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Abstract

We prove a one-parameter family of diffusion hypercontractivity from a class of drift-
diffusion processes. We next derive the related log—Sobolev, Poincare, and Talagrand
inequalities. The derivation is based on the calculation of Hessian operators along
generalized gradient flows in Dolbeault—Nazaret—Savare metric spaces (Dolbeault et
al., Calc Var Partial Differ 2:193-231, 2010). In this direction, a mean-field type
Bakry—Emery iterative calculus is presented. In particular, an inequality among Pear-
son divergence (P), negative Sobolev metric (H '), and generalized Fisher information
functional (I), named P H ' inequality, is presented.

Keywords Information theory - Mean-field Bakry—Emery calculus - Generalized

log—Sobolev inequality - Generalized Poincare inequality - Generalized Talagrand
inequality - Generalized Yano’s formula.

List of symbols

M Base manifold

g, (") Metric

[ Norm

V. Divergence operator
\Y Gradient operator
Hess Hessian operator

P Density manifold

P Probability density
u Reference density
T,P Tangent space
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;P Cotangent space

8o Density manifold metric tensor
Ap =V - (hV) Weighted Laplacian operator

8 First L2 variation

82 Second L? variation

grad, Gradient operator

Hess, Hessian operator

Ly, ) Christoffel symbol

(p,0) e TP Tangent bundle
(p, ®) € T*P Cotangent bundle

D, y-divergence

z, v -Fisher information

14%% y-Wasserstein distance

Ly, L;j y-Diffusion process generator
Iy y-Gamma one operator

r'yo» y-Gamma two operator

K Log Sobolev constant

A Poincare constant

1 Introduction

Diffusion hypercontractivity plays essential roles in functional inequalities [5, 14] and
information theory [1-3, 10, 11]. Moreover, it can be used in estimating convergence
rates of Markov chain Monte Carlo algorithms. Among these studies, Bakry—Emery
criteria [4] provide sufficient conditions to derive convergence rates of diffusion pro-
cesses. Recently, optimal transport provides the other calculation methods on this topic
[27]. The probability density space is equipped with an infinite-dimensional Rieman-
nian metric, named Wasserstein metric [24]. The density space with the Wasserstein
metric is called density manifold [17]. Diffusion hypercontractivity, a.k.a. Bakry—
Emery criteria can be derived from Hessian operators of divergence functionals in
density manifold [25]. This study has been extended to general ground metric spaces
[22, 26]. On the other hand, the relation between local behavior of diffusion hyper-
contractivity (such as Poincare inequality) and integral formula, known as Yano’s
formula [28], has been discovered in [18]. Moreover, it shows a connection between
the integration formula on the base manifold and (formal) calculus in the density
manifold.

In this paper, we study hypercontractivities (convergence properties) for a class
of generalized diffusion processes in [21]. Following generalized (mobility) density
manifolds proposed in [7, 8, 12, 25] and calculation methods in [19], we derive a
one-parameter generalization of Bakry—Emery criteria in Theorem 1. These criteria
provide sufficient conditions to derive convergence rates of generalized diffusion pro-
cesses, which also establishes generalized log—Sobolev and Talagrand inequalities.
In addition, a generalized Yano’s formula in Theorem 2 is derived, which provides
a reference measure-dependent integral formula. We also establish the generalized
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Diffusion hypercontractivity... 61

Poincare inequality in Corollary 3. In addition, a P H~!I inequality is presented in
Theorem 4.

The generalized optimal transport metric spaces have been studied in [12]. They are
known as the Dolbeault-Nazaret—Savare space. Many groups have studied associated
generalized geodesics [8], and functional inequalities [6, 13]. It is also worth men-
tioning that the recent preprint [23] discusses entropic regularizations of geodesics
on the Dolbeault-Nazaret-Savare space and related gradient flows. Firstly, [13] stud-
ies functional inequalities for classical Kolmogorov-Fokker-Planck equations, where
the Bakry—Emery criteria are classical. At the same time, they obtain rigorous results
in non-smooth settings. In this paper, we build new functional inequalities. First,
we introduce new Bakry—Emery criteria, in which the optimal transport type metric
in inequalities does not depend on the reference measure. For example, we obtain
several functional inequalities related to the classical H ~! metric. In addition, [6]
formulates divergence-related functional inequalities for a class of drift-diffusion pro-
cesses. They apply classical Bakry—Emery iterative calculus. In contrast with their
results, we introduce a new mean-field type Gamma calculus.

This paper is organized as follows. In Sect. 2, we state the main result of this
paper. We establish hypercontractivity for a class of drift-diffusion processes and
prove several functional inequalities. A generalized Yano’s formula is also derived. In
Sect. 3, we formulate the primary tool of the proof. In Sect. 4, we present all proofs.
Finally, in Sect. 5, we derive a mean-field type Gamma calculus.

2 Main result

Suppose (M, g) is a compact and smooth finite dimensional Riemannian manifold
without boundary. Denote the metric tensor as g, the volume form as dx, the Ricci
curvature tensor as Ric, the gradient, divergence, Laplacian operators as V, V-, A,
respectively, and the Hessian operator as Hess. For concreteness of the presentation,
we assume that (M, g) = (T4, T), where T? is a d-dimensional torus and I € R?*4
is an identity matrix.

Given a reference probability density function u € C*° (M) withinf,cp pu(x) > 0,
consider the y-drift diffusion process

Xy, = —%W(Xy,tv—ldt +/2(X,.0)7"1d B,

where B; is the standard Brownian motion in M with the infinitesimal generator

L, = (#wy—l, Vo) + 1/ IAD, d e CP°(M).
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62 W. Lietal.

Consider the y-divergence functional®

0
Dy (pllw) sz(;)udx,
where f: [0, 00) — R satisfies

1 2— .

o= P V=1 y# 1Ly #2
fp)=1plogp y =1
—logp y =2.

Denote the y-Fisher information functional
o _
T, (ol = f IV log 2107 52 .

Consider the y-Wasserstein distance proposed in [12]>

1
Wy(p,m=igf{/0 ‘//||V<I>t||2p,ydxdz:a,pt+V-(p,Vv<I>t>=o, PO =P, PI =K,

where p; = p(t,x), ®; = O(¢, x) and the infimum is over all smooth potential
function ® € [0, 1] x M — R.

We next provide sufficient conditions to describe convergence behaviors of y-drift
diffusion processes. We also derive functional inequalities for y -divergences, y—Fisher
information functionals and y -Wasserstein distances.

Theorem 1 (Generalized hypercontractivity) Assume y € [0, 1]. Suppose there exists
a constant k > 0, such that

My_lRiC —

1 1
lHessu’”_l — A4 4 DIViogul? ™' = k. (1)

Let po be a smooth initial distribution and p; be the probability density function of
y -drift diffusion process. Then

Dy (prllw) < e Dy, (ool ). 2)

Moreover, for any smooth probability density function p € C®(M) with
infyep p(x) > 0, the generalized log—Sobolev inequality holds

1
Dylpliw) = 7= Ly (pliw). 3)

! It is often named «a-divergence with y = 3%0‘. ‘We use notation y for the simplicity of presentation.

