
THE PURITY LOCUS OF MATRIX KLOOSTERMAN SUMS

MÁRTON ERDÉLYI, WILL SAWIN, AND ÁRPÁD TÓTH

Abstract. We construct a perverse sheaf related to the the matrix exponen-
tial sums investigated in [9]. As this sheaf appears as a summand of certain
tensor product of Kloosterman sheaves, we can estabilish the exact structure
of the cohomology attached to the sums by relating it to the Springer corre-
spondence and using the recursion formula of [9].

1. Introduction

Fix a finite field Fq of characteristic p and algebraic closure Fq, a complex valued
additive character  of Fq, and a natural number n. Let Fqm ⇢ Fq be the degree
m extension of Fq and  m =  � TrFqm |Fq

.
For a matrix a 2 Mn(Fq) = Fn⇥n

q
the exponential sums

K(a,Fqm) = K(a) =
X

x2GLn(Fqm )

 m(tr(ax+ x�1))

(here tr is the matrix trace) and the related compactly-supported cohomology com-
plex (in the setting `-adic étale cohomology for some ` - q)

H⇤(a) = H⇤
c
(GL

n,Fq
,L (tr(ax

�1 + x)))

are investigated in [9]. The relation between the exponential sum and the complex
can be made explicit by the Grothendieck trace formula ([10]):

K(a,Fqm) =
2dX

i=0

(�1)i
diX

j=1

(�i
j
)m,

where d = dim(GLn) = n2, di = dim(Hi(a)) and the �i
j
-s are the eigenvalues of the

Frobenius Frobq on Hi(a). Each �i
j

has some integral weight 0  w  i, meaning
that |◆(�i

j
)| = qw/2, for all ◆ : Q` ! C field isomorphisms.

The original interest in these sums arose from work on making the equidis-
tribution result on SLn(R)/SLn(Z) in [7] effective. It was already demonstrated
in dimension n = 3, where estimates for the classical Kloosterman sum K(↵) =P

x2F⇤
q
 (↵x + x�1) suffice, that non-trivial power saving for the sums K(a,Fqm)

yield such effective results. Such estimates were given in [9] and used successfully
in [8] for exactly this purpose. However the paper [9] without clarifying the nature
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of these connections already hinted that these sums exhibit some very interesting
geometric phenomena.

An element a 2 Mn(Fq) is regular if for all eigenvalues in Fq the eigenspace is
one-dimensional, a is semisimple if the algebra Fq[a] is semisimple, or equivalently
a is diagonalizable in Fq. The regular semisimple locus is the subscheme U ⇢ An

2

of regular semisimple elements.
An exponential sum or the corresponding cohomology complex is called pure of

weight w if all �i
j

are of weight i+ w.
Although effective bounds were given for the sum or the weights of the Frobq

eigenvalues (not depending on the degree i), the exact structure of the cohomology
was not determined (cf. [9], Remark 2.):

It was proven that H⇤(a) is pure of weight 0 and concentrated in the middle
degree i = n2, if a is invertible and regular semisimple in Fq.

In the invertible regular case it was pointed out that the sum admits square root
cancellation, but the methods used there did not allow to decide whether in H⇤(a)
is pure of weight 0 and concentrated in the middle degree or not (or equivalently
the Frobq eigenvalues in different degrees cancel or not).

The aim of this paper is to show that the cohomology groups are always pure,
though of weight varying depending on a:

Theorem 1. Let a 2 Mn(Fq) be a matrix. Let k be the multiplicity of 0 as an

eigenvalue of a. Then H⇤(a) is a pure complex of weight �k.

Straightforward consequences of the purity are the following:
(1) There can not be cancellation between the Frobq eigenvalues of different

degrees.
(2) Knowing the value of K(a,Fqm) for all finite extension Fqm |Fq is equivalent

to knowing the Frobq eigenvalues of H⇤(a).
It can also be explicitly characterized when H⇤(a) is concentrated in the middle

degree (and thus K(a) admits square root cancellation):

Theorem 2. The cohomology complex H⇤(a) is concentrated in the middle degree

if and only if for each nonzero eigenvalue ↵ of a, the eigenspace is 1-dimensional.

In the case of regular matrices one can just refer to the computations in Section
22 of [9], but our methods put this in a more geometric context.

For the proof of the general case an explicit description of K(a) and H⇤(a) is
given for matrices a which have a unique eigenvalue ↵ 2 Fq (compare with the
recursion algorithm in Section 18 of [9]):

Theorem 3. If a has a unique eigenvalue ↵ and the classical Kloosterman sum is

K(↵) = �(�+ �̄) with the Frobq eigenvalues � and �̄, then

K(a) = (�1)nqn(n�1)/2
nX

k=0

#
�
W  Fn

q
| dim(W ) = k, aW = W

 
�k�̄n�k.

In order to prove these theorems, first a complex of sheaves is constructed on
An

2

, whose fiber over the matrix a is the cohomology group H⇤(a).
This can be constructed as

K = Rpr1!L (tr(ax
�1 + x))
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where pr1 : An
2

⇥GLn ! An
2

is the projection.

Theorem 4. The shifted complex K[2n2] is an irreducible pure perverse sheaf.

Let U ⇢ An
2

be the regular semisimple locus, and let j : U ! An
2

be the open
immersion. Let eAn

2

be the space parameterizing pairs of a matrix a 2 An
2

and
a complete flag F of linear subspaces F i of An such that a preserves each of the
subspaces F i. Let ⇡ : eAn

2

! An
2

be the map forgetting the flag F . The map
⇡ is known as Grothendieck’s simultaneous resolution because, for each degree n
monic polynomial f , the inverse image under ⇡ of the variety of matrices with
characteristic polynomial f is smooth, so it resolves the singularities of the variety
of matrices with characteristic polynomial f . Indeed, it is not hard to check that
the inverse image is a disjoint union over orderings of the roots of f of the space
of pairs of a complete flag F and a matrix a such that a preserves each of the
subspaces F i and acts on F i/F i�1 by scalar multiplication by the ith root of f ,
which is smooth. Grothendieck’s simultaneous resolution may be defined for the
Lie algebra of an arbitrary reducible group, but here we use only the case of gl

n
.

