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ARTICLE INFO ABSTRACT

Communicated by C.w. Lan The local temperature solution near the triple-phase line of a solidifying front, its melt, and a surrounding inert
phase was obtained analytically including all three phases and solidification kinetics. This analytical solution
was validated using a three-phase numerical model of the horizontal ribbon growth of silicon and compared to
a two-phase analysis that models the effect of the third phase (e.g. the gas) as an applied heat flux. Although the
three-phase solutions have additional modes to represent the gas behavior, for many conditions the two-phase
and three-phase models predicted consistent behaviors. However, introduction of a non-zero growth angle
causes the gas phase heat fluxes to have strong gradients near the triple-phase line. Even with zero growth
angle, there are conditions in which the two-phase and three-phase solutions are very different; one predicting
infinite heat fluxes while the other predicts finite fluxes. This depended on the ratios of thermal conductivities,
and the angle at which the solid-melt interface intersected the free surface. In particular, when the thermal
conductivity of the inert phase was comparable to the melt or solid phases there were significant differences.
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1. Introduction

Triple-phase line (also called a tri-junction, a three-phase contact
line, or a triple junction) of a crystal, melt and inert phase, appears in
many systems where crystals grow from their melt. The inert phase can
either be a crucible wall, such as in Bridgman-Stockbarger growth, or
a gas, such as in droplet solidification and the Czochralski, float zone,
or horizontal ribbon growth (HRG) methods. For all of these configura-
tions, the conditions at the triple-phase line can have a significant effect
on the shape, position, and evolution of the solidification front [1].

Fig. 1 shows a schematic of a two-dimensional triple-phase line
(with the triple-phase line being a point in 2D) formed in a solidi-
fication system where a non-participating inert phase is present. The
position of the triple-phase line is designated as center of the coordinate
system Opp; with angles defined positive counterclockwise from the
x* axis. The solid angle, 6, is the angle between the growth front and
the solid surface which is assumed horizontal. The solid angle is often
determined by the crystallography of the growth. For example, in HRG
the pull direction is typically the [011] direction and the growth is
aligned with a (111) facet which results in a 6, = 55° or a (111) facet
with 6, = 125° depending on which {111} plane the growth aligns with
(see Refs. [2,3]). The growth angle, Oy is the angle formed between
the melt-gas interface and the velocity vector of the triple-phase line in
a frame of reference moving with the solid. It is equivalent to the angle
formed between tangents to the melt-gas and the solid-gas interfaces as
shown in Fig. 1 [4]. However, it is really a condition on the direction
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of growth of the triple-phase line. In non-solidifying cases, the growth
angle is not relevant and the triple-phase line is simply a pinning point
for the liquid-gas interface. Such a condition on the direction of growth
of a triple-phase line is important for unsteady simulations involving a
moving triple-phase line where there could be waves on the solid and
liquid surfaces (e.g. see [5]). For confined solidification systems like
Bridgman-Stockbarger or gradient freeze methods the inert phase is a
solid wall and thus 6,, = 0 [6]. In Fig. 1, the solid crystal is being pulled
at a horizontal speed of u; ;. When a steady process is established, with
the growth rate and pull speeds balanced, the triple-phase line becomes
stationary. An inertial frame of reference in which the triple-phase line
is stationery is used throughout the paper. In some of the following,
indicial notation is used where the subscripts 1 or 2 when referring to
velocity (such as u ;) or position correspond to horizontal or vertical
directions respectively.

Anderson and Davis [7] analytically studied two-phase non-
isothermal flow and determined the temperature and flow fields of the
liquid and inert phases near a two-dimensional triple-phase line like
the one shown in Fig. 1. Considering the combinations of adiabatic and
fixed temperature boundary conditions along the solid-liquid and solid-
inert phase interfaces, they determined the local behavior of the heat
fluxes and stresses near the triple-phase line and identified conditions
of their singular or regular behavior extending previous singular point
analysis of single and two-phase isothermal flows near a wedge [8—
11]. Singularities, e.g. unbounded derivatives of temperature, could
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Nomenclature

English Symbols

A constant term of the horizontal temperature
gradient of the analytical solution, K/m

AspN constant of two-dimensional nucleation kinetics,
K

B constant term of the vertical temperature gradi-
ent of the analytical solution, K/m

Bpn constant of two-dimensional nucleation kinetics,
K s/m

c specific heat, J/(kg K)

d depth of the melt at the inlet, m

drpr depth of triple-phase line from the horizontal
melt-gas interface, m

F view factor function

F, function used to model the locality of the heater
at the bottom of the melt

g gravitational acceleration, m/s’

h height of the jet exit from the horizontal melt-gas
interface, m

h, height of the lower edge of the vertical wall of the
jet injector from the horizontal melt-gas interface,
m

k thermal conductivity, W/(m K)

Krpn two-dimensional nucleation kinetics coefficient,
K s/m

Kiough roughened growth kinetics coefficient, K s/m

K¢y constant of step propagation kinetics coefficient,
K s/m

Kyep step propagation kinetics coefficient, K s/m

L, latent Heat of Fusion, J/kg

Ma Mach number

n outward unit normal vector

p pressure, Pa

Daim atmospheric pressure, Pa

q heat flux, W/m?

qp heat flux distribution from the heater at the
bottom of the melt, W/m?

qu peak heat flux from the heater at the bottom of
the melt, W/m?

r radial coordinate, m

Ry, helium gas constant, J/(kg K)

Re Reynolds number

T temperature, K

T, temperature of cold helium exiting from the jet
slot, K

T, equilibrium melting temperature, K

T, temperature of the vertical walls of the jet

injector, K

u velocity, m/s

Ve growth rate, m/s

V, average jet velocity, m/s

w total width of the jet injector, m

w) width of horizontal walls on sides of the jet exit,
m

w, width of angled walls of the jet, m

wy, half-width of the heater used at the bottom of the
melt, m

wy slot jet width, m

x spatial coordinate, m

Greek Symbols

a angle of jet walls, rad

AT degree of supercooling, K

€ emissivity

K mean interface curvature, 1/m

A eigenvalue of homogeneous solution

u dynamic viscosity, kg/(m s)

