d1 , . . . , ⇡
dr ; q,�,M) = tr

�
Frobq, (Ken1,...,enr)(⇡d1 ,...,⇡dr )

�

= tr
�
Frobq, (norm

⇤
Ken1,...,enr)((T�x)d1 ,...,(T�x)dr )

�
.

(3.3)

On the other hand, by Lemma 2.12,

tr
⇣
(Frobq, (WR

Fq

Fqe
Kd1,...,dr)((T�x)d1 ,...,(T�x)dr )

⌘

= tr
�
Frobqe , (Kd1,...,dr)((T�x)d1 ,...,(T�x)dr )

�
=

X

j2J(d1,...,dr;q,�,M)

cj↵
deg ⇡
j

(3.4)

To finish the argument, we will compare the stalks of WR
Fq

Fqe
Kn1,...,nr and norm

⇤
Kd1d,...,dr,e

at ((T � x)d1 , . . . , (T � x)dr). To do this, note from Lemma 2.13 that

(3.5) WR
Fq

Fqe
Kd1,...,dr

⇠= ICL�(NF (f1,...,fr)).

The restriction of norm to the open set where none of the polynomials share any roots
with their Galois conjugates is étale, so

norm
⇤
ICL�(Fd1e,...,fre

) = ICL�(Fd1e,...,dre
�norm)

by Lemma 2.9(2). The ratio
F (Nf1, . . . , Nfr)

NF (f1, . . . , fr)
,

where N is the norm, is

(3.6)
Y

1ir

✓
Res((Nfi)0, Nfi)

N Res(f 0
i , fi)

◆Mii Y

1i<jr

✓
Res(Nfi, Nfj)

N Res(fi, fj)

◆Mij

.
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Using the multiplicativity property of the Res(f, g) and the fact that fi = (T � x)di we
have

Res(Nfi, Nfj)

N Res(fi, fj)
=

Y

0t1,t2e�1
t1 6=t2

Res(Frobt1
q fi,Frob

t2
q fj) =

Y

0t1,t2e�1
t1 6=t2

Res(Frobt1
q (T � x)di ,Frobt2

q (T � x)dj)

=
Y

0t1,t2e�1
t1 6=t2

(Frobt2
q x� Frobt1

q x)didj = Res(⇡0
, ⇡)didj .

(3.7)

Using the multiplicativity property of Res(f 0
, f), and similar logic, we have

(3.8)
Res((Nfi)0, Nfi)

N Res(f 0
i , fi)

=
Y

0t1,t2e�1
t1 6=t2

Res(Frobt1
q fi,Frob

t2
q fi) = Res(⇡0

, ⇡)d
2
i .

Plugging (3.7) and (3.8) into (3.6), we have

(3.9)
F (Nf1, . . . , Nfr)

NF (f1, . . . , fr)
= Res(⇡0

, ⇡)
Pr

i=1 Miid2i+
P

1i<jr Mijdidj 6= 0.

By Lemma 2.9(1) and (3.9) we have

tr
�
Frobq, (norm

⇤
Kd1e,...,dre)((T�x)d1 ,...,(T�x)dr )

�

=tr
⇣
(Frobq, (WR

Fq

Fqe
Kd1,...,dr)((T�x)d1 ,...,(T�x)dr )

⌘✓
⇡
0

⇡

◆Pr
i=1 Miid2i+

P
1i<jr Mijdidj

�

.

(3.10)

By Lemma 3.3 and Lemma 2.14, unless

(3.11)
rX

i=1

Miidi(di � 1) +
X

1i<jr

Mijdidj ⌘ 0 mod n,

the stalk of Kd1,...,dr at ((T � x)d1 , . . . , (T � x)dr) vanishes, which by (3.4) means the right
side of (3.10) vanishes, so the left side of (3.10) vanishes as well. It follows that

tr
�
Frobq, (norm

⇤
Kd1e,...,dre)((T�x)d1 ,...,(T�x)dr )

�

=tr
⇣
(Frobq, (WR

Fq

Fqe
Kd1,...,dr)((T�x)d1 ,...,(T�x)dr )

⌘✓
⇡
0

⇡

◆Pr
i=1 Miidi

�

.(3.12)

since if (3.11) is satisfied we may subtract
Pr

i=1 Miidi(di � 1) +
P

1i<jr Mijdidj from the

exponent of
�
⇡0

⇡

�
�
without changing the value because

�
⇡0

⇡

�
�
is an n’th root of unity, and if

(3.11) is not satisfied, then both sides are zero.
Combining (3.3), (3.12), and (3.4), we obtain (3.2). ⇤

Lemma 3.6. For each finite field Fq, character �, natural numbers d1, . . . , dr, and natural
number m, setting d =

Pr
i=1 di we have

�(d1, . . . , dr, q
m
,�m,M) =

X

j2J(d1,...,dr;q,�,M)

cj

✓
q
d

↵j

◆m

.
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Proof. We can construct the sheaf Kd1,...,dr on
Qr

i=1 A
di
Fq

using the character � and then pull

back to
Qr

i=1 A
di
Fqm

, or we can construct the sheaf directly on
Qr

i=1 A
di
Fq

using the character �m.

These two sheaves are naturally isomorphic because the qm�1
q�1 th-power map µqm�1 ! µq�1

used to compare the Kummer sheaves matches the norm map F⇥
qm ! F⇥

q given by

N(x) = x · Frobq(x) · . . . · Frob
m�1
q (x) = x · x

q
· . . . · x

qm�1
= x

qm�1
q�1

used to convert � to �m, and because forming the intermediate extension commutes with
change of base field. So, without ambiguity, we use Kd1,...,dr to refer to both.

If we compose the Gm action by dilation (Lemma 3.3) with the nth power map Gm ! Gm,
the factor �

Pr
i=1 di(di�1)Mii+

P
1i<jr didjMij becomes an nth power, and so Kd1,...,dr is preserved

by this Gm action by Lemma 2.14. Hence the Verdier dual DKd1,...,dr is also preserved.
By Verdier duality, H i

c(
Qr

i=1 A
di
Fq
, Kd1,...,dr) is dual to H

�i(
Qr

i=1 A
di
Fq
, DKd1,...,dr) which by

Lemma 2.16, using Lemma 3.3(2) to check the condition, is H�i((DKd1,...,dr)(Tn1 ,...,Tnr )).
Because Kd1,...,nr is pure of weight zero on the open set where it is lisse, and Kd1,...,dr [d] is

perverse, Kd1,...,dr [d] is perverse and pure of weight d, so by a theorem of Gabber [?], the trace
of Frobenius on each stalk of DKd1,...,dr is the complex conjugate of the trace of Frobenius
on the stalk of Kd1,...,dr divided by q

d. Because this applies over each finite field extension,
the Frobenius eigenvalues on the stalk of DKd1,...,dr at any point are equal to the complex
conjugates, divided by q

d, of the Frobenius eigenvalues of Kd1,...,dr at the same point, at least
up to signed multiplicity. So the eigenvalues of Frobq on H

�i((DKd1,...,dr)(Tn1 ,...,Tnr )) are
↵j

qd ,
with signed multiplicities cj.