Let eU be the inverse image of U under ⇡, let u : eU ! eAn
2

be the open immersion,
and let ⇢ : eU ! U be the projection. Note that eU parameterizes pairs (a, F ) where
a preserves F and a is regular semisimple. In this case, a has n one-dimensional
eigenspaces for its n distinct eigenvalues, and F i is invariant if and only if it is a
sum of these eigenspaces, so choices of a complete flag are in one-to-one bijections
with orderings of the eigenvalues.

Finally, let �i : eAn
2

! A1 send a pair (a, F ) to the unique eigenvalue of a act-
ing on the one-dimensional space F i/F i�1. Thus, �1(a, F ), . . . ,�n(a, F ) are the
eigenvalues of a with multiplicity.

By Grothendieck’s simultaneous resolution the argument of [9] for regular semisim-
ple elements can be translated to the fact that K is a summand of a complex of
sheaves related to a tensor product of Kloosterman sheaves:

Theorem 5. K is a summand of

R⇡⇤

nO

i=1

�⇤
i
K`2[�n2](n(n� 1)/2),

where K`2 is the classical Kloosterman sheaf on A1
defined by Deligne ([3]).

Then Theorem 1 is a direct consequence of Springer’s result on the cohomology
of the Springer fiber [16]. Indeed, Theorem 1 concerns the fiber of the complex K
at a point a, which by Theorem 5 is a summand of the fiber of the sheaf above at
a. By proper base change, the fiber of the derived pushforward of a sheaf at a may
be computed as the cohomology of ⇡�1(a) with coefficients in the original sheaf.
The variety ⇡�1(a) is (the gl

n
special case of) a Springer fiber, and the purity of

the cohomology of the constant sheaf on ⇡�1(a) was established by Springer in
[16]. The proof of Theorem 1 proceeds by checking that the sheaf

N
n

i=1 �
⇤
i
K`2 is

(geometrically) constant on each component.
When a is regular, then ⇡�1(a) consists of finitely many points, which allows us

to prove Theorem 2 in this case.

One can motivate Theorem 3 by relating the geometry of K to the Springer
correspondence:
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If the classical Kloosterman sum K(↵) has Frobq eigenvalues � and �̄, then an n-
fold tensor product of Kloosterman sheaves splits into one-dimensional summands
with eigenvalues �k and �̄n�k. The action of the Weyl group Sn permutes the terms
and Sk ⇥ Sn�k  Sn shows up as the stabilizer of an eigenvector. This suggests
that the invariants of Sk ⇥ Sn�k on the cohomology are given by the cohomology
of the space of k-dimensional subspaces fixed by a, and that leads to the formula
in Theorem 3.

This is proven using elementary arguments and a recursion formula for the sum
K(a), ([9], Theorem 18.1.), which also justifies the above geometric description, as
it is the only one that matches the sum in Theorem 3.

The computation of some weights allows to conclude Theorem 2 for non-regular
matrices.

One may be naturally inclined to speculate how the results generalize to reductive
subgroups of GLn. We will only comment on the question of purity, for which
understanding the generic situation as in Theorem 5 is crucial. This result seems
to be closely tied up with the underlying standard representation of the group GLn.
Other representations will definitely lead to more elaborate structures. To illustrate
consider the subgroup H = Sym2(GL2) of GL3 and KH(a) =

P
x2H

 (ah+ h�1).
Let ⇢ be the underlying character trSym2x on GL2 and assume that A =

Sym2(a) so that if summation in K(A) is restricted to H it gives the exponen-
tial sum

KSym2(GL2)(a,Fqm) =
X

x2GL2(Fqm )

 m(⇢(ax) + ⇢(x�1)).

Then for a regular semisimple with eigenvalues �1,�2 the Borel subgroup consist-
ing upper diagonal matrices contributes (the small cell in the Bruhat decomposition)
the exponential sum

X

(t1,t2)

 (�21t
2
1 + �1�2t1t2 + �22t

2
2 + t�2

1 + (t1t2)
�1 + t�2

2 ),

on the torus consisting diagonal matrices, which is pure of weight 0 if p 6= 3 (for
example by [1, 6]). However the rest (the open cell) also contributes

(q � 1)G2K(det a),

where G is the standard quadratic Gauss sum
P
 (x2) on A1 and so comparing

the weights shows that the associated complex is not pure.

A brief description of the paper follows. Our argument naturally splits into two
parts:

In Section 2 Theorems 4, 5, 1 and the regular case in 2 are proven by geometric
arguments.

In Section 3 Theorem 3 is proven by combinatorial calculations and then the
remaining part of Theorem 2.

2. Geometric arguments

Proof of Theorem 4. Consider first the space An
2

⇥ An
2

parameterizing pairs of
n ⇥ n matrices (x, y). Let i : GLn ! An

2

⇥ An
2

, x 7! (x, x�1). The map i is a
closed immersion as its image is the closed set consisting of pairs of matrices whose
product is the identity. Then since GLn is smooth and irreducible of dimension n2,
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Q`[n2] is an irreducible perverse sheaf on GLn. Then since i is a closed immersion,
i⇤Q`[n2] is an irreducible perverse sheaf on An

2

⇥ An
2

.
The Fourier transform is known to preserve irreducible perverse sheaves (per-

versity from [12, Corollary 2.1.5(ii)] and irreducibility from the fact that Fourier
transform is an equivalence of categories [13, III, Theorem 8.1(3)]). Thus, the
Fourier transform of i⇤Q`[n2] is an irreducible perverse sheaf. Next, let us calculate
this Fourier transform.

By definition [12, Definition 2.1.1], the Fourier transform of a complex L on AN is
given by Rprl!(pr⇤rL⌦L (µ))[N ] where prl, prr are the two projections AN

⇥AN
!

AN and µ is a nondegenerate bilinear form on AN
⇥ AN . We can specialize this

formula for N = 2n2, viewing each copy of AN as An
2

⇥ An
2

. A suitable bilinear
map takes two pairs of matrices ((a, b), (x, y)) to tr(ay+ bx). Having done this, the
Fourier transform of i⇤Q`[n2] is

Rpr12!(pr
⇤
34i⇤Q`[n2]⌦ L (tr(ay + bx)))[2n2].

Here pr12 and pr34 are the maps from (An
2

)4 to (An
2

)2 given by projection onto
the first two and last two factors respectively.