Q physical subdomain

b; parameters of the view factor i € 1,2

p density, kg/m?

c surface tension, N/m

op Stefan-Boltzmann constant, W/(m?> K*)

T stress tensor, Pa

0 angular coordinate, rad

0, solid angle, rad

0, growth angle, rad

0, angle of the melt-gas interface, rad

0,, misalignement angle, rad

Subscripts

2ph two-phase model

3ph three-phase model

8 8as

h homogeneous solution

i index identifying the subdomain (i.e. solid, liquid
or gas)

/ melt

p particular solution

rad radiation

s solid

TPL triple-phase line

imply that the configuration is non-physical, there are deficiencies
in the continuum model, or there is a breakdown of the continuum
approximations.

In a subsequent paper [12], they performed a singular point analysis
of a triple-phase line where solidification occurred. They specified a
jump in the heat flux equal to the latent heat of fusion along the
solid-melt interface and assumed the solidification interface to be at
the equilibrium melting temperature T,, with adiabatic conditions at
the solid-gas and melt-gas interfaces. They showed that with these
boundary conditions, the free surfaces of solid and melt must form right
angles with the solid-melt interface.

Helenbrook [13] extended the work of [12] by studying the effect
of non-zero heat flux at the solid-gas and melt-gas interfaces, again
assuming the interface to be at T,,. He showed that when these heat
fluxes are continuous at the triple-phase line the solidification front
intersects the upper surface at 0°, i.e. in a cusp, which is significantly
different than when the gas interfaces are adiabatic. However, he
showed that with a discontinuous heat flux (e.g. due to discontinuity in
the emissivity of solid and melt) or in the presence of a growth angle,
various solid angles are possible.

Pirnia and Helenbrook [3,14] included the effects of supercooling
along the solidifying interface by incorporating solidification kinetics.
They performed a two-phase analysis (modeling the inert gas phase as
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Fig. 1. Schematic of a triple-phase line for meniscus-defined solidification from a melt
where the inert phase is a fluid (i.e. gas or liquid). For a confined solidification system
the inert phase is a solid wall and 6,, = 0.

an applied heat flux) of the local behavior of the temperature field near
the triple-phase line and determined the conditions that led to singular
temperature gradients at the triple-phase line.

In all of the above analyses, the inert phase effect (i.e. the solid
wall or inert fluid) is modeled by a constant heat flux (sometimes with
a jump at the triple-phase line) [3,13,14], however, the validity of this
assumption is not clear especially considering the large temperature
gradients that are in the melt and solid. The purpose of this paper
is to extend the two-phase analysis of the temperature field near the
triple-phase line by Helenbrook and Pirnia [3] by including all three
phases and to determine the importance of including the inert phase
by comparing the heat flux behavior predicted by the two-phase [3]
and three-phase analyses. The analysis applies to both meniscus-defined
solidification and confined solidification systems where 6,, = 0 and the
solidification occurs along a solid wall. Any significant discrepancies
between these two demonstrate the importance of including the inert
phase in numerical or analytical models. The results are validated
by three-phase numerical simulations of HRG, which are the first
three-phase simulations of this process ever performed.

2. Methods
2.1. Analytical model near the triple-phase line

The three interfaces near the triple-phase line are shown in Fig. 1
where in terms of solid angle, 6, and the growth angle, 6,,, the solid,
inert, and melt phases respectively correspond to 0 < 6 < 0,, 6, < 6 <
0, and 0,, < 0 < 2z where 0,, = 0, + = — 0,,. Note that the subscripts
s, I, and g indicate the solid, liquid, and inert phases. The subscript g
is used for the inert phase because, in the HRG application, it is a gas
but the inert phase could also be a solid, with O = 0, for confined
solidification systems. The two coordinates shown are centered at the
triple-phase line and are aligned with the interfaces.

Faceted growth was assumed to occur on the melt-solid interface
where the misalignment angle between the solidification front and the
facet direction, 6,,, is governed by step-nucleation kinetics through the
relation [15]

_Kon e

AT = K, V, = s
| sin(8,,)| ¢

step” g
where AT = T -T,, is the degree of supercooling on the interface with T
and T,, denoting temperature and the equilibrium melting temperature
respectively; K, is the step propagation kinetics coefficient; Ky
is the constant of step nucleation; and V, is the growth rate. The
misalignment angle was assumed to be small such that to leading order
the solid angle is aligned with the facet. As shown below, this allows
us to determine the temperature along the facet without knowing the
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Table 1

The solidification kinetics parameters.
Parameter Value Unit
Aypn 140 [15] K
Bypn 1.5% 10" [15] m/(s K)
Ksn 1/0.63 [16] K s/m
Kpugh 1/0.122 [17] K s/m

misalignment angle. At the triple-phase line, it was assumed that two-
dimensional nucleation occurs. This determines the temperature at the
triple-phase line through

A2pN

T4 ATV, @)

AT = Ky pyV, = By e

where K, is the coefficient of two-dimensional nucleations and A, 5
and B,py are constants. Table 1 gives kinetic coefficients although
really only the 2D nucleation coefficients were used in the analytic re-
sults. The other coefficients were used for the full numerical simulations
described subsequently.

To determine the temperature in the vicinity of the triple-phase line,
steady-state conservation of energy was used. This reduces to Laplace’s
equation for the temperature, T, as the convective terms in the energy
equation are small compared to the diffusion terms (see [3,13]),

1o (9%,
ror ar

where the subscript i € {g,/, s} identifies the phase. The simplification
of the energy equation to the form shown above is valid where the
Peclet number Pe; based on r, p;c;u ;r/k; is much less than one [13,14],
where p is density, c is specific heat at constant pressure, and k is the
thermal conductivity.

