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Abstract

Computing excited-state properties of molecules and solids is considered one of the most
important near-term applications of quantum computers. While many of the current excited-state
quantum algorithms differ in circuit architecture, specific exploitation of quantum advantage, or
result quality, one common feature is their rooting in the Schrédinger equation. However, through
contracting (or projecting) the eigenvalue equation, more efficient strategies can be designed for
near-term quantum devices. Here we demonstrate that when combined with the Rayleigh—Ritz
variational principle for mixed quantum states, the ground-state contracted quantum eigensolver
(CQE) can be generalized to compute any number of quantum eigenstates simultaneously. We
introduce two excited-state (anti-Hermitian) CQEs that perform the excited-state calculation while
inheriting many of the remarkable features of the original ground-state version of the algorithm,
such as its scalability. To showcase our approach, we study several model and chemical
Hamiltonians and investigate the performance of different implementations.

1. Introduction

Calculating physical properties of excited-state processes of quantum many-body systems is one of the most
promising applications of near-term quantum computing [ 1-3]. Quantum devices are well suited to deal
with many of the distinctive features of excited states such as their strong multiconfigurational character or
the presence of conical intersections [4, 5]. So far, several quantum algorithms have been developed to
approximate eigenstates of many-body Hamiltonians, including quantum phase estimation (QPE) [6, 7] and
the variational quantum eigensolver (VQE) [8, 9]. VQE has also inspired several related approaches for
excited states: The two dominant variants rely on either targeting specific states through adding
nonorthogonal penalties to the Hamiltonian [10-14] or by building subspaces while ensuring orthogonality
of the lowest-lying eigenstates [15, 16]. Yet, QPE requires circuit depths beyond what is currently achievable,
and VQE relies on high-dimensional classical optimization, which has computational costs that scale rapidly
with the system size [17].

Quantum algorithms like QPE and VQE are designed to solve the Schrédinger equation (SE). However,
more efficient quantum simulations can be performed if, instead of the standard SE, its contraction (or
projection) is solved directly on a quantum computer [18]. When solving the corresponding contracted
Schrodinger equation (CSE) the prepared wave function ansatz only requires two-body terms, regardless of
the number of electrons or orbitals, ensuring the scalability of the algorithm [19]. While initially designed to
explore ground states of molecular systems [19], quantum eigensolvers based on the CSE have been recently
extended to excited states by using the variance of the energy as the cost function [20] or by deflating the CSE
to ensure the orthogonality of the eigenstates [21]. However, these methods compute the eigenstates
individually and therefore the circuit must be run for each desired excited state.

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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The goal of this work is to demonstrate that when combined with the Rayleigh—Ritz variational principle
for mixed quantum states, the CSE can be straightforwardly generalized for the simultaneous (or parallel)
calculation of a bundle of lowest eigenstates. Our main result is a novel excited-state quantum algorithm that
employs the main features of the ground-state contracted quantum eigensolver (CQE), thus retaining its
favorable scaling. Here we focus on the anti-Hermitian portion of the CSE which has been shown to render
accurate approximations for ground-state calculations [22], but our results can be generalized to include its
Hermitian part. In the same way, we focus on fermionic systems but our derivations equally hold for bosons.

The remainder of this paper is organized as follows: For completeness, we first introduce both the CSE
and the Rayleigh—Ritz variational principle for ensembles, on which our algorithm is based. Next, we
generalize the basic equations of the ground-state CQE to excited states and discuss the resulting quantum
algorithm. We then present our CQEs, discuss different methods of implementing them on a quantum
computer, and perform several numerical experiments. The paper ends with some conclusions and a
discussion about potential future research directions.

2. Theory

After we review the CSE and the Rayleigh—Ritz variational principle for mixed states in sections 2.1 and 2.2,
we derive an anti-Hermitian CSE (ACSE) for mixed states in section 2.3 and a quantum algorithm based on
this mixed-state ACSE in section 2.4, which can solve for multiple excited states simultaneously.

