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Abstract

We study information matrices for statistical models by the L?-Wasserstein metric.
We call them Wasserstein information matrices (WIMs), which are analogs of classi-
cal Fisher information matrices. We introduce Wasserstein score functions and study
covariance operators in statistical models. Using them, we establish Wasserstein—
Cramer—Rao bounds for estimations and explore their comparisons with classical
results. We next consider the asymptotic behaviors and efficiency of estimators. We
derive the online asymptotic efficiency for Wasserstein natural gradient. Besides, we
establish a Poincaré efficiency for Wasserstein natural gradient of maximal likelihood
estimation. Several analytical examples of WIMs are presented, including location-
scale families, independent families, rectified linear unit (ReLU) generative models.

Keywords Wasserstein information matrix - Wasserstein score function -
Wasserstein—Cramer—Rao inequality - Wasserstein online efficiency - Poincaré
efficiency

1 Introduction

Fisher information matrix plays essential roles in statistics, physics, and differential
geometry with applications in machine learning [1, 2, 6, 10, 12]. In statistics, it is a
fundamental quantity for the estimation theory, including both design and analysis
of estimators. Especially, the maximal likelihood principle is a well-known exam-
ple, which connects the Fisher information matrix to another concept, named score
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functions. They frequently arise in statistical efficiency and sufficiency problems,
especially for Cramer—Rao bound and Fisher-efficiency.

Fisher information matrix is closely related to Fisher-Rao metric in information
geometry [3]. It uses the Fisher information matrix to study divergence functions
and their invariance properties [3]. Furthermore, the Fisher information matrix is also
useful for statistical learning problems. In particular, the natural gradient method [2]
rectifies the gradient direction by the Fisher information matrix. It is shown that the
Fisher natural gradient method is asymptotically online Fisher-efficient.

Besides, optimal transport introduces the other metric in probability space [21, 28,
29], in particular, Wasserstein-2 metric [14, 25]. Different from information geometry,
it encodes the geometry of sample space into the definition of metric in probability
space. Nowadays, it is known that the Wasserstein metric intrinsically connects the
Kullback-Leibler (KL) divergence with Fisher information functional [25], known
as de Bruijn identities [31]. Many concentration inequalities such as log-Sobolev
inequalities and Poincaré inequalities arise naturally [26].

Despite various studies of optimal transport in full probability space, not much
is known in parametric models, which play crucial roles in parametric statistics and
estimation. Fundamental questions arise: Is there a statistical theory based on opti-
mal transport? Compared to Fisher information matrices and Fisher statistics, what
are counterparts of information matrices, score functions, Cramer—Rao bounds, and
online efficiencies of natural gradient methods in Wasserstein statistics? Moreover,
can this theory provide statistical tools for machine learning models, especially for
generative models?

In this paper, following key ideas in [15], we positively answer the above ques-
tions by introducing a Wasserstein information matrix (WIM). We derive the WIM
by pulling back the Wasserstein metric from a immense probability space to finite-
dimensional parametric statistical models [16, 17]. We show that the WIM defines
Wasserstein score functions with a Wasserstein covariance operator. Based on them,
a Wasserstein—Cramer—Rao bound is derived. Furthermore, combining WIM with
Wasserstein score functions, we recover an asymptotic efficiency property of the online
Wasserstein natural gradient methods.

Meanwhile, by comparing both Wasserstein and Fisher information matrices, we
naturally prove several concentration inequalities such as log-Sobolev inequalities and
Poincaré inequalities within statistical models. Extending the study in full probability
space, we further study the Ricci-Information-Wasserstein (RIW) criterion for log-
Sobolev inequalities and Poincaré inequalities in statistical models. We provide several
examples in analytic probability families. Those geometric calculations establish a new
efficiency property named Poincaré efficiency. This is concerned with dynamics where
the Wasserstein natural gradient works on Fisher score functions (related to maximal
likelihood estimators). We prove convergence rate analysis for these dynamics. Several
numerical experiments are provided to confirm our conclusions.

Lastly, we demonstrate that the WIM provides a clear statistical theory for com-
plicated models coming from machine learning approaches, especially generative
models. For example, we carefully study a one-dimensional probability family gen-
erated by push-forward maps based on the ReLU function. We demonstrate that the
WIM still exists in this family while the classical Fisher information matrix does not
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exist. In other words, it is suitable to introduce a statistical theory based on WIMs. It
can be a theoretical background for models in machine learning.

In literature, many works have attempted to use tools from optimal transport and
information geometry to study statistical problems. [7] designs new estimators for
parametric inference using Wasserstein distance. This idea is utilized in approximat-
ing Bayesian computation. The authors apply Wasserstein distance to measure the
similarity between synthetic and observed data sets. Compared to them, we focus on
the study of estimation and efficiency of WIMs and expect it could have potential
interplay with Wasserstein estimators. In [9], they design a generalized information
matrix based on a maximum mean discrepancy while we majorly focus on information
matrices generated by the Wasserstein metric and study related statistical properties.
Most closely, [27] defines a Wasserstein covariance by applying a closed-form formula
for the one-dimensional Wasserstein metric. Our approach further extends this idea
into general parametric models. Also, [30] defines several new divergence functions by
combining knowledge from both optimal transport and information geometry. Here we
focus on the statistical properties of WIMs in statistical models. Furthermore, Wasser-
stein natural gradient method has been widely studied in optimization techniques with
machine learning applications [5, 11, 19, 20, 22]. Here we focus on statistical theory
and study its associated online efficiency. Compared with classical online Fisher-
efficiency results in [2, 24], our results can deal with general information matrices.
In particular, we discover a new efficiency property named Poincaré efficiency. In
the same spirit, [4] further studies the asymptotic behavior of Wasserstein estimators
using WIM on the one-dimensional location-scale family.

The paper is organized as follows. In Sect. 2, we establish the definition of the WIM.
We present it analytically for several well-known probability families. We provide an
explicit example of WIMs for ReLU generative models. Under this model, we show
that the WIM exists while the Fisher information matrix does not exist. In Sect. 3,
with the introduction of the Wasserstein covariance, the Wasserstein—Cramer—Rao
inequality is established. In Sect. 4, we derive both Wasserstein efficiency and Poincaré
efficiency for Wasserstein natural gradient method.

2 Wasserstein information matrix and score functions

In this section, we present Wasserstein information matrices (WIMs) and score func-
tions. Several analytical studies are presented.

Let X C R” be a compact manifold with smooth Riemannian structure. This is
the sample space associated with statistical inference problems. Let P>*°(X’) denote
the space of probability distributions over & which are absolutely continuous w.r.t.
the Lebesgue measure on X and have smooth positive density functions. Moreover,
one further requires these distributions to have bounded second moments, which can
be calculated via the embedding of X into R”. For those who do not have much
familiarity with the Riemannian geometry, &’ can be simply regarded as the whole
Euclidean space R". Given a metric tensor g on P2(X), we call (P>®(X), g)
density manifold. It is a manifold in the sense of [13, 21]. Consider a parameter space
©® ¢ R¢ and a parameterization function
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PO = PECX), 0 pg

which can also be viewed as p: X x ® — R, since we assume the distributions
have smooth density functions. The image of ® under the mapping p, i.e. p(®) is
named a statistical model. Suppose that f, g are two vector-valued functions on X,
we denote by (f, h) = fX(f(x), h(x))dx the L2(X) inner product, where dx refers
to the Lebesgue measure on X'. And we denote by (v, w) = v - w the (pointwise)
Euclidean inner product of two vectors.

2.1 Information matrix

From now on, we will omit the superscript of the density manifold and simply denote it
by P. Since probability distributions are restricted to a special family, one can identify
the tangent space of density manifold 7 at any particular distribution p with C3°(X):

T,yP(X) ~ C°(X) = {f e C°°(X)|/ fdx = o} ,
X

where C°°(X) is the space of smooth functions on the X'. And functions in its dual
space are determined up to an additive constant, i.e. f ~ hif f = h+4+a,a € R.
We denote the equivalent class by [ f]. And the pairing between tangent spaces and
cotangent spaces is merely (f,h) = [ x Jhdx. Geometrically speaking, since the
metric tensor is a positive definite bilinear form, using the associated invertible operator
g torise(resp. lower) indices, there exists a canonical isomorphism from tangent(resp.
cotangent) space to cotangent(resp. tangent) space, namely

g TyPX) =TiPX),  fr[gp (],
sit. gp(f.oh) =(gp(f),h) YheT,P(X).
The reader should recognize that in above formula g, represents metric tensor in
gp (-, +), which provides the inner product of two tangent (cotangent) vectors. While
it represents the invertible transformation between tangent and cotangent space in
gp(f). Thus, the metric tensor can actually be viewed as an operator between these

two spaces. Notice that tangent spaces of a statistical model ® can be viewed as
subspaces of that of density manifold, i.e. we have inclusion

T,0 < T,P(X).

While taking the dual of this inclusion we get projection from the cotangent space of
the density manifold to that of the statistical model

T,P(X) — T,0.

We first review metric tensors on parameter space and connect them with information
matrices.
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Definition 1 (Statistical information matrix) Consider the density manifold (P2°(X),
g) with ametric tensor g, and a smoothly parametrized statistical model py with param-
eter@ € ® C R?. Then the pull-back metric G € R?*? of g onto this parameter space
O is given by

G(®) = g5, (Vo s, Vopa) = (Vapo. 8, Vops )

Denote G(9) = (G(0);j)1<i,j<a- then

a 0
GO = 8o, p0) = [ 5000 (800 ) a3 00

We name g statistical metric, and call G statistical information matrix.
Next, we reinterpret the metric tensor in the dual coordinates, i.e. cotangent space.

Definition 2 (Score function) Denote ®; : X x ©® — R, i = 1, ..., n satisfying

9
b;i(x;0) = [gp <£p(x; 9))} .

Wecall ®;,i = 1,2, ---, nscore functions associated with the statistical information
matrix G and are equivalent classes in C(X’)/R. The representatives in equivalent
classes are determined by the following normalization condition

E,® =0, i=1..,n. (1)

Then the statistical information matrix satisfies
G@©);j = /ch,-(x;e)<g;9‘q>,-)(x;9)dx.

Remark 1 The existence of the score function depends on the metric tensor g,,. Mean-
while, we assume that the inverse transformation g;l is well-defined and can be used
in calculating the inner product in the definition.

Remark 2 The normalization condition is an artificial condition. It fixes a representa-
tive for the score function in the equivalent class. And we assume that score functions
are always square integrable w.r.t. pg, which is satisfied by most classical parametric
families. This postulation is assumed in the following paper.

In conclusion, we introduce two formulations of metric tensor based on tangent
and cotangent vector, whose relation can be summarized via

G(©)ij = (Vo,p: 89, Vo o)
= <gp0 Vo, Po. g[:,glgpo Vo, p0>

— <q>i, g;;@j).
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Example 1 One important choice of metric is the Fisher-Rao metric, i.e.

