GENERAL MULTIPLE DIRICHLET SERIES FROM PERVERSE
SHEAVES

WILL SAWIN

ABSTRACT. We give an axiomatic characterization of multiple Dirichlet series over the func-
tion field F4(T), generalizing a set of axioms given by Diaconu and Pasol. The key axiom,
relating the coefficients at prime powers to sums of the coefficients, formalizes an observation
of Chinta. The existence of multiple Dirichlet series satisfying these axioms is proved by
exhibiting the coefficients as trace functions of explicit perverse sheaves, and using proper-
ties of perverse sheaves. The multiple Dirichlet series defined this way include, as a special
case, many that have appeared previously in the literature.
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1. INTRODUCTION

1.1. Background. Multiple Dirichlet series were originally defined as Dirichlet series in
multiple variables satisfying twisted muliplicativity properties and certain groups of func-
tional equations. These were first motivated by moments of L-functions [??], and have since
been successfully used to calculate a number of moments, with recent examples including
[7?77]. If one defines a Dirichlet L-function where the Dirichlet character is expressed as a

Legendre symbol, as in
. R n
L= () =2 )
S Z )

n=1
1
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then it is natural to consider moments like

k .
> I ( (7))
: m
m<X i=1
which can be analyzed using the series

ST ()= S () T

m=1 =1 ni,...,ng,m=11i1=1

A plausible strategy to analyze these moments is to first replace the coefficients Hle (%)
by another set of coefficients a,, ., » Which agrees with it for ny, ..., ng, m squarefree and
relatively prime, but may differ for other values, which ensures the series has better analytic
properties, use these analytic properties to estimate suitable integrals of the series, and then
use a sieve to extract information about the corresponding integral with the original set of
coefficients. Since the coefficients Hle (%) satisfy a twisted multiplicativity analogous to
the multiplicativity of the coefficients of classical Dirichlet series, one assumes the modified

coefficients keep this twisted multiplicativity, i.e.

k /
n; n;
amn/ onen ,mm/ - anl,...,nk,man' .t ,m/ H (_> .
1o bk T, 1o 1 m/ m
1=

as long as nq,...,ng, m are relatively prime to nj,...,ny, m. Generally the better analytic
properties one seeks to obtain are functional equations, and analytic continuation enabled
by those functional equations.

Most desirable would be meromorphic continuation to C”, with r the number of variables,
with an explicit description of the poles. This can be obtained when one has a functional
equation in each variable generating a finite group of functional equations (typically a Weyl
group). However, some recent work has studied multiple Dirichlet series with an infinite
group of functional equations [?], where one expects only meromorphic continuation to a
certain region in C", and can only prove meromorphic continuation to a smaller region
directly from the functional equations. Still, obtaining continuation to the larger region is
sometimes possible [?], and could hold the key to estimating higher moments of L-functions
[77].

Since the multiplicativity is twisted, one does not have an expression of the multiple Dirich-
let series as an Euler product of local factors. However, twisted multiplicativity does still
reduce the choice of coefficients for each tuple of numbers to the local choice of coefficients
for each tuple of powers of a fixed prime. To obtain the desired functional equations, one
needs that the generating series of these prime power coefficients satisfy certain analogous
functional equations. Because these local functional equations were used to define the coef-
ficients, the multiple Dirichlet series could only be uniquely defined when these functional
equations were sufficient to uniquely characterize the generating functions. ? first observed
that, when working over the function field F,(¢), there was a local-to-global symmetry re-
lating these generating functions to the multiple Dirichlet series. This could be proven by
observing that they were both determined by their functional equations, and then comparing
their functional equations.
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1.2. Summary of results. The goal of this paper is to provide a uniform construction of
multiple Dirichlet series over the function field F,(¢), parameterized simply by the finite field
F,, a character x of IF,, and a symmetric integer matrix M, that includes many multiple
Dirichlet series separately constructed previously as well as new examples. In future work,
we hope to investigate these new examples, finding functional equations they satisfy, regions
to which they can be analytically continued, and applications to moments of L-functions.
Furthermore, it may be possible to define new multiple Dirichlet series in the number field
context by choosing the coefficients at tuples of powers of a prime p to match the coefficients
of the series defined here at powers of a polynomial over F,, and then to investigate their
analytic properties also.

Our approach is inspired by ?, who showed that the local-to-global properties observed by
?, combined with the twisted multiplicativity, uniquely characterize the multiple Dirichlet
series by an inductive argument, and thus could be used as a definition of multiple Dirichlet
series. However, they were only able to show existence of the multiple Dirichlet series
satisfying these local-to-global properties in one particular family of cases, the one relating
to moments of quadratic Dirichlet L-functions, by a lengthy étale cohomology argument. In
these cases, 7 was able to show that the functional equations follow from the local-to-global
properties.

We propose a new approach. We define multiple Dirichlet series that satisfy quite general
twisted multiplicativity relations involving arbitrary characters, which are uniquely char-
acterized by local-to-global properties. Here the matrix M and character xy determine the
exact function we twist the multiplicativity relation by. However, we define and construct
the multiple Dirichlet series coefficients as trace functions of certain perverse sheaves.

Using this local-to-global property, it is possible to show that our multiple Dirichlet series
include as a special case some multiple Dirichlet series that appear before in the literature.
We prove this for two series defined by ? (Corollary and (4.20)) and one defined by
? (Proposition For those defined by ? the proof is automatic since their axioms are
a special case of ours. It seems reasonable to expect, based on these examples, that every
multiple Dirichlet series defined in the literature whose values at relatively prime tuples of
squarefree numbers can be expressed in terms of Dirichlet characters, Jacobi symbols, and
Gauss sums, are also special cases of our construction, while those expressed using Fourier
coefficients of higher rank automorphic forms, as summarized in [?], are not. However, it is
very plausible that multiple Dirichlet series related to higher rank automorphic forms could
arise from perverse sheaves constructed in a similar way using the Langlands parameter of
the automorphic form. In addition to the examples, these expectations are motivated by
the idea that the trace function of a perverse sheaf gives the best way to extend a function
from “generic” values like tuples of relatively prime squarefree numbers to all values, and
therefore that every extension that satisfies nice analytic properties likely comes from a
suitable perverse sheaf.

The idea that the trace function of a perverse sheaf gives a well-behaved function in
analytic number theory over function fields is most prominent in the geometric Langlands
program, where automorphic forms are expected, and in many cases known, to arise in this
way, but it can also be seen in more elementary situations. For example, the divisor function
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arises from a perverse sheaf. More generally, so do the coefficients of the L-function of a
Galois representation.

The author also expects that these multiple Dirichlet series will satisfy functional equa-
tions analogous to those satisfied by existing series like the Weyl group multiple Dirichlet
series [?], and possibly more general ones, with the exact nature of the functional equations
depending on the parameters M, y. The same examples give some evidence of this: Propo-
sition covers a Weyl group multiple Dirichlet series that satisfies an interesting group
of functional equations matching the Weyl group S5, suggesting that further special cases
of our construction may also satisfy similar functional equations. Furthermore (4.3) gives a
relation between the coefficients of two multiple Dirichlet series that can be used to prove a
functional equation relating the series themselves, with the Fourier transform in that equa-
tion playing the same crucial role it does in the classical functional equations of the zeta
function and Dirichlet L-functions, again suggesting that more general functional equations
of this type should exist. Work in progress by the author and Ian Whitehead, as well as by
Matthew Hase-Liu, aims to prove these functional equations in greater generality. This work
will also enable us to realize further previously-defined multiple Dirichlet series as special
cases of the construction of this paper, as these series are uniquely determined by their func-
tional equations so it suffices to check the newly-defined series satisfy the same functional
equations. It may also be possible to use this work to find new Dirichlet series calculable
using their functional equations, with possible applications to estimating new moments of
L-functions.

1.3. Notation. Let F,[¢] be the ring of polynomials in one variable over a finite field F,,.
Let F,[t]T be the subset of monic polynomials. Let f’ be the derivative of f with respect to
t.

Fix a natural number n. We always let x: F; — C* be a character of order n. Let
Xm: Fgm — C* be the composition of x with the norm map Fgm — TF,.

Define a residue symbol

(3)
9 X

for (f,g) € F,[t] coprime as the unique function that is separately multiplicative in f and g¢
such that if ¢ is irreducible of degree d,

(0).-(%)

d
where we use the fact that f T in Fy[T]/g = Fa in fact lies in IF,.

Let Res(f, g) be the resultant of f and g (i.e. the product of the values of f at the roots
of g).

We define a “set of ordered pairs of Weil numbers and integers” to be a set J consisting
of ordered pairs j of a Weil number a; and an integer c;, such that no a; appears twice in
the set, and ¢; is never zero.

For Ji, J5 two sets of ordered pairs, we define J; U J, to be the union, except that if some
Weil number o« appears in both J; and J;, we add the ¢;s together, and if the sum is zero,
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we remove them. In other words, J; U Js is the unique set of ordered pairs of Weil numbers

and integers such that
D Gy =D i+ ) e
jEUT jen jeds

for all integers e.

For a Weil number §, we take §J to be the set of ordered pairs (cj, fa;), so that
D jeps Cio§ = B° Yy cjac for all integers e.

We say a function (g, x) on pairs of a prime power ¢ and character x of F\ is a compatible
system of Weil numbers if

(4% xe) = (¢ x)°
for all ¢, x, e. For instance, the constant function 1 is a compatible system of Weil numbers.
We say that a function J(g, x) from pairs of a prime power g and a character x of F) to
sets of ordered pairs of Weil numbers and integers is a compatible system of sets of ordered
pairs if, whenever J(q, x) = {(«a;, ¢;)}, we have J(¢% x.) = {(a5, ¢;)}, so that

Z cjal = Z cjast.
J€J (g% xe) j€J(a:x)

We now define the general construction of sheaves that will be key for our paper. Fix once
and for all a prime ¢ invertible in [F, and an isomorphism between Q, and C (or just the fields
of algebraic numbers within each), with which we will freely identify elements of Q, and C.
Let X be an irreducible scheme of finite type over a field in which ¢ is invertible, generically
smooth of dimension d, and f a nonvanishing function on X. Let U be the maximal smooth
open set where f is invertible and let j: U — X be the open immersion. We have a Kummer
map H°(U,G,,) — H'(U, py—1). The image of f under this map defines a p,_;-torsor. We
can twist the constant sheaf Q, by the image of this torsor under y: pg-1 = Fy — @Z ,
obtaining a lisse rank one sheaf £, (f) on U. Because U is smooth of dimension d, £,[d] is
a perverse sheaf on U. Let j.(L,[d]) be its middle extension from U to X. Let

ICr(p) = Ju(Lx[d])[d]

be this middle extension, shifted so it lies generically in degree zero.