Since i is a closed immersion, i⇤ = i!. By proper base change [2, XVII, Proposi-
tion 5.2.8], pr⇤34i!Q` = ((id)⇥i)!Q` where (id)⇥i : An

2

⇥An
2

⇥GLn ! (An
2

)4 sends
(a, b, x) to (a, b, x, x�1). By the projection formula [2, XVII, Proposition 5.2.9],

((id)⇥ i)!Q` ⌦ L (tr(ay + bx))) = ((id)⇥ i)!(id⇥ i)⇤L (tr(ay + bx))) =

((id)⇥ i)!L (tr(ax
�1 + bx)).

Thus, the Fourier transform of i⇤Q`[n2] is

Rpr12!((id)⇥ i)!L (tr(ax
�1 + bx))[3n2]

which by functoriality of compactly supported pushforward [2, XVII, Theorem
5.1.8(a)] is

R(pr12 � (id)⇥ i)!L (tr(ax
�1 + bx))[3n2].

The composition R(pr12 � (id) ⇥ i)! may also be called pr12 as it represents
projection onto the first two factors a, b. So Rpr12!L (tr(ax�1 + bx))[3n2] is an
irreducible perverse sheaf.

This irreducible sheaf remains irreducible when restricted to the open locus
An

2

⇥ GLn where b is invertible. (By the structure theorem for irreducible per-
verse sheaves, the only other possibility is that it becomes zero on this subset,
which is easy to rule out by the calculations already in [9], see for example The-
orems 1.1 and 1.7.) On that locus, performing a change of variables substituting
b�1x for x, we get

Rpr12!L (tr(ax
�1b+ x))[3n2] = Rpr12!L (tr(bax

�1 + x))[3n2].

By proper base change [2, XVII, Proposition 5.2.8] on the Cartesian square
⇣
An

2

⇥GLn

⌘
⇥GLn An

2

⇥GLn

An
2

⇥GLn An
2

,

m⇥id

pr12
pr1

m



6 MÁRTON ERDÉLYI, WILL SAWIN, AND ÁRPÁD TÓTH

where m : (a, b) 7! ba from An
2

⇥GLn to An
2

is the multiplication map, the above
sheaf is m⇤K[3n2]. Because m is smooth of relative dimension n2 with nonempty,
geometrically connected fibers, the functor L 7! m⇤L[n2] preserves the perverse t-
structure and moreover is a fully faithful functor on perverse sheaves [4, Proposition
4.2.5].

It follows that K[2n2] is an irreducible perverse sheaf: Assuming for contradiction
that p

H
i(K[2n2]) 6= 0 for some i 6= 0 then since L 7! m⇤L[n2] preserves the perverse

t-structure and is fully faithful we have p
H

i(m⇤K[3n2]) = m⇤p
H

i(K)[2n2] 6= 0, a
contradiction, so p

H
i(K[2n2]) = 0 for all i 6= 0, i.e. K[2n2] is perverse, and

assuming for contradiction that K[2n2] is reducible, so there is a proper nontrivial
subobject L of K[2n2], then m⇤L[n2] would be a proper nontrivial subobject of
m⇤K[3n2], another contradiction, thus K[2n2] is irreducible.

Since K[2n2] is mixed by [5, Variant 6.2.3] and irreducible, it is pure by [4,
Corollary 5.3.4]. ⇤

We state some general facts about perverse sheaves that are relatively standard
but may not appear in the literature in exactly the form we need them.

Lemma 6. Let K1 and K2 be two perverse sheaves on a variety X over a finite

field Fq. Assume that for each extension Fqe of Fq, for each x 2 X(Fqe), we have

the equality of trace functions

(1)
X

i

(�1)i tr(Frobqe ,H
i(K1)x) =

X

i

(�1)i tr(Frobqe ,H
i(K2)x)

and that K2 is irreducible. Then K1
⇠= K2.

For a similar statement see Proposition 1.1.2.1 in [14]

Proof. We first check that for bounded complexes K1, K2 of constructible `-adic
sheaves satisfying the equality of trace functions (1), the classes

P
i
(�1)i[Hi(K1)]

and
P

i
(�1)i[Hi(K2)] in the Grothendieck group of constructible `-adic sheaves of

K1 and K2 are equal. Since both the assumption and conclusion involve an alter-
nating sum, we reduce immediately to the case that K1 and K2 are constructible
`-adic sheaves. There exists a stratification of X such that both K1 and K2 are lisse
on each stratum, and since we can write each as the sum in the Grothendieck group
of its restriction to each stratum, it suffices to handle the case where K1 and K2

are lisse. In this case, we are working in the Grothendieck group of representations
of the fundamental group. By the Chebotarev density theorem [15, Theorem 7],
the equality of traces of Frobenius implies the equality of traces of every element of
⇡ét

1 (X). The result then follows from the fact, in character theory, that two finite
dimensional continouos representations of a profinite group over Q` with the same
character are equal in the Grothendieck group of representations.

The class of a complex of perverse sheaves in the Grothendieck group is the al-
ternating sum of the classes of its perverse homology sheaves. From this, one can
see that K1 and K2 agree in the Grothendieck group of perverse sheaves. But, since
the category of perverse sheaves is Artinian and Noetherian [4, Theorem 4.3.1(i)],
the Grothendieck group of perverse sheaves is the free group on the isomorphism
classes of irreducible perverse sheaves. It follows that, in the Jordan-Hölder decom-
position of K1 in the category of perverse sheaves, the only irreducible component
is K2, and it occurs with multiplicity 1, i.e. K1 is isomorphic to K2. ⇤
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Lemma 7. Let X be a variety over a finite field, U an open set of X, and j : U ! X
the corresponding open immersion. Let K1 be an irreducible pure perverse sheaf on

X and K2 a pure complex on X.

Suppose that j⇤K1 is a nonzero summand of j⇤K2. Then K1 is a summand of

K2.

Proof. Since perversity, by definition, is preserved by restriction to an open set,
we see that j⇤K1 is perverse and thus is a summand of p

H
0(j⇤K2) = j⇤pH0(K2).

Since p
H

0(K2) is a summand of K2 by [4, Theorem 5.4.5], it suffices to prove that
K1 is a summand of p

H
0(K2), i.e. we can reduce to the case where K2 is perverse.