, i T,PX) > TEPX),  f > [g]

g T;PX) = T,PX),  [f1m p(f —Epf).

From the assumption, every probability distribution in P has positive density, the
above operator is well-defined. In this case, the statistical information matrix satisfies

dx.

o 19 > /a%p(x;e)g%jp(x;e)
X

— Do
p(x; 0)

Gr(0):: =(—
F( )l] <89ip 89

And score functions of Fisher information matrix form

@F(X'G)—;i (x'@)—ilo (x; 0),
P = ey, P a0, £F

where the normalization condition holds automatically. In terms of score functions,
the Fisher information matrix forms

Groy = [ <I>,F<x;9>(gF<p)*‘d>f)<x;e>dx
/ —logp(x 9)—logp(x ) p(x; 0)dx

d
=E, (89 log p(x; 9)—logp(x 9))

To avoid ambiguity, we use gr(p), g F( p) o denote the transformations associated
with the Fisher metric. In literature, <I> (x;0) = 39 log p(x; 0) is exactly the (Fisher)
score function; while G (0) is the Fzsher znformatzon matrix. They play important
roles in estimation, efficiency and Cramer—Rao bound.

Remark 3 The definition of Fisher score functions can be given in classical statistics
as the gradient of the log-likelihood function w.r.t. parameters 6. We bring about
another interpretation as an object on cotangent space associated with the Fisher-Rao
metric. This fact is not limited to Fisher metric. Suppose we have a family of canonical
tangent vector fields 69 Do on statistical models, whenever there is a metric g, on
this manifold, we can define score functions associated with it as

; (x; 9)—g(p9)£pe (x:0).

From above facts, we observe that statistical concepts are related to the metric tensor

in density manifold pull-back onto parameter spaces. In particular, classical statistics
relates to the Fisher-Rao metric. The pull-back metric tensor forms an information
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matrix while dual variables define score functions. In this paper, we derive these
notations in the other important metric, namely Wasserstein-2 metric.

2.2 Wasserstein information matrix

The other statistical metric, namely Wasserstein metric tensor forms
gw(p) = (—Ap) "', where A, =V (pV).

Here A, is a weighted elliptic operator. When p satisfies suitable conditions, such as
smooth and positive everywhere, a known fact that the operators A;l exists, given by

AT CR(X) > COX)/R;
A, C®(X)/R = CE(X).

The pull-back Gw of gw is given by

4, 0
Pos (—Ap) " —pp).

0
Gw®)ij = (- vy
J

a0;

Similar to the Fisher information matrix, we can rewrite Gy by dual coordinates.
Denote

0
OV (x;0) = (—Ap,) lgm; 0).

Then

d 4, 0
Gw(0)ij = <8_9,-p9’ (—=Ap) ]@P0>

_ <c1>l.W, (—A,,e)@}”)

f (Ve @} (x;0), Vi@ (x5 0)) p(x; 0)dx
X

—E,, [VXQDI-W(x; 0)- V.oV (x: 9)],

where the last equality holds by integration by parts w.r.t. x.
We summarize the above fact into the following definition.

Definition 3 (Wasserstein information matrix & score function) Denote Gw (0) €
Rd xd as

G O)ij =Ep, [ Vi@ (x:6) - V.0 (x:6) ]

@ Springer
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where - refers to the inner product of vector and <I>l.W : X x ® — R satisfies

0
—vx-(p<x;9)vxd>}”(x;9))=ﬁp(x;e), Ep® =0, i=12,..4d.
i

We name functions <I>l.W (x;0) = ((—A pe)’] 3% pg)(x; 0) Wasserstein score func-
tions, and call the matrix Gw (6) the Wasserstein information matrix.

Remark 4 1t is little bit confusing that both d,, dg appear in the definition of WIM
and score functions. One simple method to distinguish between them is to look at the
function they act on. d,, V, should at on score function ®(x; 6) while 9y, V4 act on
density function p(x; 6). In this paper, We focus on the WIM on the statistical models,
e.g. Gaussian, mixture Gaussian, or even infinite dimensional non-parametric model.
The score functions will have enough regularity to take gradients, at least for most
parametric models. And the above definition can be well applied to this settings.

Remark 5 This definition of information matrices is motivated by an intrinsic connec-
tion among distances, divergence functions, and metrics. Without loss of generality,
working with a smooth family of probability densities p(x; #) with § € ® = R and
a given perturbation A6 € Ty ®, consider following Taylor expansions in term of A6:

1
Dkr(p@)llp(® + A0)) = EAGTGF(G)AH +0((A0)%), o
Wa(p( + AG), p())* = AOTGw (9) A0 + o((AH)),

where we used the identification of 7y ® as R Here Dy (+||-) represents the Kullback—
Leibler (KL) divergence, a.k.a. the relative entropy functional

;0
DKL(p(9)||P(9+A9))=-/;Yp(x;9)10gp px:i0) -

(x; 0 + AB)

While W22 denotes the squared L>-Wasserstein distance defined by

Wa(p(0), p(0 + £0)* = dx (x.y) dx (v.y) | )

inf { f
mell(p(0), p(6+A0)) XxX

where IT (p(0), p(6 + A)) refers to the set of couplings between p(6), p(6 + AB)
and dy is a distance function defined in &X'. Thus our approach parallels classical
Fisher statistics in the following sense: the Fisher information matrix approximates
the KL divergence, which relates to the Fisher distance in Fisher geometry [1, 6], while
WIM approximates the Wasserstein distance in Wasserstein geometry. Meanwhile, our
approach can be viewed as exploring metric aspect of the Wasserstein statistics. For
example, it can be used to study the Wasserstein estimators [7].

We next study several basic properties of WIMs and score functions. As the Wasser-
stein metric is associated with taking derivatives in the sample space, we assume all
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the tangent and cotangent vectors appearing later to have enough regularities, which
hold for most statistical models discussed in this paper. We first illustrate a relation
between Wasserstein and Fisher score functions.

Proposition 4 (Poisson equation) Wasserstein score functions dJiW (x; 0) satisfy the
following Poisson equation

d
Vilog p(x; 0) - Vi ® (x:0) + A ®} (x;0) = — 5, 102 p(x:0). 4)
1

Proof Notice the fact that

(85) 0 (x:0) = Vo - (p(x: )V, 0} (x:6))
= V,p(x;0) - V@ (x;0) + px; ) A DY (x; 6).

Then the Wasserstein score function CDZW (x) satisfies
w w 9
Vip(x;0) - Vi ®;" (x5 0) + p(x; 0) A ®;" (x;0) = —ﬁp(x;B)-
1

Divide the above equation on both sides by p(x; 6)

—{v p(x:0) - Ve dY (x:6) + p(x; 0)A c1>W(x-9)} I
pl; o) LE0 e e plx;0) 96, 7
i.e.
L v p@0) v, 0% @ 0) + A% (x: 6) L9 i
P X: . X; (X = ——F—p(X; .
p(x; ) x P(X; X x®P; p(x; ) 89,-p

Since mvxp(x; ) = V, log p(x: 6) and m%p(x; 0) = 55 log p(x; ), we
prove the property (4). O

We then demonstrate that Wasserstein score functions and information matrices can
also be decomposed into a summation of separable functions in independent models.

Proposition 5 (Separability) If p(x; 6) is an independence model, i.e.

p(x;0) =TI pr(xx; 0), xp € Xk, x = (X1,...,Xp).
Then there exists a set of functions quW,k: A x0O —>R,i=12,...,dm0O, k =
1,2, ..., n, such that
n
o (i 6) =) 0 (s 0). ®)
k=1

@ Springer
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In addition, the WIM is separable, i.e.
n
Gw(0) =) G, ).
k=1

where (G, (), = Ep, (%d)iw’k(x; 0). 2oV *(x; 9)).

Proof The proof follows from proposition 4. Suppose one can write the solution in
form of (5), then equation (4) forms

n 2
d d d d
> log pi(res 01— @ (i1 ) + —5 K (a1 0) — — log pr (i 9)}
= Loxk dxk dx; a0;
=0.

From the separable method for solving the Poisson equation, we derive

2

a 0wk ad Wk a
——log pi(xi; O) —— ;" " (ks 0) + —5 @7 (xk; Op) — —— log pr(xx; 0) = 0.
Xk 0xk ax; 20;

We finish the first part of the proof. In addition,
9 W, 9 W, .
(Gw(©)ij =Ep, ad% (x:6), adﬁ (x;0)
=E Z(ﬂepw’k( ). LWk (ri0)
o — 0x R PR
O Wk, o O Wk,
=Xk:Epk <£¢i (x;0), =@ " (x; 6)
=> (c¢h®) .
K Y

]

We next list some analytical solutions for WIMs and score functions in 1-d case.
See related studies in [28] (c.f. Ch 2.2).

Proposition 6 (One-dimensional sample space) If ¥ C R!, Wasserstein score func-
tions satisfy

9
<1>.Wx;9=—/ — F(z; 0)dz, 6
! ( ) XN(o0,x] p(z; 6) 06; ( ) ©)
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where F(x;0) = me(oo Xl p(y; 0)dy is the cumulative distribution function. And the
WIM satisfies

3o F (1 6) 3 F (x: 6)

Gw(©0)ij = Ep, 2 0)2

If the dimension of sample space X is larger than 1, exact solutions of Wasserstein
score functions and information matrices depend on solutions of Poisson equation (4).
We leave the derivation of general formulas for interested readers.

2.3 Analytic examples

We present several analytical examples of the WIM in one-dimensional sample space.
The derivation is given in Sect. A.

Example 2 (Gaussian distribution) Consider Gaussian distribution families with mean
1 2
: : . 1 -5z =)

- — 20 —

value p and standard variance o > 0, i.e. p(x; u, o) T . Wasser

stein score functions satisfy

2 2
W, . _ W, _(x—,U,) —0
Py xp o) =x—p, Py (xip,0)=—"—.

And the WIM satisfies

Gw (. o) = (é (1))

Example 3 (Exponential distribution) Consider exponential distribution families
Exp(m, A), i.e. p(x;m, 1) = Lm.c0)(x)Ae 7™ where the function 1¢ is the
indicator function for a set C C R. Wasserstein score functions satisfy

(x—m)? -2

@) (x;m, 1) = > 2

, (Dn‘t/(x;m,)»):x—m—x.

And the WIM satisfies

1 L
GW(m,A):(l y)
prab

Example 4 (Laplacian distribution) Consider Laplacian distribution families La(m, 1),

ie. p(x;m,A) = %e‘“x_””. Wasserstein score functions satisfy
2
(x—m)* — 5
&) (x;m, A) = oV xim ) =x—m.

21
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Notice that score functions for exponential families and Laplacian families have similar
formulas. And the WIM satisfies

10
Gw(m, L) = (O l)
)\.4

We will show below that the Laplacian family has an advantage that densities within
this family have the same support. Thus this model is convenient for us to compare
the WIM with the Fisher information matrix. See details in Sect. B.3.