1.4. Construction and main theorem. Let r be a natural number and let M be a sym-
metric r X r matrix with integer entries.

Let dy, ..., d, be natural numbers. View A% as the moduli space of monic polynomials of
degree d;, so that [[,_, A% is a moduli space of tuples (fi,..., f.) of monic polynomials. On
[T_, A%, define the polynomial function

Fo,.a, = HRes(fi’, fte H Res(fi, ;).
i=1 1<i<j<r
Let
Kd17-~~7dr = Icﬁx(Fdl ..... dr)"
Given a tuple of polynomials (fi,..., f,) of degrees di,...,d,, let a(fi,..., fr;q,x, M) be
the trace of Frobenius acting on the stalk of Ky, 4. at (fi,...,f)

r
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Define the multiple Dirichlet series

Z(Sl,.'wsr;(hXﬂM):

Z a(fla---afr?QvX,M)
T g—(degfi)si
f1oe fr€FG [+ [[i-1 4

The main theorem of this paper, giving an axiomatic characterization of the coefficients
of the geometrically defined multiple Dirichlet series Z(sy, ..., s:;q,x, M), is as follows.

Theorem 1.1. For any fived M,
a(fla"'?fr‘;q7XaM)

is the unique function, that, together with a function J(di,...,d.;q,x, M) from tuples of
natural numbers dy, ..., d,., to compatible systems of sets of ordered pairs of Weil numbers,
satisfies the axioms

(1) If f1,.... fr and g1, ..., g- satisfy ged(fi, g;) =1 for all i and j, then we have
a(flglv"'vf’rgr;q»X;M)

=a(fi,- o, fri o M)algr, . g0, M) ] (L) ” (fc—) l 11 (i) ” (?—) -

1<i<r N9/ x X 1<icj<r N1/ x X

(2) a(1,...,L;q,x, M) =1 and a(1,...,1, f,1,...,1;q,x, M) = 1 for all linear polyno-
mials f.

2 : degm

X JeJ(d1,....dr;q,x,M)

‘ ng:l d;

Z a(f17‘--7f7‘;Q7X7M): Z Cj a.

Fiyeeer frERG [T Jj€J(d1;-,dr;qx, M) J
deg fi=d;

T
i=1

(5) oy <q~ 2 = s long as Y i, d;i > 2.

Here axioms (3) and (4) give the local-to-global principle, (1) is the twisted multiplicativity,
and (2) and (5) are normalizations needed to ensure the axioms define a unique set of
coefficients, with (5) also ensuring that individual coefficients are not so large that they
dominate the series.

Note that the condition that J be a compatible system relates different finite fields at
a time, so it is not possible to check these axioms working only in a specific finite field q.
Rather, one must calculate in all extensions of a fixed finite field F.

In the case y is quadratic, when M is the sum of a matrix with a row of ones and the rest
of the entries zero and its transpose, the existence and uniqueness part of Theorem were
obtained in [7].
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1.5. Perverse Sheaves. The key geometric idea of this paper is that local-to-global prop-
erty described by axiom (3) and (4) are a consequence of duality properties of perverse
sheaves. The local-to-global property relates the sum of many coefficients of the multiple
Dirichlet series to a single coefficient, via the set of Weil numbers J. Geometrically, we in-
terpret this as a relation between the sum of the trace of Frobenius on the stalk of a perverse
sheaf over all the F,-points of a variety and the value at a single point. The Lefschetz fixed
point formula relates the sum of the trace of Frobenius over all F -points to the compactly
supported cohomology of the variety with coefficients in the perverse sheaf. Because there
is an action of the multiplicative group on the variety that fixes only that point, giving it a
conical structure, a generalization of the result that the cohomology of a cone matches the
cohomology of the point relates the stalk of that point to the usual cohomology. Verdier
duality for perverse sheaves then relates the usual and compactly-supported cohomology.

Furthermore axiom (1) will follow from a twisted multiplicativity property of the polyno-
mial functions Fy, 4 used to construct the perverse sheaves Ky, 4. We then transform
this identity involving the polynomials Fy 4 to an isomorphism involving the perverse
sheaves Ky, . 4,, using fundamental properties of the intermediate extension construction,
which then implies an identity involving the trace functions a(fi, ..., f.; ¢, x, M) of the per-
verse sheaves Ky, 4,

Axiom (5) follows from the theory of weights and purity for perverse sheaves, which gives
bounds for the Frobenius eigenvalues in each degree

Characteristic zero analogues of the perverse sheaves ICr (5, )
have been studied before from the perspective of quantum groups and Nichols algebras [?7].
Some of our (brief) calculations with these sheaves in Section |3| are characteristic p ana-
logues of results previously obtained in the characteristic zero setting in these works. This
connection between multiple Dirichlet series and quantum groups seems different from the
usual one, as the coefficients of the multiple Dirichlet series correspond to traces of Frobenius
on stalks of the sheaves that can be computed from the cohomology of the positive part of
the small quantum group, and the Frobenius and cohomology don’t appear in the usual pic-
ture. Interestingly, no analogue of the expected functional equations seems to appear in the
quantum algebra literature (though they seem related to the Weyl groupoid defined by 7). I
learned of these connections thanks to helpful conversations with Jordan Ellenberg, Michael
Finkelberg, Mikhail Kapranov, Tudor Padurariu, and Vadim Schechtman.

While writing this paper, the author served as a Clay Research Fellow and, later, was
supported by NSF grant DMS-2101491. I would like to thank Adrian Diaconu for helpful
conversations and Matthew Hase-Liu and River Sawin for helping me find typos.

used in our construction

2. PRELIMINARIES

2.1. Further notations. We use § to refer to, when ¢ is odd, the unique character £: F; —
C* of order 2. If n is even, we have £ = /2.

For a rational function f, let res(f) be its residue at oo, normalized so that res(1/t) = 1,
(i.e. the coefficient of t~! when f is expressed as a formal Laurent series in ¢71).
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For x € F,, let ¢(x) = eQﬂmE’ P Let G(x,¥) = X emx X(@)Y (). Let
h hfr
- 5 (30 (~(2)
A h@%h f2) f2

We say a function (g, x) on pairs of a prime power ¢ and character y of F; is a sign-
compatible system of Weil numbers if

=% xe) = (=7(g, X))*

for all ¢, y,e. For instance, the Hasse-Davenport identities imply that G(x",) is sign-
compatible for any integer r.

We let
/\<d17"'7dT;q7X7M): Z a(flv“'af’l“;qJX7M)
flv"':fTqu[t]+
deg fi=d;
so that

Ad?"'JdT;Q7X7M
Z(81,. 8, X, M) = Z <1HT a5, )'
di,....dr€N =14

For 7 a prime polynomial, we let v, be the m-adic valuation of polynomials, i.e. v, (f) is
the maximum power of 7 dividing f.

2.2. Function field evaluations. Certain functions important in classical number theory,
such as the Mobius function, power residue symbol, and Gauss sums, admit alternate formu-
las in the function field F (), that make clear their relationship to the algebra of polynomials.

Lemma 2.1. We have

(g) X = x(Res(f,9)).

Proof. Because the right side, by definition, is multiplicative in g, it suffices to consider the
case where ¢ is prime. Then for a a root of g, the other roots are a?, ... ,a?"". Hence the
product of the values of f at these roots is

d—1 . d—1 . L
[[7@) =1l @7 = fla).
i=0 i=0
Because « is a root of g, we can evaluate this by setting & = T" and reducing mod ¢(7),
which matches the definition of (g) . O
X

Under this interpretation, the reciprocity law for power residue symbols is given by the
following fact:

Lemma 2.2. For monic f, g,

Res(f,g) = (—1)%8/ €9 Res(g, f).
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Proof. For o, ..., (geq r the roots of f and i, ..., Baegy the roots of g,

deg f deg g

Res(f,g) = HH i — )

i=1 j=1

and
deg f degg

Res(g, f H H

=1 j=1

so switching each term, we obtain deg f deg g factors of (—1). O
Let A(f) be the discriminant of f. Let p be the Mobius function.
Lemma 2.3. We have

(2.1) p(f) = (=D)TE(A(S))

and

(2.2) A(f) = (=1l =D Res(f, f).
(2.3) p(f) = (—1ytesd (p) (f?)6

Proof. (2.1)) is Pellet’s formula. (2.2)) follows from noting that for a, ..., cqes s the roots of
f, we have f'(a;) =[], i(ci — ;) so

Res(f', f) = H H o —ay) = H (; — o) (o — )

1<i<deg f j#i 1<i<j<deg f
— (_l)degf(degf—l)/Z H (o — aj)Q - (_1)degf(degf—1)/2A(f)'
1<i<j<deg f

(2.3) follows from combining (2.1)), (2.2), and the fact that {(—1) = (—1)%. O

Lemma 2.4. For fy squarefree and fi prime to fs,

/ / -1
N R I B ) (}0_)5(}0_) (Gl )

Proof. Let tr be the trace F[t]/fo — F,. First observe that because fs is squarefree, f} is
invertible mod fy. The residue res( ff L) is the sum of the residue of }”; L at each root of f,

which is the sum of the value of hf L at each root of fp, which is tr 2L 1. Thus

- 5 () o))

heF,[t]/ f2

-2 ) %)

heF,[t]/ f2
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, -1
If we change variables to h* = fih/ f5, we have <f_};>x = <%>x (%)X (%) SO

wns=(8) (8 5 (

X hreFRq[i]/f2

| =

The inner sum
h*
> (5) e
heeRgltl/fz V727 X

is multiplicative in fy, and when f, is a prime 7 takes the value —(—G(x,v))%&™ by the
Hasse-Davenport relations. Hence the inner sum is equal to (—G(x, %)) 2u(f,). (2.4) then
follows from the last identity of Lemma 2.3