By [4, Corollary 5.3.11], for i the closed immersion of the closed complement of
U , we can write K2 as a sum j!⇤K 0

2 � i⇤K 00
2 . We have

j⇤K2 = j⇤(j!⇤K
0
2 � i⇤K

00
2 ) = j⇤j!⇤K

0
2 � j⇤i⇤K

00
2 = K 0

2 � 0

so j⇤K1 is a summand of K 0
2 and thus j!⇤j⇤K1 is a summand of j!⇤K 0

2 which is a
summand of K2. So it suffices to show j!⇤j⇤K1

⇠= K1.
But now applying [4, Corollary 5.3.11] to K1, we have K1 = j!⇤K 0

1� i⇤K 00
1 . Since

K1 is irreducible, only one of these terms can be nonzero, and since j⇤i⇤K 00
1 = 0, if

j⇤K1 6= 0 then we must have K 00
1 = 0, i.e. K1 = j!⇤K 0

1. But then
j!⇤j

⇤K1 = j!⇤(j
⇤j!⇤K

0
1) = j!⇤K

0
1 = K1,

as desired. ⇤
Lemma 8. Let X1 and X2 be two varieties over a field , and let K1 and K2 be

geometrically irreducible perverse sheaves on X1 and X2. Then the external tensor

product K1 ⇥K2 is a geometrically irreducible perverse sheaf on X1 ⇥X2.

Proof. By [4, Proposition 4.2.8], K1 ⇥K2 is perverse.
By passing to the algebraic closure, we may assume  is algebraically closed, so

geometrically irreducible is the same as irreducible.
By replacing X1 and X2 by the supports of K1 and K2, we may assume K1

is supported on X1 and K2 is supported on X2. Then K1 and K2 are middle
extensions of irreducible local systems on smooth affine open subsets U1 and U2 of
X1 and X2 [4, Theorem 4.3.2(ii)]. Restricted to the open set U = U1 ⇥ U2, the
perverse sheaf K1 ⇥K2 is the external tensor product of irreducible local systems
and thus is irreducible.

Thus if K1⇥K2 is reducible, say it is the extension of a nontrivial quotient Q by
a nontrivial subobject S, at least one of Q or S must vanish on restriction to U and
thus have support contained is the complement Z of U . Since perverse sheaves and
external tensor products are stable under duality, by dualizing everything we may
assume without loss of generality that Q has support contained in Z, and thus can
be written as i⇤Q0 for a perverse sheaf Q0 on Z. We have a nontrivial morphism
K1⇥K2 ! Q = i⇤Q0, thus by adjunction a nontrivial morphism i⇤(K1⇥K2) ! Q0.

However, we can check that i⇤(K1 ⇥K2)[�1] is semiperverse (i.e. concentrated
in degree  0 in the perverse t-structure, or concretely having jth cohomology sheaf
supported in dimension  �j for all integers j). The complement of U is a union
(X1 \ U1) ⇥X2 [X ⇥ (X2 \ U2). The characterization of semiperversity in terms
of support dimension implies that to check a complex on a union of two closed sets
is perverse, it suffices to check its restriction to each closed set is perverse, since a
union of two sets has dimension  �j if and only if each set has dimension  �j.
So it suffices to check that the restriction of (K1 ⇥K2)[�1] to (X1 \ U1)⇥X2 and
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X ⇥ (X2 \U2) is each semiperverse. We handle (X1 \U1)⇥X2, with the other case
being symmetric. The restriction of K1[�1] to (X1 \U1) is perverse by [4, Corollary
4.1.12], so its external tensor product with K2 is (semi)perverse by [4, Proposition
4.2.8].

Because i⇤(K1 ⇥ K2)[�1] is semiperverse, the object i⇤(K1 ⇥ K2) can have
no nontrivial morphism to the perverse sheaf Q0 by the definition of perverse t-
structure. ⇤
Proof of Theorem 5. We begin by proving the existence of an isomorphism

(2) ⇢⇤j⇤K[2n2] = u⇤
nO

i=1

�⇤
i
K`2[n

2](�n(n� 1)/2).

First we show how the formula of [9, Theorem 1.1(2)] implies the traces of Frobq
on the stalks of the two sides of (2) at any fixed point of eU(Fq) are equal. A point of
eU(Fq) is a matrix a 2 Mn(Fq) with distinct eigenvalues, together with an a-stable
flag F on Fn

q
. The ith eigenvalue �i is the eigenvalue of the action of a on F i/F i�1,

which, being the eigenvalue of a 1 ⇥ 1 matrix over Fq, lies in Fq. So a is a matrix
with n distinct eigenvalus, all in Fq.

The trace of Frobq on the stalk of ⇢⇤j⇤K[2n2] at (a, F ) is the trace of Frobenius
on the stalk of K[2n2] at j(⇢((a, F ))) = a, which by the Lefschetz fixed point
formula is the matrix Kloosterman sum K(a).

On the other hand, the trace of Frobq on the stalk of

u⇤
nO

i=1

�⇤
i
K`2[n

2](�n(n� 1)/2)

at (a, F ) is (�1)n
2

qn(n�1)/2 times the trace of Frobq on u⇤Nn

i=1 �
⇤
i
K`2, which itself

is the product for i from 1 to n of the trace of Frobq on the stalk of K`2 at �i((a, F )).
The stalk of K`2 at a point �i is, by definition and the Lefschetz fixed point formula,
(�1)n times the Kloosterman sum K(�i), so the equality of traces follows from [9,
Theorem 1.1(2)]

K(a) = qn(n�1)/2
nY

j=1

K(�i)

once we realize that (�1)n
2+n = 1. Note that this works for an arbitrary finite field

Fq.
It follows from Theorem 4 and the preservation of perversity under étale pull-

backs [4, first line of p. 109, d = 0 case] that ⇢⇤j⇤K[2n2] is perverse. If we let
(
Q

i
�i) be the morphism eAn

2

! An whose ith coordinate is �i, then

u⇤
nO

i=1

�⇤
i
K`2[n

2](�n(n� 1)/2) = u⇤�Y

i

�i
�⇤ ⇥n

i=1 K`2[n
2](�n(n� 1)/2)

and since K`2[1] is perverse and geometrically irreducible since it arises by [11,
Corollary 4.1.2(i)] from the construction of [4, 5.2.2(a)], ⇥n

i=1K`2[n] is perverse
and geometrically irreducible by Lemma 8. The map (

Q
i
�i)⇤ is smooth of relative

dimension n2
�n, and u is an open immersion, so u⇤(

Q
i
�i)⇤⇥n

i=1K`2[n
2] is perverse

and geometrically irreducible by [4, Proposition 4.2.5]. Tate twisting does not affect
perversity and geometrical irreducibility, since it does not change the complex over
an algebraically closed field at all.
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By Lemma 6, this implies (2). From (2) we obtain

⇢⇤⇢
⇤j⇤K[2n2] = ⇢⇤u

⇤
nO

i=1

�⇤
i
K`2[n

2](�n(n� 1)/2).