Temperature continuity at the interfaces leads to the following three
boundary conditions:

1T _ o @
200>

T,(r,27) = T,(r,0), (4a)
T,(r,60,) = T,(r.6,), (4b)
T,(r.0,,) = T,(r.6,,). (4c)

Three additional boundary conditions result from conservation of
energy at the interfaces:

k; 0T, k, 0T,
Az = =—p,Lsu,,sind,, (5a)
r 00 |p=ar r 00 |p=o
ks de kg 0TE
s +-2_5 = , 5b
r 00 lo—g, r 00 |g—p, 4rad.s (5b)
k, oT, k, T,
g 9g 1 01
__£_8 phlitats = . 5c
r 00 9=91g r 00 0=0 qrad,l ( )

g

where L, is the latent heat of fusion, and gq,,,; with i € {/,s} is
the net radiation heat flux from the melt and solid surfaces. It was
assumed that the liquid and solid are completely opaque so that all
radiation is emitted and absorbed at the interface. These radiation heat
fluxes would be 0 for growth problems with a solid inert phase. As this
expansion is for r < 1 the spatial variation of the radiation fluxes was
neglected.

To completely define the temperature solution near the triple-phase
line, an additional boundary condition along a circle of finite radius
surrounding the triple-phase line is needed, which is unknown. How-
ever, the known boundary conditions (4)a—(4)c and (5)a—(5)c can still
be used to determine the behavior of the solution as r — 0. For this set
of linear differential equations and boundary conditions, the solution
can be written as the sum of the solution of Laplace’s equation with
homogeneous boundary conditions and a particular solution satisfying
the nonhomogeneous boundary conditions.
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2.1.1. The homogeneous solution

The homogeneous solution satisfies the temperature continuity con-
ditions (4)a—(4)c and energy conservation Egs. (5)a—(5)c with zero
right-hand sides. Assuming a separable homogeneous solution as
T, ;(r,0) = n;,(r)yw;(9), and substituting into Eq. (3) gives

o (,m) __1W
nor \"or w002

A nontrivial solution is obtained as y;(0) = C; cos(4;0) + D; sin(4;0)
and #(r) = E;r* + Fyr~%. Assuming /; values to be positive, F; must be
0 to have a finite temperature at r = 0. Furthermore, the temperature
continuity boundary conditions can only hold if A, = 4, = 4, = 4
Thus, the assumed homogeneous solution becomes of the form T}, =
(G, cos(40) + H, sin(A9)) r*, and the temperature continuity conditions
become

G;cos(2nA) + H;sinQz ) = G, (6a)
G, cos(A8,) + H, sin(A0,) = G, cos(A8,) + H,, sin(40,), (6b)
G cos(A0,) + H; sin(A0,,) = G, cos(40;,) + H, sin(20,,). (60)

and the energy conservation boundary conditions become

kyHg — k;(—G,sin2z ) + H, cos(2z 1)) = 0, (72)

kg (=G, sin(A0,) + H, cos(46,)) — k(—G sin(46,) + H, cos(46,)) = 0,
(7b)

k; (=G, sin(Af;,) + H, cos(40,,)) — kg (=G, sin(46,,) + H, cos(46;,)) = 0.
(709

These equations can be written in matrix form for the six solution
constants. To have a nontrivial solution the determinant of the matrix
of coefficients of this system of linear equations should be zero. After
substituting for angles in terms of 6,, and 6, the determinant simplifies
to

(k; — k) ( (kg + k) (kg — k;)cos(24(0; — 6,,))

— (kg — k) (kg + k;) cos (24(x - 6,)) )

—(ky + k) ( (kg — ky)kg — kp) cOS(246,,)

— (kg + k) (kg + K;) cOs(24) ) —8kyk;k, =0, (8)

which was solved numerically for eigenvalues 4,, n = 1..c0. For each
value of 4,, the null space of the coefficient matrix corresponds to
an eigenvector that determines the six solution values up to a scaling
constant C,. This eigenvector is normalized to have unit length and the
homogeneous solution can then be written as

(o]
T,(r,0) = Y C, (G, cos(4,0) + H, , sin(4,0)) r*r. 9)
n=1

The values of 4, in this expression reveal the nature of the solution
as r — 0. At the triple-phase line if 4, < 1, the temperature gradients
become singular. This can imply a breakdown in the continuum model
or that important physics were neglected in the model. It may also be
possible to determine which configurations are more physically likely
based on the singular or non-singular behavior near r = 0.

Pirnia and Helenbrook [3], performed a two-phase analysis of the
temperature field near the triple-phase line modeling the inert phase by
constant heat fluxes and neglecting the presence of a growth angle. We
have extended that result to non-zero growth angles. The homogeneous
solution has the same form as Eq. (9) with the eigenvalues determined
from

(kg = kp)sin (AQ20, — m — 0,,)) + (k + k) sin (A + 0,,)) = 0. (10)

One of the goals of this work is to determine when the two-phase
predictions are consistent with the three-phase results.
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2.1.2. The particular solution

Assuming a linear particular solution 7; , = Trp; + A;x + B;y, with
i € {g,l,s}, the temperature continuity conditions (Egs. (4)a—(4)c) and
the energy conservation equations (Egs. (5)a—(5)c) reduce to a system
of six linear equations in six unknowns. This linear system of equations
can be solved for the A; and B; values. MATLAB"’s symbolic toolbox
was used to obtain a symbolic solution. The particular solution was
lengthy but for the special case of §,, = 0 it reduces to a simple form
with

_ pstus,l 9s.rad ~ 9l,rad

A=A = = t(0,), 11
1= A=Ay = S - SR o) (11a)
As,rad ~ 9l,rad
B =B, =X~ ", (11b)
1 s k] _ ks
_ quLrad - ksql,rad (1 1C)
b ky(k; — k)

When ¢,y = 45;q4 = 4raa this becomes even simpler with A; =
A = A, = ”Akff:;‘", B, = B, = 0and B, = ql'(—”g", which is just a
linear function of x through both the solid and melt; The difference
in thermal conductivities is crucial to balance the latent heat term due
to solidification. Also, it is interesting that the heat flux associated with
the particular solution is entirely horizontal in melt and solid. This
implies that in a problem like HRG where the heat removal is primarily
vertical, the homogeneous solution must play an important role.