By definition, the Grothendieck-Lefschetz fixed point formula, and the above isomor-
phisms, dualities, and eigenvalue calculations, we have

�(d1, . . . , dr; q
m
,�m,M) =

X

f1,...,fr2Fqm [t]+

deg f1=d1,...,deg fr=dr

X

i

(�1)i tr(Frobqm ,H
i(Kd1,...,dr)f1,...,fr)

=
X

i

(�1)i tr
⇣
Frobqm , H

i
c

⇣ rY

i=1

Adi
Fq
, Kd1,...,dr

⌘⌘
=
X

i

(�1)i tr
⇣
Frobm

q , H
i
c

⇣ rY

i=1

Adi
Fq
, Kd1,...,dr

⌘⌘

=
X

i

(�1)i tr
⇣
Frob�m

q , H
�i
⇣ rY

i=1

Adi
Fq
, DKd1,...,dr

⌘⌘
=
X

i

(�1)i tr(Frob�m
q ,H

�j((DKd1,...,dr)(Tn1 ,...,Tnr ))))

=
X

j

cj

✓
↵j

qd

◆�m

=
X

j

cj

✓
q
d

↵j

◆m

. ⇤

Lemma 3.7. For each finite field Fq, character �, natural numbers d1, . . . , dr, and (↵j, cj) 2

J(d1, . . . , dr; q,�,M) we have |↵j| < q
d�1
2 as long as d � 2 where d =

Pr
i=1 di.

Proof. Because Kd1,...,dr is the IC sheaf of a lisse sheaf, its Hi is supported in codimension at
least i+1 for all i > 0 [?, Proposition 2.1.11]. By Lemma 3.4, any stalk cohomology at a point
must also occur at its one-dimensional orbit under the action of Ga by translation, hence



20 WILL SAWIN

with codimension  d� 1, thus in degree  d� 2, as long as d � 2. So because intersection
cohomology complexes are pure, any Frobenius eigenvalues that appear are  q

d�2
2 .

⇤
Proof of Theorem 1.1. In view of Lemmas 3.1, 3.2, 3.5, 3.6, and 3.7 it su�ces to prove that
the function a is uniquely determined by these axioms.

In fact we will show that
J(d1, . . . , dr; q,�,M)

is determined by these axioms whenever d1+ · · ·+dr  d, for all d. This will then determine
a by axioms (1) and (3).

We do this by induction on d. The cases d = 0 and d = 1 are determined by axiom (2)
and the fact that there is at most one way of expressing a given function of a natural number
m as a finite signed sum of mth powers.

For the induction step, assume that

J(d1, . . . , dr; q,�,M)

is determined by these axioms whenever d1 + · · · + dr < d. From axiom (3), this deter-
mines a(⇡d1 , . . . , ⇡

dr ; q,�,M) whenever d1 + · · · + dr < d. From axiom (1), this determines
a(f1, . . . , fr; q,�,M) whenever each prime factor of

Qr
i=1 fi occurs with multiplicity less than

d.
Thus, if deg fi = di and d1 + · · · + dr = d, the axioms determine a(f1, . . . , fr; q,�,M)

when
Qr

i=1 fi is not a dth power of a linear prime, i.e. in all cases but when fi is of the form
(T � x)di for all i. By axioms (3) and (4) applied to Fqm and �m we have

X

f1,...,fr2Fqm [t]+

deg fi=di

a(f1, . . . , fr; q
m
,�m,M)�

X

x2Fm
q

a((T � x)d1 , . . . , (T � x)dr ; q,�,M)

=
X

j2J(d1,...,dr;qm,�m,M)

cj
q

Pr
i=1 di

↵j
� q

m
X

j2J(d1,...,dr;qm,�m,M)

cj↵j.

However, by the compatibility of J , J(d1, . . . , dr; qm,�m,M) consists of the mth powers
of J(d1, . . . , dr; q,�,M) so we obtain

X

f1,...,fr2Fm
q [t]+

deg fi=di

a(f1, . . . , fr; q
m
,�m,M)�

X

x2Fm
q

a(xd1 , . . . , x
dr ; q,�,M)

=
X

j2J(d1,...,dr;q,�,M)

cj

✓
q

Pr
i=1 di

↵j

◆m

�

X

j2J(d1,...,dr;q,�,M)

cj(q↵j)
m
.

(3.13)

We have already shown the left side of (3.13) is determined by the axioms for all m. The
right side of (3.13) is a finite sum of mth powers of Weil numbers, so the Weil numbers
appearing, and their multiplicity, are uniquely determined by the left side of (3.13). The
only di�culty is whether any given Weil number occurs in the first term or the second term.
However, by axiom (5), q↵j appears in the second term only if |↵j| < q

(d�1)/2, so |q↵j| <

q
(d+1)/2, while q

d
/↵j appearing in the first term satisfies |q

d
/↵j| > q

(d+1)/2, so each Weil
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number can only appear in one of the two terms, thus both terms are uniquely determined.
⇤

Corollary 3.8. Fix M , w1, . . . , wr 2 Z, ✏1, . . . , ✏r 2 {0, 1}. Fix for each i with ✏i = 0 a
compatible system of Weil numbers �i and for each i with ✏i = 1 a sign-compatible system of
Weil numbers �i. In either case, assume that |�i(q,�)| = q

wi/2. Let

a
⇤(f1, . . . , fr; q,�,M) = a(f1, . . . , fr; q,�,M)

rY

i=1

�i(q,�)
deg fi .

Then
a
⇤(f1, . . . , fr; q,�,M)

is the unique function that, together with a function J
⇤(d1, . . . , dr; q,�,M) from tuples of

natural numbers d1, . . . , dr, to compatible systems of sets of ordered pairs of Weil numbers,
satisfies the axioms

(1) If f1, . . . , fr and g1, . . . , gr satisfy gcd(fi, gj) = 1 for all i and j, then we have

a
⇤(f1g1, . . . , frgr; q,�,M)

= a
⇤(f1, . . . , fr; q,�,M)a(g1, . . . , gr; q,�,M)

Y

1ir

✓
fi

gi

◆Mii

�

✓
gi

fi

◆Mii

�

Y

1i<jr

✓
fi

gj

◆Mij

�

✓
gi

fj

◆Mij

�

.

(2) a
⇤(1, . . . , 1; q,�,M) = 1 and a

⇤(1, . . . , 1, f, 1, . . . , 1; q,�,M) = �i(q,�) for all linear
polynomials f .

(3)

a
⇤(⇡d1 , . . . , ⇡

dr ; q,�,M) =

✓
⇡
0

⇡

◆Pr
i=1 diMii

�

(�1)
Pr

i=1 ✏idi(deg ⇡+1)
X

j2J(d1,...,dr;q,�,M)

cj↵
deg ⇡
j .