Since ⇢ is a finite étale morphism, by [2, IX, (5.1.4)] there are morphisms
j⇤K[2n2] ! ⇢⇤⇢⇤j⇤K[2n2] ! j⇤K[2n2] whose composition is multiplication by
the degree of ⇢ and thus is invertible, meaning that j⇤K[2n2] is a summand of
⇢⇤⇢⇤j⇤K[2n2]. It follows that j⇤K[2n2] is a summand of

⇢⇤u
⇤

nO

i=1

�⇤
i
K`2[n

2](n(n� 1)/2),

which, since the map ⇡ : eAn
2

! An
2

forgetting the flag is proper, is isomorphic by
proper base change [2, XVII, Proposition 5.2.8] to

(3) j⇤R⇡⇤

nO

i=1

�⇤
i
K`2[n

2](n(n� 1)/2).

Again using the isomorphism
N

n

i=1 �
⇤
i
K`2 = (

Q
i
�i)⇤⇥n

i=1K`2, since K`2 is pure
of weight 1, ⇥n

i=1K`2 is pure of weight n [4, (5.1.14.1) and (5.1.14.1*)], and because
(
Q

i
�i) is smooth,

N
n

i=1 �
⇤
i
K`2 is pure of weight n [4, Stabilities 5.1.14(i,i*)]. Be-

cause ⇡ is proper, R⇡⇤ preserves weights, as does j⇤ [4, Stabilities 5.1.14(i,i*)]. The
shift [n2] raises weights by n2, and the Tate twist (�n(n � 1)/2) raises them by
n(n� 1), so altogether (3) is pure of weight 2n2.

We apply Lemma 7 with K1 = K[2n2] and

K2 = R⇡⇤

nO

i=1

�⇤
i
K`2[n

2](n(n� 1)/2).

We have checked all the conditions except that j⇤K[2n2] is nonzero, but j⇤K[2n2] =
0 is easy to rule out here since that would imply its trace function is identically
zero, but the formula of [9, Theorem 1.1.2(2)] is manifestly not identically zero
(noting that the standard Kloosterman sum is nonzero since it is congruent to
p� 1 ⌘ �1 6⌘ 0 modulo e2⇡i/p � 1), so we conclude that K[2n2] is a summand of

R⇡⇤

nO

i=1

�⇤
i
K`2[n

2](n(n� 1)/2)

and shifting both sides by [�2n2] we get the desired statement. ⇤
Corollary 9. For any matrix a over Fq, Hj(a) is a summand of

(4) Hj�n
2
⇣
⇡�1(a),

nO

i=1

�⇤
i
K`2(n(n� 1)/2)

⌘
.

Proof. This follows immediately from Theorem 5 after taking stalks at a and ap-
plying proper base change [2, XVII, Proposition 5.2.8]. ⇤

This enables us to give geometric proofs of Theorems 1 and 2.

Proof of Theorem 2 for a regular. If a is regular then ⇡�1(a) consists of finitely
many points, as a has finitely many invariant subspaces of each dimension. Thus
(4) vanishes unless j = n2, and so Hj(a) vanishes unless j = n2 by Corollary 9. ⇤
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Proof of Theorem 1. We can write ⇡�1(a) as a disjoint union of connected compo-
nents, say Z1, . . . , Zm. Then we have

Hj�n
2
⇣
⇡�1(a),

nO

i=1

�⇤
i
K`2(n(n� 1)/2)

⌘
=

mM

r=1

Hj�n
2
⇣
Zr,

nO

i=1

�⇤
i
K`2(n(n� 1)/2)

⌘
.

Now the maps �i can take only finitely many values on ⇡�1(a), those being the
eigenvalues of a. It follows that �i is constant on each connected component Zr.
(The image of a connected component under �i must be a connected component
of the image of �i, but if the image is finite, then each connected component is a
point.) Letting �i(Zr) be this constant value, then �⇤

i
K`2 is the tensor product of

the constant sheaf with the Galois representation (K`2)�i(Zr). This gives

Hj�n
2
⇣
Zr,

nO

i=1

�⇤
i
K`2(n(n�1)/2)

⌘
= Hj�n

2
⇣
Zr,Q`⌦

nO

i=1

(K`2)�i(Zr)(n(n�1)/2)
⌘

= Hj�n
2
⇣
Zr,Q`

⌘
⌦

nO

i=1

(K`2)�i(Zr)(n(n� 1)/2).

By [16, Theorem 1], Hj�n
2
⇣
Zr,Q`

⌘
is pure of weight j � n2. Using the fact

that the stalk of K`2 is pure of weight 1 except at 0 where it is pure of weight 0
[11, Theorem 4.1.1(1) and Theorem 7.4.3], and the fact that the number of i with
�i = 0 is the multiplicity of 0 as an eigenvalue and thus is equal to k, we see thatN

n

i=1(K`2)�i(Zr) is pure of weight n� k. Finally Q`(n(n� 1)/2) is pure of weight
n(n� 1).

So their tensor product is pure of weight (j � n2) + (n� k) + n(n� 1) = j � k.
Thus the same thing is true for Hj(a), because Hj(a) is a summand of a sum of
these tensor products. ⇤

3. Combinatorial arguments

Now we turn to the proof of Theorem 3. Therefore fix a 2 Mn(Fq) with a unique
nonzero eigenvalue ↵ and let

r = min(j|(a� ↵id)j = 0).

There is a filtration on V = Fn

q
given by

(5) Vj = Ker((a� ↵id)j) ⇢ Fn

q
,

which we extend to any subspace W ⇢ V = Fn

q
, that is we let

(6) Wj = Ker((a� ↵id)j |W ) = W \ Vj .

The associated numerical data µj = dim(Vj/Vj�1) defines a partition µ of n =
dimV ,

(7) µ = [µ1 � µ2 � · · · � µr] ` n.