The two-phase particular solution defined by Pirnia and Helen-
brook [14] for zero growth angle is
pLjug, 44
ki —k,  k —k

T, poh =TT,,L+< (cot 0, +tan@,) — %)x— %y, 12)
1 1

s

where ¢;, i € I,s denotes the sum of convective and radiative heat
fluxes at the surfaces. It can be extended to non-zero growth angles
following the same procedure as used above for the three-phase case.
Note that the particular solutions of two-phase and three-phase analysis
are different. For example, when there is no growth angle and no jump
in heat flux at the triple-phase line, there is an additional horizontal
temperature gradient in the two-phase particular solution equal to —%
and more significantly a vertical temperature gradient equal to —%l,
which does not exist in the three-phase particular solution. ‘

2.2. Numerical model

To validate the analytical results, a simulation of HRG of silicon
was used. This is similar to what was done in [5,18], however, in this
work, the gas phase was also included in contrast to [5,18] where
a heat flux was imposed as a boundary condition on the melt and
solid surfaces. Buoyancy and Marangoni effects, included in [5], were
neglected here to make the comparison of the two-phase and three-
phase results simpler. Neglecting these avoids the resulting unsteady
chaotic flow, allowing steady-state solutions to be obtained.

Fig. 2 shows a schematic of the simulation domain and a sample
grid. The solid, melt, and gas phases are designated as ,, £,, and
Q, where the gas phase was assumed to be helium. The jet slot was
centered at x; = 0 with a width of w,; = 0.15 mm. A slot inlet section
of length 2w, was simulated to allow the jet to evolve naturally at the
slot exit. The helium jet exited from the slot at x, = A~ = 2 mm. Note
that due to the growth angle, the solid surface is at x, = —dp; where
drp; is the depth of the triple-phase line. The other dimensions shown
in Fig. 1 are w; = 0.5 mm, w, = 1.5 mm, a = 45°, w = 33.5 mm, and
h. = 4.6 mm. The corners of the geometry at x| = 2w, /2, +(w,/2+ w,),
+(w,/2 + w, + w,) and +w/2, were filleted with radii of 0.05, 0.2, 0.5,
and 1 mm respectively.
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Fig. 2. Schematic and a sample mesh. The numerical resolution is 4 times finer than the mesh shown as fourth-degree basis functions were used.

Table 2

The thermophysical properties used in simulations. Ry, is the helium gas constant.
Parameter i=s i=1 i=g Units
i 2530 [20] 2530 [20] :::TT kg/m3
G 1000 [20] 1000 [20] SR% =5196 [21] J/(kg K)
k; 22 [20] 64 [20] 0.352 [19] W/(m K)
Hi - 7 x 107 [20] 4.46 x 107 [22] kg/(m s)

2.2.1. Governing equations

The temperature field was determined by solving steady conserva-
tion of energy assuming a constant thermal conductivity in each phase
i€{gl s}

V - (pe;Tiii;) — k; V2T, = 0, 13)

where #; = [u; | u;5]" is the liquid, solid or gas velocity. It was assumed
that the solid has a rigid body translation with a constant horizontal
pull speed of u;; = 0.7 mm/s and u;, = 0. The properties used
are given in Table 2. For helium, the ideal gas law was used with a
constant atmospheric pressure to determine the density. The thermal
conductivity of helium was evaluated at a film temperature of @
from [19] where 7, = 1685 K and 7, = 300 K is the temperature of the
cold helium exiting from the jet slot.

For the gas and melt phases, the Navier-Stokes equations for a
Newtonian fluid were solved to determine the flow velocities. The melt
density was assumed constant so there are no buoyancy effects in the
melt. The steady conservation of mass and linear momentum in phase
i € {g,1} can be written as

V- (piii;) =0, a4

W (p,-ﬁ[ﬁ,-) =-Vp;+V-1,+p3g, (15)

where both fluids were assumed to be Newtonian with the stress tensor
given as 7; = p,; (Vi; +(Vip)T), g is the gravitational acceleration,
and the viscosities are given in Table 2. The gas viscosity was again
evaluated at the film temperature using a power law correlation [22].

2.2.2. Interface and boundary conditions

At the solid-melt interface, a Dirichlet boundary condition for melt
velocity was imposed as u;; = u;; and u, = 0, which satisfies
the conservation of mass at the interface assuming p; = p;. Also,
conservation of energy at the solid-melt interface was imposed as

— kg VT, - iy =k VT, - Ay = pyL i - A, (16)

where 7; denotes the outward unit normal vectors of surfaces [23] and
L is given in Table 3.