O

The term Res(f’, f) that appears here has its own multiplicativity relation:

Lemma 2.5. We have

Res((fg)', fg) = Res(f', f) Res(g', g) Res(f, g) Res(g, f).
Proof.
Res((fg)', f9)
= Res((fg' + f'9), f) Res((fg' + f'9), 9)
= Res(f'g, f) Res(fd', g)
= Res(f’, f) Res(g, ) Res(f, g) Res(g', ). O

We record here also the multiplicativity relations for Gauss sums:

Lemma 2.6. If gcd(fs, f3) =1 then

9 (fifs, fa) = <%)_ 9x(f1, f2)-
Proof.
a3 (8) (=)

heFq[t]/(f2

(7).~ (5).2).

and we observe that this change of variables is a permutation, so

Letting h* = hf3, we have

heFq[t]/(f2 h*€Fqlt]/ fo

O

> ()= - 5 (0).(2), (= ()= (3), mons



GENERAL MULTIPLE DIRICHLET SERIES FROM PERVERSE SHEAVES 11
Lemma 2.7. If ng(fla f4) = ng(f% f4) = ng(fz; f3) =1 then

(2.5) 9x(fifs: F2f1) = 9x (1, f2)9x(f3, fa) (Z) (%)X (%) : (%) :

Proof. , ,
Ix(f1f3, fofs) = Z (f2f4) Y (res ( fi}f)) )

heFq[t]/(f2fa)
As fy and f; are coprime, we can uniquely write h = hofy + hafs for hy € F,[t]/ f2 and
hy € F,[t]/ fs. We then have

().~ (2), () - (), (50) - (), (2).(5). (%)
i) \E) B\ ) ) T\ B\ ) )
Furthermore we have

o(res () =0 (s (22)) o (e (M52))
S (F) o= 2 (F),

Hence

9 fifss fofs) = (%) (%)

ha€Fy[t]/ f2
f f:
( - 2 9 (f1f3, [2)gx (f1fs, fa)-
i) \5),
Applying Lemma to each factor, we get ([2.5]). O

An identity to evaluate Gauss sums will help compare with the work of Chinta and Mohler.

Lemma 2.8. For x of order n, we have
(

| ifds =0
(qlee™ — 1)qd2—1) degr if dy = 0 mod n and d; > ds
gy(m™ w2y =L 0 if do Z0mod n and dy > dy .
—q DT (2) (G, ) ET i dy = dy 1
0 ifdy < dy—1

Proof. We begin by noting

h _
(2.6) gy (T, 7®) = Z (E) Y (res (hﬂ'dl dQ)) )
heRy[t]/m?2 X
First, if dy = 0, the sum (2.6 has a single term and equals 1. Second, ( 2) depends only

on h mod 7, so if dy < dy — 1, the 1 term cancels in each residue class mod 7 and so the sum
(2.6)) vanishes. If d; > ds, the 9 term can be ignored and the sum (2.6 vanishes because
the multiplicative character cancels, unless dy = 0 mod n, in which case the summand is 1
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if h is prime to 7 and 0 otherwise, and the value of the sum ([2.6) is simply the number of h
prime to 7, which is (q4°87™ — 1)g(®2—1)dee™,
If dy = dy — 1, the sum ({2.6)) is equal to

h\ ™ h
q(dg—l)degw Z (;) ¥ (res (})) — q(d2—1)deg7rgxd2(1,7r)

heF,[t]/n X
(d2—1)degm degm(degm—1)(g—1) T & i da degm (do—1)degm . * do deg
=q (—1) 1 — — ) (G(X*,¥)™ " = —¢ — ) (=G(x™® )
T/x \T/¢ T/ x
by Lemma and ([2.3)), verifying the last remaining case. O
2.3. (-adic sheaves. We have the following basic properties of IC. (y).
Lemma 2.9. (1) For f a function on X and g an invertible function on X,

1Cry(rg) = 1Cr, (1) @ Lx(9)-
(2) For s: X =Y a smooth map and f a function on'Y,
ICs,(os) = 10 (p)-
(3) For X andY two varieties, f a function on X and g a function on'Y,

1O (@) s@atw) = 100 (5) BT, (g)-
(4) For f a function on X, with X of dimension d, and D the Verdier dual

DICep =1Cc () [2d)(d),

Proof. These all are proved by combining a basic property of middle extension with a prop-
erty of the sheaves £, that follows in a straightforward way from their definition.

(1) follows from the fact that middle extension is compatible with tensor product with
lisse sheaves, and the fact that £,(f) ® £,(g9) = L (fg).

(2) follows from the fact that middle extension is compatible with smooth pullback (once
shifts are taken into account) and s*L, (f) = L, (f o s).

(3) follows from the fact that both middle extension and £, are compatible with X.

(4) follows from the fact that middle extension is compatible with Verdier duality and £,
is dual to £,-1 as a lisse sheaf, hence DL, (f) = L,-1(f)[2d](d).

These middle extension compatibilities follow from the, even more standard, compatibili-
ties of j; and j, with these operations

O

We need also a slightly more complicated observation along the same lines. First, we
define and describe the notion of the Weil restriction of a complex of sheaves, building on
the notion of a tensor direct image of sheaves defined by ?.

Definition 2.10. Let £'/k be a finite Galois field extension. Let X be a variety over k'.
The Weil restriction W R, X is defined as the variety over k whose R points for a k-algebra
R are the R ®y k'-points of X.
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For R a k’-algebra, the natural map R ®; k' — R defines a map from R-points of W RF, X
to R-points of X, defining a map p: (WRFX )y — X.

Let m: (WRF X)) — WRE X be the natural map.

For K’ a complex on (W RF,X);, 7, Definition 2 on p. 133 defines the tensor direct image
T« K’ as the unique complex on W R, X whose pullback to (W R X)), is isomorphic to
& cqair k) T K" where the natural action of Gal(k’/k) on the pullback is equal to the natural
action of Gal(k’'/k) permuting the factors (which exists and is unique by [?, Proposition 8
on p. 133]).

For K a complex on X}/, define the Weil restriction W RY, K by

WRNK = T p K.

Remark 2.11. Note that this definition uses complexes of sheaves rather than the derived
category of sheaves because the descent argument needed to prove existence and uniqueness
would, in the derived category, require checking higher compatibilities of the action. If K is
an ordinary sheaf, or a perverse sheaf, up to shift, these subtleties can be avoided, as these
categories satisfy étale descent. We will only apply this in the case of perverse sheaves up
to shift.

Lemma 2.12. Let X be a variety over Fya. Let K be a perverse sheaf on X. Then the trace
of Frobenius on the stalk of WRiqu at an F,-point is equal to the trace of Frobenius on the
q

stalk of K at the corresponding F a-point, using the natural bijection X (F ) = WRE"dX(]Fq).

Proof. By definition and [?, Proposition 9 on p. 133], the trace of Frob, on the stalk of
WqudK at an Fy-point z is the trace of Frob,s on the stalk of p*K on the F -point 7~ ().

The stalk of p*K at 7 '(x) is the stalk of K at p(7m—!(z)), which is the corresponding
IF ,a-point of X. U

Lemma 2.13. Let k'/k be a finite Galois field extension of fields containing fi,—1. Let X be
a variety over k' and f a function on X. Let WRF, X be the Weil restriction from k' to k
of X. The function f on X induces a map WRY,X — W RE A, which we can compose with
the norm map W R, A" — A' to obtain a function Nf on WRy, X . Let WR},IC, (5 be the
Weil restriction of IC,, (r). Then

(2.7) WRIC, (1) = 10, (ny).-
Proof. Since k'/k is Galois, we have an isomorphism
WRE X )w =[] X

TEGal(k’ /k)

with the projection onto the 7’th factor given by po 7.
By definition the pullback of W RF, T Cr, () to k' is given by

Q) TP ICr () = Beccaw mICr(p) = TCL L, cauqom foror) = [Cr v )

reGal(k /k)

by Lemma (3) and the identity [ cqapy fopoT = Nf on (WRE X)), So the two
complexes in (2.7 are isomorphic after pullback to &’.
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Since ICr, () is the middle extension of a lisse sheaf of rank one, it follows that WR’,;’,I Cr.(p)
is the middle extension of a lisse sheaf of rank one as well. To check they are isomorphic over
k, it suffices to check the lisse sheaves are isomorphic, for which, because they are isomor-
phic over £/, it suffices to check that their stalks at a single point are isomorphic as Galois
representations.

For W Ry I Cr.(p), the stalk at a geometric point z € WRF,X where Nf is nonzero is
naturally the tensor product of a one-dimensional vector space for each 7 € Gal(k'/k), and
on each one-dimensional vector space the action is the same as on an n’th root of f(p(7(x)).
For IC. (ny), the Galois action is the same as the Galois action on the nth root of N f(z).
Because N f(z) = [],cqu x) f(p(7(2)), and the nth root of the product is the product of
the nth roots of the factors, these are the same. O

Lemma 2.14. Let X be a variety with an action of G,, described by a map a: X xG,, = X.
Let f be a function on X and r an integer such that f(a(x,\)) = f(x)\" for all x € X and
A € Gy,

If ris divisible by n, then IC¢ (5 is Gy, -invariant, in the sense that a*1Cy, 5y = 1Cr, (HX
Q¢. In particular, this always happens if we compose a with the n’th power homomorphism
G,, — G,,.

If v is not divisible by n, then the stalk of IC. () vanishes at every Gp,-invariant point.

Proof. Because a is smooth, we have by Lemma [2.9)2,3)
a1z, (5) = 10z (foa) = 10, (sxr) = 1L, (5) W ICL ()

If r is divisible by n, then IC)- is the middle extension of the constant sheaf, hence is
simply the constant sheaf.

If r is not divisible by the order of y, then restricting this identity to P x G, for a
Gyp-fixed point P, we have (IC;, (s))p ® Q¢ = (IC,, (5))p ® Ly (\"). Because one side has
trivial monodromy and the other nontrivial, they cannot be isomorphic unless they both
vanish. 0

Lemma 2.15. Let B be a scheme of finite type over a field, Y = BxA', u: BxG,, — BxA!
the inclusion, 7: Bx At — B the projection, K a complex on BxG,,, and N # 0 an integer.