2 When y = 1, we remark that the notation of VW, represents the classical L2-Wasserstein distance, not
the L!-Wasserstein distance.
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In addition, the generalized Talagrand inequality holds

2D
Wy (p, ) < \/W. “)

Example 1 (Kullback—Leibler divergence [25]) Consider y = 1, f(p) = plogp.
Functional Dy (p|jp) = f plog ﬁdx forms the classical Kullback-Leibler divergence

function (relative entropy), and 71 = f IV log ﬁ 12 pdx is the classical relative Fisher
information. In this case,

dXi1;=—Vlogu(X1,)dt + V2B,

is the classical Langevin process, and W is the classical L>-Wasserstein distance.
Hence condition (1) forms

Ric — Hesslogu >k, k>0,

which is the classical Bakry—Emery criterion. Under this condition, the distribution
of drift diffusion process X1 ; converges to . The log—Sobolev inequality (3) holds

1
/plogﬁdx < —/ 1V1og 2|12 pdx.
iz 2k iz

The Talagrand inequality holds

[2D1(pliw)

If M = T¢ with Ric = 0 and we denote j(x) = e~V ™, the condition (1) forms
HessV > k1.
Example 2 (Pearson divergence) Consider y = 0, f(p) = %(,02 — 1). Here Dy =

%f(ﬁ — 1)%udx is named Pearson divergence function, Zy = [ ||V log §||2,u’2dx
is the O-Fisher information and

dXo; =~/2u"1(X,)dB;,
is the O—drift diffusion process. The condition (1) forms
w'Ric+Hessu ™' — Ap~' =k, «>0.

Under this condition, the distribution of drift diffusion process X ; converges to .
The generalized log—Sobolev inequality (3) holds

1 1
—/(5 — 1)?udx < —/ 1V 1og 21174 2dx.
2 nw 2k nw

@ Springer



64 W.Lietal

We next show a new integration identity. This follows from the proof of Theorem
1.

Theorem 2 (Generalized Yano’s formula) Denote ® € C°°(M). Then
| 2
/,f (v.(,ﬂvqn) dx
= /;ﬂ{(,ﬂ‘lmc —ApY =

+y(y - hu'! <(V log 11, V&)* — ||V1°g”“2”v(b”2)}dx'

1
1Hess,uy_l)(V<D, V®) 4+ ! || Hess®|?

Remark 1 If 14(x) is a uniform measure, i.e. u(x) = 1, the above formula is the
classical Yano’s formula [28]:

/(A@)zdx =/|Rio(vq>, VCI>)+||Hessd>||2]dx.

Theorem 2 extends these classical Yano’s formulas with general volume measure u
and power constant y. For example, when y = 0, we obtain

f;fl(Acb)zdx
= / {(,u_lRic — A,u_l + Hesspu~H)(VD, V) + M_IIIHessdDHz}dx.

We then derive a Poincare type inequality, which applies the generalized Yano’s
formula.

Corollary 3 (Generalized Poincare inequality) Suppose one of the following condition
holds. If there exists a constant A > 0, such that when y € [0, 1],

w 'Ric — ApY! —

1
lHess,t,L”_1 > A.
Orwhen y € [1, 00) U (—o0, 0],

w’ ~'Ric — Ap? ! —

1
1Hessw‘ —y(y = DIVIog |l > a.
Then
2 1 2.y
fPudx < — [ IVFIPpdx, Q)

forany f € C®(M) with [ fudx = 0.
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Remark2 When y = 1, Corollary 3 recovers the classical Poincare inequality

/ Poudx < - / IV £ 12 pdx, / fudx = 0.

Remark 3 We derive generalized Poincare inequalities, which follow approximations
of generalized log—Sobolev inequalities. Denote p = w + €h, where h = fu and
f hdx = 0. The L.H.S. of (5) is from the second order expansion (Hessian metric) of
y-divergence Dy, (p||p):

62
Dy (u+ €hlp) = ) / fudx + o(e?).

While the R.H.S. of (5) is from the second order approximation in term of € for the
y—relative Fisher information:

L, Gut ehlln) = € [ (V1P dx + o€,

Example 3 (Reverse Kullback—Leibler divergence) Consider y = 2, f(p) = — log p.
Note that D (pllp) = — f wlog ﬁdx is named reverse Kullback—Leibler divergence
or cross entropy. In this case, the condition in Corollary 3 forms

uRic — A — Hessp — 2(|V1ogul?iw = &, A >0,

Under this condition, the generalized Poincare inequality holds

1
/ Frudx < - / IV £12dx,

where f € C®°(M)and [ fudx = 0. Again,if M = T¢ with Ric = 0, then condition
in Corollary 3 forms

— Apl — Hessp — 2||V log pu||> Il >= AL
We last note that when y = 0, the y-Wasserstein distance is exactly the H ! distance:

Wolp, ) = H ' (o, 1),

where H™! is the negative Sobolev distance between p and u, i.e.,

H ' (p, ) = \// (p— 1, A~V (p — w)dx.

We can prove an inequality among Pearson divergence (P), H ™' metric and O-Fisher
information (I), namely P H I inequality.
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66 W. Lietal.

Theorem 4 (Inequalities for H~! metric) Suppose n~'Ric + Hessu ™' — Ap=' > «,
where k € R, then P H™'I inequality holds

Do(pllw) < VZolpllw) H (o, w) — gH*‘(p, )2

In addition, if k > 0, then H™'-Talagrand inequality holds

4 [2Do(pellv)
H  (p,n) < —

Remark 4 1f k > 0, then P H~'I inequality shows

Do(pllw) < vVZo(pllw)H  (p, w).

Using the fact that H~!(p, u) </ w and Dy(p|lpn) < %Io(pnu), we have

1
H (o, ) < —VTo(pll).

We note that PH~!I inequality is an analog of inequalities among D; (H),
Wasserstein-2 metric and 1-Fisher information, known as HWI inequality; see details
in [25]. In other words, we generalize the HWI inequality into the one on H~! metric
space.

3 Generalized Density manifold

In this section, we introduce the tool to prove above results. We first review a class
of Riemannian metrics in probability space, introduced by y —Wasserstein distance
[12]. We then formally present its Riemannian calculus, including gradient and Hes-
sian operators. Using gradient operators in this metric, we last study the convergence

behaviors of y-divergences and y—Fisher informationals along with y -drift diffusion
processes.

3.1 Density manifold and its Riemannian calculus

Consider the set of smooth and strictly positive densities
P= {p € C®(M): p(x) > 0, /,o(x)dx = 1}.
Denote the tangent space of P at p € P as
7,P ={o e cx(m): /G(x)dx =o.
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Consider the y—Wasserstein metric tensor below.

Definition 5 The inner product g,: T,P x T,’P — R is defined as for any o| and
o) € Tp'PZ

gploy,00) = / (01, (—ApV)_ltfz)dx,

where A,y = V - (p¥V) is a weighted elliptic operator. In addition, denote &y,
Py € C¥(M)/R = TP, witho; = —A,r ®;,i = 1,2. Then

gplo1,02) = /(Vd)l, Vdr)p¥dx.

An important observation is that if y = 0, the proposed Wy metric is the H~!
metric [12]. If y = 1, the proposed W, metric is the L2-Wasserstein metric [17, 24].

We also note that the characterization of geodesics in (P, g) has been studied in
[7, 8, 12]. In this paper, we focus on the Riemannian calculus for density manifold
(P, g), using both (p, o) in tangent bundle and (p, ) in cotangent bundle.

Proposition 6 The Christoffel symbol T ,: TyP x T,P — T,P in (P, g) satisfies

14 -1 —1 -1 -1 —
Tpoy,00) =— E[Apy_l,,l Apyor+ Ay 15, A 01+ Apy ((VAPV o1, VA, o) p? 1)]

Y —1
= _E{APV_IAPV o} ¢z + Apy_]ApV <I>2q>1 + Apy ((Vq)l’ V&y)p” )}’

where o; = —Apy @4, i = 1,2, and
Ayt By o2 = Bprin Lo, ®2 =V (07 7'V (07 VOV D).
Proof The proof follows the study in [19]. We derive the Christoffel symbol by using

the Lagrangian formulation of geodesics. Consider the minimization of the geometric
action functional in density space:

1
1 _
L(pz, 0 p1) :/ /5(81[% (_Apty) 18,p,)dxdt,
0

where p; = p(t, x) is a density path with fixed initial-terminal time boundary points
po, p1. The geodesics in (P, g) satisfies the Euler-Lagrange equation

0
55a,p,£(pz, 0t 1) = 8, L(pr, O pr) + C(2), (6)
i.e.