2.1. Contracted SE
The SE of an electronic system governed by a Hamiltonian H reads:

(H—E,)|¢,) =0. (1)

The two-body operator T2 = Eﬁﬁﬁ, whereﬁ;r /}‘1, are fermionic creation/annihilation operators, followed by
the vector (¢, |, can be applied on the left of the SE in equation (1) to obtain the CSE:

<’(/)u‘f‘€tq (H_Eu) |¢u> =0. (2)

Both the CSE in equation (2) and the SE in equation (1) have an equivalent set of pure-state solutions
[23-25]: while the SE clearly implies the CSE, the opposite direction is provable by showing that (2) implies
the eigenstate condition of zero variance (i.e. (¢,,|(H — E, )?|1b,) = 0) which in turn implies the SE. Notice
that equation (2) can be written as the sum of two terms (a commutator and anti-commutator) [26, 27]:

(Wl {5, (= E.) ) + (| [E5,H] ) =0 3

It is well-known that solving only the anti-Hermitian portion of this equation, i.e.

(| [T 1] 1) = 0 @)

gives accurate results both for ground bosonic [28] and ground and excited electronic [20, 21] states.
Although the ACSE, unlike the CSE, does not rigorously imply the SE [19], it contains roughly half of the
degrees of freedom in the CSE, and hence, provides a stringent necessary condition for satisfaction of the SE.
Practically, we find that solving the ACSE tends to generate an exact solution of the SE [20, 21]. Moreover,
since equation (4) can be interpreted as the residual of a certain cost function, this ACSE immediately
suggests the type of ansatz that can be used to guess the form of the eigenstate |1, ) (see below).

2.2, Variational principle for ensembles

The Rayleigh—Ritz variational principle is a powerful tool routinely used to study eigenstates of quantum
many-body systems [29]. Its generalization to mixed quantum states establishes an upper bound for the
weighted ensemble energy of the K lowest eigenstates of a Hamiltonian, H [30]:

K—1
Tr [p (w) I:I} > ZW,,ED, (5)
v=0

where p(w) = ZIV(;(I) wy |y ) (@, | is a density matrix with a positive, decreasingly ordered spectrum,
conveniently defined as w = (wp, wy,...) with w, = w,, 1 > 0. The vectors {|¢, )} can be any set of K
orthogonal states. Here E,, < E, 1 are the exact eigenenergies of the system, arranged in increasing order.
The ensemble variational principle in equation (5) offers a unified approach to variational methods in
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quantum mechanics: the problem of the ground state is, in fact, just a particular case, corresponding to
= (1,0,0,...). This variational approach to quantum excitations is currently playing a pivotal role in the
extension of ground-state functional theories [31-35] and hybrid quantum—classical methods [15, 16, 36,
37] to excited states.
We note in passing that equation (5) can be written in a state-specific form by employing the purified
state [38]:

K—1
v=0

The states |a,,) are auxiliary orthonormal (ancilla) states added to perform the purification. The only
condition is their orthornormality, (a,|a,) = 0,,,. Then, the lower bound of the energy expectation value of
the ensemble energy can be written as (p(w)|H @ I|p(w)) > w- E, with E = (Ey, Ey, ...) and I being the
identity matrix acting on the auxiliary space (we will skip the writing of I when the notation is obvious).

2.3. The ACSE for excited states

The generalization of the CSE to ensembles of eigenstates is straightforward. Indeed, since equation (2) is
valid for all the eigenstates of the Hamiltonian H, one can use it to write a weighted sum for the first K
eigenstates: 215;(1) wy, (¢, |2 (H — E, )|4,,) = 0. From this equation, the corresponding ACSE for an
ensemble of K eigenstates follows:

3w [£5151] 1) 0. @)
v=0

This result suggests a variational implementation of the ACSE for excited states. Consider first a variational
ansatz for a set of K orthogonal wave functions, iteratively constructed from unitary two-body exponential
transformations:

A
o8 ) = e o), (8)
where A(" A +f; 1s an anti-Hermitian two-electron operator and 7 is a real positive number
pq,st”Pq,st P P n p

(whose role will be clear later) The ensemble energy at the (n + 1)th iteration is the weighted sum of the
energy expectation value of these states:

Err = Zw B = 3w o ). ©)

v=0

Thus, at each iteration, the ensemble energy through order nis &1 =&, +1>_, Wy <¢l(,") [H,AM)]|
qb,(,")> + O(n?). As in the case of the ground-state calculation [18], the gradient of the ensemble energy can be
computed with respect to each Algg?ﬁ:

8A _UZWV Tu:pg,st s (10)
pqst

where r,, a5t = (d),,") |[H, T2 |¢,(,”)>. This shows that the residual of the energy is the weighted expectation
value of the commutators [H , fff] The residual goes to zero when the ensemble is composed of eigenstates,
which means that the ACSE in equation (7) is fulfilled. Hence, an algorithm to find the optimal operator A
using gradient descent should perform the following update of the parameters at each step:

A = Y (o ] o). o

which implies that 77 can be interpreted as the learning rate of the algorithm.