Assume that B is invariant for the action of G,, on B X G, given by a((b, A1), \2) =
(b, MAY) for all b € B, A\, Xy € G,y,.

Then maumK = 0.

Proof. Let w: A! — pt be the projection and u: G,, — A! the inclusion, so that u = id x u
and m =1id x 7. Let p: G,, = G,, be the Nth power map. Let i: pt — G,, be the inclusion
of the identity.

Restricting the G,,-invariance property to the locus where A = 1, we see that (idx p)*K =
((idxi)* K)XQy. Since p is finite, it follows that K is a summand of (id X p).((idx)* K)XQy,
so it suffices to prove the vanishing of

meu (id X p)(((id x )" K) K Q) = (id x 7). (id x @), (id x p).(((id x )" K) K Qp).
But by the Kiinneth formula in the form [?, Corollary 9.3.5], together with its compactly
supported version [?, Corollary 7.4.9], we have

(id x 7). (id x @) (id x p)o(((id x i) K) R Qp) = (id x 7). (id x @)(((id x i)*K) B p,Qy)
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= (1d x T).(((id x )" K) R p.Qp) = ((1d x 1)*K) R 7,0 p.Qy
so it suffices to prove
ﬁ>s<ﬂ!p>|<(@£ = Oa
but 7,7 0.Qy is a complex on a point, given by the cohomology groups H*(A!, 1. Q).

By Artin’s theorem [?, Corollary 7.5.2], this cohomology vanishes in all degrees but zero
and one. All global sections of wp,Q, vanish at zero, hence vanish in a neighborhood of
zero, hence vanish everywhere because up,Qy is lisse away from zero, so H" vanishes. By
the Grothendieck-Ogg-Shafarevich Euler characteristic formula [?, Theorem 7.1], the Euler
characteristic of @ p,Qy is zero, so H! vanishes as well. O

Lemma 2.16. Let X be an affine scheme over a field with a G,,-action such that all noncon-
stant G,,,-homogeneous functions on X have positive degree. Let P be the unique G,,-fized
point of X. Let K be a G,,-invariant complex on X. Then

H*(X,K) = Kp.

Proof. Let x1,...,x, be generators of the ring of functions on X of degrees dy,...,d,. Let
d be the least common multiple of di,...,d,. Then (xf/dl, o ,xf/d”) defines a finite G,,-

equivariant map from X to A", where G,, acts on A" by multiplying all coordinates by
the dth power. Because the map is finite, and P is the unique point in the inverse image
of 0 € A", both H*(X.K) and K, are preserved by pushing forward along this map, and
because this map is G,,-equivariant, the G,,-invariance is preserved. So we can reduce to
the case where X = A™.

Let j be the inclusion from A™ — {0} to A™. From the excision exact sequence jij*K —
K — K, it suffices to prove H*(A", jij*K) = 0. Let Y be the blowup of A" at the origin, let
w: A" — {0} be the inclusion, b: Y — A" the blowup map, and 7: A™ — P"~! the projection
onto the exceptional fiber. We have j = b o u and b is proper so

H*(An,]l]*K) = H*(An,buluj*K) = H*(A”,b*u'j*[() = H*<Y, UIJ*K) = H*(]P)nil,ﬂ'*u!j*[().

Thus it suffices to show that mu*K’ is zero for a G,,-equivariant sheaf K’ on A" — {0}.
Locally on P71, Y is an Al-bundle, 7 the structure map, u the inclusion of the complement
of the 0 section, and the G,, action is by multiplication by the nth power. To prove this
vanishing, we work locally on P"~!, where we are in the setting of Lemma We take B
to be an open subset of P"~! where this bundle can be trivialized and let K be the pullback
of K’ along this trivialization. By Lemma mu K = 0. O

3. PROOFS OF THE AXIOMS
We are now ready to check that the function a satisfies the axioms of Theorem |1.1

Lemma 3.1. If f1,..., f, and ¢1,. .., g, satisfy gcd(f;, 9;) =1 for all i and j, then we have
a<f1g17 R fT‘gT; q, X, M)

=a(fr,- ., fri,x, M)algr, ... griq. xM) ] <L> ” <g—) ) I1 (i) ” (ch—) g

1<i<r \Ji/ x i/ x 1<i<j<r N9i/ x X
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Proof. Let d; = deg f; and e; = degg;. Consider the map p: [[_; A% x [[_ A% —
[T,_, Adte by polynomial multiplication.
Observe that

Res(figi, 195) = Res(fi, f;) Res(gi, g;) Res(gi, f;) Res(fi, g;)
and by Lemma
Res((fig:)', figi) = Res(f}, fi) Res(g;, g:) Res(fi, g;) Res(gs, fi)
so that, letting
G =[] Res(fi,g:)" Res(gi, f)" ] Res(fi, g;)" Res(gs, f;)™
1<i<r 1<i<y<r

we have

(31) F(flgl7"'7f7“gr) = F(fla"'7fT)F(gla"'7gr)G'

Note also that u is étale, hence smooth, on the open set U C []/_, A% x [];_, A% where
ged(fi, g5) = 1 for all i and j, and that G has no zeroes or poles on that set.
Hence by applying Lemma [2.9(1,2,3) to (3.1), we obtain an isomorphism

lu“*Kdl‘Hil ----- dr+er = (Kdl ----- dr IE Kel ----- er) ® EX (G)

on U. Taking trace functions of both sides, and applying Lemma to evaluate the trace
function x(G) of L, (G), we get the stated identity. O

Lemma 3.2. a(1,...,1, f,1,...,1;q,x, M) = 1 for all linear polynomials f.

Proof. In this case, all resultants and discriminants are 1, so F' = 1, thus Ky 1,0,..0 is the
constant sheaf @, hence its trace function is 1. 0]

To check the remaining axioms, it will be useful to describe the translation and dilation
symmetries of the function F'.

Lemma 3.3. (1) We have
PO Ju(0/X), 2 X (1)) = ATt Wi DM ey M

(2) All nonconstant polynomials on [[;_; A% which are homogeneous for the action of
G on [1i_, A% which acts by dilation of polynomials, i.e. fi — X% f;(z/)\), have
positive degree in .

Proof. (1) follows from the definition of the resultant of a monic polynomial as a product of
differences of roots, since dilation multiplies each root by A, hence each difference of roots
by A, and thus a product of N differences of roots by A\V.

(2) follows because the ring of functions is generated by the coefficients of f;, which all
have positive degree in . O

-----

by ((fi,..., fr)ya) = (LT + ), ..., [ (T+«)).
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Proof. This follow from Lemma [2.9| and the identity

Fdl 77777 dr<f1<T+a>7"'>fT<T+a>) = Fd1 ~~~~~ dr(f:l?"'?fT)

which is immediate from the definition of F'. [l

For each finite field F,, character x, and natural numbers dy, ..., d,, let J(dy,...,d,;q, x, M)
be the finite set of ordered pairs of Weil numbers given by the eigenvalues of Frob, on the
stalk of Ky, 4 at (T2, ..., T%), together with their signed multiplicities.

77777 T

Lemma 3.5. For each finite field F,, character x, natural numbers dy,...,d,, and prime
polynomial ™ over ¥y, we have
. . 7 D i1 diMi; .
(3.2) a(m®, . w%iq x, M) = (;) > cjafE .
X jEJ(d17-~~7dT§Q7X7M)

Proof. This follows from the definition when m = T', and then follows from Lemma (3.4 when
m=T—xforx €F,.

Let us handle the case when 7 has a higher degree. To do this, let e be the degree of
m, and consider the Weil restriction WRES [T_, A% of [T_, A% from F to F,. This Weil
restriction admits a map norm to [];_, A°% given by taking norms of polynomials. For = a
root of 7, the image of ((T — )%, ..., (T — z)%) under norm is (v%,...,7%). Thus
(3 3) CL(ﬂ'dl7 c. ,’ﬂ'dT; q,X, M) =tr (Fl"Obq, (Kem 77777 en'r)(ﬂ'dl ,,,,, ﬂdr)>

..........

.....

-----

at ((T'—z)™, ..., (T —z)%). To do this, note from Lemma that
(3.5) W RS Kay.oq. = ICe (vr(uvis))-

.....

The restriction of norm to the open set where none of the polynomials share any roots
with their Galois conjugates is étale, so

AAAAAAAAAA

by Lemma [2.9(2). The ratio
F(Nfi,...,Nf.)

NF(fi,.... fy)

where N is the norm, is

Res((Nf;), N fi)\ Res(N fi, Nf;)\ "
30 H( VR ) ISEST(NR%(J‘MJ-)) '
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Using the multiplicativity property of the Res(f,g) and the fact that f; = (T — z)% we
have
(3.7)

Res(N fi, N f;)

= H Res(Frob!! f;, Frob?? f;) = H Res(Frob}(T — z)%, Frob(T — z)%)

N Res(f;, f;
(fza f]) 0<t1,ta<e—1 0<ty,t2<e—1
t11o t1#t
— H (Frob? z — Frob;! x)%4 = Res(n/, m) %%
0<ty,to<e—1
t1#£to

Using the multiplicativity property of Res(f’, f), and similar logic, we have
Res((Nfi), Nfi) _

(3.8) N Res(f, f5) H J—:{es(FrobZ1 fi,FrobZ2 fi) = Res(ﬂ’,w)d?.
i e 0<ty ta<e—1
t1#t2
Plugging (3.7) and (3.8]) into (3.6)), we have
F(Nfl Nf?”) / T M"d2 ..
3.9 S = Res(n/, 1) 2= MiditXrcicj<p Migdid; £ 0.
( ) NF(f1>"'7fr) ( )

By Lemma [2.9(1) and (3.9) we have

----------

(3,10) . 7 i Miid? 4371 <y <y Mijdid;
=tr <(FI’Obq, (WRer Kdl 77777 dr)((T—z)dl 77777 (T—x)dr)> (g)
X
By Lemma |3.3| and Lemma [2.14] unless
i=1 I<i<j<r

the stalk of K4, 4, at (T —x)%,..., (T — 2)%) vanishes, which by (3.4) means the right

.....

side of (3.10) vanishes, so the left side of (3.10]) vanishes as well. It follows that

..........