_ 1 _
=210 = b, [ 5@, (-0 D+ €O,
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68 W. Lietal.

where C () is a function depending only on 7. Using the fact that

-1 -1 -1
A, =—A" - A ,., A,
= pr of " Twel o Tl

then equation (6) forms

1

—1 —1 -1 1 -1 2 Y-
_Aptyattpt+Ap[yA AptyatPtZ—EHVAptyat,Ot” Yo -

—1
thy 0t ot

Multiplying both sides with A o and comparing with the geodesics equation, we have

01 + L, (001, 0r01) = 0.

Hence we derive the Christoffel symbol. Similarly, we can formulate the Christoffel
symbol (raised Christoffel symbol) in term of ®. O

Proposition 7 The geodesics equation in (P, g) satisfies

-1 14 -1 2 y-1
o = V8 o1, Ao — S8, (IVA oo 20! 1) = 0.

Denote Legendre transform ®;, = (—A pty)—la,p,. Then the co-geodesics equation
satisfies

orpr + V- (ptchpt) =0,

y _ @)
0 s + TV |70! T = 0.

Remark5 We remark that analytical properties of geodesics equations (7) in
Dolbeault—Nazaret—Savare metric spaces have been studied in [8]. We focus on its for-
mal formulation, using which we derive the Hessian operator in generalized optimal
transport spaces.

Proof The geodesics equation follows 9;;0; + I"p, (3; 01, 0 0:) = 0. We next demon-
strate the Hamiltonian formulation of geodesics flow. Consider the Legendre transform
in (P, g):

H(p:, P) =  sup / &0, p1dx — L(pr, 01 01)-
O, eC®(M)

Then &, = —A;}B,p,, and

1 1
Mo @) = 5 [ 0= @0dr =3 [ Ve ax
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where the second equality is from the integration by parts formula. Then the co-
geodesic flow satisfies

0ot = 80, H(ps, @), 0; P = =8, H(ps, Py),

which is the equation pair (7). O

For the completeness of this paper, we present the Lagrangian coordinates of geodesics
in generalized density manifolds.

Proposition 8 (Lagrangian coordinates) Denote p; = Xt#,oo, where X;: M — M is
the diffeomorphism and # is the push-forward operator. Then geodesic equation (7)
in term of diffeomorphism mapping X; satisfies

d2X+V_1 dy 2+( Dexv. (4x
a2 T T dr’! L PR A P
(y -2y —1) d_ |?
—%V]ogp, x| =o.

Here V, V- are gradient and divergence operators w.r.t. X;.

Remark 6 We present three examples of generalized geodesics in Lagrangian coordi-
nates.

(1) If y =1, the W geodesic equation satisfies
d2
—X; =0,
a2’

which is a well-known result in optimal transport.
(i) If y = 2, the W, geodesic equation satisfies

v dxy =0
T et T

X+ 5V | =X+

d? 1_|d
drt? 2 |dt

(iii) If y =0, the Wy, i.e. H -1 geodesic equation satisfies

2 2
d d d

—X — =V |=X;| —=X;V-(=X;)—Vlogp |—X;| =0.

dr? 2 dt dt dt

d? 1_|ld
dt

Proof Denote

d
Xi= p? N, X))V, X)),

where (p;, ®,) satisfies (7). Then

d? ) ) d s d
—X,(t,x)={py Vo0 + o7 VYO X, + (7 = 1)p” V@E,o}(t,Xt).

dt?
(8
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70 W. Lietal.

Notice the fact that

—,o(t X,)_{Bt,o—l—V,o —x,}(z X,)
{atp—l-py_le-Vd)](t,Xt)
=00+ V- (07 V®) = oV - (07 'V |1, X0)
—{ov- e ver|a X0,

where the equality holds since d;p + V - (p¥ V®) = 0. Substituting the above formula
and 9, P + %HV(IDHZ,OV_1 = 0 into equation (8), we obtain

2

X0 = VSV T 4 07V Ve T Ve

+ (= D 2=pV - (TR pV ) (1, X))
={ —(y = Dp" "'V’ Ve — zpy Vo livel?
—(y = Dp" 'VoV. (pV*‘W)](h X1)
y —1 _ Vi y— -
={- VI TV 4+ (v — 1= D)p TV TV e)?
— =D TIVOV - (7T . X))
Y —1 y—1 2 14 y—1 y—1 2
={ - L5=VIpr VeI + (v — 1 = D)y = DV Iog o077V O
—(r - 1)pV”Vd>v : (pV*W)](h X0

]/—1 dXt
V—l) Xtv( Xt)

2

L= -D L x0.

dX
2 Plac™

In above derivations, we use the fact that the second last equality follows (y —
Dp? Wlogp = Vo’ land L X, = (o7~ 'VO)(, X)). O

Proposition9 Consider a functional F: P — R.

(i) The Riemannian gradient operator of F in (P, g) satisfies

grad, F(p) = =V - (pV V8 F(p)),
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where 8 is the L? first variation w.r.t. p. And the squared norm of gradient operator
satisfies

8p(grad,F (p), grad, F(p)) = / IV8F (p) 107 dx.

(ii) The Riemannian Hessian operator of F in (P, g) satisfies

Hessy F(p)(o1, 02)

= [ [ 92 F 1w ) Ve V020007 90 dxdy

+y / Hess8 F (p)(x) (V@1 (x), V@2 (x))p(x)? ~dx

Vo (x) ©)]

p(x) )
Vp(x)

p(x)
YV (), V() | o (0)? N alx,

—1
+ L0 ({0571, vor ) (Vs

+ (V8F (p)(x), VP2 (x)) (VD1 (x), )

Vp(x)
p(x)

— (V8F(p)(x),

where 0; = —Apyy ®@;, 0 = 1,2, and 82 is the L? second variation operator w.r.t.
p.

Remark 7 There are several interesting examples for Hessian operators of F studied
in [7], including linear, interaction potential energies, and entropies.

Proof (i) The Riemannian gradient operator satisfies
gp(gradg}"(p), o) = /SF(p)adx, for anyo € T,P.
Then

-1
erad F(p) = ((—8,)7") 6F(p) = A, 8F(p)
— —V - (p” V5F(p)).

(i1) The Riemannian Hessian operator satisfies

Hess, F(p) (01, 02)

= //527‘—(/0)()6,y)dl(X)Gz(y)dxdy —/5-7:(,0)(X)Fp(01,02)(X)dx
=//527:(p)(x,y)vx'(p(X)"Vxél(X))Vy-(,O(Y)VVyCDZ(y))dxdy (H1)

Y
+ Efo(P)(x)[Apy—lApy.:p]d)z + ApyflApthd}l
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72 W. Lietal.

+ A (Y01, VO ) ax.  (a2)
We next formulate the following two terms (H1), (H2). Notice the fact that
(H1) = /82f(p)(x, WV - (p(x)' VO (x)V - (0(y)" Vy®2(y))dxdy
- / / V2 F(p) (6, )V (1) (1) dxVy - (0(3) Vy®a(3)dy
- / / VeV, F(0)(x, 1) V1 (1) VB2 (1) p(x)7 p(y)7 dxdy,

where the second and third equalities are shown from integration by parts with respect
to x, y. In addition, we estimate three terms in (H2).