Table 3

The interface parameters used in simulations.
Parameter Value Unit
c 0.735 [20] N/m
L, 1.8 10° [20] J/kg
€ 0.6 [20] -
€ 0.2 [20] -

Additionally, the degree of supercooling at the interface was deter-
mined based on the solidification kinetics model of [15],

AT = K(4T,9,,)V,, a7n

where 6,, is the misalignment angle from the (111) facet direction.
Assuming the crystal is oriented with [100] pointing upward and [011]
to be aligned with the horizontal direction, perfectly faceted growth
would correspond to a solid angle of 55°. The growth at the triple-
phase line was assumed to be dislocation-free and thus the degree of
supercooling was determined from two-dimensional nucleation kinetics
given in Eq. (2) [15]. The growth along the rest of the solid-melt
interface was assumed to be governed by step propagation and rough-

ened growth kinetics as K = (K;‘,L,p + Kf{mgh where Kj,,, is given
in Eq. (1) and K, is the coefficient of roughened growth given in
Table 1. As the misalignment angle increases the solidification kinetics
gradually transitions from step propagation to roughened growth. Note
that the step kinetics constant K¢y was multiplied by 10 to find K,
as convergence was difficult when using the physically-correct value of
K. This does not cause a significant change in simulation results as
shown in [24].

At the gas-solid and gas-melt interfaces, a net radiation heat flux
from the melt and solid was specified as g,,4;, = ;05 F (x| )T} — T
where ¢; is emissivity given in Table 3, o5 = 5.678 x 1078 W/(m? K*)
is the Stefan-Boltzmann constant, and the view factor was F(x,) =

(sing, —sing;) /2, sing; = (—w; —x;)/ (—wl—x1)2+h2, and

singy = (w; —x,) /y/ (w, - x1)2 + h2 [25]. This models the radiation
between the silicon and the cold walls surrounding the jet assuming
that the walls are black and the silicon surface is gray, opaque, and
diffuse.

At the solid-gas interface, a Dirichlet boundary condition for gas was
specified as i, = ii,. At the melt-gas interface, a zero normal velocity
was imposed as the gas and melt were assumed to be immiscible. Also,
along this interface a jump in normal stresses from gas to melt was
imposed due to surface tension, o, given in Table 3, as —2ox where
K= —%V - #iy is the mean interface curvature [26]. The surface tension
was assumed to be independent of temperature to avoid Marangoni
flow instabilities.

In the melt subdomain, an inflow boundary condition was defined at
the left side as a fully developed laminar channel flow with a velocity
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profile of u;; = —6’;—2 g_{ + %z)usyl, u, = 0 where d = 1.3 cm is the
depth of the melt at the inlet. The inflow was assumed isothermal
with a temperature of T = T,, + 5 = 1690 K. The bottom of the
melt was defined as a no-slip wall with a specified heat flux g,. The
heat flux modeled a heater of width 2w, = 20.5 mm used in HRG
experiments as g, = qp Fj(x;) where gy = 16.63 W/cm? and Fy(x,) =

Ml e ! . Fy(x,) transitions from 0 to 1

20/ (wy=x1 )2 +01d2 24/ (—wy=x])*+0. a2
near x; = —w, and then from 1 to 0 near x; = w, to model the

locality of the heater. At the right side of the rnelt, an outflow boundary
condition was used, specifying zero total stresses and zero diffusive
heat flux. Likewise, in the solid subdomain, the right side was a zero
diffusive heat flux boundary condition.

The left and right sides of the gas subdomain were also outflow
boundary conditions. The inflow of helium gas to the slot jet was
assumed to be a fully developed laminar channel flow at 7,, with

Ugr = V 1- (2x, )?> ) where the average jet velocity V, = 48.15 m/s.
Based on the w1dth of the impinging slot jet, 2w, the speed of sound,
and the viscosity of helium at T, the jet Reynolds and Mach numbers
were Re = 119 and Ma = 0.047. Thus, the flow can be considered
incompressible and laminar as transition to turbulence for impinging
jets occurs at 1000 < Re < 3000 [27] and the Mach number is less than
0.1.

All walls associated with the helium jet including the top surfaces
of the domain were no-slip. The interior, bottom, and 45°-sloped walls
of the slot jet were assumed to be at T,. The vertical exterior walls
of the jet injector were assumed to be at 7,, = 1500 K. Along the
sloped bottom surface, the temperature smoothly transitioned from T,
to T, using a fifth-order polynomial such that

and 2 T were zero at

both ends. This prevented unnecessary mesh refmement by the mesh
adaptation scheme. Similarly, for the top walls extending to the left
and right side of the domain, a smooth transition between T, and
T,, +2 = 1687 K was used, which is slightly colder than the inflowing
melt temperature of 1690 K.

2.2.3. Solution method

To obtain numerical solutions, a continuous high-order finite ele-
ment method (hp-FEM) with fourth-degree basis functions on triangular
elements was used for spatial discretization with a streamline upwind
Petrov—Galerkin (SUPG) stabilization approach for equal-order pressure
and velocity approximation spaces [23,26,28]. To track the interfaces
and maintain mesh quality an arbitrary Eulerian-Lagrangian (ALE)
moving mesh method was utilized. Furthermore, a local mesh adapta-
tion scheme was employed to obtain a uniform truncation error and
improve the solution accuracy [23]. A restriction on the minimum
element size was imposed to avoid excessive mesh refinement near
singular points.

The solution strategy involved starting with a fixed initial interface
shape at T,, as given in Ref. [5] to obtain an initial steady temperature
and flow field (i.e. Eqs. (16) and (17) were neglected). As the con-
vergence with the full gas flow rate was difficult, this initial solution
was obtained with a specified convective heat flux along the gas-melt
and solid-melt interfaces and only a small fraction of the actual gas
flow rate. Then, an adaptive time stepping was used to obtain a steady
solution while the melt-solid interface moved using ALE moving mesh
and mesh adaptation. During time stepping, the gas flow rate was
gradually increased to its actual value while the specified heat flux
was reduced to zero. The unsteady equations used during time-stepping
are given in [23,26]. Once an initial steady solution was obtained, it
was possible to slightly increase the pull speed and solve the steady
equations given in Sections 2.2.1 and 2.2.2 to obtain the solution at
higher pull speeds. At each step, the Newton-Raphson method was
applied to solve the system of equations for the shape of all interfaces,
temperature, and flow velocity components, where the system Jacobian
matrix was inverted using the MUMPS solver in PETSc [29].
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Fig. 3. The variation of the leading order eigenvalues of the analytical homogeneous
solution with the growth angle 6,, near the triple-phase line of a solid in contact with
its melt with 6, = 55°, k,/k,; = 0.34, and k,/k, = 0.0055.