(4)

X

f1,...,fr2Fq [t]+

deg fi=di

a
⇤(f1, . . . , fr; q

m
,�,M) =

X

j2J(d1,...,dr;q,�,M)

cj
q

Pr
i=1(1+wi)di

↵j
.

(5) |↵j| < q

Pr
i=1(1+w)di�1

2 as long as
Pr

i=1 di � 2.

Proof. This follows from Theorem 1.1 once we check that a⇤(f1, . . . , fr; q,�,M) satisfies these
axioms with a given J(d1, . . . , dr; q,�,M) if and only if

ã(f1, . . . , fr; q,�,M) =
a
⇤(f1, . . . , fr; q,�,M)Qr

i=1 �i(q,�)
deg fi

satisfy the axioms of Theorem 1.1 after adjusting J
⇤(d1, . . . , dr; q,�,M) by dividing each ↵j

by
Qr

i=1((�1)✏i�i(q,�))di and each cj by (�1)
Pr

i=1 ✏idi .
This can be checked one axiom at a time by plugging these expressions into each axiom

of Theorem 1.1, simplifying, and observing that they match the corresponding axiom here,
as well as deducing the compatibility of J from the (sign-)compatibility of �i.
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In each case this is relatively straightforward. In (4) it requires the identity �i(q,�)�i(q,�) =
q
wi .

⇤

4. Examples

For some special values of M , we can calculate a by exhibiting an explicit function and
checking that it satisfies the axioms of Theorem 1.1. In fact, these will be functions a that
have essentially appeared in the literature already as coe�cients of multiple Dirichlet series,
and most of the properties described in Theorem 1.1 were previously observed (but in slightly
di↵erent language, so we will have to do some work to match it up). In some cases, it will
also be convenient to use additional geometric techniques to calculate a.

One reason for the di↵erence in language is that prior work has tended to define twisted
multiplicative functions as the product of a multiplicative function with a Dirichlet character.
We have found it more convenient to define twisted multiplicative functions all at once.

We will always use ã to refer to a function we are trying to prove satisfies the axioms of
Theorem 1.1, but haven’t yet.

Proposition 4.1. Take r = 2, M =

✓
0 1
1 0

◆
.

Then

a(f1, f2; q,�,M) =

8
<

:

⇣
f1/gn

f2/gn

⌘

�
q
(n�1) deg g if gcd(f1, f2) = g

n for some g

0 if gcd(f1, f2) is not an nth power
.

We prove this after making some definitions. Let

ã

✓
f1, f2; q,�,

✓
0 1
1 0

◆◆
=

8
<

:

⇣
f1/gn

f2/gn

⌘

�
q
(n�1) deg g if gcd(f1, f2) = g

n for some g

0 if gcd(f1, f2) is not an nth power
.

In [?, (1.2)], a function a is defined to be the unique multiplicative function such that

a(⇡j
, ⇡

k) =

(
p
n�1min(j,k)/n if min(j, k) = 0 mod n

0 otherwise
.

Furthermore they define f2,0 as quotient of f2 by its maximal nth power divisor and f̂1 as
the greatest divisor of f1 coprime to f2,0. They define a Dirichlet series with coe�cients

 
f̂1

f2,0

!

�

a(f1, f2).

Lemma 4.2. For all finite fields Fq, characters �, and monic polynomials f1, f2 over Fq, we
have

ã

✓
f1, f2; q,�,

✓
0 1
1 0

◆◆
=

 
f̂1

f2,0

!

�

a(f1, f2).
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Proof. First we note that ã(f1, f2) vanishes unless gcd(f1, f2) = g
n for some g and is q(n�1) deg g

in that case. So it su�ces to check, when gcd(f1, f2) = g
n, that

✓
f1/g

n

f2/g
n

◆

�

=

 
f̂1

f2,0

!

�

.

First note that f2,0 divides f2/gn and the ratio is an nth power which is prime to f1/g
n,

so we have ✓
f1/g

n

f2/g
n

◆

�

=

✓
f1/g

n

f2,0

◆

�

.

Now f̂1 is the quotient of f1 by a product of ⇡v⇡(f1), where ⇡ are some primes. Each such
⇡ divides f2,0, so v⇡(f2) cannot be multiple of n. Since v⇡(gcd(f1, f2)) = min(v⇡(f1), v⇡(f2))
cannot be a multiple of n, we must have v⇡(f1) a multiple of n strictly less than v⇡(f2). Thus
f1/f̂1 is an nth power and divides gn, so f̂1 is a multiple of f1/gn by an nth power prime to
f2,0. Thus ✓

f1/g
n

f2,0

◆

�

=

 
f̂1

f2,0

!

�

and we are done. ⇤
Proof of Proposition 4.1. It su�ces to prove that ã satisfies the axioms of Theorem 1.1.
Axiom (2) is immediate. To check ã satisfies axiom (1), observe that if gcd(fi, gj) = 1 for
all i, j then gcd(f1g1, f2g2) = gcd(f1, f2) gcd(g1, g2), and moreover the two gcds on the right
are coprime, so gcd(f1g1, f2g2) is an nth power if and only if both gcd(f1, f2) and gcd(g1, g2)
are.

We next choose J(d1, d2; q,�,M). We observe that a(⇡d1 , ⇡
d2 ; q,�,M) vanishes unless

min(d1, d2) is divisible by n and equals q(n�1) deg ⇡min(d1,d2)/n in that case. Hence we can take
J(d1, d2; q,�,M) to be empty unless min(d1, d2) is divisible by n and to consist of the ordered
pair (q(n�1)min(d1,d2)/n, 1) if it is divisible.

This makes (3) immediate. (5) is similarly clear. With this value of J , (4) is equivalent
to the statement that

X

f1,f22Fq [t]+

deg(f1)=d1
deg(f2)=d1

ã(f1, f2; q,�,M) =

(
q
d1+d2�n�1

n min(d1,d2) if n|min(d1, d2)

0 otherwise
.

We now use [?, (1.7)], which is

X

f1,f22Fq [t]+

 
f̂1

f2,0

!

�

a(f1, f2)x
deg f1y

deg f2 =
1� q

2
xy

(1� qx)(1� qy)(1� qn+1xnyn)
.

Thus by Lemma 4.2

(4.1)
X

f1,f22Fq [t]+

ã(f1, f2; q,�,M)xdeg f1y
deg f2 =

1� q
2
xy

(1� qx)(1� qy)(1� qn+1xnyn)
.
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Then X

f1,f22Fq [t]+

deg(f1)=d1
deg(f2)=d1

a(f1, f2)

is simply the coe�cient of xd1y
d2 in (4.1). Hence to verify (4) it su�ces to check that

1� q
2
xy

(1� qx)(1� qy)(1� qn+1xnyn)
=

X

d1,d22N
min(d1,d2)⌘0 mod n

q
d1+d2�(n�1)min(d1,d2)/nx

d1y
d2

which is straightforward.
⇤

Corollary 4.3. For all finite fields Fq, characters �, and monic polynomials f1, f2 over Fq,
we have

a(f1, f2; q,�,

✓
0 1
1 0

◆
) =

 
f̂1

f2,0

!