/ SF(P)A pr-1a,, 0, Padx

= / 8F(p)V - (pY 'V - (p" VO )V Dy)dx

= /(VS}"(/O), V&)V - (p? V&) p? ldx

_ / (v((wf(p), Va,)p? ), V@])pydx

— f !Hess&}'(,o)(vcbl,V@z)+Hessd>2(V<I>1,V(Sf(p))}pz”_ldx
- /(vaf(p), V) (Vp! ™!, V) pYdx,

where the second and third equalities from the integration by parts with respect to x.
Similarly,

/ SF(D))A 14, 0, O1dx
=/(v((vaf(p),Vcbl)py”),vqn)pydx
- / ’HessSf(p)(V@l,VCDQ)+Hess<l>1(Vd>2,Véf(p))]pzy_ldx
+ /(vaf(p), V&) (VpY L, Vdy)pdx.
And
fo(p)Apy ((V@l, VCDZ),oV_l)dx

- /57(P)V (P V((VD1, V®2)p?” ))dx
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Diffusion hypercontractivity... 73

= _/ (vaf(p),v((Vcbl,sz)pV*‘))dex
_ / (V8F(p), Vp! ) (Ve1, V)p”dx
—/ [HessCDl(VS]-'(p), V1) 02! + Hess®, (VSF (o), V@l)pzy_lldx.

Plugging the above three terms into (H2), we finish the proof. O

3.2 Gradient systems and y-drift diffusion process

In this subsection, we present the mathematical connection among Riemannian gra-
dient operators in (P, g), y-divergence functional, y-Fisher information and y -drift
diffusion process, see details in [21]. In a word, given a y-divergence functional, the
Kolomogrov forward operator of y—drift diffusion process is the negative gradient

descent direction in (P, g). Moreover, the squared gradient norm of y-divergence
functional in (P, g) forms the y—Fisher information functional.

Lemma 10 The following statements hold.
(i)
Ly, p = —grad, Dy (pllw),

where L;k, is the adjoint operator of L, in L%(p).

(ii)
Iy (pllw) = gp(grad, Dy (plin), grad, Dy (plI1)).

Proof We first prove (i). On the one hand, the the Kolomogrov forward operator forms
Lip=V- (Myvﬁ) )
n
We need to show
/Lyfb(x),o(x)dx = / CD(x)L’;p(x)dx.
Notice the fact
-1 —1 1 —1
pLy @@ = [ p{ (VO V™ 4w T A® - —— (Vo vy fdx
y —
= /p[v L TIVO) - (VO, Vi 2 dx

= / —(VO,Vo)u? ™! — (VO, Viyu” ~? pdx
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= —/(ch, vy dx
n
Z/cpv.(;ﬂvf)dx
m
= [ ewrpma

where the second equality follows V - (u? ~1V®) = (Vu?~!, V®) + ¥ "' Ad and
the fourth equality applies the fact that V2 = ;1 ~'V p — =2 pV . On the other hand,
the negative gradient operator of D), (ol|t) in (P, g) satisfies

—grad, D (plli) = V - (57 V5D, (pllw)
l-y

l—y \n
AN

oo (2) o0
w n
"

Comparing the above steps, we finish the proof.
We next prove (ii). Notice the fact that

8gp(grad, Dy (plin), grad, Dy (pllpn)) = / IV8D, (pllw)lI* p¥ dx
1 o\
= / IV— <—) 1o dx
-7 \u

22y
=/||v1og5||2<5) p?dx
noo\p

_ / IV10g 22027 22 ax

=1y(p),

1—y -y 1—y
where the second equality follows -V (3) = <ﬁ> V2 = (3) Viog 2.
y A\ w u w MD
We shall apply the above two relations to derive sufficient conditions for proving

convergence rates of y -diffusion processes. We also prove some generalized functional
inequalities.

4 Proof

In this section, we present all proofs of the main result in this paper.
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4.1 Sketch of proof

Consider the gradient flow of the y-divergence functional

0rpr = —grangy (prlln) = L;Pt,
where p; is the probability density function at any time ¢ > 0. Then the first time

derivative of y-divergence along the gradient flow satisfies

d
EDy (o) = —gp(grad, Dy (pll ), grad, Dy (o]l ).

And the second time derivative of y-divergence becomes

2

d
5Dy (prllw) = 2Hessy Dy (pr 1) @spr. Bepr)

= 2Hessg Dy, (p: || 11) (grad, Dy, (o1 || 11), grad Dy, (o1 || 14)).

If we can find the ratio between the first and second derivative, i.e.,

2

d d
272 Dy (eulli) = =21 =Dy (or | 1) (10)

then we prove Theorem 1. This is true if we integrate (10) on both sides for [, 00),
then

d
- EDy(pt”M) > 2Dy (pe | 1) (1)

Following Grownwall’s inequality, we obtain the convergence result:
Dy (pillw) < e "Dy (pollw).
Notice the fact that %Dy (oell) = —=Z, (prllr). Inequality (11) satisfies

Ly (pellp) = 26Dy (prll ).

By choosing ¢ = 0 with arbitrary pg € P, the log—Sobolev inequality (3) is proven.
From above arguments, the proof boils down to estimate the ratio in (10). In other
words, we need to estimate a constant k > 0, such that

Hessg D, (pllpn)(grad, Dy (pllp), grad, Dy (o))
> Kk gp(grad, Dy (pllw), grad, Dy (o).
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4.2 Hessian operator estimation
We derive Hessian operators of y-divergences in (P, g).

Lemma 11 (Hessian of y-divergence in (P, g)) Denote 6 = — A,y @. Then

Hess; Dy (pllw) (0. 0)
1
= /py[(y,y_lRic —Aprh - lHesspﬂ/_l)(VCD, V) + u’ V|| Hess®|?
\Y \Y
+yly - 1)uy‘1( (—p, ch) (—M Vd>)
P w
1/Vp V \Y%
— (-p, AL —p> (Vo,V®)) dx.
P
Remark 8 1In fact, there are several interesting examples for Hessian operators of y-

divergence in density manifold. Some of them reformulate the ones derived in [7].
Denote 0 = —A,r .

(1) If y =1, then

Hess D, (plli) (0, o) = fp{(RiC — Hesslog 1) (VO, Vo) + ||Hess<D||2}dx.

(i) If © = 1is a uniform density function, then

1
Hess, D, (pllw)(@.0) = [ p7 | (Ric = 370 = 1

Vp V
(-p, —p> )(ch, V) + ||Hessd>||2}dx.
o’ p

The above formula has been derived in [7].
(iii) If y =0, then
Hess Dy (pl1) (o) = [ {(u'Rie = au™!

+ Hessu ™) (VO, Vo) + 1! [Hess |2 dx.

Proof From Proposition 9, we can compute the Hessian operator of y-divergence. The
Hessian operator is derived by taking the second order time derivative of D, (pol|u)

@ Springer



Diffusion hypercontractivity... 77

along with co-geodesics flow (7). Consider the first order time derivative of the y-
divergence:

d
EDy(pzllu) = /SDy(ptIIM)E)zpzdx
= / 5D, (prllw) (= V- (o] V) )dx

= [ @D, pili. Vool a.

And the second order time derivative of the y-divergence satisfies

Hess; Dy (olln) (o, o)
2

= —= Dy (pell)li=0
= (5D ) =0
= [ (V55D VO] o (4)
+ [0, ). V0] dxlino (B)
+ [ 95D, (ol V@ ol i pdxli (©)

We estimate (A), (B) and (C) separately. For (A), we denote 8°D(p) = f”(ﬁ)l% =
p~ Y’ ~1. Then
5 2
(A) = f 52D, (pllw)(V - (o7 V) ) dx
5 2
= /5 Dy (ol (Vo V&) + p? A®) dx

= / 8D, (pnm((w, V®)® +2(Vp?, VP)p" AD + pzy(A‘D)2>

/ pY ¥ ! ((v/ﬂ, V®)2 +2(Vp¥, YOI AD + p (AD)? )dx

e (A®)?dx.

/ Yy ZV_Z(Vp,VCD)zdx—l—/Zp_yMV_l(V,Oy,V(D)PVA(Ddx
vf
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Hence

(A) =/My_1y2py_2(v,o,V¢)2dx+f2uy_l(pr,VCIJ)Ad)dx
+/My_1py(A®)2dx
2 —1 1 2 —1
=y [ uw = p" | =Vp, VO | dx =2 | p¥V .- (W 'VOAD)dx
0

+ / w oY (AD)dx.
We next estimate (B).