Interestingly, the purification introduced in equation (6) can be used to write a more compact expression
for the residual of the ensemble ACSE in equation (10), namely: (p(w)|[[%, H] @ I|p(w)). If, in addition, one
chooses the auxiliary states as a replica of the physical ones (i.e. |a,) = |¢,)), then the state can be written as
the following unitary transformation of the system’s vacuum [38]: |p(w)) = V(w)|0 ), where
V(w) = UD(w), U is a unitary acting on the physical space and D(w) is a squeezing operator acting on the
duplicate Hilbert space of the system. More precisely, the operator reads D(w) = ™), where

[H Fff}
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Algorithm 1. Parallelized CQE.

1: Given K >0, w = (wo,...,wk—1),0 >0,

2: choose 0 < n <1,

3: choose K physical and ancilla states {|¢, ), |a )}~ Zg,
4: initialize the state |po(w)) = Zf;é VW lou) ® lav).
5: Setn < 0,

6: while [A™|> > § do

7: prepare the state |Ai) = eii"H|p (w)),

8: measure Aj), = 3 [(AF[THAT) — (A [T]A)),
9 prepare|S(6)) = exp(6A) |pu(w)),

10: minimize (X,(0)|H|X,(0 )) with respect to 6,
11: take 0 = argmin(3,(8)|H|L,(6)),

12: prepare |pur1(w)) = exp(6°A™) | pu(w)),

13: n<n—+1.
14: end while

Gw)=>,,0m (fi 71— fufin) and cos(6,,) = /T — Wp. As a result, the total residual can be written as a
vacuum expectation value: (0|[T%(w), H(w)]|0 ), where the notation A(w) = Vi (w)AV(w) is used. Hence,
instead of evaluating the residual of several eigenstates and then summing this up as in equation (10), this
result indicates that it is possible to work with only one specific state.

One possible way to implement the ACSE in a quantum device is to choose w,, as fixed quantities and, for
the (n + 1)th iteration, allocate a certain number of shots N, to measure the contribution of 7,5, « to the
total residual in equation (10). Yet it is known that the most efficient way of deterministic assigning shots
among the measurements consists of allocating N, proportionally to w,, [39, 40]. But since the weights are
not integers, this assignment results in a ‘hard floor’ on Niga1 = >, Ny, > 1/wg (recall that wy is the
minimum of the weights) [41]. This is the minimal number of shots needed for an unbiased estimate of the
residuals of the ensemble ) w,r 1(/ ;q s+ Unfortunately, for large K one can expect quite small wg and
therefore very large numbers of shots for each unbiased estimate. Random sampling can efficiently perform
unbiased estimations of the residuals of the ensemble energy in equation (7) while using a cheap number of
shots. In the next section, based on this sampling, we will present two quantum algorithms.

2.4. CQE for excited states

To introduce our algorithms, let us start first by choosing a set of weights w, which for convenience we
normalize to 1: ) w, = 1. Next, we choose K initial orthogonal states |¢,) that can be the K lowest
mean-field (Hartree—Fock) wave functions. Weighted random sampling, where the probability of measuring
r, is proportional to w,,, can be used as an efficient unbiased estimator of the residuals of the ensemble
energy in equation (7). A promising alternative to implementing this anti-Hermitian CQE that does not
require a random number generator consists of preparing and measuring the purification presented in
equation (6). For this parallelized CQE the initial state in equation (6) can be prepared by applying a suitable
linear combination of unitaries [42] to the original Hartree—Fock state |py } = |¢ur) ®|0,...,0 ), with an
ancilla term that uses only log, K qubits. At each iteration, the states |A;F) = exp(dinH)| pn( )) are prepared
and the entries of the matrix A(") are measured from the equation

n 1 -
A= 3 ((NHIERIAS) = (A5 IEEA;) ) + O ().