Example 5 (Uniform distribution) Consider uniform distribution families within inter-
val [a, b], i.e. p(x;a,b) = ﬁl[a,h] (x). Wasserstein score functions satisfy

x(@+b—x) b*+a%+4dab

oW sa,b) = ,
a (x:a,b) b—a) 6

b(x —2a) b*—3ab
oV sa,b) = — .
pab) === 2

And the WIM satisfies

(11
Gw(a,b) = - 2.
ven=5(11)
Example 6 (Wigner semicircle distribution) Consider semicircle distribution families,

ie.p(x;m,R) = 1[_R+m,R+m](x)# R? — (x — m)z.Wasserstein score functions
satisfy

(x —m)2 _ R?

1
P (x;m, R) = - (—— o) S m R =x—m

And the WIM satisfies

Gw(m, R) = <(1) 8) .
4

Example 7 (Independent model) Consider an independent model as X ~ pi(x;6),
and Y ~ pa(x;0),and (X, Y) ~ p(x, y; 0), then

px,y;0) = p1(x; 0)pa(y; 0).
Denote Wasserstein score functions (resp. WIM) for statistical model X ~
pi1(x;0),Y ~ pa(x; 0) as @) (x; 0), @Y (x; 0)(GL, (x; 0), G3, (x; 0)) respectively.
Then, Wasserstein score functions for this model (X, Y) ~ p(x, y; 6) satisfy

oY (x,y;0) = & (x;0) + &Y (3: ),
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because of the additivity of expectation Ep0¢w(x, y;0) = EM(DYV(x; 0) +
E,, @Y (y;6) = 0. And the WIM satisfies

Gw(0) = Gy (8) + G%,(9).
The proof follows directly from proposition 5.
In above discussions, all examples are based on location-scale families, which will

be derived carefully in Sect. A.2. We show that location-scale families are totally
geodesic submanifolds in Wasserstein geometry.

2.4 WIM in generative models

In this section, we study the WIM for generative models using ReLU function, which
is given by

0, x=

o) = x, x>0.

Generative models are powerful in machine learning [18]. It applies the reparame-
terization trick (known as push-forward relation) to conduct efficient sampling. In
practice, one often applies the ReLU as a push-forward function (7). For this reason,
we call this kind of models ReLLU push-forward family. The push-forward measure
f«p 1s defined as

f fepdx :/ pdx, VYA CR. @)
A 1A

To keep derivations simple, we consider one-dimensional cases with a given distri-
bution pg (x), x € R. And its cumulative distribution function is denoted by Fp (x).

Example 8 (ReLU push-forward family) We use a family of ReLU functions fy param-
eterized by 6 to generate a push-forward family

p:O®R->PMR): 6+ po,
x <0,

09
po (x) = p (x;0) = (foxpo) (X), fo(x) = o (x —0) = {
x—0, x > 0.
The WIM of py satisfies
Gw @) =1—-F(©). (3)
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Two push-forward family with 0, = 3, 0,=5

10 . ‘ . . ‘ . : : :
— fX) = (X - 0;)
9L —h(¥) = 0(x-6)) + 6, |
f(x) =:7(x-92)
8L h(x):u(x-az)*-(i2 7
7L
6L
5
41
3
2L
1L
0 L
10 8 6 -4 2 0 2

Fig. 1 This figure plots two examples of push-forward families with parameters chosenas 0] = 3,60, =5

We can also consider another family of ReLU maps to push forward the source
distribution. This family is given by

p:O=R->PMR): O+ pg

0, x <0,
po (x) = p(x;0) = (hgxpo) (x), hg(x) = 0(x—9)+9={

X, x>0
The WIM of py satisfies
Gw (60) = Fo (0). )

A figure illustrating these two families is provided below.

Proof To calculate WIMs of this model, we cannot use previous approaches of score
functions, since it is not smooth enough. Instead, we utilize the idea stated in remark 5.
Namely, we use the relation (2) between Wasserstein distance and WIMs to compute
the latter.

Consider the following two push-forward distributions given by

(fo+a6xp0) (x) = Fo (6 + A0) 30 + po (- + 6 + AO)pg, ) »
(foxpo) (x) = Fo (0) do + po (- + 0)(0,00) »
where §y refers to the Dirac measure concentrating at point 0. And po (- + 0)[9,o0)
represents the measure p (x) = po (x + 0) restricting to the interval [0, o). Using

monotonicity of transportation plan in 1-d, we conclude that its restriction on (0, co)
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transports measure on x to x + Af. And it remains to transport the Dirac measure
centered at O to the remained place. The transportation cost is given by

00 AO
W3 (foxP0s fotn05P0) = /0 po (x + 6 + A0) (AF)? dx —i—/o x2po (x 4+ 6)dx

= (A2 (1 — Fy (0 + AB)) + O ((A9)3) , (10)

where the third equality holds by

A6
/ po(x +60)dx = O (A9).
0

Notice in formula (10), we decompose the transportation cost into two parts: the
first one is concerned with the cost on the right part of 0, while the second one
considers transporting Dirac measure at O to the remained part. Since the WIM is
an infinitesimal approximation of the Wasserstein distance, i.e. equation (2). The
conclusion (8) follows.

For the other family, derivations follow the same method as before. Specifically,
we have

A0
W2 (hgspos hosap=P0) = /0 x2po (x + 0) dx + (AB)? Fy (6)

= (80 Fo 0) + 0 ((20)?),

where we again decompose the transportation cost into two parts. The first one is
absolutely continuous w.r.t the Lebesgue measure, while the second one contains a
Dirac measure. O

Remark 6 Notice that density functions in ReL.U push-forward family can be singular.
Thus the Fisher information matrix, which depends on an explicit formula of density
functions, namely

9 9
Gr(9)ij = /X ﬁlog p(x; 9)@10g p(x; 0)p(x; 0)dx
i J

fails to exist in these models. On the contrary, as we have shown in the above example,
the WIM still exists. This property shows that the WIM can provide statistical studies
for generative models, while the Fisher information matrix in classical statistics can
not. Moreover, compared to the information matrix definition, the remark 5 can handle
a broader regime of statistical models that lack regularity or even contain singular
Dirac measures. The ability to analyze generative models is what we believe to be an
advantage of WIM over FIM. On the other hand, WIM can not handle all the parametric
families. As pointed out in [23], due to its lack of the second moment, Cauchy family
does not have a well-defined WIM.
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3 Wasserstein estimation

In this section, we define the Wasserstein covariance and establish the Wasserstein—
Cramer—Rao bound. Based on these concepts, we introduce a notion of efficiency in
Wasserstein statistics. Several examples based on the previous section are provided.
From now on, we will avoid the discussion on general density manifold but rather
focus on finite dimensional statistical models associated with an information matrix
structure.

3.1 Estimation and efficiency

Firstly, we generalize the definition of covariance matrix for a given metric tensor g
on probability space. Denote ( f, h), as the inner product of cotangent vectors f, & in
the metric g:

(f h)g = (f,8(p)"h).

Definition 7 (Information covariance matrix) Given a statistical model ® with metric
g, and statistics T € R, T € R”, the information covariance matrix Covg[T, T] e
R™*" ig defined by

(CoviIT, T1),; == (T;, Tj)g,

ij -

wherei =1,2,...,m,j =1,2,...,nand T;, T; are random variables as function
of x. Denote the information covariance matrix as

(Var§[T1),. = (Cov[T1)

y (CovgIT, T1),, = (Ti, Tj)g,

ij = ij
fori,j=1,2,...,m.

Example 9 (Fisher covariance) Given two statistics 77, T>, we view them as cotangent
vectors in space C(X)/R. Hence their Fisher inner product is defined as

Ty, Ta) gy = fX (Ti — E,, [T1]) (T2 — Ep, [T3]) pod.

Here choosing the function T7 —E ,, [17] as the representative of [T ] is consistent with
the normalization requirement (1). Thus Fisher covariance (resp. variance) reduces to
the original definition of the covariance (resp. variance) in probability theory. And the
classical Cramer—Rao bound is given by

Cov) [T (x)] = VoE,, [T ()G F(0) ' VYE,, [T (x)],
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where G r(0) is the Fisher information matrix. In 1-d cases, the above forms

(V9 Epe T (x))z

Varg [T (x)] = Gr @

3

where we use classical notion of variance here.
We next focus on the Wasserstein covariance operator.

Definition 8 (Wasserstein covariance) Given a statistical model ®, denote the Wasser-
stein covariance as follows

CovlV [Ty, Ty] = E,, [Vm (x) -V, Tz(x)T] ,

where T1, T> are random variables as functions of x and the expectation is taken w.r.t.
x ~ pp. Here - refers to matrix product. Denote the Wasserstein variance

VarlV [T] = CovlV [T] = K, [VXT(x) : VXT(x)T] .

Remark 7 Intuitively speaking, since any statistics is a function of sample x, the
Wasserstein covariance measure the sensitivity of the statistics w.r.t. the underly-
ing sample space structure. Based on this interpretation, one possible application of
Wasserstein statistics is robust statistics. Indeed, Wasserstein distribution robust opti-
mization [8] has been widely used. More theoretic understanding and derivation are
left to future work.

Now we can state the main theorem of this section.

Theorem 9 (Wasserstein—Cramer—Rao inequality) Given any set of statistics T =
(T, ..., Tn) : X — R™, wheremisthe number of the statistics, define VoIE p, [T(x)]T =

(VoE [T(x)]T)l.j = aiejEm [T;(x)]. Then

Cov/ [T (x)] = VoE,, [T ()] Gw (0) "' VgE,, [T ()],

where the notion > refers to that the difference of two matrices is positive semi-definite.

Proposition 10 (Covariance property) Given the Wasserstein score function CDiW (x;0)
and any smooth statistic T : X — R, then

3
G5 EnT ) =By, [vxob,W(x; 9) .- vxT(x)T] = (@Y o
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Proof Notice the fact that

b 0
30, —EpT(x) = 01_/ T(x)p(x;0)dx

a
Z,/X T(x)a—eip(x, 0)dx
= [ 7= Ve (o 0)V,0F (x:0)) )
X

=/ ViT (x) - Vi ®} (x; 0) p(x; O)dx,
X

where the third equality comes from the definition of Wasserstein score functions,
while the last equality holds by integration by parts formula in spatial domain. The
conclusion holds. O

Remark 8 This property is in contrast to Fisher score functions, i.e.

0 0
30, —EpT(x) = |:T(x)f log p(x; 6’)1|

= Covy |:T(x) — log p(x; 9)} = (®F, T)g,

This is merely a dual relation between tangent and cotangent space in the density
manifold.

Proof (Proof of Theorem 9) By the definition of semi-positive matrix, it suffices to
prove that for arbitrary v € R™, we have

v Covl/ [T (x)v > vV E,,, [T ()] Gw (0) " VoI ,, [T (x)]v.