�

a(f1, f2).

Proof. This follows from combining Lemma 4.2 and Proposition 4.1. ⇤
Proposition 4.4. Assume n even.

Take r = 2, M =

✓
0 �1
�1 n

2 + 1

◆
.

Then

(4.2) a(f1, f2; q,�,M) =
(�1)

deg f2(deg f2�1)(q�1)
4

G(�, )deg f2

X

u2Fq [t]+

un|f2

q
(n�1) deg u

g�(f1, f2/u
n).

Let

ã

✓
f1, f2; q,�,

✓
0 �1
�1 n

2 + 1

◆◆
=

(�1)
deg f2(deg f2�1)(q�1)

4

G(�, )deg f2

X

u2Fq [t]+

un|f2

q
(n�1) deg u

g�(f1, f2/u
n).

We give two proofs. The first uses geometric properties of perverse sheaves, while the
second relies on Theorem 1.1 and [?].

The geometric proof proceeds by a series of lemmas that establish (4.2) in successively
more cases.

Lemma 4.5. (4.2) holds when f2 is squarefree and f1 and f2 are coprime.

Proof. By Lemma 2.1 and the definition of a(f1, f2; q,�,M) in terms of IC sheaves,

a(f1, f2; q,�,M) =

✓
f
0
2

f2

◆n/2+1

�

✓
f2

f1

◆�1

�

for these f1, f2.



GENERAL MULTIPLE DIRICHLET SERIES FROM PERVERSE SHEAVES 25

On the other hand, when f2 is squarefree we have
X

u2Fq [t]+

un|f2

q
(n�1) deg u

g�(f1, f2/u
n) = g�(f1, f2)

and by Lemma 2.4,

(�1)
deg f2(deg f2�1)(q�1)

4

G(�, )deg f2
g�(f1, f2) =

✓
f
0
2

f2

◆

�

✓
f
0
2

f2

◆

⇠

✓
f1

f2

◆�1

�

so (4.2) follows upon noting that
✓
f
0
2

f2

◆

⇠

✓
f
0
2

f2

◆

�

=

✓
f
0
2

f2

◆n/2+1

�

.

⇤
Lemma 4.6. (4.2) holds when deg f1 � deg f2.

Proof. Let M 0 =

✓
0 1
1 0

◆
. Observe that

X

u2Fq [t]+

un|f2

q
(n�1) deg u

g�(f1, f2/u
n) =

X

u2Fq [t]+

un|f2

q
(n�1) deg u

X

h2Fq [t]/f2
un|h

✓
h/u

n

f2/u
n

◆

�

 

✓
res

✓
hf1

f2

◆◆

=
X

h2Fq [t]+

deg h=deg f2

X

u2Fq [t]+

un|h,f2

q
(n�1) deg u

✓
h/u

n

f2/u
n

◆

�

 

✓
res

✓
hf1

f2

◆◆
=

X

h2Fq [t]+

deg h=deg f2

a (h, f2; q,�M
0) 

✓
res

✓
hf1

f2

◆◆

using the fact that there is a unique monic h of degree deg f2 in each residue class mod f2,

the fact that
⇣

h/un

f2/un

⌘

�
= 0 unless un = gcd(h, f2), and Lemma 4.1. Thus

(4.3)

ã

✓
f1, f2; q,�,

✓
0 �1
�1 n

2 + 1

◆◆
=

(�1)
deg f2(deg f2�1)(q�1)

4

G(�, )deg f2

X

h2Fq [t]+

deg h=deg f2

a (h, f2; q,�,M
0) 

✓
res

✓
hf1

f2

◆◆
.

Let d1 = deg f1 and d2 = deg f2.
We now make a geometric argument. To distinguish IC sheaves constructed with the

matrix M
0 from those constructed with the matrix M , we put the matrix as an additional

subscript. Thus Kd2,d2,M 0 is a complex of sheaves on Ad2 ⇥ Ad2 whose trace function is
a(h, f2; q,�,M 0) and Kd1,d2,M is a complex of sheaves on Ad1 ⇥ Ad2 whose trace function is
a(h, f2; q,�,M).

We now recall the `-adic Fourier transform defined by ?. We define two maps Ad2 ⇥

Ad2 ⇥ Ad2 ! Ad2 ⇥ Ad2 , namely pr13 and pr23, given respectively by projection onto the
first and third factors, and projection onto the second and third factors. We also define
a map µ : Ad2 ⇥ Ad2 ⇥ Ad2 ! A1 given by taking the dot product of the first and second
factors. Precisely in coordinates, we think of points of the second Ad2 as parameterizing
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monic polynomials tn +
Pd2�1

i=0 cit
i, points of the first Ad2 as simply tuples b0, . . . , bd2�1, and

µ((b0, . . . , bd2�1), (c0, . . . , cd2�1), f2) =
Pd2�1

i=0 bici.
?, (2.1.1) define the Fourier transform F by the formula

F Kd2,d2,M 0 = pr13!(pr
⇤
23Kd2,d2,M 0 ⌦ µ

⇤
L )[d2].

The operations of pullback, compactly supported pushforward, tensor product, and shift
each transform the trace function in a predictable way. Using this, it is immediate that the
trace function of F Kd2,d2,M 0 at a point (b, f2) of Ad2 ⇥ Ad2 is given by the formula

(�1)d2
X

h2Fq [t]+

deg h=deg f2

a (h, f2; q,�M
0) (res (h · b)) .

Let � : Ad1 ⇥Ad2 ! Ad1 ⇥Ad2 be the map sending (f1, f2) to (b, f2) where bi = res
⇣

tif1
f2

⌘
.

Let ↵ : : Ad1 ⇥ Ad2 ! A1 send (f1, f2) to res
⇣

td2f1
f2

⌘
. We have chosen these so that for

(b, f2) = �(f1, f2), we have

↵(f1, f2)+h·b = res

✓
t
d2f1

f2

◆
+

d2�1X

i=0

ci res

✓
t
i
f1

f2

◆
= res

 
(td2 +

Pn�1
i=0 cit

i)f1
f2

!
= res

✓
hf1

f2

◆
.

Thus the trace function of

�
⇤
F Kd2,d2,M 0 ⌦ ↵

⇤
L 

is given by

(�1)d2
X

h2Fq [t]+

deg h=deg f2

a (h, f2; q,�M
0) 

✓
res

✓
hf1

f2

◆◆
=

(�G(�, ))d2

(�1)
d2(d2�1)(q�1)

4

ã (f1, f2; q,�,M) .