(3.12) W/)Zil Miid;

=tr ((FYObqa(WRizeKdl ..... dr)((T—x)dl ..... (T—x)dr)) <—

™
X

since if (3.11) is satisfied we may subtract Y ;_; M;di(d; — 1) + Zl§i<j§r M;;d;d; from the
exponent of (’%)X without changing the value because (”;/)X is an n’th root of unity, and if
(3.11) is not satisfied, then both sides are zero.

Combining (3.3)), (3.12)), and (3.4)), we obtain ({3.2]). O

Lemma 3.6. For each finite field F,, character x, natural numbers dy, ..., d,, and natural
number m, setting d =Y ._, d; we have

a\ m
A(dlw-'?drvqmaxm?M) = Z Cj (q_) .

A Q
J€J(d1,..dr5q,x, M)
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Proof. We can construct the sheaf Kg, 4 on H;Zl Aﬁ; using the character xy and then pull
back to [];_; Ad" , or we can construct the sheaf directly on H: 1 Adi using the character x,,.

These two Sheaves are naturally isomorphic because the qq Lth-power map fgm—1 = [lg—1
used to compare the Kummer sheaves matches the norm map Fg . — F) given by

N(x) =z - Froby(z) - ... Frob Y(z) =z -2 ... 2" =T
used to convert x to x,,, and because forming the intermediate extension commutes with
change of base field. So, without ambiguity, we use Ky, . 4, to refer to both.

If we compose the G,, action by dilation (Lemma with the nth power map G,, — G,,,
the factor A=t 4(di—DMit3 i <icj<, didiMis hocomes an nth power, and so K, ...a, is preserved
by this G,, action by Lemma m Hence the Verdier dual DKy, . 4, is also preserved.

By Verdier duality, HI([T._, A% , Ka,....a,) is dual to H(T;, A%: , DKy, .4, which by

Lemma using Lemma (2) to check the condition, is H™'((DKy,,. 4, ) ,...700))-

Because Ky, . ,, is pure of weight zero on the open set where it is lisse, and Ky, 4. [d] is
perverse, Ky, g4, [d] is perverse and pure of weight d, so by a theorem of Gabber [?], the trace
of Frobenius on each stalk of DKy, . 4, is the complex conjugate of the trace of Frobenius
on the stalk of Ky, 4. divided by q?. Because this applies over each finite field extension,
the Frobenius eigenvalues on the stalk of DKy, 4 at any point are equal to the complex
conjugates, divided by ¢?, of the Frobenius eigenvalues of Ky, 4, at the same point, at least
up to signed multiplicity. So the eigenvalues of Frob, on H’i((DKdl,...7dr)(T"1,..‘,an)) are Z—g,
with signed multiplicities c;.

By definition, the Grothendieck-Lefschetz fixed point formula, and the above isomor-
phisms, dualities, and eigenvalue calculations, we have

Ady, . de @™ X, M) = Z Z ) tr(Frobgm, H'(Kay..a,) fro f)

fi,. ,frEFm[t]+
deg fi1=d,...,deg fr=

— Z(—1)itr<Froqu, Hj;(H AL Kdl,m,dr>) - Z(—l)itr(FrobT, o (H A, thm,dr»
% =1 ; i=1

(2

= Z(—l)%r(Frob;m, H*’(H A%Z, DKdl,...,dr)) = Z(—l)itr(Frob;m,Hfj((Dth._,,dr)(Tm,,,,,an))))
i i=1

i

— —m d m
O[j q
-y (5) =xe(2) .
j g j A
Lemma 3.7. For each finite field Fy, character x, natural numbers di, ..., d,, and (o, ¢;) €

J(dy,....dy;q,x, M) we have |a;| < ¢“T as long as d > 2 where d = S di

Proof. Because Ky, 4, is the IC sheaf of a lisse sheaf, its H' is supported in codimension at
least i+1 for all i > 0 [?, Proposition 2.1.11]. By Lemma[3.4] any stalk cohomology at a point
must also occur at its one-dimensional orbit under the action of G, by translation, hence
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with codimension < d — 1, thus in degree < d — 2, as long as d > 2. So because intersection
. . d—
cohomology complexes are pure, any Frobenius eigenvalues that appear are < qTQ.

]
Proof of Theorem[1.1. In view of Lemmas [3.1] [3.2] [3.5] and [3.7] it suffices to prove that

the function a is uniquely determined by these axioms.
In fact we will show that
‘](dla s 7d7“;q7X7M)
is determined by these axioms whenever d; + - - - +d, < d, for all d. This will then determine
a by axioms (1) and (3).

We do this by induction on d. The cases d = 0 and d = 1 are determined by axiom (2)
and the fact that there is at most one way of expressing a given function of a natural number
m as a finite signed sum of mth powers.

For the induction step, assume that

J(dla'-->dr;q7X7M)

is determined by these axioms whenever d; 4+ --- + d, < d. From axiom (3), this deter-
mines a(r®, ..., 7%;:q, x, M) whenever d; + - -+ + d, < d. From axiom (1), this determines
a(fi, .., fr;q, x, M) whenever each prime factor of [[;_, f; occurs with multiplicity less than
d.

Thus, if deg f; = d; and d; + --- + d, = d, the axioms determine a(fi,..., fr;q,x, M)
when [[/_, f; is not a dth power of a linear prime, i.e. in all cases but when f; is of the form
(T — x)% for all i. By axioms (3) and (4) applied to Fym and x,, we have

Z a(fla"'?fr;qm7Xm7M)_ Z a((T_x)dla'"7(T_$)dr;q7X7M>

fl,...,frE]qu [ﬂ+ xeFZn
deg fi=d;

Yicidi
= Z qu ajl — qm Z CiQj .

JEJ(d1,esdr;q™ Xm, M) JEJ(d1 s dr;q™ Xom, M)

However, by the compatibility of J, J(dy,...,d.;q™, Xm, M) consists of the mth powers
of J(dy,...,dy;q,x, M) so we obtain

S alfi fid X M) = Y a(z™, L a? g, x, M)
fro freFQ (e T zeFq
(3.13) deg fi=d; o am
i=1""
- Y W(5) - %
GET(da el X, M) ! GET(dseerslria X, M)

We have already shown the left side of is determined by the axioms for all m. The
right side of is a finite sum of mth powers of Weil numbers, so the Weil numbers
appearing, and their multiplicity, are uniquely determined by the left side of . The
only difficulty is whether any given Weil number occurs in the first term or the second term.
However, by axiom (5), ga; appears in the second term only if |a;| < ¢4=Y/2 so |qay| <
q“+Y/2 while ¢?/a; appearing in the first term satisfies |¢¢/a;| > ¢/, so each Weil




GENERAL MULTIPLE DIRICHLET SERIES FROM PERVERSE SHEAVES 21
number can only appear in one of the two terms, thus both terms are uniquely determined.

O

Corollary 3.8. Fiz M, wy,...,w, € Z, €,...,¢. € {0,1}. Fiz for each i with ¢, = 0 a
compatible system of Weil numbers ~; and for each i with €¢; = 1 a sign-compatible system of
Weil numbers ~y;. In either case, assume that |vi(q, x)| = q¢*/*. Let

a*(fla cee 7fT;Q7Xa M) - a(fl, .. '7fr;Q7Xa M) H/Yi(q,X)degfi.
i=1

Then

a*(fi,.... friq,x, M)

is the unique function that, together with a function J*(di,...,d.;q,x, M) from tuples of
natural numbers dq, ..., d,, to compatible systems of sets of ordered pairs of Weil numbers,
satisfies the axioms

(1) If f1,.... fr and 1, ..., g- satisfy ged(fi, g;) =1 for alli and j, then we have
a*(flglw"afrgr;(ZaX)M)

=a*(f1,.- - friq, 6 M)algr, ..., 900, X, M) H (g_> (7> H (_> (f_> .

1<i<r X X 1<icj<r NI/ x X

(2) a*(1,...,L;q,x, M) =1 and a*(1,...,1, f,1,...,1;q,x, M) = ~(q,x) for all linear
polynomials f.

(_1)2:::1 eid;(degm+1) 2 : Cja;iegﬂ.
X ]EJ(d177dT7q7X7M)

' qZ::l(lJ"wi)di

Z a*(flv"'>fT;qm7X>M): Z C] —

a .
fiyes frE€Fq T JEJ(d1,edr;q,x, M) J
deg fi=d;
>i_q(+w)d;—1 r
(5) |ay] < q P as long as Y _;_, d; > 2.

Proof. This follows from Theorem [1.1Jonce we check that a*(fi, ..., fr; g, x, M) satisfies these
axioms with a given J(dy,...,d,;q, x, M) if and only if

- a*<f1>"'7f7“;q’X>M)
a(fi,..., frig,x, M) = 7 :
( ) [Ti—: vi(q, x)des /i

satisfy the axioms of Theorem after adjusting J*(dy, ..., d,;q, x, M) by dividing each «;
by TT_, ((=1)%7i(g, x))* and each ¢; by (—1)=i= i,

This can be checked one axiom at a time by plugging these expressions into each axiom
of Theorem [L.1] simplifying, and observing that they match the corresponding axiom here,
as well as deducing the compatibility of J from the (sign-)compatibility of ;.
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In each case this is relatively straightforward. In (4) it requires the identity v;(q, x)v: (¢, x) =

Wy

q
U

4. EXAMPLES

For some special values of M, we can calculate a by exhibiting an explicit function and
checking that it satisfies the axioms of Theorem In fact, these will be functions a that
have essentially appeared in the literature already as coefficients of multiple Dirichlet series,
and most of the properties described in Theorem Were previously observed (but in slightly
different language, so we will have to do some work to match it up). In some cases, it will
also be convenient to use additional geometric techniques to calculate a.

One reason for the difference in language is that prior work has tended to define twisted
multiplicative functions as the product of a multiplicative function with a Dirichlet character.
We have found it more convenient to define twisted multiplicative functions all at once.

We will always use a to refer to a function we are trying to prove satisfies the axioms of
Theorem [L.1] but haven’t yet.