Here we define T, = v' T as the statistic associated to the vector v. Then the LHS of
above formula equals to the variance of T, i.e.

v Cov) [T (x)]v = Cov) [T,].

As we have mentioned before, score functions d>iW ,i=1,2,--- nspanasubspace
p(x 9)0 of the cotangent space T* p(x; 9)77 (X) at each point p (x; 6) on the density
manifold. Meanwhile, the statistic T X — R can be viewed as a cotangent vector
field on this statistical model. Since the subspace T p( O at each point 6 is a finite-
dimensional subspace of the Hilbert space T:(x; Q)P(X ) endowed with the Wasserstein
inner product. Thus it is a closed linear subspace. By elementary theory of functional
analysis, we have orthogonal projection operator P as

P: T;(X;Q)P(X) — T;(x;9)®.
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Since CDlW ,i =1,2,...,n span the whole subspace, we have
(@, v=Puv)g, =0, VYveT; 4P
Back to the theorem, we have
Covy/[T,] = Ep, [VXTU(X) : VxTu(X)T] = (T, Ty)gw = (PTy, PTy) gy,
where the last inequality holds by the property of the orthogonal projection operator.
Since P is the projection onto the subspace T*(x 0 © with a set of basis (btW ,ateach

point 6, we can write the cotangent vector PT,, as a linear combination of Wasserstein
score functions below

d
PT, =) o),
i=1

where the superscript of tl.e indicates the dependency on point 6. Plugging this linear
combination into the Wasserstein metric, we get

d
(PT,, PTy),,, = Zt,@ (PT,, d)),
=1

d
> sk, o),
k=1

i,

d
= Z gkjg PTv7q> >
J.k=

d
> ®T. 0 )y (Gw@) ") T, @),
i j=1

= VoI, [T, ()" Gw (0) "' Vo, [Ty (x)],

where Gy (9)~! is the inverse matrix of the WIM, gx;, g'/ are elements of matrix
Gw, Gv_‘,l respectively, and the third equality holds by the fact ) j 8kj gl = 8;‘. The
last equality is guaranteed by proposition 10. Combining the above calculation and
the comparison between the inner product of 7, and PT,,, we obtain the desired result.

O

Given the above theorem, we can define the Wasserstein efficiency as follows.

Definition 11 For an estimator 7 (x), it is Wasserstein efficient if and only if it attains
the Wasserstein—Cramer—Rao bound, namely

Var)V [T (x)] = VoE,, [T ()" Gw (0) ' VoE,, [T (x)].
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Next, we provide some examples of efficient statistics in classical models for Wasser-
stein and Fisher statistics.

Example 10 (Gaussian distribution) Recall that given a Gaussian distribution with
mean value p and standard variance o, Wasserstein score functions satisfy

(x —w?—o?

Y (i o) =x—p, BY(x;p,0)= =

3

with the WIM

quua>=<é?).

Thus by the criterion, we know that a statistics is Wasserstein efficient iff it can be
written as linear combinations of Wasserstein score functions. Statistics only depend
on samples x; and do not depend on parameters 1, o. Hence they must be of the form

ax> +bx +c= 2aod><‘;v + Qap + b)CDXLV +c +au2 +bu — ac?,

where c is a constant. Wasserstein efficient statistics are degree 2 polynomials of x.
While Fisher score functions are given by

x—w? 1
, q),f(X;M,G):T—;-

— i
0—2

Foo. _ X
(D/L(xa M’U) -

And the Fisher information matrix satisfies

1
— 0
Gr(pn,o) = <‘62 _)~
0-2

Although we have different score functions in Wasserstein and Fisher statistics, it turns
out that efficient statistics associated with these two information matrices coincide.
Still, Fisher and Wasserstein information matrices provide us with different Cramer—
Rao bounds. The Wasserstein—Cramer—Rao bound is better if o is small while worse
if o is large.

Example 11 (Exponential distribution) Given an exponential distribution, Wasserstein
score functions satisfy

(x—m? -5 1
W, . W, ..
D, (x;m, L) = 7 A , @nl(x,m,k)zx—m—x,
and the WIM satisfies
1 L
Gwm, M=, %].
W2
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Similarly to Gaussian cases, Wasserstein sufficient statistics are also quadratic func-
tions of variables x. Fisher score functions read

1
Cl>f(x; m,\)=m—x + It <I>f,;(x; m, \) not well defined.

Meanwhile, the Fisher information matrix is also ill-behaved. This is in contrast to
the well-definedness of both Wasserstein score functions and WIMs. This example
provides a situation where Wasserstein statistics are better than the classical Fisher
statistics.

4 Wasserstein natural gradient works efficiently

In this section, we study Wasserstein dynamics in terms of sampling and estimation
processes. As a consequence, we prove Wasserstein asymptotic efficiencies of the
natural gradient algorithm. And we refer it as Wasserstein efficiency. Meanwhile,
another efficiency that we name Poincaré efficiency is introduced. It is connected to
Poincaré inequalities and log-Sobolev inequalities, which are discussed in Sect. B.

In the beginning, we review the natural gradient algorithm. We aim to estimate
an un-known distribution in a probability family p(x; #) with unknown parameters
6 € ©. Assume the optimal parameter 6, exists such that p(x; 6,) coincides with the
target distribution. Given a set of i.i.d. samples x; ~ p(x;6y),t € Z,, we utilize a
general online natural gradient algorithm to solve this problem, i.e.

1 w
01 = 0 — V' 11, 60). (11)

In the above formula, 6, is an updating state variable, % in the RHS is an adaptive
factor. And VGW is the Wasserstein (natural) gradient of the loss function / w.r.t. 6

VY I1(xe, 6:) = Gy, Vol (xs, 6y).

We first define the efficiency of the natural gradient algorithm, which generalizes
the notion discussed in [2]. Denote the Wasserstein covariance matrix of estimator 6;
by

Vi =Ep, [Va0 =0 V.0 - 007 ],

where V,(6; — 6,) is the matrix given by

9O —0:)1 9B =01 . 9O —0:)1
x| dxp dx,
90 =0x)2 9O =bx)2 . 3(6;=0x)2
0x1 0x2 dxp

V(0 — 6x) = . S ) )

00 —0:)n 0O —0:)n . (O —0:)n
x| d0x2 axy
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and - is matrix product. It turns out that the element of the covariance matrix is given
by

Eps, [Vel =0 Vol = 00" | =By [V =00 Vo0 = 00),].
Here - refers to inner product of gradient vectors. And subscripts p(-; 6,) refer to take
expectation on the set of samples x; ~ p(-; 6,),t € Z.

Definition 12 The Wasserstein natural gradient is asymptotic efficient if
1 1
V,=;GW 0s) + O 7))

We first state a general variance updating equation for this dynamics. Then, we
specify two different loss functions, namely, Fisher scores and Wasserstein scores.
And we discuss convergence properties of these two cases separately.

Theorem 13 (Variance updating equation of the Wasserstein natural gradient) For any
Sfunction I(x, 0) that satisfies the condition E,,l(x,0) = 0, consider the asymptotic
behavior of the Wasserstein online natural gradient (11). That is, assume priorly

Epi, [0 = 007] By, [1V: 6 = 0012] = 01), Wi,

Then, the Wasserstein covariance matrix V; updates according to the following equa-
tion

1
Vet = Vit Gy 0By, [ Vi (0. 00) - Vi (16007 )| (63 00)
2 1
- TVIEP [Vl (x1., 6:)] Gy (6:) + 0 (%) +o (72) .

Remark 9 In general, it will be shown that such a simple updating equation merely
attributes to properties of information matrices. Specifically, any statistical informa-
tion matrices with separability property w.r.t. independent variables have this form
of updating equation. For the WIM, this is already established in proposition 5. And
for the Fisher information matrix, this is a property of expectation of independent
variables. Further results such as efficiency of the natural gradient can be established
with the same procedure below.

The proof is technical and we leave it to Sect. C.1. Here, we show several important
cases of Theorem 13.

4.1 Wasserstein natural gradient for Wasserstein scores
We consider the following dynamics in this subsection

V(e 6) = Gy @V (x5 6,) . (12)
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Concerned with this dynamics, we have the following corollary.

Corollary 14 (Wasserstein natural gradient efficiency) For the dynamics
PR W, .
Or+1 =06 ;GW @)D" (x¢5 6),

the Wasserstein covariance updates according to

1 2 1 v,
vt+l:Vt+t_2Gw(9*)_;Vt+0 7 +o rk

Then, the online Wasserstein natural gradient algorithm is Wasserstein efficient, that
is

1, 1
Vi= Gy 69+ 0 <72) . (13)

Proof of Corollary 14 1f we choose function f (x, t) to be Wasserstein scores d>l.W, we
will have following simplification

Ep, [V (0% 0:00) - Vo (0¥ (i1 007) | = Gw 60,
since ®" is the dual coordinate of the statistical model. We also have
Ep, [Vo®" (00| = =G @),
which is given by differentiating Epe* [@W(xt; 0*)] =0by0,ie.
0= VyE,, [CDW(x,; 9*)]
= Vs [ fX px; 6:)@" (x; e*)dx]
= /X Vo p(x; 6:)0" (x; 6)dx + fX p; 09V @Y (x; 6,)dx

=Gw +/ p(x; 0)VedY (x; 0.)dx,
X

where the last equality holds because of the pairing between tangent vector and cotan-
gent vector. And the final updating equation for the Wasserstein covariance reduces
to

| 2 1 \A
Vt+1=Vz+t—2Gw(9*)—?Vz+0 3 +o0 -
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. . . 1 .
To further solve this updating equation, we expand V, = % + z% +o0 (72) with
constant x, y to be determined and plug into the equation(we ignore the term that is
of order o (tiz)) Hence, we get

SN Y A N D iy (.
———+4o|l5)=—+F5+0| =5 — -——=+4ol=5],
t+1 (14 1)>? 12 t 12 12 27w 2 12

which is equivalent to

o) (2 Ve Z oty to(L) =0
- = - = - - = o|—=]=0.
r+1 ¢ t+0D2 2) 2 27w 12

And we conclude that

x =Gy (0.

Thus, we asymptotically have following estimation on the Wasserstein covariance
concerned with this dynamics

1, 1
Vi= -Gyl @) +o ).

ot
Remark 10 At first, such a generalization to Wasserstein metric may seem unreason-
able. We only use a fact that both of them are metrics on probability spaces. Different
from Fisher scores ®F = Vjyl (x; 0), Wasserstein scores ®WY can not be written as
gradients of some functions w.r.t. 6. There is no such “loss functions”. However, a key
insight here is that, if in a second we assume that the statistical model ® is exactly the
density manifold Gw (pg) = gw (pe), Gr(ps) = gr(pp), i.e.