3. Results and discussion

As shown in Section 2.1, near the triple-phase line the temperature
in each phase changes as T;(r,0) = T,,(.0) + T, ,(r,0) where the
particular solution T; , is a linear function of r and the homogeneous
part is given by Eq. (9), which is a sum of terms proportional to r% with
eigenvalues 4; found from Eq. (8). The smallest 4; is dominant near the
triple-phase line (i.e. near r = 0) and if less than one (i.e. 4; < 1),
the temperature gradient 9T and thus the heat flux becomes infinite at
the triple-phase line. For 4; > 1 the heat fluxes remain finite and the
temperature gradients are determined by the particular solution at the
triple-phase line. As shown in Eq. (8), the eigenvalues are a function
of the thermal conductivities, and the solid and growth angles or 4; =
f ( e k’, 0,)- In the following, the variations of the eigenvalues of
the ' three- phase analysis with these four parameters, obtained from
Eq. (8), are determined and compared to the eigenvalues obtained from
two-phase analysis determined from Eq. (10). Any significant difference
between two-phase and three-phase analyses indicates that including
the inert phase in models of triple-phase lines is important.

The variation of 4, -1 with 6,, is shown in Fig 3. Negative values of
A; — 1 correspond to a singular behav1or of & at the triple-phase line.
ThlS is for a typical HRG-type configuration of silicon where 0, = 55°,
and k;/k; = 0.34 (same as for numerical simulations in Table 2). In
this figure and in the following a subscript of 2ph or 3ph indicates
results from the two-phase or three-phase analysis respectively. For
the three-phase results, the thermal conductivity of helium specified in
Table 2 was used. There are two distinct behaviors shown in the figure.
For 6,, less than around 13°, 4, 5,, is not matched by any value of 4
from the two-phase analysis, and 4, ,,, matches 4, 3,,. For 6,, greater
than 13°, 4, 3,, matches 4,,,, and 4,3,, is not matched by any mode
in the two-phase analysis. The appearance of additional modes when
adding phases was observed by Anderson and Davis [12] and Proudman
and Assadullah [10] when comparing the eigenvalues of heat fluxes
and flow stresses from a single-phase fluid flow near a wedge with a
two-phase flow using a similar singular point analysis.

To explain this behavior, first recall that, as discussed in Sec-
tion 2.1.2, the particular solutions, which are linear, are different
between the two-phase and three-phase analyses. Now, consider the
case of 0,, = 0 in Fig. 3, where 4,3,, = 0.995. This mode works
in conjunction with the three-phase particular solution to reproduce
the two-phase behavior. In the absence of radiation, the particular
solution of the three-phase model in the solid and melt is simply



N. Bagheri-Sadeghi and B.T. Helenbrook

T (K)
1680.7

1680.65

1680.6

1680.55

1680.5

Fig. 4. Temperature contours calculated using the leading terms of the analytic solution
for an HRG-type configuration (Table 2). Solution coefficients were chosen to have an
average surface heat flux of 150 W/cm?® over a radius of 1 um. The range of contour
levels was chosen to show temperature variations in the silicon. Gas phase temperature
variations quickly exceed the contour range.

x (see Eq. (11)) and does not include any heat fluxes from the
tof) surfaces. The vertical heat flux is represented by the first mode of
the homogeneous part. For the two-phase analysis, as 4,,,, > 1, the
linear particular solution (Eq. (12)) is dominant as r — 0.

To show this, we compare temperature contours from the sum of the
particular solution and the first term of the homogeneous part of the
three-phase model with the linear particular solution of the two-phase
model for a radius of 1 pm about the triple-phase line. To determine
the unknown coefficient C; in Eq. (9), the average convective heat
flux through the top surface was set equal to the convective heat flux
imposed as a boundary condition for the two-phase model for a radius
of 1 pm around the triple-phase line. The heat flux was assumed to be
150 W/cm? to match the numerical simulation of Section 3.1.

Fig. 4 shows the three-phase temperature contours for
ug; = 0.7 mm/s to match the validation case presented in Section 3.1
where there were no radiation fluxes. Since k, is much smaller than
k, and k;, there is a sharp change of temperature in the gas phase,
and only a few gas contours are shown so that the liquid and solid
phase temperature variations can be seen. The two-phase (not shown)
and three-phase contour plots were visually indistinguishable, which
confirms that for these conditions, the two-phase and three-phase
results are consistent. For non-zero growth angles the value of 1, 3,,
is not close to one. Thus, the two-phase and three-phase solutions will
be different. This is because when there is a non-zero growth angle, it
is incorrect in the two-phase analysis to assume that the heat fluxes can
be approximated as a constant approaching the triple-phase line. The
geometry of the triple-phase line induces rapid variations in gas phase
heat transfer in its vicinity.

To verify whether the models are consistent as material properties
change, Fig. 5, shows the variation of 4; — 1 as a function of k/k;.
This is for the same configuration as above but we set 6,, = 0 to
eliminate geometrically-induced singularities in the gas as we varied
k/k; keeping k,/k; and other parameters fixed. The value of k,/k, for
Si is shown as a vertical line. Here, a similar behavior to Fig. 3 is seen,
where there are additional homogeneous modes in the three-phase
solution, which represent the gas phase behavior.