Proposition 4.1. Take r =2, M = <(1) (1))
Then

fl/gn> (n—1)degg ; _.n
=) q if ged(fi, f2) = g" for some g
a(flafZ;q7X7 M) = §f2/9 X

if ged(f1, fa) is not an nth power'
We prove this after making some definitions. Let
fi/g" (n—1)degg : _n
~ 1 ( n) q if ged( fy, = ¢" for some
a(f1,fz;q,x, <(1) O)) — f2l9 ), ged(f1, fo) =g g '
0 if ged(f1, f2) is not an nth power

In [?, (1.2)], a function a is defined to be the unique multiplicative function such that

o 1ty = prtminGR/me i min(j, k) = 0 mod n ‘
’ 0 otherwise

Furthermore they define f5 as quotient of f, by its maximal nth power divisor and fl as
the greatest divisor of f; coprime to f3. They define a Dirichlet series with coefficients

(Jf—) alfi, fo).

Lemma 4.2. For all finite fields F,, characters x, and monic polynomials f1, fo over IF,, we

have A
a (flaf%%Xa ((1) (1))) = (%) a(f1, f2)-



GENERAL MULTIPLE DIRICHLET SERIES FROM PERVERSE SHEAVES 23

Proof. First we note that a(f1, f») vanishes unless ged(f1, f2) = g for some g and is ("~ d°&9
in that case. So it suffices to check, when ged(fi, f2) = ¢", that

() - ()

First note that fo divides fo/g™ and the ratio is an nth power which is prime to f;/g",

so we have
f2/9") fo0 /
Now fl is the quotient of f; by a product of 7°~(/1) where 7 are some primes. Each such

m divides fa, so v (f2) cannot be multiple of n. Since v.(ged(f1, f2)) = min(v(f1), vz(f2))
cannot be a multiple of n, we must have vx(f1) a multiple of n strictly less than v (f2). Thus

fi/ f1 is an nth power and divides ¢", so fl is a multiple of f;/¢g™ by an nth power prime to

fg,() Thus
(f1/9”) _ h
f2,0 X f2,0
X

and we are done. O

Proof of Proposition[{.1] Tt suffices to prove that a satisfies the axioms of Theorem [L.1]
Axiom (2) is immediate. To check @ satisfies axiom (1), observe that if ged(f;, g;) = 1 for
all 7, j then ged(f191, fa92) = ged(f1, f2) ged(g1, g2), and moreover the two geds on the right
are coprime, so ged(f1g1, foge) is an nth power if and only if both ged(fi, f2) and ged(g1, g2)
are.

We next choose J(dy,ds;q,x, M). We observe that a(m?,7%:q,y, M) vanishes unless
min(dy, dy) is divisible by n and equals ¢("~1) degmmin(di.d2)/n iy that case. Hence we can take
J(dy,ds; q, x, M) to be empty unless min(dy, ds) is divisible by n and to consist of the ordered
pair (¢m~Hmindid2)/n 1) if it is divisible.

This makes (3) immediate. (5) is similarly clear. With this value of J, (4) is equivalent
to the statement that

di+dp—"L min(did2)  if | min(ds. d
Z &(fl?fQ;q7X7M): {g 0 ‘ ' ( 1 2>.
f1,f2€Fq[t]T otherwise

deg(f1)=d1
deg(f2)=d1

We now use [?, (1.7)], which is

fi deg f1.,deg fo _ 1 -’y
2 <f2o> alh, )™y (1—qz)(1—qy)(1 — g Hamyr)

f1,f2€F[t]+
Thus by Lemma
1 — 2
(4.1) Z d(fhf?;%Xa M)xdegflydegh _ qry

_ _ _ nt+layn,n)’
o fa€E ] (1—qz)(1—qy)(1 — g"+lanyn)
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Then
Z a(f1, f2)

f1,f2€Fq[t]T
deg(f1)=d1
deg(f2)=d1

is simply the coefficient of 2% y® in (4.1)). Hence to verify (4) it suffices to check that

2
]' —q .Z‘y — qd1+d2 (n 1) m1n(d1 dg)/n d1
(1 —qz)(1 —qy)(1 — ¢ +lany") 2

y®

dl,dQGN
min(dy,d2)=0 mod n

which is straightforward.

O
Corollary 4.3. For all finite fields F,, characters x, and monic polynomials f1, fo over F,
we have
_ 01\, [ h
a(f17f27Q7X7 (1 0)) - (E)Xa(flafé).
Proof. This follows from combining Lemma [4.2] and Proposition [4.1] O

Proposition 4.4. Assume n even.

0 -1
Taker—Q,M—(_l %+1).
Then

deg fo(deg fo—1)(q—1)

(=1

(42) a(fl,fZ;Q7X>M) = G(X Zﬂ)degﬁ

Z q(n 1)degu (fla fg/u").
uE]Fq [+
u”|f2
Let
deg fo(deg fo—1)(g—1)

a (f17f2;Q7Xa <_01 %_—:1)) = (_1)C;(X7w>;egf2 Z qn Y degu (flaf?/un).

u€lg[t]+
”|f2

We give two proofs. The first uses geometric properties of perverse sheaves, while the
second relies on Theorem 1.1 and [?].

The geometric proof proceeds by a series of lemmas that establish (4.2)) in successively
more cases.

Lemma 4.5. (4.2)) holds when fs is squarefree and f1 and fs are coprime.
Proof. By Lemma and the definition of a(f1, f2; ¢, x, M) in terms of IC sheaves,

I\ n/2+1 ]
a(fi, fa34,x, M) = <%) (%)

for these fi, fs.
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On the other hand, when f; is squarefree we have
~1)d
ST g (B = gy (fi, o)

u€l,[t]*
u”|f2

and by Lemma
deg fo(deg fo—1)(g—1)
(1)

' (B (B (AT
Gl pyear nf) = (ﬁ)x (fz)5 <f2)x

Lemma 4.6. (4.2)) holds when deg f1 > deg f.

Proof. Let M’ = ((1) é) Observe that
n— egu n— egu h un hf
> = S e S (M) (1)
ueR, [+ u€R, [+ heFglt]/f> N2 X 2
u”|f2 \fz u”|h

L2 E e () (o () T wnane (s ()

heFg[t]T  ueRq[t]T heFg [t
deg h= degfz u |h fo deg h=deg fo

using the fact that there is a unique monic h of degree deg f5 in each residue class mod fs,
the fact that <h/ w > = 0 unless u" = ged(h, f2), and Lemma Thus

fa/um
(4.3)
deg fo(deg fo—1)(g—1)

_ — 1 h 1
a (f1;f2;qua <_01 %_,_11>) = ( 1)(;(X’¢>degf2 Z a(h, f2;q,x,M/)1/f <r < fJ; )>

heFq [t
deg h=deg f2

Let dy = deg f; and dy = deg fs.

We now make a geometric argument. To distinguish IC sheaves constructed with the
matrix M’ from those constructed with the matrix M, we put the matrix as an additional
subscript. Thus Ky, 4, v 1S a complex of sheaves on A% x A% whose trace function is
a(h, f2;q,x, M') and Ky, 4, is a complex of sheaves on A4 x A% whose trace function is
a(h, f27Q7X>M)

We now recall the (-adic Fourier transform defined by ?. We define two maps A% x
A% x A% — A% x A% namely pris and pros, given respectively by projection onto the
first and third factors, and projection onto the second and third factors. We also define
amap p: A% x A% x A% — Al given by taking the dot product of the first and second
factors. Precisely in coordinates, we think of points of the second A% as parameterizing
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monic polynomials " + 221201 c;it’, points of the first A% as simply tuples b, . .., bg,_1, and

:u((b()a s 7bd271)7 (CO7 s 7Cd271)7 f2) = Zfial blcz
?,(2.1.1) define the Fourier transform Fy by the formula
Fo Ky, = 1131 (pryg Ky ap,nr @ p* Lyy) [do].

The operations of pullback, compactly supported pushforward, tensor product, and shift
each transform the trace function in a predictable way. Using this, it is immediate that the
trace function of F, K4, 4, 0 at a point (b, fo) of A% x A% is given by the formula

(=D)% > a(h faq,xM') ¢ (ves (b - b)).

heF[t] T
deg h=deg f2

Let o: A% x A% — A% x A% be the map sending (fi, f2) to (b, fo) where b; = res (tfﬁ)

Let oz : A" x A% — Al send (f1, f2) to res <td;—2fl> We have chosen these so that for
(b7 f2) = O-(fla f2)7 we have

X dy—1 i X ;
oz(fhfz)—i—hbzres( th >+Z C; Tes <t > = res ((td +Z} 0 Czt) > = res (%)

Thus the trace function of

O'*fde%dQ’M/ X Oé*£¢

is given by
h G
0% S alh S M) (res (%)) - ((_Ddﬁﬁi;ii?l i (o foi g M)
de}éehlilc[iﬂgfg

By the Hasse-Davenport relations, the quantity —G(x,v) is a compatible system of Weil

numbers, and the same is true for (—1)(1;21 = £(—1), so there exists a sheaf L5 on SpecF,
da(da—1)(¢—1)

whose trace of Frob, is H&GW for all finite fields ¢. It follows that the trace function

of U*Fde27d27M/ X a*ﬁw ® Lq is Ez(fl, farq, x, M)

Next let’s check that o* Fy, Ky, 4, 00 @ a*Ly|dy + do] is an irreducible perverse sheaf. The
complex Ky, 4, m7[2d5] is perverse by construction. Fourier transform preserves perversity by
the same argument as [?, Corollary 2.1.5(iii)], which shows Fourier transform preserves rela-
tive perversity, and preserves irreducibility by an immediate consequence of [?, III, Theorem
8.1(3)]. We can check that o is smooth because for each fixed value of fs, o is given by a lin-

ear map of vector spaces, and this linear map is surjective because (h, f1) — res (hf 1> gives

a perfect pairing on polynomials modulo f,. This also shows ¢ has nonempty, geometrically
connected fibers. Since the source of o has dimension d; + dy and the target has dimension
2dsy, the map o must be smooth of relative dimension d; — ds, so o preserves perversity after
a shift by d; —ds. Because ¢ has nonempty, geometrically connected fibers, this pullback and
shift functor is fully faithful, and thus preserves irreducibility [?, Corollary 4.2.6.2]. Finally,



GENERAL MULTIPLE DIRICHLET SERIES FROM PERVERSE SHEAVES 27

Ly is lisse of rank one so its pullback under « is lisse of rank one and tensor product with
it preserves perversity and irreducibility, and the same is true for Lq.