By the Hasse-Davenport relations, the quantity �G(�, ) is a compatible system of Weil

numbers, and the same is true for (�1)
q�1
2 = ⇠(�1), so there exists a sheaf LG on SpecFp

whose trace of Frobq is
(�1)

d2(d2�1)(q�1)
4

(�G(�, ))d2
for all finite fields q. It follows that the trace function

of �⇤
F Kd2,d2,M 0 ⌦ ↵

⇤
L ⌦ LG is ã(f1, f2; q,�,M).

Next let’s check that �⇤
F Kd2,d2,M 0 ⌦ ↵

⇤
L [d1 + d2] is an irreducible perverse sheaf. The

complex Kd2,d2,M 0 [2d2] is perverse by construction. Fourier transform preserves perversity by
the same argument as [?, Corollary 2.1.5(iii)], which shows Fourier transform preserves rela-
tive perversity, and preserves irreducibility by an immediate consequence of [?, III, Theorem
8.1(3)]. We can check that � is smooth because for each fixed value of f2, � is given by a lin-

ear map of vector spaces, and this linear map is surjective because (h, f1) 7! res
⇣

hf1
f2

⌘
gives

a perfect pairing on polynomials modulo f2. This also shows � has nonempty, geometrically
connected fibers. Since the source of � has dimension d1 + d2 and the target has dimension
2d2, the map � must be smooth of relative dimension d1� d2, so � preserves perversity after
a shift by d1�d2. Because � has nonempty, geometrically connected fibers, this pullback and
shift functor is fully faithful, and thus preserves irreducibility [?, Corollary 4.2.6.2]. Finally,
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L is lisse of rank one so its pullback under ↵ is lisse of rank one and tensor product with
it preserves perversity and irreducibility, and the same is true for LG.

So �⇤
F Kd2,d2,M 0 ⌦ ↵

⇤
L ⌦ LG[d1 + d2] and Kd1,d2,M [d1 + d2] are two irreducible perverse

sheaves whose trace functions agree on the open set where f1 is squarefree and f1 and f2 are
coprime by Lemma 4.5. Restricting to a possibly-smaller open set where both are lisse, we
get two irreducible lisse sheaves with the same trace function, which must be isomorphic.
Since Kd1,d2,M is lisse of nonzero rank on an open set, both sheaves are lisse of nonzero rank,
and because they are irreducible, must be middle extensions from that open set. Since both
are the middle extension of the same lisse sheaf from the same open set, they are isomorphic
as perverse sheaves. It follows that these two irreducible perverse sheaves have the same
trace function, giving (4.2). ⇤

Conclusion of geometric proof of Proposition 4.4. Given f1, f2, find v coprime to f2 and such
that deg f1 + deg v � deg f2, and compute using axiom (1) and the fact that Kdeg v,0 is the
constant sheaf that
(4.4)

a(f1v, f2; q,�,M) = a(f1, f2; q,�,M)a(v, 1; q,�,M)

✓
v

f2

◆�1

�

= a(f1, f2; q,�,M)

✓
v

f2

◆�1

�

.

By Lemma 4.6 we have

(4.5) a(f1v, f2; q,�,M) =
(�1)

deg f2(deg f2�1)(q�1)
4

G(�, )deg f2

X

u2Fq [t]+

un|f2

q
(n�1) deg v

g�(f1v, f2/u
n).

But by Lemma 2.6,

(4.6) g�(f1v, f2/u
n) = g�(f1, f2/u

n)

✓
v

f2/u
n

◆�1

�

= g�(f1, f2/u
n)

✓
v

f2

◆�1

�

so combining (4.4), (4.5), and (4.6), we get

a(f1, f2; q,�,M)

✓
v

f2

◆�1

�

=
(�1)

deg f2(deg f2�1)(q�1)
4

G(�, )deg f2

X

u2Fq [t]+

un|f2

q
(n�1) deg u

✓
v

f2

◆�1

�

g�(f1, f2/u
n).

and dividing both sides by
⇣

v
f2

⌘�1

�
we get (4.2) in general. ⇤

Before performing our proof using [?], we will explain the relationship of the Gauss sums
we work with to the formula defined by ?.

To do this, we use calculations of ?. They define a function b as the unique multiplicative
function satisfying
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b(⇡d1 , ⇡
d2) =

8
>>>>>>>><

>>>>>>>>:

1 if d2 = 0

(qdeg ⇡ � 1)q(d2/2�1) deg ⇡ if d2 ⌘ 0 mod n and d1 � d2

0 if d2 6⌘ 0 mod n and d1 � d2 > 0

�q
(d2/2�1) deg ⇡ if d1 = d2 � 1 and d2 ⌘ 0 mod n

q
(d2�1) deg ⇡/2 if d1 = d2 � 1 and d2 6⌘ 0 mod n

0 if d1 < d2 � 1

Let f2,0 be f2 divided by the greatest nth power that divides f2. Let f2,[ be the largest
squarefree divisor of f2,0 and let f̂1 be the largest divisor of f1 prime to f2,0. Let

g

 ✓
·

f2

◆

�

!
=

X

h2Fq [t]/f2,[

✓
h

f2

◆

�

 

✓
res

✓
h

f2,[

◆◆
.

Lemma 4.7. We have

(4.7) g�(f1, f2)
1

qdeg f2/2
= b(f1, f2)g

 ✓
·

f2

◆

�

! 
f̂1

f2,0

!�1

�

1

q
deg f2,[/2

.

Proof. We define f̂2 as the largest divisor of f2 prime to f2,0, as well as f̌1 = f1/f̂1 and
f̌2 = f2/f̂2. It is immediate from the definitions that f̂2 is an nth power, and that f̂1 and f̂2

are coprime to f̌1 and f̌2.
By Lemma 2.7 we have

g�(f1, f2) = g�(f̂1, f̂2)g�(f̌1, f̌2)

 
f̂2

f̌2

!

�

✓
f̌2

f̂2

◆

�

 
f̂1

f̌2

!�1

�

✓
f̌1

f̂2

◆�1

�

.

Because f̂2 is an nth power and prime to f̌1 and f̌2, we may ignore all the residue symbols
involving f̂2, obtaining

(4.8) g�(f1, f2) = g�(f̂1, f̂2)g�(f̌1, f̌2)

 
f̂1

f̌2

!�1

�

Similarly, we split the right side of (4.7) into f̂ and f̌ parts. We note that f2,0 is also
f̌2 divided by the greatest nth power that divides f̌2, in other words, f2,0 = f̌2,0, so that
f2,[ = f̌2,[ and

(4.9) g

 ✓
·

f2

◆

�

!
= g

 ✓
·

f̌2

◆

�

!
.