) = [ (95D, (pl). V8,205 dxlimg
= [ (= V- 6] 8D, ol xlo
1
= [ 390,901V - (57 9D, (pllund

1 1
_! /<V<1>, Vo)yp? 1Y - ('Y ——(2)1 7 )dx
2 l—y n
1
_! / (VO VO)yp" 1V - (07 (2)7V 2 )dx
2 u M
Vo —pVp

1 —1
== [(VO,VD)yp" ' V- (u" )dx
2 w?

1
2 /(Vfb, VO)yp? 'V - (u’ 'V — pu? AVp)dx

1 1
=-3 / V((Vd), VCD))/,OV”)(//,VAV,O — —1,0VM”7])dx
y —

1
:—§/<V(V<I>, Vo)yp? !+ (VO, vq>)yvpV*1)

1
(M771Vp - —pV,qul)dx

y —1

= —%/(V(VCD, Vo), Vo)yp! tu tdx (B1)
— % / (Vo' Vp)(VO, VO)y ' ~dx (B2)
+;/ (V(Vcb Vd)yp! v;ﬂ*l)dx (B3)

2(y = 1 ’ ’

1 -1 -1

+—/(vq>, V)Y (Vo' o, Vi’ ~Hdx. (B4)

2y =1
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We next derive (B1), (B2), (B3), (B4). Notice the fact that

1 -1, y-1
(Bl) = —3 (V(VO,V®), Vp)yp? ™ dx

1
_ _5/(V(vq>,vq>)w—1,wy)dx

1
5 / V. (M”_1V(V<D, vq>)>dex

1 —1 —1
> {(v,ﬂ  V(VD, VD)) + u” A(VQD,VCD)}dex,

and

1
(B2) = -3 f (VO, Vo) (yVp? ' 1’1V p)dx
1 — p—
= —EV(J/ - 1)/(V<I>, V&) p? 2 "1 (Vp, Vp)dx

1 » 1 1
=—5v(r—D P’ T (VO, V<I>)(;Vp,;Vp)dx.

In addition,
(B3) = L/py(qum VCD),V;U’_I)dx,
20y = 1)
and

1 y—1 y—1
(B4) = m (VO,VD)y(Vp? " p, V¥ Hdx

1 2 -1
= —/(WD, VO)(y(y — Dp" “pVp, V' Hdx
20y = 1)

1 —1
3 (VO,VO)(Vp”, V¥ dx

_%/pyv . ((V@,V(D)Vyﬂ’_l)dx

1
—E/p”{(V(VQ, Vo), V' + (Vo, VQ)AMV—I]dx.
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We last derive (C). Consider

(€)= /(VﬁDy(szIM), V®z)()/p,y_l)8zpdeIz=o
= /(VL(B)I—V, Vo)yp? ! ( -Vv. (,oyV@))dx
l—y
= /(ﬁ)*y(vﬁ, Vo)yp? ! ( -V (,oVVcb))dx
w w
—y /(vﬁ, vqmﬂ( Ly (pyVQJ))dx
n I
Y Y 1
=y /(—p - PR vyt (=~ (0" Vo) )dx
3 W o
=y / (Vo ™' = ' 2pVp, vcb)( -~ %v : (pVWD))dx

1
=—y /(Vp/ﬂ*l —u2pVp, V¢)((;pr, Vo) + py’lAd>>dx

= —y/(Vpuy_l, VCD)(%V,OV,Vd))dx (C1)
- )//(Vp, V@) p? 1 "t Addx (€2)
+y /(,ﬂ*zw, V®)(Vp”, VO)dx (C3)
—H//(M”_ZVM, V&) pY Addx. (C4)

We estimate (C1), (C2), (C3), (C4) explicitly. Notice the fact that

1
(1) =—y / (Vo' Vo)L pr, Vo
0
= —VZ/M’”_l(Vp,Vdﬂsz_zdx
1
= —VZ/MV_l(;Vp,V@zp”dx,
and

(€)= —y / (Vp. V&) "1 1 Addx

— /(vpy, Vo)u' T ADdx

/pyV (T TADVD)dx.

@ Springer



Diffusion hypercontractivity... 81

In addition,

(C3))+(C4H =y /-(,u,V_ZV,u, Vo)V . (p¥Vd)dx

=_L1 pV(V(VMV_l,VCD),VCD)dx.
—

We now summarize all above formulas below.

Hessg Dy, (p|ln)(o, o)
2
:WDV (el =0

= (A) + (B) + (C)
= (A)+ (B1) + (B2) + (B3) + (B4) + (C1) + (C2) 4+ (C3) + (C4)

1 2
:yzfuy_lpy <;Vp,vq)> dx
—2/pyv-(uV*‘V¢Aq>)dx
+/W“pV(A<I>)2dx
1
+5f [V V(0. V@) + u~ AVe, Vo) o7
1 vyl 1 1
—EV(V— D[ p"u (V®,V<I>)(;Vp,;Vp)dx
y 1 (12)
— | pY(V(VD, V), Vi )d
+2(y—1)/p<( ) Vi )"
1
_ E/pV{(V(Vcb, Vo), Vi’ + (Vo, Vd))A,uV_l}dx
1
—y? / M—l(;w, V®)2pYdx
+fpVV~(MV_1A®V¢)dx
- py(V(V,uﬂ’_l,VCD),VCD)dx
y—1
1
=/pV{ =V @WTIVOAR) + W THAR) + S TIAVS, V) (D)

|
— S AR (VO Vo) - Y “Hessu ™! (VO, Vo)

1 \Y% \Y4
- 5vly - DL, 2Ly o, vy dx,
o p
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Note the fact that

1
(D)= -V - (W 'VOAD) + /1 (AD)? + -/ T'A(VD, V)
2
=V L, vo)ad — p 1 (Ad)? — w TN (VAD, VO)

1
+ WA + S TIAVS, V)
1
= (V' VO)AD + pV ! {EA(VQD, Vo) — (Vo VAdJ)}
— (V" VO)AD + ! {Ric(VdD, V) + ||HessCI>||2},
where the last equality is from Bochner’s formula, i.e.,

1
FA(V®, VO) — (VO, VA®) = Ric(VP, V) + |[Hess®||>.

By substituting (D) into (12), we obtain

Hessg Dy (pll1) (Vo Vo)

- /pmy—l{(Ric(vq>, V) + ||Hessd>||2}dx

1
—i——/p”A/ﬂ’_l(V(b, V®)dx

2
13
_ 7 1/pVHess,ﬂ*(ch, Vd)dx 13
y p—
1 _1+.Vp Vp
—5rr - 1)/pW N, ==)(V®, Vd)dx
PP
—/py(wy*‘,vobmcbdx. (E)

We lastly reformulate the term (E):

(E) = —/pV(wV—l,vq>)v-(vq>)dx
_ / (v(pV(vMV*I, V), vq>)dx
:/(V,o”,VCD)(VMV’I,VCD)dx—i—/p”(V(VpLV’],VCD),V(D)dx
=/(Vp”,VCD)(VMV_I,VCD)dx—i—/,oyHess,uV_l(V@, Vd)dx

+ / pYHess®(VO, Vi’ ~Hdx. (E1)
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Notice that (E1) has a formulation:
(E1) = /pVHessq>(Vd>, v’ Hdx
1
— Y _ 2 y—1
_/p (V(z(VCD) ). Vi )dx
1
= —E/V~(pVVM7_1)(VCI>)2dx
1 -1 —1 2
= =5 [ (V0" Vi) 4+ p7 aw ) (V).

where the second equality holds by the fact that HessdVd = VVOVP = %V(VCD)z.
Substituting (E1) into (E), we obtain

14 y—1 1 y y—1
(E) = [ (Vp",VO)(Vpu ,V®)dx—§ (Vo”, V= )(Vo, Vd)dx
1
+fpyHessMy_l(V¢, Vd)dx — E/pyA/LV_l(VCD, V®)dx
v \% 1 Vp V
=r =0 [ w L v ve) - 2 T e, ve) s
P U 2 p u
-1 1 -1
+ | pYHessu? ' (VD, Vd)dx — 3 o’ ApY "N (Vd, VO)dx.