0
Gyl (po)@" (x:0) = gw(po)gy, (o) 55 P(x3 0) = Vo p(xis 6)
0
= gF(pe)g;l(pe)ﬁp(x; 0) = G5 (po)@F (x;0).

Then both two dynamics can be written in the following way
1
Ory1 =0 — ;Vep(xr; 0r).

4.2 Wasserstein natural gradient for Fisher scores
Another phenomenon appears when we consider the Wasserstein natural gradient

applies to Fisher scores. Specifically, we use log-likelihood function as a loss function
and apply WIM as a preconditioner. The dynamics concerned in this case is given by
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1
Or4+1 =06, — ?ngl(xt’ 0r).

We comment that Vgl (x;, 6,) = ®F (x;, ;) is both the Euclidean gradient of log-
likelihood function / w.r.t. @ and the Fisher score. And the convergence analysis is
shown in the following corollary.

Corollary 15 (Poincaré efficiency) For the dynamics
Low
Or+1 =6 — ;Vg 1(x,0,),

the Wasserstein covariance updates according to

1 _
Vil = Vi + Gy 00y, [Vx (Vol (31, 6.) - Vi (Val G, 0*)T)] Gy (6,
2 -1 1 Vt
_;VtGF(Q*)GW 0x) + O 3 +o 7 )

Now suppose that o« = sup{a|Gfr > aGw}. Then the dynamics is characterized by
the following formula

o (172), 20 < 1,
V, = —1
T L2666y —1) GR 003 (63 00) + 0 (&) 20> 1,

(14)
I= (j)ij = Ep9* [Vx (Veil(xlv Q*)) - Vi (ngl(x,, 9*)T):|
Proof of Corollary 15 The result is obtained once we observe that
E s, [VG@F()C:, 9*)] = —Gr(b,),

which follows exactly the same philosophy of corollary 14. We conclude that the
Wasserstein covariance updates according to

| _
Vier = Vit Gy 0By, [ Vi (Val (xi.6) - Vi (Vo (i, 007 ) | (G5 @))
2 -1 1 Vt
— SViGrO)Gy 00+ 0 (5 ) +o ().
Next, we solve this dynamics asymptotically. We denote G F(G*)G;V1 (6«) = B and

Gy OBy, [ Vi (Val (i, 00) - Vi (Val i, 007 ) | (G 00)) = €.
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Now by elementary linear algebra we know that the matrix B = G F(G*)G;V (0y) is
similar to the matrix G G FGy - . Hence their elgenvalues 001n01de By definition,

« is the smallest eigenvalue of the symmetric matrix G G FG 2 Thus we conclude
that the smallest eigenvalues of the matrix B are also «. Suppose first that 2o < 1, we
consider the following expansion of matrix V; as

_Ar, A ! A1, Ar = O(1
Vt—t—q-i-tqﬁ‘l-O presl B 1, A2 = O(1).

Plug the above equation to both sides of the updating equation, we find

Aj Ar 1
(r+1)7 * (r + 19! +0<tq+1>

Al Ao 1 2A1B C 1
:t_q"‘m“r‘O(W)— tq+1 +t_2+0([_3>

Using the Lagrange’s mean value theorem, we have

a__4 94 4 (2 €0, 1]
_ = = oy — 1, v ) -
t4 (t+ ])q t+ U)q-i-l tq4+1 tq

Substituting back to the above equation, we get

A; (g1 —2B) 1 1
= A 4 o (W)*O(ﬁ)

We cannot have g strictly greater than 1, for then the most significant term in the RHS
will be # 0 which contradicts to the LHS. Thus if we have ¢ < 2« < 1, the matrix
ql — ZB will be negative definite, and we cannot have A| (¢ —2B) = 0 unless A
equals to 0. Consequently, the index ¢ should be greater than or equal to 2«. And we

have that asymptotically
1
V[ - 0 tTOl .

While for the situation such that 2o > 1, we expand V; = Ay 4

T+—+0(l2> with

t t
constant A, Ap to be determined and obtain

A n Ar n 1 A n Ao n 1 n C 2AB n 1
ols)l=—+—=+40|l=5)+5———+0|=)-
t+1 0 (r+1)? 12 t 12 12) 12 12 12

The constant Ay can be fixed by considering the coefficient of the term 5 L for both
sides with conclusion

=Q2B-D7'C
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Gaussian Family with reference measure (u,0)=(20,1)
0.08

0.07
0.06

=4
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By
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g
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@

Wasserstein Covariance

0.02

107 10° 10
Interation Number

Fig. 2 The Wasserstein—Cramer—Rao Type Convergence Rate. We take the reference measure in KL-

divergence to be Gaussian V' (20, 1) where the parameter w4 = 20 is the optimal point we aim to estimate.

Since we have Lz =1> %, the Cramer—Rao type convergence holds. The result is calculated by running
[of

1e3 samples for Te4 iterations

Here, invertibility of the matrix 2B — I is guaranteed by the fact that eigenvalues of
2B are all greater than 1, thus the matrix 2B — I is indeed positive definite. O

The convergence behavior of this dynamics relies largely on the smallest eigen-
value of the matrix G FG;VI. This is in great similarity with the RIW condition for
Poincaré inequality in statistical models [17]. This inspires us to name such efficiency
Poincaré efficiency. For discussions and calculations on Poincaré inequalities in statis-
tical models, see details in the Sec. B. We also illustrate some results of two efficiencies
in Gaussian family, whose proof is given in the Sect. C.2.

Example 12 (Gaussian distribution) Suppose we have following dynamics in a Gaus-
sian model p (x; u, o)

1
011 =6 — 7v9W1<x,, 00, Xi ~ P (X3 s, O%) -

The asymptotic behavior of the covariance matrix for the online Wasserstein natural
gradient algorithm is given by

_2
ot ), 11
< 03_2
Vl: ; ()
1| (2—02)o? 1 1 1
7 ( 6)* 4 +0<t—2),z>§.

(4-0i)o?

We verify our theory by two numerical experiments. In two cases, we verify the
Wasserstein efficiency and the Poincaré efficiency respectively. In the first experiment,
we verify the constant Ga,l appearing in asymptotic efficiency of the Wasserstein
natural gradient. While for the other situation we verify the asymptotic exponential
index o showing up in Poincaré efficiency.

@ Springer



232 Information Geometry (2023) 6:203-255

Gaussian Family with reference measure (u,0)=(20,2)

0.03

0.028

1ance

0.026 - A

0.024

0.022

Wasserstein Covar

e
o
S}

0.018
? 10° 10
Interation Number

10

Fig. 3 Poincaré Type Convergence Rate. We take the reference measure in KL-divergence to be Gaussian
N (20, 2) where the parameter 1, = 20 is the optimal point we aim to estimate. Since we have % = % <
O

%, the Poincaré type convergence holds. The result is calculated by running 1e3 samples for le4 iterations

5 Discussions

In this paper, we introduce the Wasserstein information matrix in statistical models.
Similar to the study in information geometry, we turn the geometric aspect of the
Wasserstein metric into statistics. We generalize the classical concepts such as score
function, covariance operator, Cramer—Rao bound, and estimation to the Wasserstein
statistics. Several explicit computable examples are provided, including the location-
scale family and the ReLU push-forward family. Also, by comparing both Wasserstein
and Fisher information matrices, some new efficiency concepts, such as Wasserstein
efficiency and Poincaré efficiency have been introduced.

In the future, several natural questions between Fisher and Wasserstein statistics
arise. For example, similar to the relation with Fisher information matrices and maxi-
mal likelihood estimators, what is the relation between the WIM and the Wasserstein
distance estimator? Is there a canonical Wasserstein divergence function for the WIM?
What is the corresponding Wasserstein maximal likelihood estimator? Meanwhile, we
will apply the Wasserstein natural gradient to study stochastic gradient descent algo-
rithms in statistical learning problems. Lastly, we have shown that the Wasserstein
statistics provide rigorous statistical advantages in generative models over classical
Fisher statistics. We will study the statistical properties of WIMs in detail for machine
learning models.
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Appendix A. Proofs in Sect. 2
A.1. WIMs and score functions in analytic examples

Proof of WIMs in Gaussian families Since we have

log p(x; p,0) = — (=) —logo —log+/2m

20 Tog2
taking derivative, we get
0 X —p
- 10 s M, = — s
oy 108 p(xi i, 0) g
! x—p 9 (c—p? 1
—logpxip,0)=—5—, —logplx;pu,0)=—3—-——.
o g do o o

In this case, the Possion equation for Wasserstein score functions (&, &) forms

X—pn 0 92 w_ _X—n
- -—0 —,
o  9x “+8 o’
N R R x—w? 1
- -—0 — ¢ = —— + —.
o2  dx 0+8x2 o o3 +o

2 2
We simply check that CDI‘/LV(x; w,0) = x —pand ®Y(x; pn,0) = % are

solutions, and they also satisfy the normalization condition E, QDlW = 0. Thus

a a
Gw(u, o)y = Ep,u, (3_<DE«V’ a_q)xl> = Epuﬁl =1,

8 8 X —nu

d ad X — ® X—nun
GW(M,U)MZE,,M.U< oY, - c1>j,”) E,,M< >_1.

0x o o

Proof of WIMs in exponential families We derive results using the closed-form solution
in 1-d. The cumulative distribution function satisfies

1 —eMo=m) >

F(x;m,)\)z{

0 X < m.
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Thus
9 _ —A(x—m) > m,
D reim.a) = (x —m)e xX>m
ar 0 X < m.
0 Ae I e > gy
—F(x;m,A) = -
aom 0 X < m.
Then

* 1 0
CI>Wx;m,X =—/ _ ym,Ndy + C
P == e yan T Y D+

X _ _ 2
—/ VoM gy o= ST ey

A 2
W (x:m, 2 /X ! 9 F(y;m,\dy + C
s N, - - - < 2
" m p(y;m,A)dm

X

:-/ dy+Cy=(x—m)+ Cy.

m

Using the normalization condition, we can decide integration constants appearing
above. And inner products between score functions follow as

a a
GW(m’ )\'))‘)‘ = ]E[)In,A (aq))‘:v’ aq)}:‘/)

Y Y
2
[ g 2,
T e

a a ® (x — 1
Gw(m, Mn =Ep,,, <3 d>W o <I>W) (x)b—m) e M=) g — oL

m

8 o0

oV —@W) / e Mgy — 1,
m

Gw(m, A)mm = ]Epmyx (8)6

Proof of WIMs in uniform families The cumulative distribution function satisfies

1 x> b,
F(x;a,b)=13=¢ a<x=<b,
0 X <a.
Thus when x € [a, b],
0 x—0>b 0 a—x
_F N ’b = 3 _F 3 5b = .
gal b =g gpfab) =
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Then

F(y;a,b)dy+ C1 = + Cq,

d>gv(x;a,b): /XLE) (x —a)(a—2b+x)
a p(y;a,b)d 26 —a)

@Y (x;a,b) /X L9 riabydy + =@ _x)2+c
x;a,b) =— _ a, = — s
b W porabyab T2 T 5 gy T2

S =
c:.alm
)
S =
W] = oxlv—‘ W=

ad
Gw(a,b)e, = Epa,b (an

where integration constants C1, Ca can be decided via the normalization condition.
ad c]>W
0x dx

Thus
0w 0

GW(a,b)bb ZEPa,b <£(bb N a(bb ) =

Q.a
'9'
T =

v

Gw(a,b)u = Epa.b <

Proof of the WIM in semicircle families The cumulative distribution function satisfies

ro2
F(x+m;m,R) = / _2‘/R2_y2dy
—R TR

arcsm(ﬁ) 2
= / — R2sin? td(R sint)

arcsm( )
/ —Rz(cos t)zdt

71

B /arcsm( x) 1 cos(2r) + 1 cos@) +1
T 2
1 s1n(2t) arcsin %
-1 >g
1 x
;{ +arcs1nE~|—E},

where we use a transformation y = R sin ¢. Thus

9 (xv/R?2 — x2)YR? — 2Rxv/R? — x2 X,
—F(x +m;m,R) = { + (arcsin E) }

IR R
1 (xR(R: — x2)~2R2 — 2Rxv/R? — x2 x
B ff{ R4 - Rm}
2xv/R2 = x2

7R3
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Thus
dF (x +m;m, R) = —/x ;iF(y;m,R)dy—i—C
_r p(y;m,R)9R
= /X Xdy—i—C
_r R
1 x2 R?