The multiplicativity of b gives

(4.10) b(f1, f2) = b(f̂1, f̂2)b(f̌1, f̌2).
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Combining (4.8), (4.9), and (4.10), we see that (4.7) is equivalent to

g�(f̂1, f̂2)g�(f̌1, f̌2)

 
f̂1

f̌2

!�1

�

1

qdeg f̂2/2+deg f̌2/2
= b(f̂1, f̂2)b(f̌1, f̌2g

 ✓
·

f̌2

◆

�

! 
f̂1

f2,0

!�1

�

1

q
deg f̌2,[/2

and therefore would follow from the triple of equations

(4.11) g�(f̂1, f̂2)
1

qdeg f̂2/2
= b(f̂1, f̂2)

(4.12)

 
f̂1

f̌2

!�1

�

=

 
f̂1

f2,0

!�1

�

(4.13) g�(f̌1, f̌2))
1

qdeg f̌2/2
= b(f̌1, f̌2)g

 ✓
·

f̌2

◆

�

!
1

q
deg f̌2,[/2

.

We now verify these three equations. (4.12) follows immediately from the fact that f2,0

and f̌2 di↵er by an nth power prime to f̂1.
For (4.11), we note from Lemma 2.7 that g�(f1, f2) is multiplicative when restricted to f2

that are nth powers. Since both sides are multiplicative when restricted to this set, we can
reduce to the case that f1 and f2 are prime powers (because any nth power can be factored
into prime powers that are nth powers). In this case, it follows from the definition of b and
Lemma 2.8, noting that G(�d2 , ) = �1 if d2 is divisible by n.

For (4.13), we note that v⇡(f̌2) is never a multiple of n for any ⇡ dividing f̌2. It follows
from this and the definition of b that b(f̌1, f̌2) vanishes unless v⇡(f̌1) = v⇡(f̌2) � 1 for each
such ⇡. In other words, the right side of (4.13) vanishes unless f̌1 = f̌2/f̌2,[. From Lemmas
2.7 and 2.8, we see that g(f̌1, f̌2) vanishes under the same condition.

Thus, we may assume that f̌1 = f̌2/f̌2,[. In this case,

(4.14) b(f̌1, f̌2) = q
(deg f̌2�deg f̌2,[

since only the second-to-last case of the definition of b occurs. Furthermore we have

g�(f̌1, f̌2))
X

h2Fq [t]/f̌2

✓
h

f̌2

◆

�

 

✓
res

✓
hf̌1

f̌2

◆◆

=
X

h2Fq [t]/f̌2

✓
h

f̌2

◆

�

 

✓
res

✓
h

f̌2,[

◆◆
= g

 ✓
·

f̌2

◆

�

!
q
deg f̌2�deg f̌2,[

which together with (4.14) gives (4.13). ⇤
Proof of Proposition 4.4 using Chinta-Mohler. Let

ã
⇤(f1, f2; q,�,M) = G(�, )deg f2 ã(f1, f2; q,�,M) = (�1)

deg f2(deg f2�1)(q�1)
4

X

u2Fq [t]+

un|f2

q
(n�1) deg u

g�(f1, f2/u
n).
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We prove that ã
⇤ satisfies the axioms of Theorem 1.1 with w1 = ✏1 = 0, w2 = ✏2 = 1,

�1(q,�) = 1, �2(q,�) = G(�, ).
For axiom (1) we have

ã
⇤(f1f3, f2f4; q,�,M)

=(�1)
deg f2(deg f2�1)(q�1)

4 +
deg f4(deg f4�1)(q�1)

4 +
deg f2 deg f4(q�1)

2

X

u2Fq [t]+

un|f2f4

q
(n�1) deg u

g�(f1f3, f2f4/u
n)

(4.15)

Because f2 and f4 are coprime, we can write any u where u
n
|f2f4 uniquely as u2u4 where

u
n
2 divides f2 and u

n
4 divides f4

From Lemma 2.7 we get

g�(f1f3, f2f4/(u
n
2u

n
4 )) = g�(f1, f2/u

n
2 )g�(f3, f4/u

n
4 )

✓
f2/u

n
2

f4/u
n
4

◆

�

✓
f4/u

n
4

f2/u
n
2

◆

�

✓
f1

f4/u
n
4

◆�1

�

✓
f3

f2/u
n
2

◆�1

�

.

However we can ignore the u
n
2 and u

n
4 factors in the power residue symbols as they are

nth powers and because u2, dividing f2, is prime to f3 and f4 and similarly u4 is prime to
f1 and f2. Thus

(4.16) g�(f1f3, f2f4/(u
n
2u

n
4 )) = g�(f1, f2/u

n
2 )g�(f3, f4/u

n
4 )

✓
f2

f4

◆

�

✓
f4

f2

◆

�

✓
f1

f4

◆�1

�

✓
f3

f2

◆�1

�

.

Plugging (4.16) into (4.15) gives

ã
⇤(f1f3, f2f4; q,�,M)

=ã
⇤(f1, f2; q,�,M)ã⇤(f3, f4; q,�,M)(�1)

deg f2 deg f4(q�1)
2

✓
f2

f4

◆

�

✓
f4

f2

◆

�

✓
f1

f4

◆�1

�

✓
f3

f2

◆�1

�

.

(4.17)

We have

(�1)
deg f2 deg f4(q�1)

2 =

✓
f2

f4

◆n/2

�

✓
f4

f2

◆n/2

�

by Lemma 2.2, which, plugged into (4.17), verifies axiom (1).
For axiom (2), we have

a(T � x, 1; q,�,M) = g�(T � x, 1) = 1

and

a(1, T � x; q,�,M) = g�(1, T � x) = G(�, )

both using Lemma 2.8.
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Next, let

J1(d1, d2; q,�,M) =

8
>>>>><

>>>>>:

{(1, 1)} if d2 = 0

{(qd2 , 1), (q(d2�1)
,�1)} if d2 ⌘ 0 mod n and d1 � d2

; if d2 6⌘ 0 mod n and d1 � d2

{(�q
(d2�1)

G(�d2 , ),�1)} if d1 = d2 � 1

; if d1 < d2 � 1

Then by Lemma 2.8 we have

g�(⇡
d1 , ⇡

d2) =

✓
⇡
0

⇡

◆d2

�

X

j2J1(d1,d2;q,�,M)

cj↵
deg ⇡
j

noting that the
�
⇡0

⇡

�d2
�

term can be ignored in the cases where d2 is divisible by n.
Furthermore, we have

X

u2Fq [t]+

un|⇡d2

q
(n�1) deg u

g�(⇡
d1 , ⇡

d2/u
n) =

bd2/ncX

c=0

q
(n�1)c deg ⇡

g�(⇡
d1 , ⇡

d2�nc).