The condition
P

r

j=1 µj = n is obvious, and for 0  j < r � 1 the map a � ↵id :
V/Vj+1 ! V/Vj is injective and maps Vj+2/Vj+1 into Vj+1/Vj which shows that
µ1 � µ2 � · · · � µr. Note that the dual partition µ0 codifies the Jordan block
structure of a, see e.g. [17] Chapter 4.
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The following counting result and its recursive version will be needed for the
proof of Theorem 3. They involve a decomposition of the numbers

#
�
W ⇢ Fn

q
| dim(W ) = k, aW = W

 

in that theorem by their filtration type. Therefore assume that ⌫ = [⌫1 � ⌫2 �

· · · � ⌫l] is a partition of k such that l  r and ⌫j  µj , for j = 1, ..., l. We extend
⌫ to length r by ⌫j = 0 for j = l+ 1, ...., r and say that µ � ⌫. In this case for a of
type µ as above we let
(8) V(µ, ⌫) := {W ⇢ V |aW ⇢ W, dim(Wj+1/Wj) = ⌫j for 1  j  r}

and V (µ, ⌫) = #V(µ, ⌫).
To state the main result recall that the number of k-dimensional subspaces of

Fn

q
is given by the q-binomial coefficient

✓
n

k

◆

q

=
(1� qn)(1� qn�1) · · · (1� qn�k+1)

(1� q)(1� q2) · · · (1� qk)
.

Theorem 10. Let V = Fn

q
, a 2 Mn(Fq), and µ be as above. Let ⌫ = [⌫1 � ⌫2 �

· · · � ⌫r] ` k be a partition, (with some ⌫j-s possibly 0) such that µ � ⌫ and set

⌫r+1 = 0. Then

V (µ, ⌫) =
rY

j=1

✓
µj � ⌫j+1

⌫j � ⌫j+1

◆

q

· q⌫j+1(µj�⌫j).

Proof. We will proceed inductively. Note that by our convention µr+1, ⌫r+1 =
0, therefore we trivially have

�
µr

⌫r

�
q
=
�
µr�⌫r+1

⌫r�⌫r+1

�
q
· q⌫r+1(µr�⌫r). If r = 1 all ⌫1

dimensional subspaces of V are a-invariant proving the claim in this case.
Let now assume that r > 1 and let V = V/V1, and denote the natural projection

V ! V by ⇡. Since V1 = ker(a� ↵id), V has a natural induced action by a, which
we denote by a. Note that the a-module V is of type (µ2, ..., µr) of length r� 1. If
W ⇢ V is of type ⌫ = (⌫1, ⌫2, ..., ⌫r) then its image W = ⇡(W ) is of type (⌫2, ..., ⌫r).
By the inductive hypothesis the number of such a-invariant subspaces W is

rY

j=2

✓
µj � ⌫j+1

⌫j � ⌫j+1

◆

q

· q⌫j+1(µj�⌫j).

Therefore it is enough to show that given W of type (⌫2, ..., ⌫r) the number of
a-invariant subspaces W ⇢ V for which ⇡(W ) = W is

✓
µ1 � ⌫2
⌫1 � ⌫2

◆

q

· q⌫2(µ1�⌫1).

First note that the subspace aW is the same for all W for which ⇡(W ) = W . To
see this note that dimW/aW = ⌫2 and choose elements w1, ..., w⌫2 whose images
form a basis of W/aW . Choose i(wj) 2 {w 2 W | ⇡(w) = wj}, then there
is a unique a-invariant map i that extends this choice to give an isomorphism
i : W ! W 0, to a subspace W 0 that satisfies W 0

� W1 = W . Clearly the ai(wj)
that generate aW are independent of W itself, proving the claim.

We will use this to count all possible W -s via counting the number of W1-s, and
the possible decompositions W = W 0

�W1 arising from the maps i. First note that
W1 ⇢ V1 is of dimension ⌫1 and contains aW2 of dimension ⌫2. The number of such
subspaces is

�
µ1�⌫2
⌫1�⌫2

�
q
.
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Now fix such a choice of W1. If i1, i2 are maps as above, then

i1(W )�W1 = i2(W )�W1

if and only if i1(wj)� i2(wj) 2 W1 for all j. Therefore there are q⌫2(µ1�⌫1) choices
that lead to different W -s, proving the theorem.

⇤

We will now give a recursive formula for the numbers V (µ, ⌫). Therefore for a
partition µ we let

µ0 =[µ1 � µ2 � · · · � µr�1 � µr � 1],

µ00 =

(
[µ1 � µ2 � · · · � µr�1 � 1 � µr � 1] if r � 2

; otherwise .
(9)

µ000 =

(
[µ1 � µ2 � · · · � µr�1 � µr � 2] if µr > 1

; otherwise .

Note that these operations may lead to partitions with some entries that are 0 or
the non-partition ;. For this reason for any partition � we define

V (�, ;) = V (;,�) = 0.

With this notation we have the following lemma.

Lemma 11.

V (µ, ⌫) = V (µ0, ⌫) + V (µ0, ⌫0)� qµr�1V (µ00, ⌫0) + (qµr�1
� 1)V (µ000, ⌫0).

Proof. The proof is a technical, but straightforward calculation. Set

P =
r�2Y

j=1

✓
µj � ⌫j+1

⌫j � ⌫j+1

◆

q

· q⌫j+1(µj�⌫j).

This appears in the explicit formula for all the terms V (·, ·) above.
Then

V (µ0, ⌫0) + (qµr�1
� 1)V (µ000, ⌫0) =

✓
µr�1 � ⌫r + 1

⌫r�1 � ⌫r + 1

◆

q

· q(⌫r�1)(µr�1�⌫r�1)

 ✓
µr � 1

⌫r � 1

◆

q

+ (qµr�1
� 1)

✓
µr � 2

⌫r � 1

◆

q

!
P =

= qµr�1

✓
µr � 1

⌫r � 1

◆

q

✓
µr�1 � ⌫r + 1

⌫r�1 � ⌫r + 1

◆

q

· q(⌫r�1)(µr�1�⌫r�1�1)P.