For k,/k; > 1, the first eigenvalue from the three-phase analysis,
A13pn> coincides with the first eigenvalue from the two-phase analysis,
A1,pn> indicating that the two-phase and three-phase solutions match
for these conditions. Whereas for k,/k;, < 1, 4y,,, parallels 4,,,
and 4,3,, dominates the behavior. Note that the particular solution
of the two-phase model should approximately make up for additional
eigenvalues of the three-phase solution near 1 (i.e. 4, — 1 =~ 0).
However, for k,/k; < 1, even with a flat-top surface geometry, the
three-phase solution does not reproduce the linear behavior of the two-
phase particular solution and the solution actually becomes singular.

psLyug,
k
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Fig. 5. The variation of the leading order eigenvalues of the analytical homogeneous
solution with the ratio of the thermal conductivities k,/k; for 6, = 55°, 6, = 0°, and
k,/k; = 0.0055.
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Fig. 6. The variation of the leading order eigenvalues of the analytical homogeneous
solution with the ratio of the thermal conductivities k,/k;, near the triple-phase line
of solid facet in contact with its melt with 6, = 55°, 6,, =0, and k/k, = 0.34. Values
of k,/k; for three gases and two solids (for confined solidification systems) in contact
with solidifying silicon are shown by vertical lines for comparison.

Thus, to accurately model the behavior near the triple-phase line all
three phases must be included for these conditions.

The variation of A, — 1 with k,/k; is shown in Fig. 6 for the same
configuration. Here the value of k/k; for silicon (0.34) was used, but
the behavior for gallium arsenide with k /k, = 0.5 [30] is similar.
The plot also indicates approximate values of k,/k, for argon [21],
helium [19], hydrogen [19], and also silicon nitride [31] and silicon
carbide [31] for confined growth in a crucible. The eigenvalues become
sensitive to k, /k; for k, /k; > 0.01. For these values of k, /k, the singular
behavior of the solution at the triple-phase line can only be seen from
a three-phase analysis. Such larger values of k,/k, are possible for
confined growth of silicon within a crucible and even higher values
of k,/k, are obtained for melts with lower thermal conductivities such
as GaAs where k, =7 W/(m K) and k; = 14 W/(m K) [30].

Fig. 7 illustrates the leading order eigenvalues of the homoge-
neous solution as a function of 6, again for an HRG-type configuration
(ks/k; = 0.34, and k,/k; = 0.0055, and 6,, = 11°). The solid angles
corresponding to (111) and (111) facets assuming [111] is upward are
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Fig. 7. The variation of the leading order eigenvalues of the analytical homogeneous
solution with the solid angle 6, for silicon (0,, = 11°, k,/k; = 0.34, and k,/k; = 0.0055).
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Fig. 8. The variation of the leading order eigenvalues of the analytical homogeneous
solution with the solid angle 6, for Yttrium Aluminum Garnet (YAG) (6,, = 8°,
ky/k, =84, and k,/k; = 0.11).

also identified with a vertical line. Both (111) and (111) facets were
observed experimentally by Kellerman et al. [2] and analyzed by Pirnia
and Helenbrook [3]. Note that the temperature gradient approaches
infinity for the (111) facet at the triple-phase line whereas it is bounded
for a (111) facet, consistent with the two-phase predictions.

In Fig. 8 the changes of 4, — 1 with 6; are shown for YAG in
contact with its melt and helium with 6,, = 8° [32], k,/k, = 8.4,
and k,/k, = 0.11. The thermal conductivities at the melting point of
YAG, 2243 K, were used with k; and k, from [15] and kg from the
correlation for monatomic gases in [21]. YAG tends to do the opposite
of Si because in contrast to silicon, for YAG k; > k;. For example, the
temperature gradient at the triple-phase line for 6, = 55° is singular
whereas at 6, = 135° it is finite. Also note that, for 100° < 6, < 135° the
three-phase analysis indicates infinite temperature gradients whereas
the two-phase analysis indicates the temperature gradients to be finite
at the triple-phase line.

3.1. Validation

To validate the above predictions, a three-phase simulation of hori-
zontal ribbon growth of silicon forming a (111) facet with 6, = 55° and
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Table 4
Validation of the second eigenvalue for solid silicon in contact with its melt and helium
with 6; = 55°, and 6,, = 0 using the exponent of the curve fit %T = ar’ + ¢ along the

solid-gas (SG), solid-melt (SL), and melt-gas (LG) interfaces on three nested grids.

Grid/ Extrapolation DOF bsg bgp brg

Coarse 113 x 10° 0.112 0.0707 0.398
Medium 445 x 103 0.166 0.143 0.252
Fine 176 x 10* 0.181 0.161 0.203
Extrapolation - 0.187 0.168 0.179
Analytical - 0.161 0.161 0.161

cooled by a helium jet was performed. The contour plot for temperature
is shown in Fig. 9 for the case with 6,, = 0 and no radiation. The
greatest temperature changes are in the gas phase where the cold jet
exiting the slot at T = 300 K heats up to about 7,,. A zoomed-in view of
the region close to the triple-phase line is shown in Fig. 9 as well. The
radius of the zoomed-in view circle is 1 pm, which is the same radial
distance used for Fig. 4 of analytical solution with matching heat flux.
The agreement between the zoomed-in view and Fig. 4 qualitatively
affirms the validity of the analysis. Recall that the average heat flux
at the top melt and solid surfaces over r < 1 pm from this numerical
simulation (150 W/ cm?) was used to determine the unknown coefficient
C, for the leading-order term in the homogeneous part of the analytical
solution of temperature (Eq. (9)).