So letting

J(d1, d2; q,�,M) = (�1)
d2(d2�1)(q�1)

4

bd2/nc[

c=0

q
(n�1)c

J1(d1, d2 � nc; q,�,m)

we have
ã
⇤(⇡d1 , ⇡

d2 ; q,�,M)

= (�1)
d2 deg ⇡(d2 deg ⇡�1)(q�1)

4

X

w2Fq [t]+

un|⇡d1

q
(n�1) deg u

g�(⇡
d1 , ⇡

d2/u2)

= (�1)
d2 deg ⇡(d2 deg ⇡�1)(q�1)

4 (�1)
deg ⇡d2(d2�1)(q�1)

4

✓
⇡
0

⇡

◆d2

�

X

j2J2(d1,d2;q,�,M)

cj↵
deg ⇡
j

verifying axiom (3) because

(�1)
d2 deg ⇡(d2 deg ⇡�1)(q�1)

4 (�1)
deg ⇡d2(d2�1)(q�1)

4 = (�1)
d2 deg ⇡(deg ⇡�1)(q�1)

4 =

✓
⇡
0

⇡

◆d2(n/2)

�

(�1)d2(deg ⇡+1)

by Lemma 2.3.
Next to verify axiom (4), it su�ces to show that

(�1)
d2(d2�1)(q�1)

4

X

f1,f22Fq [t]+

deg f1=d1,deg f2=d2

X

w2Fq [t]+

un|f2

q
(n�1) deg u

g�(f1, f2/u
n)

=
X

j2J(d1,d2;q,�,M)

cj

✓
q
d1+2d2

↵j

◆
.

(4.18)
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To do this, it su�ces to show that
X

f1,f22Fq [t]+

X

u2Fq [t]+

un|f2

q
(n�1) deg u

g�(f1, f2/u
n)q�s deg f1q

�(w+1/2) deg f2

=
X

d1,d2

q
�sd1q

�(w+1/2)d2
X

j2J(d1,d2;q,�,M)

(�1)
d2(d2�1)(q�1)

4 cj

✓
q
d1+2d2

↵j

◆
.

(4.19)

The left side of (4.19) is equal to

(4.20) ⇣(nw � n/2 + 1)
X

f1,f22Fq [t]+

g�(f1, f2)

qw deg f2/2
q
�s deg f1q

�w deg f2 = Z2(s, w)

as defined in [?, (1.6)].
The right side of (4.19) is equal to

1

1� q�n(w+1/2) q2n

qn�1

X

d1,d2

q
�sd1q

�(w+1/2)d2
X

j2J1(d1,d2;q,�,M)

cj

✓
q
d1+2d2

↵j

◆
.

We have

(4.21)
1

1� q�n(w+1/2) q2n

qn�1

=
1

1� q
n
2+1�nw

and
X

d1,d2

q
�sd1q

�(w+1/2)d2
X

j2J1(d1,d2;q,�,M)

cj

✓
q
d1+2d2

↵j

◆deg ⇡

=
X

d12N
d2=0

q
d1�d1s +

X

d22N+

d2⌘0 mod n
d1�d2

q
�sd1�wd2q

d1+d2/2(1� q)

+
n�1X

i=1

X

d22N
d2⌘i mod n
d1=d2�1

q
�sd1�wd2q

d1+d2/2G(�i
, )�

X

d22N
d2⌘0 mod n
d1=d2�1

q
�sd1�wd2q

d1+d2/2+1

(4.22)

=
1

1� q1�s
+

1

1� q1�s

(1� q)q�ns�nw+3n/2

1� q�ns�nw+3n/2
+

n�1X

i=1

q
�(i�1)s�iw+3i/2�1

G(�i
, )

1� q�ns�nw+3n/2
�

q
�(n�1)s�nw+3n/2

1� q�ns�nw+3n/2
.

Introducing the variables x = q
�s and y = q

�w, we can rewrite (4.22) as

1

1� qx
+

1

1� qx

(1� q)q3n/2xn
y
n

1� q3n/2xnyn
+

n�1X

i=1

q
3i/2�1

G(�i
, )xi�1

y
i

1� q3n/2xnyn
�

q
3n/2

x
n�1

y
n

1� q3n/2xnyn

=
1� q

3n/2+1
x
n
y
n

(1� qx)(1� q3n/2xnyn)
+

n�1X

i=1

q
3i/2�1

G(�i
, )xi�1

y
i

1� q3n/2xnyn
�

q
3n/2

x
n�1

y
n

1� q3n/2xnyn
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=
1� q

3n/2+1
x
n
y
n +

Pn�1
i=1 q

3i/2�1
G(�i

, )xi�1
y
i(1� qx)� q

3n/2
x
n�1

y
n(1� qx)

(1� qx)(1� q3n/2xnyn)

=
1� q

3n/2
x
n�1

y
n +

Pn�1
i=1 q

3i/2�1
G(�i

, )xi�1
y
i(1� qx)

(1� qx)(1� q3n/2xnyn)

So bringing in the initial factor (4.21), (4.19) is equivalent to

(4.23) Z2 =
1� q

3n/2
x
n�1

y
n +

Pn�1
i=1 q

3i/2�1
G(�i

, )xi�1
y
i(1� qx)

(1� q
n
2+1

yn)(1� qx)(1� q3n/2xnyn)
.

Noting that ⌧(✏i) = G(�i
, ), (4.23) is precisely [?, (1.8)], finishing the proof of axiom (4).

For axiom (5), we first check that J1(d1, d2; q,�,M) has all |↵j| < q
d1+2d2�1

2 unless (d1, d2) =
(0, 0) or (0, 1), case-by case. In the d2 ⌘ 0 mod n and d1 � d2 case, the key is that

d1 � d2 � n � 2 so q
d1+2d2�1

2 > q
d2 , and in the d1 = d2 � 1 case, we have q

d1+2d2�1
2 < q

d2� 1
2

as long as d1 > 0. Furthermore, in the (0, 0) and (0, 1) cases, we have |↵j|  q
d1+2d2

2 .
By the definition of J in terms of J1, it follows that each ↵j appearing either has c = 0 and

thus satisfies |↵j| < q
d1+2d2�1

2 since d1 + d2 � 2 implies (d1, d2), 6= (0, 0), (0, 1), or has c > 0

in which case |↵j|  q
(n�1)c

q
d1+2(d2�nc)

2 = q
d1+2d2�2c

2 < q
d1+2d2�1

2 since 2c � 2 > 1, verifying
(5). ⇤

We now describe a third case where we are able to relate a(f1, f2; q,�,M) to prior work.
First, following [?, (3.2),(3.3)], let H(f1, f2) be the unique function satisfying

(1) If gcd(f1f2, g1g2) = 1 then

H(f1g1, f2g2) =

✓
f1

g1

◆

�

✓
g1

f1

◆

�

✓
f2

g2

◆

�

✓
g2

f2

◆

�

✓
f1

g2

◆�1

�

✓
g1

f2

◆�1

�

H(f1, f2)H(g1, g2).

(2) For ⇡ prime,

H(⇡d1 , ⇡
d2) =

8
>>>>><

>>>>>:

1 if (d1, d2) = (0, 0)

g�(1, ⇡) if (d1, d2) = (1, 0) or (0, 1)

g�(⇡, ⇡2)g�(1, ⇡) if (d1, d2) = (2, 1) or (1, 2)

g�(⇡, ⇡2)g�(1, ⇡)2 if (d1, d2) = (2, 2)

0 otherwise

Proposition 4.8. Assume n even and q ⌘ 1 mod 4.