=—(——-—)+C.
R( 2 2 )+

The calculation of the score function associated with the parameter p is the same as

before. And we conclude

CI>E/(x; m, R) =x —m.

Thus

0 0
Gw(m, R)yum = Epm,R <5(Dm s aq)n‘:/) =1,
d 0
Gw(m, Rymg =Ep, 4 <_¢yg, e

1
ax q:)nv"l/):FEmR(x_m)ZOv

3 3 1 1
Gw(m, R)gr =Ep, 4 (aqﬁy, ad)%’) = —Epn, x —m)? = 7

A.2.The location-scale family

Example 13 (Location-scale families) Consider a location-scale family as follows.
Given a probability density function p(x) with fR p(x)dx = 1, we define density
functions of a location-scale family with a location parameter 2, and a scale parameter
A as

Y 1 xX—m 250
p(x,m,)—kp< Y ) > 0.
Most of previously discussed examples belong to this family, except that we do not
use location and scale parameters in their parameterizations. We present some geo-
metric formulas in this setting. We further require the original density function to be
symmetric according to the location parameter m, i.e. p(x) = p(2m — x). Notice that
a simple corollary of this assumption is E,, , x = m.

We use the closed-form solution for 1-d model to calculate the score function
associated with the location parameter m. Thus we have

a a [ a [* 1 y—m
—Fx;m, ) =— im,A)dy = — — — |d
o (x;m, 1) 8m/_oop(ym)y am/_wkp< . )y

o (¥ 1 y—m J ( »
=—— —p|— = —p(x;m,A).
ax ) 2P\ ) TP
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Consequently, the score function associated to the parameter m satisfies

* 9
oVimy=—] ————F(im Ady+C = (x — ci,
m (X511, ) /mp(y;m,k)am (y;m,M)dy +Cp = (x —m) + C

where the integration constant C is determined to be 0. Thus we have

d d
Gwm, M) mm = Epm_x <aq>r‘fl’, aq)li):/) =1

For the scaling parameter A, we use a method of optimal transportation map to
determine its score function. Namely, for two smooth distributions pp, p» which are
absolutely continuous w.r.t. each other, their Wasserstein distance can be obtained by
an optimal transportation map f, i.e.

fep1 = p2, W3 (p1, p2) = fX (f (x) —x)? p1 (x) dx.

Assume we have a tangent vector g—g and a smooth path p (t) C P(X),t € [—€, €]

with p (0) = po, p' (0) = g—g. Denote the optimal transportation map between
p(0), p(©) as f (x, ). Then we have following relation between optimal transporta-
tion maps and the score function associated with tangent vector g—g

d , AO) —
— " (x) = lim M
0x AO—0 AO

First, we show that the optimal transportation map between distributions
p(x;my, A1) and p(x; ma, Ap) is given by a linear map

(x —mp)Ay

1(x) =
(x) =my + .

As we are working in a location-scale family, it is easy to show that this map pushes
p(x;my, M) forward to p(x; ma, A2),1.€. lx Py, 5.y = DPma,2,- Then, we have

2
0=+ (mz (= m) + W) .
The function in the bracket is a convex function. Therefore, / (x) is exactly the optimal
transportation map between these two distributions.

To calculate the score function correspondent to the tangent vector a%’ we consider
following infinitesimal optimal transportation p(x; my, A1) — p(x;my, A1 + dA).
By discussions above, the optimal transportation map is given by

- A+ dA di
(x —mp) (A1 + )=x+(x_m1)_.
A Al

L(x)=m +
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Thus the gradient of the score function is given by

[(x)—x  (x—myp)

ad>W< )
— xX;my, =
A bAl di MM

ax

The inner product of this tangent vector is given by

)
Gw(m, M. =E,,., <£¢XV’ ac1>XV>

2
:/ (x—m) p(x;m, M)dx
R A

IElpm_Ax2 —2mE,,, ., x + m?
A2 '

The gradient of the score function associated to the parameter A (resp. m) is odd (resp.
even) function when viewing as a function of x — m. We conclude that the integration
of their product is zero, i.e.

3 3
Gw(m, Nm =Ep, , (ad)rl, a@,ﬂ’) =E,,  (x—m)=0.

Consequently, WIMs of location-scale families are diagonal matrices, i.e.

1 0
Gw (m, A) = <0 Epm’xx22mIEpm‘Ax+m2> .
A2

We next explain above closed-form solutions of WIMs by following proposition.

Proposition 16 A location-scale family p(x; m, A) is a totally geodesic family in den-
sity manifold under Wasserstein metric.

Proof 1t suffices to prove that for any two densities p; = p(x;my, A1) and py =
p(x; ma, Ap), a geodesic connecting them lies within this family. We compute the
optimal transport map 7 associated with these two measures p1, oz, that is

T = argminT*plzpzf (T(x) — x)* p1(x)dx,
R

where 7' is a map that pushes density p; forward to density p,. It is known that
a sufficient and necessary condition for an optimal map in 1-d case is that it is a
monotone map, i.e. (I'(x) — T'(y)) (x — y) > 0. And in a location-scale family, such
map has a closed-form solution, namely
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The geodesic y () : [0, 1] — P(R) between p; and p; follows easily as below by
the classical theory of optimal transport

y(@) = (x4 (1 =0T x)), o1,

where the push-forward map has a closed-form solution

Ay (x —my)
tx+(1—-0Tx)=tx+ (1 — t))L— + (1 —1t)my
1
= (th1 + _;))\2) = m1) + (1 —t)my +tmgq.
1

And by the same argument, y (¢) lies in this location-scale family with parameters
given by

M=thi+ A =0y,  my=(1—-10my+1tmy.

Thus we show that geodesics between any two densities in a location-scale family lie
in this family. In other words, location-scale families are totally geodesic submanifolds
in density manifold. O

Remark 11 This result on totally geodesic of location-scale families is a generalization
of the same result on Gaussian families in 1-d. Both proofs of these two cases rely on
the fact that optimal transport maps in these families are linear.

Remark 12 For location-scale families, we also formulate its Fisher scores and Fisher
information matrices for comparisons as

' 1 x—m)p
oF (rsm, 2 = 2, @f(x;m,,\):___¥,
Ap X A2p

3 2 1 x—mp\?
F(m, M) /Rp<a)L ng) X /RP< Y W2p ) X
1 x—m)?p?  (x—m)p
=—11 dx |,
A2< +/R< 2y T2 *

2 2
1
dx = —/ —p dx, (15)
R

Gr(m, M)mm :/p
R

d
Gr(m, Mmy = / p <a— log p
R m

/ 4 (x —m)p’
R Ap A2p
_ 2
_ (x —m)p dx.
R Ap
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Above, we use p’ to denote % p for simplicity. WIMs and Fisher information matrices
are given by

1 0
Gy (Wl, )L) = (0 ]E,,m_lx22rnIEpm1xx+m2) s

22
p/z (x_m)p/Z
G 1) = 1 .[IR de f]R Ag dx
F(m,\) = ﬁ (X_m)p’zd 1 (x—m)2p’ (x—m)p’ d ’
f]R »p x 1+ fR »p + A *

which illustrates that WIMs are simpler than Fisher information matrices in location-
scale families.

Appendix B. Functional inequalities via information matrices

In this section, we explore connections between information matrices and functional
inequalities such as log-Sobolev inequalities (LSIs) and Poincaré inequalities (PIs)
in statistical models. In Sect. 4, we show that these inequalities are important for the
study of statistical efficiency properties.

B.1. Classical functional inequalities

Before working in statistical models, we first give a summary of relations among PIs,
LSIs and dynamical quantities on density manifold.
Consider the relative entropy (KL-divergence) defined on density manifold as

p(x)
v(x)

We recall the definition of log-Sobolev inequality as below.

Dt (u[lv) = /X log "N podx,  we P

Definition 17 (Log-Sobolev inequality) A probability measure v is said to satisfy a
log-Sobolev inequality with constant o > 0O (in short: LSI(«)) if we have

1
Drr(ullv) < Z—I(ufv), — ne P(X),

where the quantity 7 (u||v) is the so-called Fisher-information functional

I(pl[v) =/
X

Remark 13 1f we assume that u is absolutely continuous w.r.t. the reference measure
v and define function /4 on & as

2

pwx) n(x)dx, u € PX).

v(x)

Vi log

h(x)v(x)

px) = Sy h(x)v(x)dx’
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then above definition of LSI translates to

(DKL(unv) fX h(x)v(x)dx)
= / h(x)logh(x)v(x)dx — (/ h(x)v(x)dx) log (/ h(x)v(x)dx)
X X X

L[ IVeh@))? _ 1
o /X s = 5 (Iwnv) /X h(x)v(x)dx>.

The middle inequality is a more familiar definition of LSI(«). By linearizing above
formula with h = 1 + € f, ¢ — 0, we get the classical definition of PI(«)

/fz(x)v(x)dxgl/ |V, £ ()2 v(x)dx, /f(x)v(x)dx:O.
X o Jx X

Definition 18 (Poincaré inequalities) A probability measure v is said to satisfy a
Poincaré inequalities with constant « > 0 (in short: PI(«)) if we have

f Fr)v(x)dx < l/ Ve f) 2 v(x)dx, Vf, s.t./ fx)v(x)dx = 0.
X a Jx X

A sufficient criterion that guarantees LSIs and PIs is related to information matrices
(operators or metrics in infinite dimension case) Gy .