So 0* Fyp Ky dy v @ 0 Loy @ Li[dy + do] and Ky, 4, m[d1 + do] are two irreducible perverse
sheaves whose trace functions agree on the open set where f; is squarefree and f; and f; are
coprime by Lemma [4.5] Restricting to a possibly-smaller open set where both are lisse, we
get two irreducible lisse sheaves with the same trace function, which must be isomorphic.
Since Ky, 4,0 1s lisse of nonzero rank on an open set, both sheaves are lisse of nonzero rank,
and because they are irreducible, must be middle extensions from that open set. Since both
are the middle extension of the same lisse sheaf from the same open set, they are isomorphic
as perverse sheaves. It follows that these two irreducible perverse sheaves have the same

trace function, giving (4.2]). O

Conclusion of geometric proof of Proposition[4.4. Given fi, fo, find v coprime to f, and such
that deg f1 + degv > deg fo, and compute using axiom (1) and the fact that Kgegy is the
constant sheaf that

(4.4)

-1
&<flvﬂf2;q>Xa M) = a(flan;Q7X7M)a(v> 17Q,X7M) (%) - a(flan;q7X>M) (%)

-1
X
By Lemma |4.6| we have

deg fo(deg fo—1)(¢—1)

G(x, p)deef

(45)  alfuvs faraoo M) = =

E q(n_l)degvgx(flv,fQ/un)-
u€lFg[t] T
u™|f2

But by Lemma 2.6

46 ) = o o) () T U ) (v)

X X

so combining ({4), (F), and (L3), we get
1 (_1)degf2(degf2*1)(q*1)

~1
v n—1)degu v n
a(flan;q7Xa M) (E)X = G<X7,¢)degf2 Z q( 1) deg (E)X gX(flvf?/u )

u€lFy[t]t
u™| f2
~1
and dividing both sides by (%) we get (4.2]) in general. 0
X

Before performing our proof using [?], we will explain the relationship of the Gauss sums
we work with to the formula defined by ?.

To do this, we use calculations of 7. They define a function b as the unique multiplicative
function satisfying
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4

1 if dy =0
(qiee™ — 1)gl®/2=Ddeg™ if d, = 0 mod n and d; > d
(n i) 0 if dy Z0mod n and d; > dy > 0
’ —q(d2/2=1) degm it di =dy — 1 and dy =0 mod n
g(d2—1) degm/2 if dy =dy—1 and dy Z 0 mod n
0 if dy <dy—1

\

Let fo0 be fy divided by the greatest nth power that divides f;. Let f, be the largest
squarefree divisor of f5 and let f; be the largest divisor of f; prime to fso. Let

(6))-.2, 6)(=(2)

Lemma 4.7. We have

1 f 1
(4.7) 9 f1, fo) =— Y =b(f1, f2)g ((f) ) <f210> gl /2

Proof We define f2 as the largest divisor of f, prlme to fo0, as well as fi = f1 / f1 and
= fa/ fg It is immediate from the definitions that fg is an nth power, and that f1 and f2

are coprime to f; and fs.
By Lemma [2.7] we have

A < < -1
gX(flny) :gx(fhf?)g)((fl’fQ) (%) <;z) <§;> (%)X

Becausefg is an nth power and prime to f; and fo, we may ignore all the residue symbols
involving f5, obtaining

; -1

(4.8) 9x(f1, f2) :gx(f1,f2)9x(f17f2) (f;)

2

X

Similarly, we split the right side of (4.7) into f and f parts. We note that f2,0 is also
f2 divided by the greatest nth power that divides f,, in other words, foo = f20, so that
fz,b = fz,b and

(6)+(6))

The multiplicativity of b gives
(4.10) b(f1, f2) = b(f1, 2)b( i, fo)-
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Combining (4.8)), (4.9), and (4.10)), we see that (4.7)) is equivalent to

A I 1 : AN
gx(f f)gx(f f) <f2> degf2/2+degf2/2 :b(fl’f2> (f1,f29 ((f2) ) (E) qdegfz,b/Q

and therefore would follow from the triple of equations

(4.11) on(Fo o)~ = b(fu, fo)

qdeg f2/2

~ —1 ~ -1
Ly ([
0 -(5),

. 1 1
(413) gx(f17f2)>qdegf2/2 o (fl’f2> ((fQ) > deg fo,/2"

We now verify these three equations. - ) follows immediately from the fact that fs,
and fo dlffer by an nth power prime to f1

For (4.11)), we note from Lemma [2.7] E that ¢, (f1, f2) is multiplicative when restricted to fs
that are nth powers. Since both sides are multiplicative when restricted to this set, we can
reduce to the case that f; and f, are prime powers (because any nth power can be factored
into prime powers that are nth powers). In this case, it follows from the definition of b and
Lemma [2.8 noting that G(x%,) = —1 if ds is divisible by n.

For , we note that v, ( fg) is never a multiple of n for any 7 dividing f». It follows
from this and the definition of b that b(fy, f;) vanishes unless U ( f1) = va(fz) — 1 for each
such 7. In other words, the right side of - ) vanishes unless f; = f5 / f27|,. From Lemmas
. 7| and . we see that g(fi, f2) vanishes under the same condition.

Thus, we may assume that f; = f5 / fg,b In this case,

(4.14) b(fy, fo) = qldesfa—deafos

since only the second-to-last case of the definition of b occurs. Furthermore we have

i X () (=)

heFy[t]/ f2
i deg fo—deg fo
o((5) )a ,
< fa X)

h h
-2 () (=)
heroi)/ o f2 f2p
which together with (4.14)) gives (4.13). O

Proof of Proposition[4.4) using Chinta-Mohler. Let

. . deg f (deg fo—1)(g—1) 1) deg

a <f17f2;q)X7M):G(X7¢)dgf2 (flqu;q XaM> (_]‘) : 42 Z q( e (f17f2/u )

u€lg[t] T+
u”|f2
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We prove that a* satisfies the axioms of Theorem with w; = ¢ = 0, wy = €5 = 1,

VI(Q7X) = ]-7 72((]7 X) = G(X)¢)
For axiom (1) we have

(4.15)
a*(fifs, fofasq, x, M)

:(_1)degfg(degibfl)(qfl)+degf4(deg£471)(q71)+degf2 de§f4((1*1) Z q(n—l) degugx(fle%a f2f4/un)

u€lFy[t]*
u™[fa fa

Because f; and fy are coprime, we can write any u where u”|fs fy uniquely as usuy where
uy divides fo and w} divides fy
From Lemma [2.7 we get

n, n\\ __ n n f2/un f4/un fl - f3 -
i il 02) = s St i) (R25) (408 () ()

However we can ignore the u and u) factors in the power residue symbols as they are

nth powers and because u,, dividing fs, is prime to f3 and f; and similarly u, is prime to
f1 and fo. Thus

(L16) oo ool (E03)) = oo ol ) n s So/0) (jﬁ—) (jﬁ—) (jﬁ—) (jﬁ—)

Plugging (4.16) into (4.15]) gives
(4.17)
d*(flf?n f2f4; a4, X; M)

1 _1
:d*(flaf27QaX>M)a*(f3af4aQ7XaM>(_1)egf2+f4(q_) (%) (%) <%) (%) ‘

B %&M(q_l)_ é n/2 é)n/2
( 1) _(f4)x (f2 N

by Lemma [2.2] which, plugged into (4.17)), verifies axiom (1).
For axiom (2), we have

We have

a(T —x,1;q,x, M) = g (T —2,1) =1
and
CL(LT —T4,X, M) = gX<17T - Q?) = G<X7w)
both using Lemma [2.8
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Next, let
({(1,1)} it dy =0
{(¢™,1), (¢, —1)} if dy = 0 mod n and d, > dy
Ji(dy,do;q,x, M) =<0 if dy Z 0 mod n and d; > ds

{(—q= DG (x%,), —1)}  ifdy =dy—1
L0 ifd; <dy—1

Then by Lemma [2.§] we have

i da
d1,7.‘.d2> _ (_) 2 /‘ Cjadegw
T J

X jeJi(dr,d2;q,x,M)

gy (T

7.‘_/

noting that the (7); term can be ignored in the cases where d5 is divisible by n.
Furthermore, we have

Ld2/n]
Z q(nfl) degugx<ﬂ_d1 : 7Td2 /un) _ Z q(nfl)cdegng@rdl’defnc).
u€FRg [+ c=0
u™| w2
So letting
dp(dp—1)(¢—=1) /] (n—1)c
J(dv,d2; g, x, M) = (=1)" = U ¢ Ven(di, dy = nesq, x,m)
c=0
we have

~ d da.
CL*(W 1,7T 27Q7X7M)
dg deg w(dg deg 7—1)(g—1) _
. (_1) - Z q(n 1)degu

(7, 7% )
weRg[t]T
un |

7\ d2
do deg m(dg degm—1)(g—1) degmdg(dag—1)(¢—1) [ TT
= (-1) i (—1) i - c.ode8™
T I

X jeda(dy,d2;q,x,M)

verifying axiom (3) because

deg wdy(dy—1)(g—1) dy deg n(deg 1—1)(¢—1) '\ /2 da(deg 7+1)
) e (D) gy
™

do deg w(dg deg m—1)(q—1)
4

(—1)
by Lemma [2.3]

Next to verify axiom (4), it suffices to show that

dy(dp=1)(a=1) n—1) degu n
(1)~ Z Z g sty (fi, fofu)

f1.f2€Fq[t] T weF [t
(4.18) deg fi=d1,deg fa=ds  u"|f>

_ qd1 +2d2
o Z € e ’
J

j€J(d1,d2;q,x,M)

X
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To do this, it suffices to show that

WILL SAWIN

Z Z q(n—l) deg ugx(fl’ f2/un)q—s deg f1 q—(w+1/2) deg fo

F1,f2€Fq[t] T ueF,[t] "
(4.19) vl
_ Z g g1/ Z
d,d2 j€J(d1,d2;9,x,M)

The left side of (4.19)) is equal to

2

f1,f2€Fq[t]*

(4.20) ((hw—n/2+1)

as defined in [?, (1.6)].
The right side of (4.19) is equal to

1 d
—sdy ,—(w+1/2)d2
0 q g
1—qnWHﬂ)21§:

dy,d2

gx(fb f2) —sdegflq—wdegfz
qwdeg f2/2

(_1)112(012*41)(«1*1) ¢ (q

2

J€J1(d1,d2;q,x,M)