Plugging the above formula into (13), we derive

Hessg Dy (pll) (Vo, Vo)
1
:/pyluﬂ’_l{Ric(VCD,VdD)-i- ||Hess<D||2}dx — E/pVA,uV_I(VCD, Vd)dx

r

1fpVHessMV*I(ch, V&)dx
) f pw—%@, @xvqx Vo)dx
+y(y—1>/pyuy—1{(vp v<b>(— vob)—l(2 @xw va)|dx
—i—/,oyHessMV_l(V@, Vd)dx — %/pVAMV_l(VCD,Vd))dx
= /py{(uV_lRic— Ap’t -

1 Vp V,u )}

+yy —DHu™! (( ) V‘19)(— Vo) — —(— —+ —)(VCD Vo)

1
lHessuV_l)(VCD, V@) + 1’ ! |[Hess®||

]

We observe that the Hessian operator in (P, g) contains more terms than the one in
classical L2-Wasserstein space. In the classical case, i.e., y = 1, there is no interaction
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bilinear functional between the Hessian operator and the squared gradient norm. In
this paper, we overcome this by the following estimations.
Denote the bilinear form below.

1 Vp Vp

J(®, D) = (E, V(D)(&, Vo) — —(—, — + @)(vqx V).
P u 2 p 7

Lemma 12 Denote 8D, (p|lw) = ﬁ(ﬁ)l—y. Then for any p € P,

J 8Dy (pllw), 8Dy (pll )
(V&Dy (pllm), VEDy (pllm))

1
€ (—oo, §||Vlogu||2].

Proof The proof is based on an estimation for the bilinear form J. Note that

Py P P1- Iy
V8D, (pllp) = (=)77V== (=)' Vieg =.
iz 2z iz iz

Then
J1:=J Dy (plln), 8Dy (plln))
= {(Viogp, Viog Z)(Vlog 1, Viog 2)
1" 1
1
— ~(Vlogp, Vg p + Vlog w)(Viog 2, Viog 3)}(3)2—%
2 iz wl
and

o PP o
J2:= (V8D (pll1), V8Dy (pll)) = (Vlog =, Vieg =)(—)* 7.
0 wop
Denote V log ﬁ =a, Vlogu = ag. Then Vlog p = a + ap. Thus

Ji_ (a+ap,a)(ao, a) — 5(a +ag, a + 2ag)(a, a)
Jo (a,a)
_ (a,a)(ag, @) + (a0, a)* — }[(a, ) + 3(ao, @) + 2(ay, a)1(a, @)
(a,a)
_ (a,a)(ap, a) + (a0, a)* — 3(a,a)* — 3(ap, a)(a, a) — (ao, ao)(a, a)
(a,a)
_ (ag,@)* — 3(a,a)* = 3(ag, a)(a, a) — (ao, a)(a, @)

(a,a)
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We further denote cos @ = %4 Then
llallllaoll

1 1 3
Ji_ llal?llagl? cos? 0 — Slall* — 3 llaollllall® cos 6 — llag|?llal|®
I llal?

1
= llao|*(cos® 6 — 1) = ~lall* = Sllallllaoll cos &
9 1 1

= llao” (g cos™ 0 — 1) = = (lall + 7 lla]| cos 6)*

1 2
< —
< gllaol®,

which finishes the proof. O

4.3 Proof

Proof of Theorem 1 Firstly, following Lemma 11 and Lemma 12, we prove that con-
dition (1) implies both the convergence result (10) and the functional inequality
3).

Secondly, the generalized Talagrand inequality (4) follows directly from the gradi-
ent flow interpolation of inequality in Proposition 1 of [25]. For the completeness of
this paper, we still present it here. Consider the real value function

2D
W) = W, (00, p1) +,/V(+”“),

where p; = p(t, -) is the density function at time ¢. Notice that W (0) = W(pg, )
and lim, oo W (1) = / 222208 ince D, (pr | 1) — 0 following (10).

We next claim %\I'(t) < 0. If so, we finish the proof. To prove it, we show that

d 1
— "W () = lim sup —(W(r + h) — ¥ (1)) <O.
dt h—0h

Notice the fact that

|W)/(lol+ha /O) - W}/(lola 10)| E Wy(pt+h7 lot)

Along the gradient flow 9,0 = — grangy(,oHM), we have

. 1
lim sup ZW)/ (Ot+h> P1) = 8p(0r P15 0 1)
h—0

= /80 (erad, D, (pill), grad, D, (o1 |1))

= \/Iy(pt)~
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In addition, we obtain

d D,pdw _ 21 4
iV e = e p i D e
2 1
=t (-7
\/KDy(p,nu)( )

27, (o)
S T
<D, (o) y (ol )

< — /T, (ol

Thus
d . Wy (Pr+h, p0) = Wy (pr, po)  d
Eﬁ\ll(t) = hmhsi% v ’ r + ED)/()OI”/'L”I:O
= T il =T, (ol =0,
which finishes the proof. O

Proof of Theorem 2 We prove an equality by using the Hessian operator of D, (o)
in (P, g) at the point p = u. Notice that for any o € T,P, then

1 P 1_ 1
/G(SDy(pHu)dﬂp:H :/m(;)] Yodx|p=y = m/adx =0. (14

We use the Hessian operator formula in (9). Denote 0 = —V - (p? V®). Then

Hess, D, (pll0) @ 0)lymy = [ 87D, (pl)odx — [ 8D, (o1 0, 0)dx ]
- / 52D, (o) %dx] p—y

- f %(v : qu>))2dx,

where the second equality uses the fact I'y(0,0) € T,P and (14). Comparing the
above terms at p = u in Lemma 11, we prove the equality. O

Proof of Corollary 3 We first prove the following claim.
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Claim:

min {HessgD OI) (@, ) pep: gu(o.0) = 1}

1
= mi —(V-u've : Vo |?udx =1
q)erg;g}M){ (v wve)an [iverwar=1] s
= i \Y% 2, : 2 = = .
Janin | [i9rewax: [ Pudx =1 [ ruax=of

Proof of Claim The first equality holds from the definition of Hessian operator at p =
W, shown in Theorem 2. We next focus on the second equality. Denote 07 = —V -
(uY V). Then the minimization in the second equation of (15) forms

1
A1 = min { —o2d :f ,—A_l d =1}.
1= min [u jdx: [ (o1 wr 01)dx

Its minimizer satisfies the following eigenvalue problem

! MAT)
—0] = —A] gy,
1 r

o
— VWV = r0.
7

In other words, A1 = Amin(—Aur %), where Apin represents the smallest non-zero
eigenvalue. On the other hand, denote 0, = fu. Then the minimizer of (15) in the
third equality forms

A2 := min /||V—|| urdx: /—2dx—1

o2eT, P

Similarly, the minimizer of above minimization satisfies the following eigenvalue
problem

1
— Vw2 =2
I I n
i.e.

o2
-V (/LVV;) = A03.

Thus X2 = Amin(—Apr ﬁ). From the above formulas, we have A; = A,, which finishes
the proof of claim. O
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From the above claim, the smallest eigenvalue of Hessian operator of D,, at p = u
gives the lower bound for Poincare inequality. From the generalized Yano’s formula,
we have
Hess; Dy (o) (0, )| p=p
1 2
= — (— A'u)/ q>) d.x
n
= /MV{(MV_IRiC - A/Ly_l -

(= DI (D, @)y [

1
lHess;ﬂ_l)(VQJ, V@) + u’ ! |Hess® |

where

,» 1 Vp Vp
J(@, ®)|p—p = (Vlogu, Vo)~ — (— 7 + —)(VCID V&)l p=p

=(Vlogu, V®)> — ||V log un ||V<I>||2.
Thus
—IViog ull*[VR[* < J(®, )| p—y < 0.