Fig. 10 shows temperature along the interfaces for Figs. 9 and
4. Note that as r — 0 the radial temperature gradients from the
numerical simulation approach the values of the analytical solution.
This shows that as » — 0 the leading-order terms become dominant. At
larger values of r the differences increase as the higher modes are not
negligible. The analytical solution is the linear particular solution and
the first term of the homogeneous solution corresponding to 4, 3,, =
0.995 and the second term with 4, 3,, = 1.161 was neglected. For cases
like these where not only the particular part of the solution is linear
but also the first two eigenvalues are close to linear, distinguishing
the dominant leading-order terms was difficult. Note that when leading
order eigenvalues deviate significantly from 1 (e.g. as shown by k, /k; =
0.01 in Fig. 5 or §; = 30° in Fig. 8), the magnitude of the higher modes
should become negligible at larger values of r than Fig. 10.

To validate the eigenvalues of the homogeneous part of the solution,
curves of the form ar + ¢, with the parameters a, b, and ¢, were fit
to ‘;—f of the numerical solution along various surfaces for r < 1 pm
to identify the exponent b. Fig. 11 shows the data and curve fits for
the case with 6,, = 0 and no radiation and Table 4 gives the curve
fit values. This is a non-singular case so the % values are expected
to remain finite. Because the first mode was so close to linear, the
constant of the curve fit actually incorporates the particular solution
and the first mode, and the curve fit exponent matched 4, ;,, = 1.161.
A Richardson extrapolation was performed on a set of nested grids with
the extrapolated values listed on the last row of Table 4, and values
close to the analytical value of 4, — 1 = 0.161 were obtained.

To validate the particular part of the solution, for the case with
0, = 11° and radiation, using 4, = 1.054 and 4, = 1.102 from the
analytical solution, curves of the form ar*1~! + br'2~1 + ¢ were fit to ‘;—t
values. The constant ¢ of the curve fit should be close to the value from
the gradient of the particular solution. The results using a set of nested
grids are shown in Table 5, which agrees reasonably with analytical
values although accurate values were difficult to obtain. The mesh was
refined to a level of about 10 nm. Even with this resolution, the solution
had numerical oscillations near the triple-phase line, which affected the
quality of the curve fit. In any case, these results confirm that there is
both qualitative and quantitative agreement between the full numerical
solutions and the analysis.
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Fig. 9. The temperature contour plot for horizontal ribbon growth of silicon at a pull speed of u;; = 0.7 mm/s cooled by a helium jet for 6, = 0. The contour lines are 100 K
apart in the gas. The contour lines in the zoomed-in view are 0.01 K apart. For the solid and melt the temperature contours are 10 K apart.

Table 5

Validation of the particular part of the analytical solution for solid silicon in contact with its melt and

T

helium with 6, = 55° and 6,, = 11° using the constant ¢ of the curve fit ‘;—r = ar~! + br2~! + ¢ along
the solid-gas (SG), solid-melt (SL), and melt-gas (LG) interfaces on three nested grids with the values of
4, =1.054 and 4, = 1.102 from the analytical homogeneous solution.

Grid/Extrapolation/Analytical DOF cgq (K/mm) cgy (K/mm) ¢, (K/mm)
Coarse 130%x 10° 144.5 89.4 -99.6
Medium 510 10° 130.5 81.5 -109.8
Fine 202 x 10* 133.5 80.8 -106.3
Extrapolation - - 80.7 -
Analytical - 146.0 83.9 -117.2

—— Analytical SG — — Numerical SG

r—— Analytical SL — — Numerical SL
—— Analytical LG — — Numerical LG
1680.71
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Fig. 10. Temperature along the solid-gas (SG), solid-melt (SL), and liquid-gas (LG)
interfaces for the zoomed-in view of the numerical simulation shown in Fig. 9 and the
leading order terms of the analytical solution shown in Fig. 4.

4. Conclusions

The local behavior of the analytical solution of the temperature field
near the triple-phase line of a solid crystal in contact with its melt and
an inert phase was determined and validated. It was shown that the
eigenvalues were a function of the ratio of the thermal conductivities
of the three materials meeting at the triple-phase line, the solid angle,
and the growth angle. The two-phase analysis, which neglects the effect
of the inert phase and the three-phase analysis generally agree but
the three-phase solution includes additional modes to describe the gas
behavior. The difference in the particular solutions of the two-phase

50
25t ]
o Solid-Gas Interface, Numerical
) —— Solid-Gas Interface, ar’ + c Fit
E A Solid-Liquid Interface, Numerical
i Or — Solid-Liquid Interface, ar’ + ¢ Fit| |
S5 o Liquid-Gas Interface, Numerical
—— Liquid-Gas Interface, ar’ + ¢ Fit

r (pm)

Fig. 11. The curve fits ar’ + ¢ to the numerical solution of LC for the triple-phase line
of solid silicon in contact with its melt and helium with 6, = 55° and 6,, = 0 along the
solid-gas, solid-melt, and melt-gas interfaces using the fine mesh of Table 4. Only one
in every four values of % is shown for clarity.

and three-phase models can approximately make up for the leading
order eigenvalue missing from the three-phase analysis.

There are some ranges of conditions where the two-phase and three-
phase analyses predict different behaviors (singular versus non-singular
temperature gradients for example). Also, especially with a growth
angle, it is not correct to assume gas phase heat flux is constant near
the triple-phase line in the two-phase analysis. For triple-phase lines
where the thermal conductivity of the inert phase is much smaller than
that of the melt and solid, the two-phase model did not significantly
change the leading-order eigenvalues. However, the two-phase and
three-phase analysis can give different behaviors for triple-phase lines
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when the thermal conductivity of the inert phase is comparable to
the solid or melt (e.g. in confined solidification systems). Therefore,
for numerical simulations involving triple-phase lines, especially if the
thermal conductivity of the inert phase is comparable to solid or melt,
the local temperature behavior near the triple-phase line from three-
phase and two-phase assumptions should be compared using Egs. (8)
and (10) respectively before neglecting the inert phase and using a
simpler two-phase simulation.
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