Importantly, the residual in equation (10) is exactly zero for any set of eigenstates, not necessarily the lowest
ones, so for any combination of eigenstates the optimization will stop at this point. Hence, to guarantee that
the lowest set is found, we further prepare the state |, (w)) = exp(AA()|p,(w)) and minimize the
ensemble energy with respect to the value of §. Besides circumventing local minima, this will also guarantee a
faster convergence. As described in algorithm 1, the process is repeated until a desired convergence is reached.
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Algorithm 2. Weighted random CQE.

1: Given K >0, w = (wo,...,wk—1), p_,W» = 1,0 >0,
2: choose 0 < 17 < 1, and N > 0 number of shots,

3: choose K initial states {|¢(()0) Yyees |¢>,<(021>},

4: Set n < 0,

5: while [A™]*> > § do

6:  m ~ Multinomial(N, w)

7:  Set A;g?ﬁ 0

8 for0<v<K-1do

9: for1 <I<my,do
10: prepare [\F) = eih’H\qS,(,")),
I AR AR 5 Y AL IDEIN),
12: end for
13: prepare |2, (0)) = 69;‘(”) |PL),
14:  end for

15:  take 0 = argminy" w, (X, (0)|H|Z, (0)),
16:  prepare [¢" V) = exp(6*A™)|p{M),

17 n<n+1.

18: end while

We also sketch the weighted random CQE in algorithm 2. This algorithm follows similar lines as
algorithm 1 except that the purification (or the parallelization) is replaced by assigning m,, number of shots
per state |¢,,) randomly from a multinomial distribution: m ~ Multinomial (N, w). Because each of the
excited states is treated separately, the algorithm is amenable to distributed parallel programming in which
each state is prepared and measured on a separate quantum processor with the results only collected for the
classical parts of the optimization. This weighted random sampling algorithm is equivalent to measuring the
expectation value of the pure state |p(w)), in the sense that the variances of any observable computed by the
two methods coincide. As a result, the number of shots needed to achieve a certain measurement error of the
residuals is the same for both algorithms. Yet, while the results are certainly the same, the implementation
clearly differs in the requirement of computational resources. An advantage, however, of the purification lies
in the fact that quantum symmetries can easily be added to the cost function to improve convergence [43, 44].

Several advantages as well as similarities with respect to prior quantum algorithms for excited states are
now apparent. For example, both the subspace-search VQE [15] and our parallelized CQEs share an
important similarity: in both cases, the key idea is to ensure the orthogonality of the initial states |¢,,) (i.e.
(¢ |0u) = 0,,) at the input of the quantum circuit, rather than at the output. Yet, in contrast to many
previously published VQE-inspired algorithms (e.g. [10, 13—17]), our CQE algorithms do not identify an
energy cost function to be minimized by classical means but a residual that guides the parameters of a
unitary towards the ones that transform the input states into the desired set of eigenstates. Moreover, by
construction, in CQE the number of variational parameters is fixed by the total number of two-body
parameters present in the Hamiltonian which ensures the scalability of the algorithm.

3. Results

We now present the results of both algorithms when applied to model and molecular Hamiltonians and
discuss their advantages and disadvantages. The first system we investigate with the ensemble ACSE is the
generic M-qubit Hamiltonian:

3 3

H:Z"'ZArl,...,rMUn®"'®UrM7 (12)

where 0, denotes the Pauli matrix. The initial state is denoted as | po(w)) = >_;c (g 131 v/Wili),, @ |§) ,, where
p/a denotes the physical/ancilla qubits and i = (iy,...,iy). The evolution into the exact eigenstates for a
random Hamiltonian of the form in equation (12) for systems sizes M = 2, 3 is presented in figure 1. We
chose the learning rate = 0.3 and weights w = (M*,M* —1,...,1) and then w — w/>_. w;. For M =2 and
a random choice of the 16 parameters ), ,,, the ground state is reached in 8 iterations, while the exact
eigenstate calculation is reached in 20. The two highest energy states, having the lowest weights in the cost
function, converge the slowest, and, due to orthogonality limiting the degrees of freedom, converge
simultaneously. A similar pattern can be seen for another random Hamiltonian for the case M = 3, and a
random choice of the 64 parameters ), ,, ., but due to the larger dimension of the Hilbert space, more
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Figure 1. Evolution of the projection of the states |¢,, ') on the exact eigenstates |1, ) as a function of the iteration # for (a)
2-qubit and (b) 3-qubit random Hamiltonians in equation (12).

iterations are needed for convergence. We note that, in this example, the number of terms of the Hamiltonian
scales as 22M, Yet, by restricting the set of variational parameters to be real, the relevant operators entering in
the ACSE unitary (11) correspond to the elements of the Lie algebra 0(2M) whose dimension is

2M(2M —1) /2.