From the above statement, we can estimate the smallest eigenvalue of Hessian operator,
which finishes the proof. O

Proof of Theorem 4 We first prove the P H~'I inequality. Denote p; be a geodesic
curve of least energy in P, with H~! metric, where p9 = u and p; = p. From
Proposition 7, 9y 0, = 0, i.e. py = (1 — t)po + tp1. Thus

H ' (o.) =V (p— . p— -1 = \//(p — 1, (=A)"(p — p))dx.

By taking the Taylor expansion of Dy (p||) in (P, H™') at p = u, we obtain

Do(plim) = Do(uliw) 4 (gradgDo(pll), p = 1) g1

+ / (1 = O)Hess 1 Fpo)(p — o, p — p)de, (16)
where Do(u||) = 0. From the Cauchy-Schwarz inequality, we have

(grangO(p”M)’ IO - I'L)H71
> — J(erad Do(pllw), grad Do(ollw) y-1v/(p = s p =iyt (17)

To(pllk H ™ (p, 1.
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Hence condition 2~ 'Ric + Hessu ™! — Ap™! = « implies Hessg—1Do(p||)(p —

m,p—p) =k(p—p, p—pu)g-1. Thus

1
/(1 — tHessy- 1 F (o) (o — i, p — pydt > /0 k(1 —=1t)(p—p, p— M)H—ld(tlg)

K
—H Y, n?.
> (0, u)

Substituting (17) and (18) into (16), we prove the P H -1y inequality. In addition, the
H~!-Talagrand inequality follows from Theorem 1. O

Remark 9 Our method fails when y > 1 or y < 0. In these cases, there is no finite
lower bound for both bilinear form and squared gradient norm for any p € P. One
can not obtain a finite ratio between %'Dy (p¢]l) and %Dy (p¢]l). Thus we can not
establish the exponential decay results in term of y-divergence. However, the current
method fails does not mean that we can not find the convergence guarantee condition
of y-diffusion processes when y > 1. In fact, we can always formulate y -divergence
as the gradient flow of 1-divergence (relative entropy) w.r.t. density manifold metric

-1
( —V-(pur! V)) . In this case, one can apply a classical Bakry—Emery method. In

other words, one can always apply the entropy method or entropy-entropy production
as in [29] to find the associated diffusion hypercontractivity and convergence rate in
1-divergence [6].

Remark 10 We remark that the current convergence study is not identical to geodesic
convexities in generalized optimal transport spaces [7]. The nonlinear mobilities in
Dolbeault—Nazaret—Savare metric spaces bring additional difficulties. The geodesic
convexity may not provide the strictly convexity rate for general gradient flows. How-
ever, we can still derive convergence rates from Hessian operators along with gradient
flows. This requires additional estimations towards the bilinear form J in Lemma 12.

Remark 11 We comment on the proof of different inequalities. (i) For log—Sobolev and
Talagrand type inequalities, we only need the Hessian operator along the gradient flow
to have a lower bound. (ii) For Poincare inequalities, we require the Hessian operator
at the equilibrium measure u to have a lower bound. (iii) For the divergence, metric
and information type inequality, such as HWI or P H~'I inequalities, we require
the Hessian operator to have a lower bound for any tangent directions in density
manifold. Amazingly, the above three conditions hold when y = 0, 1. These choices
of parameters correspond to both H~! space and L>-Wasserstein space.

5 Generalized Bakry-Emery Calculus

In this section, we propose generalized Bakry—Emery iterative calculus. This defi-
nition connects Hessian operators in density manifold with generators (Kolmogorov
backward operator) of y-drift—diffusion processes.

We first define generalized iterative Bakry—Emery Gamma operators.
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Definition 13 (y-Bakry—Emery calculus) Denote the jp-Gamma one operator
[y1: C®M) x CP(M) x P — C®(M) as

Iy 1(®@1, ©2, p) = (VPy, Vd,)pr L,

where @1, ®, € C®(M).
Denote the y—Gamma two operator I'y, 2 : C®(M) x C®°(M) x P — C*(M) as
% 1
Ly 2(®y, P2, 0) = ELyFy,l(cha D2, p) — Ery,l(cha L,®>,p)

1
_EF)/,I(CD27 L}/(Dlv 10)’

where @1, &, € C*®(M).

Remark 12 We note that when y = 1, we reformulate classical iterative Bakry—Emery
operators. Note that I'1 1 and I'1 2 are independent of p with

1
'i(®,e)=(Veo,ve) and IM'i(P, d) = §L1F1,1(<I>, D) —T'1,1(P, L1D),

where L1 = (Vlogu, V-) + A is the generator of a Langevin drift diffusion process.
When y # 1, generalized Bakry—Emery Gamma one and Gamma two operators
depend on the current density p. In other words, they are mean-field operators.

We next prove an equality to connect generalized Bakry—Emery calculus with
Hessian operators of y-divergences in density manifold.

Proposition 14

Hessy D, (pllw) (o1, 02) = / [y 2(01, 2, p)(1)p(x)dx,

where 6; = =V - (pYV®;) € T,P, and &; € C®°(M) withi =1, 2.

Proof We omit the notation of p with generalized Gamma operators, e.g.,
Ly (@1, &2) := T, 1 (P, P2, p). We derive the Hessian operator of D), in (P, g)
by using (9) directly. By using generalized iterative operators, we reformulate (9) as
follows:

Hess D) (plln) (o1, 02)

- /52Dy (v - (pVchl)) (v . (p”VCDQ))dx

) (19)
+ 2 [ PLa,6D,. @0, €2+ T (006D, 2. @)

— P11 (@1, 92),6D,) | o7 dx.
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We next rewrite (19) in three terms. First, we prove the following claim.
Claim 1:

1

: / Ty (@1, L, ) pdx
1 (20)

= Ef "Dy (V- (pVWl))(V : (prz)) +yT11(Ty, 18Dy, @1), B2)p” dax.

O

Proof of Claim 1 Notice
[ P16, 00, @207 dx = = [ V- (7T 0)T,16D,. 01
and

V- (p"VO1) = (Vp?, Vi) + p" Ady.

The above two facts show that

1
R.H.S. 0f(20) = Efv : (pyvq>2){a21>yv - (p V@) — yTy.1 (3D, , (Dl)}dx
1
- zfv.(pyv<1>2){521>y(vpy,Vcbl)
+ 82D, p” Ad| — y (YD, . Vq)])py_l}dx.

Using the fact that 52DV =p Yu’ and VéD, = p Y Wp — plmrur2vp.

RH.S. of (20) = %/v - (pyvq>2){p—my—1(v;)y, Vo) + o u’ oY Ady
—y (e "W TV — p! T WAV, V) p? ! }dx
= %/v VO T A +y (7 2V, V) b
= %/V - (PY V&)L, rdx

1
= _E/WLVGDI, Vd,)p?dx

1
= _E/FV,I(L}/(DI, D) pdx,

where the second last equality holds by the integration by parts formula. O
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Secondly, by switching ®; and ®; in Claim 1, we have

1

2 / Iy (P2, L, P1)pdx
(21)

1
= [ 38°0,(v- " VeD) (V- (27 Vo) + LT a1, 6D, 02, @17

Thirdly, we show the following claim.
Claim 2:

/ I)1 (@1, L, B2)pdx = / CLi(Cy0(@1, ), 6D,)p7dx.  (22)

Proof of Claim 2 Consider
R.H.S. of (22) = / 1Ty (@1, 92),8D,)p”"dx

= — / V.- (pyV(SDy)Fy’]((Dl, d))dx
= —/Ljpry,1(¢1, ®y)dx

_ / L,T,1(®1, d2)pdx,

where the second equality follows
V. (p'VSD,) =V (WVE) = Lyp,
n

and the last equality holds because L, is the adjoint operator L, in L%(p). O

By summing (20), (21) and % times (22) and using (19), we have
Hess, Dy (olln) (o1, 02)

1 1
= / [ - Ery,l(cbl, L,®s) — Ery,l((DZ, L,®))+ %Lyry,l(q)l, CIDZ)},o(x)dx

= [ rat@r enmpeoar.