Take r = 2, M =

✓
n
2 + 1 �1
�1 n

2 + 1

◆
.

Then

a(f1, f2; q,�,M) =
1

G(�, )deg f1+deg f2

X

a,b,c2Fq [t]+

anbn|f1
bncn||f2

q
(n�1) deg a+(2n�1) deg b+(n�1) deg c

H(f1/a
n
b
n
, f2/b

n
c
n).
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Proof. To prove this, we verify the axioms of Theorem 3.8 are satisfied for

ã
⇤(f1, f2; q,�,M) =

X

a,b,c2Fq [t]+

anbn|f1
bncn||f2

q
(n�1) deg a+(2n�1) deg b+(n�1) deg c

H(f1/a
n
b
n
, f2/b

n
c
n)

with ✏1 = ✏2 = 1, w1 = w2 = 1, �1(q,�) = �2(q,�) = G( ,�).
The multiplicativity axiom (1) follows immediately from the multiplicativity axiom of H,

noting that the factors anbn and b
n
c
n have degree divisible by n and can be ignored, and that

the term
⇣

f1
g1

⌘n/2
�

⇣
g1
f1

⌘n/2
�

is 1 by Lemma 2.2, because q ⌘ 1 mod 4, and so can be ignored.

Axiom (2) is straightforward. In the case when (f1, f2) = (T �x, 1) or (1, T �x), the sum
over a, b, c is trivial, and H(f1, f2) = g�(1, ⇡) = G(�, ).

We have that
(4.24)

ã
⇤(⇡d1 , ⇡

d2 ; q,�,M) =
X

j1,j12,j22N
n(j1+j12)d1
n(j12+j2)d2

q
((n�1)j1+(2n�1)j12+(n�1)j2) deg ⇡H(⇡d1�nj1�nj12 , ⇡

d2�nj12�nj2).

From Lemma 2.8 and the Hasse-Davenport identities, we have g�(1, ⇡) = �(�G(�, ))deg ⇡
�
⇡0

⇡

�
�

and g�(⇡, ⇡2) = �(�qG(�2
, ))deg ⇡

�
⇡0

⇡

�2
�
, so we can write (4.24) as

✓
⇡
0

⇡

◆d1+d2

�

X

(j1,j12,j2,r1,r2)2N5

nj1+nj12+r1=d1
nj12+nj2+r2=d2

(r1,r2)2{(0,0),(1,0),(0,1),(2,1),(1,2),(2,2)}

c(j1,j12,j2,r1,r2)↵
deg ⇡
(j1,j12j2,r1,r2)

where

↵(j1,j12,j2,r1,r2) = q
(n�1)j1+(2n�1)j12+(n�1)j2

8
>>><

>>>:

1 if (r1, r2) = (0, 0)

�G(�, ) if (r1, r2) = (1, 0) or (0, 1)

qG(�2
, )G(�, ) if (r1, r2) = (2, 1) or (1, 2)

�qG(�2
, )G(�, )2 if (r1, r2) = (2, 2)

and

c(j1,j12,j2,r1,r2) =

(
1 if (r1, r2) = (0, 0), (2, 1), or (1, 2)

�1 if (r1, r2) = (1, 0), (0, 1), or (2, 2)

So we may take

J(d1, d2; q,�,M) =

⇢
(j1, j12, j2, r1, r2) 2 N5

|
nj1+nj12+r1=d1
nj12+nj2+r2=d2

(r1,r2)2{(0,0),(1,0),(0,1),(2,1),(1,2),(2,2)}

�

and take these ↵j and cj. By (2.3), because q ⌘ 1 mod 4, we have (�1)(d1+d2)(deg ⇡+1) =
�
⇡0

⇡

�(d1+d2)(n/2)

�
. This, and the definition of J , implies ã⇤ satisfies axiom (3).
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J is a manifestly a compatible system of sets of ordered pairs. For axiom (4), we must
check X

f1,f22Fq [t]+

ã
⇤(f1, f2; q,�,M)xdeg f1y

deg f2

=
X

j1,j12,j22N

X

(r1,r2)2{(0,0),(0,1),(1,0),(1,2),(2,1),(2,2)}

c(j1,j12,j2,r1,r2)
q
2d1+2d2

↵(j1,j12,j2,r1,r2)
x
nj1+nj12+r1y

nj12+nj2+r2 .

We have

q
2d1+2d2

↵(j1,j12,j2,r1,r2)
= q

(n+1)j1+(2n+1)j12+(n+1)j2

8
>>><

>>>:

1 if (r1, r2) = (0, 0)

�qG(�, ) if (r1, r2) = (1, 0) or (0, 1)

q
3
G(�2

, )G(�, ) if (r1, r2) = (2, 1) or (1, 2)

�q
4
G(�2

, )G(�, )2 if (r1, r2) = (2, 2)

.

Here we use G(�, )G(�, ) = q to calculate the inverse conjugate of ↵.
Hence we have
X

j1,j12,j22N

X

(r1,r2)2{(0,0),(0,1),(1,0),(1,2),(2,1),(2,2)}

c(j1,j12,j2,r1,r2)
q
2d1+2d2

↵(j1,j12,j2,r1,r2)
x
nj1+nj12+r1y

nj12+nj2+r2 =

1 + qG(�, )x+ qG(�, )y + q
3
G(�2

, )G(�, )x2
y + q

3
G(�2

, )G(�, )xy2 + q
4
G(�2

, )G(�, )2x2
y
2

(1� qn+1xn)(1� q2n+1xnyn)(1� qn+1xny2)
.

By the definition of the series Z(x, y) in ?, we have

Z(x, y) =
X

f1,f22Fq [t]+

a
⇤(f1, f2; q,�,M)xdeg f1y

deg f2 .

According to [?, Theorem 4.2], upon observing that ⌧1 = G(�, ) and ⌧2 = G(�2
, ), we

have
Z(x, y) =

1 + qG(�, )x+ qG(�, )y + q
3
G(�2

, )G(�, )x2
y + q

3
G(�2

, )G(�, )xy2 + q
4
G(�2

, )G(�, )2x2
y
2

(1� qn+1xn)(1� q2n+1xnyn)(1� qn+1xny2)
which is exactly the desired identity.

For axiom (5), note that

logq |↵(j1,j12,j2,r1,r2)| = (n� 1) j1 + (2n� 1) j12 + (n� 1) j2 +

8
>>><

>>>:

0 if (r1, r2) = (0, 0)
1
2 if (r1, r2) = (1, 0) or (0, 1)

2 if (r1, r2) = (2, 1) or (1, 2)
3
2 if (r1, r2) = (2, 2)

which is < nj1 + 2nj12 + nj2 + r1 + r2 �
1
2 as long as nj1 + 2nj12 + nj2 + r1 + r2 � 2.

⇤
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