We have
1 1

4.21 =

( ) 1 — g—n(w+1/2) qul 1— g3t

and .

di+2da \ “ee™
—sd1 —(w+1/2)d2 ) q
oY > o)

dy,d2

J€J1(d1,d2;q,x,M)

= Z2(37

w)

— Z qdl—dls + Z q—sd1—wd2qd1+d2/2(1 o q)
d1EN doeNT
da=0 do=0 mod n
d1>d2
+ Z Z —8d1 wda d1+d2/2G( 1/]) o Z q—sdl—wdzqd1+d2/2+1
=1 dQEN do €N
d2=i modn d2=0 mod n
di1=da—1 d1=da—1
(4.22)
1 1 (1— q)q—ns—nw+3n/2 "Zl q—(i—l)s—iw+3i/2—1G(X1"w) g~ (= Ds—nw+3n/2
_ ql—s _ ql—s _ g—ns—nw+3n/2 _ g—ns—nw+3n/2 _ g—ns—nw+3n/2
1—g¢q 1—¢q 1—gq / — 1—gq / 1—gq /
Introducing the variables z = ¢~® and y = ¢~ ", we can rewrite (4.22)) as
1 1 (1 _ q)q3n/2xnyn n-1 qgi/Q_lG(Xi,¢)$i_1yi q3n/2xn—1yn
1 — qx 1 — qx 1 — q3n/2xnyn — 1 — q3n/2xnyn 1 — q3n/2xnyn
_ 1 — q3n/2+1xnyn q3i/2—lG<Xi’w)xi—lyi B q3n/2xn—lyn
(1 _ qx)(l _ q3n/2xnyn) . 1 — q3n/2$nyn 1 — q3n/2xnyn

=1
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1 — 3n/2+1xnyn + ZZ ) q3z/271G<Xi,1/})xiflyi(1 _ QI) _ q3n/2xn71yn(1 _ q:E)
(1= qa)(1 = g*/2amy)

B 1— q3n/2 n— 1yn+21 ) q32/2 IG( ’I/J) z—lyz(l —q.T)
N (1—qo)(1 = g*/2amy")
So bringing in the initial factor (4.21)), (4.19) is equivalent to

1 — 3n/2 n— lyn_’_zl ) q31/271G( i ¢) i— 1yz(1_qx)
(1 =gz tym)(1 — qu)(1 — g /2amyn)
Noting that 7(e') = G(x*, v), ([.23)) is precisely [?, (1.8)], finishing the proof of axiom (4).
For axiom (5), we first check that J;(dy, da; ¢, x, M) has all |a;| < qdﬁédr1 unless (dy, ds) =
(0,0) or (0,1), case-by case. In the do = 0 mod n and d; > ds case, the key is that

dj+2do—1 dy+2do—1

di >dy>n>2s0oq 2 > ¢%, and in the d; = dy — 1 case, we have ¢~ 2 <qd2*%
d 2d.
as long as d; > 0. Furthermore, in the (0,0) and (0,1) cases, we have |a;| < ¢ e
By the definition of J in terms of Ji, it follows that each a; appearing either has ¢ = 0 and

(4.23) Zy =

thus satisfies || < qdl+22d2_1 since dy + dy > 2 implies (dy,dz),# (0,0),(0,1), or has ¢ > 0
. . d1+42(dg —nc) d1+2dg—2c¢ di42do—1 ) . .

in which case |a;| < ¢ Veg™ 2 =q 2 <q 2 since 2¢ > 2 > 1, verifying
(5). O

We now describe a third case where we are able to relate a(fi, f2; ¢, x, M) to prior work.
First, following [?, (3.2),(3.3)], let H(f1, f2) be the unique function satisfying

(1) If ged(f1f2, 9192) = 1 then

wan o= (2). (). (4), (), (5), (2, s

(2) For 7 prime,

(1 f (dyi,ds) = (0,0)

gy (1, ) if (dy,dy) = (1,0) or (0,1)
H(ﬂ-dla 7Td2) = gX(7T,7T2)gX(1, W) f (dh d2) = (27 1) or (17 2)

gx(ﬂ', 7T2)gx(1’ 71—)2 if (dlv d2) = (27 2)

L0 otherwise

Proposition 4.8. Assume n even and ¢ = 1 mod 4.
Taker =2, M = (5+1 -1 >

1 241
Then
1 n—1)dega+(2n—1)de n—1)degc nin n.n
a(flaf%QvXa M) = G(X ¢)d6gf1+d6gf2 Z q( D) dega+(2n-1) degbt(n—1) deg H(fl/a b afZ/b c )
’ a,b,ce€F 4[]+
a™b™| f1

be™|| f2
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Proof. To prove this, we verify the axioms of Theorem [3.§ are satisfied for

&*(fla f2; 7, Y, M) _ Z q(n—l)dega+(2n—1)degb—i—(n—l)dech(fl/anbn’ fg/bncn>

a,b,c€Fg 1]+
a”b"|f1
bncn | |f2

with ¢, = e =1, wy = wy =1, 71(q, x) = 12(¢, x) = G(¥, X)-
The multiplicativity axiom (1) follows immediately from the multiplicativity axiom of H,
noting that the factors ab™ and b"c™ have degree divisible by n and can be ignored, and that

n/2 n/2
the term (%) (%) is 1 by Lemma because ¢ = 1 mod 4, and so can be ignored.
X X

Axiom (2) is straightforward. In the case when (f, fo) = (T'—x,1) or (1,7 — z), the sum
over a, b, c is trivial, and H(f1, f2) = ¢, (1, 7) = G(x, ).
We have that

(4.24)
d*(ﬂ'dl : ﬂ_dg; 7, X M) _ E q((n—l)]1+(2n—1)]12+(n—1)]2)deng(ﬂ_dl—n]l—nﬂz’ ﬂ_dg—n]m—nn)'
J1,J12,J2€N
n(j1+12)<ds
n(jiz2+j2)<d2

From Lemmaand the Hasse-Davenport identities, we have g, (1, 7) = —(—G(x, 1))&™ (”?/
and g, (m, %) = —(—qG(x?,1))de™ (%)i, so we can write (4.24]) as

1\ di+da
T o deg
T C(jl’j127]2ar1’r2)&(j1,j12j2,7’1,7’2)

X (J1,d12,42,71,r2) EN®
nji+njia+ri=d;
njiz+nja+re=ds

(’I"l,’I”Q)e{(O,O),(l,O)7(0,1)7(271),(1,2)7(2,2)}

where
1 if (r1,r2) = (0,0)

Qs draors an) = ¢~ D+ =iz (n=1)j2 _G(éﬂm %f (r1,7m2) = (1,0) or (0,1)
GO VGxGY) i (r,re) = (2,1) or (1,2)
=G> V)G, ¥)? it (r1,72) = (2,2)

and

L i) = (0,0),(2,1), or (1,2)
(41,d12,32,71,7m2) — -1 if(T’1,T2):(1’0)7(071)7 or (2,2)

So we may take

nji+njiz+ri=d }

: M) = 1.7 ] 5 njia+nja+re=d
J(dh d27 q, X, ) {(]17 J12, 72,71, TZ) eN | (7’1,7’2)G{(0,05,1(21,0),](20,1)?(2,12),(1,2),(2,2)}

and take these a; and ¢;. By (2.3)), because ¢ = 1 mod 4, we have (—1)@i+dz)(degm+l) —
(W_')(lerdz)(n/?

=N ), This, and the definition of J, implies a* satisfies axiom (3).
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J is a manifestly a compatible system of sets of ordered pairs. For axiom (4), we must

check
Z d*(f17f2;q7X’ M)xdegflydegb
J1,f2€R[t] T
_ q2d1+2d2 nji+njiz+ri, njiz+njo+ra
= Z Z Cljrgra,ga,rire) ———— Y .
J1:g12,32€N (r1,72)€{(0,0),(0,1),(1,0),(1,2),(2,1),(2,2)} Urdrz.dairirs)
We have
1 lf (7”1,7'2) = (0,0)
q2d1+2d2 _ q(n+1)j1+(2n+1)j12+(n+1)j2 _qG(X, 1/)) if (7‘1, TQ) = (1’ O) or (0’ 1)
Q(41,512,42,71,72) ng(XQ’ ¢)G(X7 ¢) if (7"1, T2) - (27 1) or (17 2
_q4G(X27 "QD)G(X, ¢)2 lf (rlv TZ) = (27 2)

Here we use G(x,v)G(x, %) = ¢ to calculate the inverse conjugate of .

Hence we have
2d1+2do

Cri o q—xnj1+nj12+7“1 njiz+tnjatre _
(31,]12332,T1,T2)W+ Y =
J1,512,32€N (r1,72)€{(0,0),(0,1),(1,0),(1,2),(2,1),(2,2)} (J1d12,72,71,72)
2,.2,2

1+ qG(x,¥)x + qG(x, V)y + PGP, V)G (x, ¥)2*y + G (X3, ¥)G (X, )xy® + ¢ GO )G (x, )2y
(1 _ qn+1$n>(1 _ q2n+1$nyn)(1 _ qn+1xny2) :
By the definition of the series Z(x,y) in 7, we have

Z(x,y)= Y a'(fi. farq.x, M)atee /iy 2
f1,f2€Fq[t]*
According to [?, Theorem 4.2], upon observing that 71 = G(x, %) and 7, = G(x? ), we
have
Z(x,y) =
1 +¢G(x, )7+ qG(x: ¥)y + GO V)G ¥)2?y + P GOC, DG V)ry? + 'GP, )G (x, ) 2%y
(I —qgmttam)(1 — g anym) (1 — gmTany?)
which is exactly the desired identity.
For axiom (5), note that

0 if (T177‘2) = (Ov O)

2 if (ry,m9) = (1,0) or (0,1)
l o N _ . 1 . 2 o 1 . o 1 . 2 b J )
qu |O‘{(]1,]127]27 15 2)| (TL )jl + ( n )]12 + (TL )]2 + 2 if (7'177”2) = (2, 1) or (17 2)

% lf (7“1,7“2) = (2, 2)

which is < nj; + 2njio + njo + 11 + 172 — % as long as nj; + 2nji12 +njo +1r1 +1ry > 2.
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