O
We last show that generalized Bakry—Emery iterative calculus implies generalized
hypercontractivity.

Proposition 15 (Generalized Bakry—Emery criterion) If there exists a constant k > 0,
such that

ny,z(q), P, p)(x)p(x)dx ZKny,l(q>7 @, p)(x)p(x)dx,

®= 1#(3)1—% 23)
-y u
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for any p € P. Then the generalized hypercontractivity (2) and the generalized log—
Sobolev inequality (3) hold.

Proof The proof applies Proposition 14 and the gradient flow formulation (10) in
deriving Theorem 1. O

Remark 13 Generalized Bakry—Emery operators follow all proofs in [19]. In other
words, when the divergence functional is the relative entropy, i.e., y = 1, we have the
classical Bakry—Emery iterative calculus. To study generalized divergence function-
als and drift—diffusion processes, we need to develop generalized iterative Gamma
calculus.

Remark 14 When y = 1ory = 0, the ratio between generalized Gamma two operator
and Gamma one operator provides a bound in (23). This is not the case for y # 1, 0.
In general, we need to apply the mean field (integral formula w.r.t p) of the Gamma
two operator to bound Gamma one operator. We next derive related log—Sobolev
inequalities.

In summary, we show the generalized Bakry—Emery criterion (23), and estimate
its bound in Theorem 1. Besides, we comment on major differences between general-
ized Bakry—Emery criterions and classical ones. The Hessian operator in generalized
density manifolds involves an additional quadratic form J(®, ®). Thus the smallest
eigenvalue of Hessian operator in density manifold is not enough to provide a lower
bound for the convergence rate of generalized drift-diffusion processes. We carefully
derive the global behavior of dynamics. This is to control the additional quadratic form
along with the gradient flow. Besides, a local viewpoint is provided for establishing
the Poincare inequality, which is from the Hessian operator in density manifold at the
minimizer (.

In this paper, both Gamma one and Gamma two operators are mean-field operators,
which depend on density functions nonlinearly. In future work, we shall study gen-
eral mean-field Bakry—Emery conditions for related diffusion-diffusion processes and
functional inequalities. In addition, we expect to explore interactive studies between
optimal transport and information geometry. These studies could be essential in
establishing the convergence-guaranteed machine learning sampling algorithms.

Funding W. Li thanks the support of AFOSR MURI FA9550-18-1-0502, AFOSR YIP award No. FA9550-
23-1-0087, NSF FRG grant: DMS-2245097, and NSF RTG grant: 2038080.

Data availability Not Applicable.

Declarations

Conflict of interest There is no conflict of interest.

References

1. Amari, S.: Information Geometry and Its Applications, 1st edn. Springer Publishing Company,
Incorporated (2016)

@ Springer



94

W. Lietal.

10.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.
27.

28.
29.

. Amari, S., Cichocki, A.: Information geometry of divergence functions. Bull. Polish Acad. Sci. Tech.

Sci. 58(1), 183-195 (2010)

. Ay, N., Jost, J., L&, H.V., Schwachhofer, L.: Information Geometry, vol. 64. Springer, Cham (2017)
. Bakry, D., Emery, M.: Diffusions hypercontractives. Seminaire de probabilites de Strasbourg 19, 177—

206 (1985)

. Bakry, D., Gentil, 1., Ledoux, M.: Logarithmic Sobolev Inequalities. In: Analysis and Geome-

try of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften (A Series of
Comprehensive Studies in Mathematics), vol. 348. Springer, Cham (2014)

. Bolley, F.,, Gentil, I.: Phi-entropy inequalities for diffusion semigroups. Journal de Mathematiques

Pures et Appliquees 93(5), 449-473 (2010)

. Carrillo, J.A., Lisini, S., Savare, G., Slepcev, D.: Nonlinear mobility continuity equations and

generalized displacement convexity. J. Funct. Anal. 258(4), 1273-1309 (2010)

. Cardaliaguet, P., Carlier, G., Nazaret, B.: Geodesics for a class of distances in the space of probability

measures. Calc. Var. Partial. Differ. Equ. 48, 395-420 (2013)

. Chow, S.N., Li, W., Zhou, H.: Entropy dissipation of Fokker-Planck equations on graphs. Discret.

Contin. Dyn. Syst. Ser. A 38(10), 49294950 (2018)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications.
Wiley, New York (1991)

. Csiszar, 1., Shields, P.C.: Information theory and statistics: a tutorial. Foundations and Trends™ in

Communications and Information Theory 1(4), 417-528 (2004)

Dolbeault, J., Nazaret, B., Savare, G.: A new class of transport distances. Calc. Var. Partial. Differ.
Equ. 2, 193-231 (2010)

Dolbeault, J., Nazaret, B., Savare, G.: From Poincare to logarithmic Sobolev inequalities: a gradient
flow approach. SIAM J. Math. Anal. (2012)

Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061-1083 (1975)

Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM
J. Math. Anal. 29(1), 1-17 (1998)

Juengel, A.: Entropy Methods for Diffusive Partial Differential Equations. Springer Briefs in
Mathematics. Springer, New York (2016)

Lafferty, J.D.: The density manifold and configuration space quantization. Trans. Am. Math. Soc.
305(2), 699-741 (1988)

Li, W.: A Study on Stochastic Differential Equations and Fokker-Planck Equations with Applications.
phd thesis, (2016)

Li, W.: Transport information geometry: Riemannian calculus on probability simplex. Inf. Geometry
5, 161-207 (2022)

Li, W., Montufar, G.: Ricci curvature for parametric statistics via optimal transport. Inf. Geometry 3,
89-117 (2020)

Li, W., Ying, L.: Hessian transport gradient flows. Res. Math. Sci. 6, 34 (2019)

Lott,J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(3),
903-991 (2009)

Monsaingeon, L., Tamanini, L., Vorotnikov, D.: The Dynamical Schrodinger Problem in Abstract
Metric Spaces. arXiv:2012.12005, (2020)

Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial
Differ. Equ. 26(1-2), 101-174 (2001)

Otto, F,, Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev
inequality. J. Funct. Anal. 173(2), 361-400 (2000)

Sturm, K.T.: On the geometry of metric measure spaces. Acta Math. 196(1), 65-131 (2006)

Villani, C.: Optimal Transport: Old and New. Number 338 in Grundlehren Der Mathematischen
Wissenschaften. Springer, Berlin (2009)

Yano, K.: Some remarks on tensor fields and curvature. Ann. Math. 328-347 (1952)

Zamponi, N.: Entropy Methods for Diffusive PDEs. Lecture notes. (2017)

@ Springer


http://arxiv.org/abs/2012.12005

Diffusion hypercontractivity... 95

30. Zozor, S., Brossier, J.M.: deBruijn identities: From Shannon, Kullback-Leibler and Fisher to gen-
eralized ¢-entropies, ¢-divergences and ¢-Fisher informations. AIP Conf. Proc. 1641(1), 522-529
(2015)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	Diffusion hypercontractivity via generalized density manifold
	Abstract
	1 Introduction
	2 Main result
	3 Generalized Density manifold
	3.1 Density manifold and its Riemannian calculus
	3.2 Gradient systems and γ-drift diffusion process

	4 Proof
	4.1 Sketch of proof
	4.2 Hessian operator estimation
	4.3 Proof

	5 Generalized Bakry–Emery Calculus
	References