Proposition 19 Denote Hessy Dxr (i l|v), Gw (i) two bi-linear forms correspondent
to Hessian of the relative entropy and Wasserstein metric.

(1) Suppose Hessw Dk (u||v) — 2aGw (1) is a semi-positive definite bi-linear form
on the Hilbert space T,,P (X), Viu € P (X). Then LSI(ct) holds for v.

(2) Suppose Hessw Dk (v||v) — 2aGw (v) is a semi-positive definite bi-linear form
on the Hilbert space TP (X). Then PI(«) holds for v.

Proof First, we prove the result concerned with LSIs. We compute the gradient of the
relative entropy w.r.t. Wasserstein metric, which is given by

)
gradyy Do (][v) == V - (uvs—DKL(uuv)) — V. <MV10g “(x)) ,
H v(x)

where % refers to the L? functional derivative. Thus it is easy to obtain the relative

entropy dissipation along the gradient flow as

iD (nlv)
77 DKL wllv
= —gw (grady Dgp(u||v), grady Dkr(ul[v)) (16)
2
- —/ Vo log PN ydx = —1ulv).
X v(x
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Using the assumption, we have

d2
WDKL(IM [v) = Hessw Dkr (i [|v) (grady Dke (1 [|v), grady D (i [[v))
> 2aGw (i) (grady Dre (1 l|v), grady Dk (i |[v))

d
- —2%D ,
a KL (e |[v)

from which LSI(«) holds via integrating the above formula, i.e.

I(uellv) = I(pelv) = 1(v][v)

00 d2

_ /t (FDKLwrnv))dr
o0 d

20 fr <—EDKL(MT||v>>dr

20 (Dkp (e llv) — DL (v][v))
= 2aDgr (ullv),

v

where we use the fact that this gradient flow w; converges to v and Dgp (v|v) =
I(v|v) =0.

To prove the conclusion of Poincaré inequalities, we consider a path in density
manifold, i.e p (¢) =v (1 +€f), fX f(x)v(x)dx = 0. Since we have

62 2 2
Dkt (p (€) V) = ijf s +0 (<),

d
PG @ ) = 1@ 1) =€ [ 1V WP vdr +0 ().
4 X

Consequently, we obtain

[x FH)v(x)dx
[ Ve f @ v(x)dx
1 i Dkt (p (€) [Iv)
= — lim I I
2e=0 LDk (p () [|v)
1 LDgr (p (€) Iv)
= — lim _dz—
20 LDy (p (€) Iv)
_ L. GweO) (Lp(0). Lp(0)
2 e=0 Hessw Dk (p (0) [v) (2 (0) . % p (0))
S l?
o
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where we use L'Hopital’s rule in second equality and the third equality holds because
of the assumption that Hessy Dk, (v||v) — 2aGw (V) is semi-definite. O

Remark 14 With the help of (16), readers can recognize that LSI guarantees a global
exponential convergence of the gradient flow of the relative entropy. Indeed, suppose
W is a gradient flow of Dk (-||v) starting from g, then we have

Dkr (i ][v) < e 2 Dir(uollv), o € P(X) (LSI ().

While intuitively speaking, a PI can be viewed as an infinitesimal version of a LSI,
that is to consider the dynamics in a neighborhood of the optimal value.

B.2.LSIs and Pls in families

Now, it is clear that PIs and LSIs are related to density manifold. We attempt to find
those counterparts in statistical models, i.e. submanifolds.

Now, we fix a model ® C P(X) with metric given by Gw. The relative entropy
is indeed a restriction of global functional to this family. And we furthermore require
the reference measure v to lie in this family, i.e. v = py,, 6, € ©. We use™to distin-
guish constraint cases (statistical models) from the global situation (density manifold).
Recall that the Fisher information functional is merely the relative entropy dissipation
along a gradient flow. Thus we have

~ d
I(pe,|pe,) = — EDKL(PO,”PB*)

= gw (grady Dk (pell pe,). grady Dkr(psl pe,)) (17
o AT ~ ~

= (VD) (Gy') GwGy! VaDre
= (VgDkr)" G;VIVGDKL,

where we use a fact

grady, Dki(psllpe,) = GV_VIVHDKL-
Definition 20 (LSI in family) Consider a statistical model p : X x ® — R, a proba-

bility measure py, is said to satisfy LSI(«) in ® with constant « > 0 (in short: LSI(«))
if we have

1 ~
Dkir(pollpe,) < gl(pellpe*), 0 e0.

Using information matrices, we seek a sufficient condition for LSIs and PIs as
proposition 19, i.e.

Hessw Dk (po |l po,) = 2aGw (6),
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where we have to take care that the Hessian on LHS is calculated in a submanifold
instead of density manifold. Fisher information matrix also comes into this picture,
via a decomposition of the Hessian term Hessw Dk, (pg || pe,)- This point is known as
the Ricci-information-Wasserstein (RIW) condition.

Theorem 21 (RIW-condition) The information matrices criterion for LSI(«) of dis-
tribution pgy is given by

0
Gr () + V2py log [’)’; — TV'VsDke (po | pe,) = 20Gw (),

¢

where T'V s are Christoffel symbols in Wasserstein statistical model ©, while for PI(«)
of distribution pgs can be written as

Gr (0) + V2py log 5—9 > 2aGw (0).

*

Remark 15 1t can be seen that the condition for log-Sobolev inequalities is much more
complicated than that of Poincaré inequalities. For LSIs require a global convexity
of the entropy while PIs only correspond to local behavior at the minimum. The
most significant change takes place in the Hessian term of entropy, where Wasserstein
Christoffel symbols come in.

B.3. Examples in 1-d Family

Both LSIs and PIs can be proved by using Wasserstein and Fisher information matrices.
Previously, we have done geometric computations on metric tensor and Hessian of
the entropy. This prepares ingredients for us to establish inequalities in families of
probability distributions. In this section, we utilize previous calculations to obtain
concrete bounds on these functional inequalities.

Example 14 (Gaussian distribution) Recall that for a Gaussian distribution with mean
value p and standard variance o, the Wasserstein and Fisher information matrices are
given by

Lo
Gw(, 0) = ((1) ?) Griu.0) = (O ;>~
o2

The entropy and the relative entropy defined on this model are provided by
H( ) ! log2 1 !
,0)=—=log2m —logo — —,

M 5 08 g )

1 o2+ (1 — pa)?
Dkr (i, ollps) = —logo +logoy — = + —————

™
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We can calculate Wasserstein gradients associated with these two functionals

W= M
w 0 14 o}
VM,UH(/JL? U) = _l P VM’O-DKL(I'IM 0”]’*) = 1 o ’
: Tta

*

with the correspondent Fisher information functionals as
~ 1
I(,u/’ 0) = _2’
o

2
T ollps) = (”’U—f) + (—

*

+

Sl e

1
o

)2
Thus, the LSI(«) for Gaussian p,,, o, is given by

2 2 2 2
— 1 1 —
—pd” <__+12> - (_log0+logo*__+w>,
i 2 20

Next, we move onto the derivation of the RIW condition. It suffices to consider
a relation between G, Hessy Dgkr at each point in a statistical model. Recall the
formula for Hessian in Riemannian geometry

(Hess f);; = 90, f — 5 e f.

where I'V's are Christoffel symbols in Wasserstein geometry. In Wasserstein Gaussian
model where the metric is Euclidean, Christoffel symbols vanish, i.e. ' = 0. Thus
we have

00 L 0
Hessw H (1, 0) = 0oL ) Hessw DkL (1, ol px) = 0 NE
o2 7tz

For a gradient flow of the relative entropy w.r.t. a Gaussian p,, »,, we conclude
that

1
Hessw DkL(u, ol pg,) > (;) Gw(u,0),

*

since Gw (i, o) is exactly an identity matrix. In other words, the Gaussian p,, o,

satisfies a LSI(#) in a Gaussian model. Notice this result coincides with the one
in global case, which is simple consequene of the fact that Gaussian family is totally
geodesic in the Wasserstein density manifold.

Next, for the gradient flow of the entropy H (-), we do not have a satisfying constant
« such that the Hessian condition proposition 19 holds. For Hessy H (i, o) matrix

has an eigenvalue 0. Despite of this, we have
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grady H(1t,0) = Gy Vo H(it, 0) = Vo H(1t, 0),

whose © component always vanishes. Thus the gradient direction of H(-) always
coincides with o direction, in which we have eigenvalue’s bound: eig,(H) >
(,Lz eig, (Gw). This refers to that eigenvalues of two matrices correspond to direction

% have a bound. For LSIs, if the range of o is the whole R, then it is easy to see there

will not exist a satisfying constant ¢ > 0 for LSI(«) to hold, i.e. 0—12 > 2a, Vo € R.

However, if we restrict the range of o to a bounded region such as [—-M, M], then
LSI(5;5) will hold.

Remark 16 Above calculation on gradient flows of the entropy does not establish
LSI(«) for any specific distribution. It merely provides an example of using Hessian
condition to study dynamical behaviors.

Example 15 (Laplacian distribution) Consider the case of Laplacian distribution,

where
10 A2 0
GW(m,)\.)Z <0 i)’ GF(ma)"): (O l)’
24 22

from which we can calculate the Christoffel symbol as

—1 —1 4
g g A 8 2
F%W)(m, A) = %(azgzz + 02820 — dag22) = %32822 =7 <——> =--,

Ffj(w)(m, A) =0  otherwise.

Following the same procedure we have done before, the entropy and the relative
entropy w.r.t. py,, ., defined on this model is provided by

H(m,A) = —1+1logk —log2,

)L*ef)\\mfm*
Dgp(m, Al px) = —1 +logh — log Ay + Ay [m — my| + .

El

from which we can calculate Wasserstein gradients associated with two functionals

0
Vo Hm = 1],
Y
)\* (1 _ e—k(rn—m*))
(L m = my) + 1) hgeH0mmma) | o 1= e
o 2
VY, Dip(m, Ml ps) = *
— A (1 - e—“"’*—'"))
O (Mg — 1) + 1) hge ™ Omemm) o |2 1= T

A2
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with the Fisher information functionals as

(O lm — my| + 1) dge=Hm=msl _3)>
: :

~ 2
Tim, Al py) = 22 (1 _ e**""*’"*') n

Notice that the value of anX , DKL (m, Al ps) is not well-defined at point m = m,.
However, what we considered is integral on the whole R. Thus we can simply ignore
its value at m = m,. As before, LSI(«) is given by

_ —Amy—m| _ 3)2
Ai(l_e_ﬂm_m)q(@lm* m|+l>zx*e e —2)

)L*efk\mfm*\
> 2ua <—1 +logh —log Ay + Ay |m — my| + f) .