And

V (µ0, ⌫0) + (qµr�1
� 1)V (µ000, ⌫0)� qµr�1V (µ00, ⌫0) =

= qµr�1

✓
µr � 1

⌫r � 1

◆

q

·q(⌫r�1)(µr�1�⌫r�1�1)

 ✓
µr�1 � ⌫r + 1

⌫r�1 � ⌫r + 1

◆

q

�

✓
µr�1 � ⌫r

⌫r�1 � ⌫r + 1

◆

q

!
P

= qµr�⌫r
✓
µr � 1

⌫r � 1

◆

q

✓
µr�1 � ⌫r
⌫r�1 � ⌫r

◆

q

· q⌫r(µr�1�⌫r�1)P.
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Thus

V (µ0, ⌫) + V (µ0, ⌫0) + (qµr�1
� 1)V (µ000, ⌫0)� qµr�1V (µ00, ⌫0) =

 ✓
µr � 1

⌫r

◆

q

+ qµr�⌫r
✓
µr � 1

⌫r � 1

◆

q

!✓
µr�1 � ⌫r
⌫r�1 � ⌫r

◆

q

· q⌫r(µr�1�⌫r�1)P = V (µ, ⌫).

⇤

Before we can turn to the proof of Theorem 3 we need a result from [9]. There in
Theorem 18.1. the Jordan block structure of a, i.e. the dual partition � = µ0 was
used to describe the recursion algorithm. To state this theorem we denote K(a)
by K�(↵), and will drop ↵ from the notation since it is fixed for us. In particular
K[1] = K[1](↵) = K(↵) is the classical Kloosterman. We also let K[ ] = 1.

For example with this notation Theorem 1.4 of [9] says that for ↵ 6= 0

(10) K[1n] = qn�1K[1]K[1n�1] + q2n�2(qn�1
� 1)K[1n�2].

In general the result in [9] gives for � = [nkl
l
, n

kl�1

l�1 , ..., nk1
1 ], with nl > nl�1 > ... > n1

that

(11) K� = qn�1K[1]K�0 � q2n�2K�00 � (qkl�1
� 1)q2n�2 (K�00 �K�000) ,

where �0 = [nkl�1
l

, nl�1, n
kl�1

l�1 , ..., nk1
1 ], �00 = [nkl�1

l
, nl�2, n

kl�1

l�1 , ..., nk1
1 ] and �000 =

[nkl�2
l

, (nl � 1)2, n
kl�1

l�1 , ..., nk1
1 ] reordered into a monotonic sequence, if needed.

Clearly it is more convenient to use µ as in (7), and we reformulate this recursion
formula for the matrix Kloosterman sums in terms of it. To denote this shift we
will write

Kµ = K�, whenever � = µ0.

Then we have the following theorem.

Theorem 12. Let µ = [µ1 � µ2 � · · · � µr] ` n be a partition. Then

Kµ = qn�1K [1]Kµ
0
� q2n+µr�3Kµ

00
+ (qµr�1

� 1)q2n�2Kµ
000
.

Here K [ ] = 1 and µ0 = [µ1 � µ2 � · · · � µr�1 � µr � 1], µ00 = [µ1 � µ2 � · · · �

µr�1 � 1 � µr � 1] and µ000 = [µ1 � µ2 � · · · � µr�1 � µr � 2] are as in (9).

Note that µ00, µ000 may be the non-partition ;, for which we define K; = 0, i.e
those terms which correspond to ; are omitted from the sum.

Proof. Let � be a partition and denote the dual partition µ = [µ1, ..., µr] = �0. Let
ri = ri(�) be the number of parts of � which are equal to i � 1. Then µi =

P
j�i

rj .
The proof of the reformulation is an elementary argument unfolding this relation,

the details of which are omitted. ⇤

Proof of Therem 3. We want to show that

Kµ = (�1)nqn(n�1)/2
nX

k=0

�k�̄n�k
X

⌫`k
V (µ, ⌫).

For convenience we allow partitions ⌫ such that ⌫j > µj for some j, by letting
V (µ, ⌫) = 0 for them (this is consistent with the notation (8)).

We have developed a recurrence relation for both sides, it is enough to check
that they are compatible.
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Since K [ ] = 1 = V ([ ], [ ]) and

K [1] = �(�+ �̄) = �(V ([1], [1])�+ V ([1], [ ])�̄),

the initial conditions match.
Proceeding inductively we get

qn�1K [1]Kµ
0
= (�1)nqn(n�1)/2(�+ �̄)

n�1X

k=0

�k�̄n�k�1
X

⌫`k
V (µ0, ⌫)

q2n+µr�3Kµ
00
= (�1)nqn(n�1)/2��̄qµr

n�2X

k=0

�k�̄n�k�2
X

⌫`k
V (µ00, ⌫0)

q2n�2(qµr�1
� 1)Kµ

000
= (�1)nqn(n�1)/2��̄(qµr � 1)

n�2X

k=0

�k�̄n�k�2
X

⌫`k
V (µ000, ⌫0).

Now compare the coefficient of �k�̄n�k. On the right-hand side we have

(12)
X

⌫`k
V (µ0, ⌫) +

X

⌫0`k�1

�
V (µ0, ⌫0)� qµr�1V (µ00, ⌫0) + (qµr�1

� 1)V (µ000, ⌫0)
�
.

We need to show that the sum in (12) produces
X

⌫`k
V (µ, ⌫).

(As mentioned above we formally include many extra terms for which by defini-
tion V (µ, ⌫) = 0, V (µ0, ⌫) = 0 or V (µ00, ⌫0) = V (µ000, ⌫0) = 0.)

Fix ⌫ ` k and ⌫0 = [⌫1 � ⌫2 � · · · � ⌫r�1 � ⌫r � 1] ` k � 1. Note that by
Lemma11 it is enough to prove that the contribution of the terms including ⌫0 that
arise from [⌫1 � ⌫2 � · · · � ⌫r�1 � ⌫r � 1] for which ⌫r�1 = ⌫r is zero. We separate
this vanishing into three cases.

Case 1. ⌫0
r�1 = ⌫0

r
< µr � 1. Then V (µ0, ⌫0) = V (µ00, ⌫0) = V (µ000, ⌫0), so

V (µ0, ⌫0)� qµr�1V (µ00, ⌫0) + (qµr�1
� 1)V (µ000, ⌫0) = 0.

Case 2. ⌫0
r�1 = ⌫0

r
> µr � 1. Then V (µ0, ⌫0) = V (µ00, ⌫0) = V (µ000, ⌫0) = 0.