And we find Hessians of the entropy and the relative entropy in (®, Gw) are given
by

00
Hessy H (m, \) = (0 1>,
22

)\)\'*e—klm—m*l 0 )

O L + )\*ef)\\mfm*l(m*im)Z

Hessw Dk (m, A||ps) = <
22 23

Following the same analysis, we conclude that for gradient flows of the entropy

Dxi.(m, 1), a LSI(%) holds. While for the relative entropy Dy, (m, A|| p,.5.,), Hes-
sian condition can be written as

)L)\*e—klm—m*l 0 (1 0)
—Alm—my| a2 Z o 3
0 )\_12 + Age - (my—m) 0 )%4

which can be reformulated as

1
o = mi}} {Ak*e_klm_m*l, 5 (Az + Ape MMy (my, — m)z)} .

m,

From above formula, we conclude that in order to find a satisfying constant, it suffices
to restrict the region of m € [—-M, M], X € [N, 0o). The distribution La(m, Ay)
satisfies a LSI(«) in Laplacian family with o given above.

Example 16 (Independent model) For an independent family p (x, y; 8) = p; (x; 0)
p (y; 0), we have

Gw =Gl +G¥, Gr=Gkr+G%.
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The entropy and the relative entropy also have this separability property

H(®)=H (0)+ H 9),
Dxr (01| p«) = Dky @1l p1s) + DEp (0l p2s) s
VDL (01l ps) = VoDkp Ollp1x) + VoD @l pas) -

The Fisher information functional is given by

I (pelp+)
! 2 T 2\ 7!
= (VoD @lp1) + VeDiy @1p20)) (Gl + G

(VoDke @lp1a) + VaDE @llp2n)
with LSI(«) given by

T -1
(VeDgp (0llp1s) + VeDgy (@llp2)” (Gly + G3)~ (VeDkp (@llp1s) + VeDgy (01l p2s))
> 2aVpDky Bllp1s) + VeDgy @l pas) -

In conclusion, above examples introduce another way to prove functional inequal-
ities as well as convergence rates of dynamics in probability families.

Appendix C. Proofs in Sect. 4
C.1. Proof of Theorem 13

Proof of Theorem 13 First, we postulate that V, refers to the gradient w.r.t. x variable
while Vy refers to the gradient w.r.t. 6 variable. We expand the function I(x;, 6;)

[(x, 01) = 10xr, 05) + Vol (xs, 05) (0 — 05) + O (|9z - 9*|2> .

By substrating 6, in both sides of the updating equation and plugging in the expansion
above, we get

1
eﬁl—@==wf—m)—;Gﬁw»aunm)+kuhaﬂa—eg

+0 (|9t — 9*|2)) .
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Then, taking Wasserstein covariances of both sides, we get

Vi = i+ 5B, [V (G300, 00) - V. (16, 007 G @)

2B, [V 0 =009 (16,607 Gyl @) | + 0 G)
2
t

Epi, [ Vi (0 =0 Vi (6 = 007 Vol (s, 607 Gl 600)) ]

where the last term corresponds to an expansion term O (|9t - 0*|2) and we use an
assumption that Ep, [(6; — 6.)%]. Ep,. [IVx (6 — 6.)1*] = o(1). In above formula,

we eliminate transpose symbols 7 on metric tensor Gy because of its symmetry. For
the second term on the RHS, we have

S [V (6o @10 00) i (16,007 63 @0)]

1 _ _ 1
= 5By, [y 0V (.00 - Vi (100,607 ) Gy 0] + 0 (7)

2
1 1
= 3Gy 0IEy, [V2 (. 00) - Vi (100, 007) | Gl @) + 0 (72) :

where we use the following fact

Epe, [V (Gt 001, 80) - Ve (16,607 G 00|

- E’Pe* I:Ga/] (B5)Vy (L(x1, 04)) - Vi (l(xt’ 9*)T) Gﬁ/l (9*)]
= O (Ep, [16: —6:]1) =0 ().

And the third term in the RHS can be reduced according have

— %EM [vx (O — 6y) - Vx (l(x,, 007 Gy (@))]

= 2y, [Ve 0 -0 (10, 007) G 00

2 _
— ZEp, [V 0, = 02 100,607V, Gy @)

= 0,
where the first term vanishes because V, (6; — 6,) only has non-vanishing components
atxi, ..., x;—1 while V, (f (x;, 6,)7) only has a non-vanishing component at x,. Con-

sequently their inner product vanishes everywhere. While the second term vanishes
by considering each element of this matrix, we have

@ Springer



250 Information Geometry (2023) 6:203-255

(EPH* [V" O =0 - 1(x1, 67 V2 Gy (et)])ij

2 -
= By, Vi (0~ 02); - (10,007 V.G 0)

= 2By, [V 0~ 001 -V (G @) 1, 0]

J

2 _
= "By, [ Vi 000 - Vi (G @iy ) | By 11, 0]
=0,
where the third equality is guaranteed by the fact that 6, — 6, is independent to
Vo f (x4, 64) since 6, x; are mutually independent. While the last equality holds by an
assumption as
E g, 1(xz, 84) = 0.

For the last term, same as the analysis of the third term, we find

= 2By, [V O 0 Vi (6~ 007 Vol 07 G @)

= 2By, [Va 0 =0 V. (60, - 007) Vol (. 007Gy} )]

I~ |

Epy, [Vx 0 — 0x) - 0, — 0,07 V, (Vgl(x,, 9*)T) Gy (9,)]

NN

Epi, [ Vi (6 = 0. 6 = 07 Vol (x1, 007V, (G160 )]

Epy, [Va 6 = 02 Vi (0 = 007) Vol (51,007 Gy 0] + 0 (;)
- %Em [Vx (O = 6) - (6: — 0.)" Vol (x1, 0.0V, (G;V1 (9»)] :

where we again use the independent relation between (6; — 6,) and f(x;, 6). The
additional term appearing above, with the help that E,, [Vp f(x;, 0:)] = O(1),

V. (63 ®) = Vi,V (G @) = O(Vi (6 — 6.)), can be further reduced

to the form below

2By, [V 0~ 000 — 007 Vol 009, (631 00)) ]

2 T
= ZEp,, [V 0= 62 6, — 07 OV, (6 6. O(1)]

IA

o
¥\/ Epy, [IVx 0 = 0P Ep, [0 = 007 Ep, [IVx 0 — 0:)1°]
&)
oy— 1.
t
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And the last term finally reduces have

- %El’f)* [Vx (6 — 0x) - Vx ((9; — 9*)T) Vol (x;, 0x) (G;Vl (9*)>] +o0 <¥)

2V, - v
= =By, [Vol(x1, 6] Gy (62) + 0 <7t> '

Combining all the terms we have in hand, we derive the following updating equation
for Wasserstein covariances during a natural gradient descent

| -
Vier = Vi Gyl 0By, [ Vi (0.0 - Vi (100,607 ) | (G 00)
- ?EM [Vol(xr,0:)]1 Gyl (B2) + 0 (%) +o (}2) +0 (g) .

Remark 17 The most frequently used tools in this proof is a separability property, c.f.
proposition 5. The key observation is that, for two statistics 77, 7> which depend on
(independent) different variables, suchas 71 = T1(x1, ..., x;—1), T» = Ta(xs, ..., Xt4n)
are “orthogonal” in both Wasserstein and Fisher metrics. Specifically, consider gradi-
ents of 77, T» w.r.t. x, since they depend on different variables, thus

CovV [T}, T2l = Ep,, [ViT1 - ViTo] = 0.
This type of separability is a direct analog of the one in Fisher-Rao geometry, i.e.
Cov/ [Ty, To] = By, [T1T2] = By, [T1]-Ep, [T2] =0.

C.2. Examples and numerical experiments of two efficiencies

Example 17 (Gaussian distribution) Consider the Gaussian distribution with mean
value p and standard variance o as

1

e_z?(x_u)z,

1
X; ], 0) = —F—
p(x; ,0) N

The WIM satisfies

Gw (. o) = ((1) ?)

The Fisher information matrix satisfies

I\)lH

Gr(u,0) = <‘6

qwl'\’ o
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Further, the matrix G FG‘/_V1 is given by
1 40
o2

And optimal parameters are given by ., o«. Thus we have following conclusions on
efficiency of the Fisher, Wasserstein natural gradients and Wasserstein natural gradient
on Fisher score (maximal likelihood estimator).

The Wasserstein natural gradient is asymptotically efficient with an asymptotic
Wasserstein covariance given by

1 /10 1
v=rlot)+o(7):

The Fisher natural gradient is asymptotic efficient with an asymptotic classical covari-

ance given by
v 1 (o2 0 ‘o 1
= — 2 — 1.
Tr\o % 12

An interesting thing is that the covariance matrix appears in the Wasserstein efficiency
is independent of the optimal value. While in Fisher case, the asymptotic behavior
depends a lot on the optimal parameter we obtain.

For the last case, in the Gaussian family, two metric tensors G r, Gw can be simul-
taneously diagonalized, thus the situation is even simpler. We denote the smallest
eigenvalue of GFG;Vl as «, i.e.

1
o= —.
2
G*

Furthermore, we have to figure out the term
Epu*,a* |:Vx (Vu*,a*l(xt: Mo, 0*)) - Vi (vu*,a*l(xlv Moxs U*)T)] s

that appears in the final result. In Gaussian family, since we have Fisher scores
Vol (x;0) = ®F (x, s, 04) as

X — [
0-2

(x—w? 1
, CD‘I:(X;M’U)ZT_;'

F/ . —
Q,(x;pn,0)=
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Via calculation, we have

i F F T\] 1 1
Dt 0% VXCDM (X5 s, O%) - Vi (CDM (X5 s, O%) ) = EPU.*,O’* F = ?,
L 4 L O« *
I 1 (1 2(x — )
Epﬂ*ﬁ* Vi cD,Ij(X; Mss Ox) + Vy (q’g(X; Mo, 0*)T) = El’u*.a* =2 3 -
L . _U* O:’<
= 0,
[ F F T\ 4(x — ps)?
Ep,t*,o* qu>o' (X5 s, 0%) - Vy <q>g (X5 s, O%) ) = El’u*.a* 50
- - %
_ 4
o}’

we conclude the middle term is given by

I
RS
(e *Q_;;l _
*:Ll-“ o
N——

J= ]Epu*,g* [Vx (V/,L*,U*l(xlv s, U*)) - Vy (V/l.*,ﬂ*l(xl" Moss U*)T)]

And when we have - = > 1, the inverse matrix of 2B — L is given by

Oy

ol
(2B _ I)—l 2—(73 )
0 =
4—02

Consequently, the term appearing in the asymptotic behavior of the Poincaré efficiency
is given by

o8-

Als o
N—

%<2GFG@1—I)ACHQQQJ(GQWQQ)= (

((2_012)0* 0 )
0 (4- (72)0‘

Thus the asymptotic behavior of the Wasserstein covariance in the Wasserstein natural
gradient of Fisher scores is given by

_2
O(td>, 5 <3
Vl: 1 0
1| (2-02)a2 1 1 1
?<( 0) G 42)2)+0<72)’g>§
—04 )0
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