Case 3. ⌫0
r�1 = ⌫0

r
= µr �1. Then V (µ, ⌫000) = 0. The product formula for V (µ0, ⌫0)

and V (µ00, ⌫0) differ only in the factor j = r � 1 and so we let

P =
Y

j 6=r�1

✓
µj � ⌫j+1

⌫j � ⌫j+1

◆

q

· q⌫j+1(µj�⌫j)

when we have

V (µ0, ⌫0)� qµr�1V (µ00, ⌫0) =

P

 ✓
µr�1 � µr + 1

0

◆

q

· q(µr�1)(µr�1�µr+1)
� qµr�1

✓
µr�1 � µr

0

◆

q

· q(µr�1)(µr�1�µr)

!
,

which is also 0.
⇤

Corollary 13. Kµ = O(qn
2
/2+d), where d =

1

4

rX

j=1

(µ2
j
� �(µj)), where �(m) = 1 if

m is odd and �(m) = 0 if m is even.
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For this it is enough to note that
✓
µj � ⌫j+1

⌫j � ⌫j+1

◆

q

· q⌫j+1(µj�⌫j) = O(q⌫j(µj�⌫j)).

Thus to maximize the order of V (µ, ⌫) the optimal choice for ⌫j is the closest integer
to µj/2.

Corollary 14. If µ1 > 1, then Kµ
must admit Frobq-eigenvalues of two different

weights.

This follows from the fact that Kµ is a polynomial of q, � and �̄ and by the
previous corollary we have that this polynomial has a monomial of weight more
than n2 and also one with weight n2 (the one corresponding to the trivial irreducible
subspaces).

Finally we treat the case of matrices a that are not regular:

Proof of Theorem 2. Assume a is not regular. Observe that H⇤(a) is the tensor
product of the cohomology complexes corresponding to the matrix jl containing
the Jordan blocks for each eigenvalue �l of a (for 1  l  r) tensored with a power
of the trivial sum (directly follows from [9], Proposition 3.18.):

H⇤(a) =

 
rO

l=1

H⇤(jl)

!
⌦

 
dO

m=1

H⇤(A1)

!
,

with d =
P

1l<l0r
ll0.

Assume a has a nonzero eigenvalue ↵ such that the eigenspace is not one-
dimensional (that means µ1 > 1 in the above notation). As the term corresponding
to ↵ has two different weights (Corollary 14), so does H⇤(a), hence K(a) is not
concentrated in a single degree by Theorem 1. ⇤

References

[1] Adolphson, A., Sperber, S. (1989). Exponential sums and Newton polyhedra: cohomology
and estimates. Annals of Mathematics, 130(2), 367-406.

[2] Artin, M., Grothendieck, A., Verdier, J.-L., eds. (1972). Séminaire de Géométrie Algébrique
du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des schémas - (SGA 4) - vol.
3 (PDF). Lecture Notes in Mathematics (in French). Vol. 305. Berlin; New York: Springer-
Verlag. pp. vi+640. doi:10.1007/BFb0070714. ISBN 978-3-540-06118-2. MR 0354654.

[3] Deligne, P., Grothendieck, A., Verdier, J.-L., eds. (1977). Séminaire de Géométrie Al-
gébrique du Bois Marie - Cohomologie étale- (SGA 4 1

2 ) - vol. 3 (PDF). Lecture Notes
in Mathematics (in French). Vol. 569. Berlin; New York: Springer-Verlag. pp. iv+312.
doi:10.1007/bfb0091526. ISBN 978-3-540-08066-X. MR 0463174.

[4] Beilinson, A.A., Bernstein, J, Deligne, P. 1982. Faisceaux Pervers. Astérisque 100, pp. 1-174.
[5] Deligne, P. 1980. La conjecture de Weil: II. Publications mathématiques de l’I.H.É.S. 52,

pp. 137-252
[6] Denef, J., Loeser, F. (1991). Weights of exponential sums, intersection cohomology, and

Newton polyhedra. Inventiones mathematicae, 106(1), 275-294.
[7] Einsiedler, M., Mozes, S., Shah, N., Shapira, U. 2016. Equidistribution of primitive rational

points on expanding horospheres. Compositio Mathematica, 152(4), 667-692.
[8] El-Baz, D., Lee, M., Strömbergsson, A. 2022. Effective equidistribution of primitive rational

points on expanding horospheres. arXiv preprint arXiv:2212.07408.
[9] Erdélyi, M., Tóth, Á, 2021. Matrix Kloosterman sums. arXiv:2109.00762

[10] Grothendieck, A., 1964. Formule de Lefschetz et rationalité des fonctions L. Séminaire Bour-
baki, 9, pp.41-55.

https://doi.org/10.1007/bfb0070714
https://doi.org/10.1007/bfb0091526
https://arxiv.org/abs/2109.00762


16 MÁRTON ERDÉLYI, WILL SAWIN, AND ÁRPÁD TÓTH

[11] Katz, N.M., 1988. Gauss sums, Kloosterman sums, and monodromy groups (No. 116).
Princeton university press.

[12] Katz, N.M. and Laumon, G., 1985. Transformation de Fourier et majoration de sommes
exponentielles. Publications Mathématiques de l’Institut des Hautes Études Scientifiques,
62(1), pp. 145-202.

[13] Kiehl, R., Weissauer, R., 2001. Weil Conjectures, Perverse Sheaves and `-adic Fourier Trans-
form. Volume 42 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag,
Berlin,2001.

[14] Laumon, G. 1987. Transformation de Fourier, constantes d’équations fonctionnelles et con-
jecture de Weil, Publ. Math. IHES, 65, pp 131-210.

[15] Serre, J.-P. 1965. Zeta and L-functions. in Arithmetical Algebraic Geometry, Proceedings
of a Conference held at Purdue University, December 5-7, 1963, edited by O.F.G. Schilling,
pp. 82-92.

[16] Springer, T. A., 1984. A purity result for fixed point varieties in flag manifolds. Journal of
the Faculty of Science, the University of Tokyo, 31, pp. 271-282.

[17] Springer, T. A. and Steinberg, R. Conjugacy classes. In Seminar on Algebraic Groups and
Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), pages
167–266. Springer, Berlin, 1970. Lecture Notes in Mathematics, Vol. 131.

Email address: merdelyi@math.bme.hu

Email address: sawin@math.columbia.edu

Email address: arpad.toth@ttk.elte.hu


	1. Introduction
	2. Geometric arguments
	3. Combinatorial arguments
	References