We investigate also two molecular examples: (a) a noisy backend simulation of H; and (b) a noiseless
state-vector simulation of Hy. All calculations were performed using the minimal Slater-type orbital
(STO-3G) basis set. The noisy backend is the FakeLagosV2, which is one of the fake backends that mimic the
behavior of the IBM quantum computers using system snapshots [45]. The statevector simulator output is
extracted without sampling error.

The calculation of H; is performed in the spin-symmetry sector S, = 0, the learning rate is chosen as
7 =0.1 and @ is determined from a quick linear search, sketching ten energy points with
6 =0.1,0.2,0.3,...,1.0. Based on the symmetry of the problem, we construct the Hamiltonian in a
compressed form with two qubits. Two additional ancillary qubits are used to create the purified ensemble of
all four eigenstates, resulting in four qubits in total. The detailed circuit preparation has been reported in
previous work [46]. For the single-point calculation in figure 2, performed with the parallel CQE, the
ensemble energy converges to a minimum in only three iterations. Remarkably, we achieve an error of less
than 30 mHartree for each state without any error mitigation techniques. We also present the dissociation
curve of H, in figure 2. Energies computed from parallel CQE are in excellent agreement with the full CI
results with an average mean unsigned error of 26 mHartree (without error mitigation). To give an idea of
what this error means, recall that the noisy backend we are using is not an analytical noise model, but a
mimic of a real quantum system which, even for preparing unmixed Slater determinants and measuring the
corresponding energy, yields an average error of around 20 mHartree.

It is also worth discussing the role weight values w; play in the rate of convergence. For instance, if all of
the weights are equal, only an eigen-subspace can be found, and the individual eigenstates would have to be
resolved with classical diagonalization. Giving different values for the weights allows us to perform the entire
calculation on a quantum device, resulting in a faster convergence. Indeed, we find that the optimal
convergence for H, (presented in figure 2) is achieved with the weights w ~ (9,9, 1,1), before normalization.
To explain our choice, let us observe that, due to the system’s point-group symmetry, the Hamiltonian matrix
is block diagonal with two 2 x 2 sub-matrices on the diagonal. Therefore, since the minimization runs

6



10P Publishing New J. Phys. 26 (2024) 033020 C L Benavides-Riveros et al

2.0
0.50 P g - S
—— " exact
0.25 — EO —— E2
3 SR N -
L 0.00 g L . -
o g . .
L £ osf | ¢
N g « ° ° Es
> » = .
g—0.50 - . g o ... 5
c c , ® ‘.. .
N L S coan? ceEEeTeIIeIeIITTEITITE
o (a) —0.5 %, "0sssesiene e’ (b)
....
—1.00 Lo -.:::u.uuuunonunu-nonu.
o ®00ceee® *
0 2 4 ) 6 3 - 5 . i :
[terations o e ()

Figure 2. (a) Obtained energies during the optimization for single point calculation of H, (bond distance of 0.7 A). The exact
solutions for each state and the ensemble are indicated by black dashed lines. (b) Energies along the dissociation curve computed
from 0.5 to 5 A. The exact results are shown as black lines and our single-point calculations are shown as dots.
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Figure 3. The computed and exact lowest eight eigenenergies of the linear equidistant Hy as a function of the H-H distance.

independently within each sub-block, we opted for two identical pairs of weights. This indicates that the
optimal choice of weights is highly dependent on the molecular symmetries.

Linear Hy is a widely used benchmark system for strong correlation in electronic structure theory [44,
47]. As the molecule dissociates, the energy levels become highly degenerate due to the non-interacting
hydrogen atoms and the system exhibits significant static correlation [48]. We take the equidistant form of
linear Hy and use the Jordan—Wigner transformation to map the Hamiltonian from four spatial orbitals to
eight qubits. Both algorithms 1 and 2 successfully find the ground and excited states. Yet in the first case, as
we are tackling eight states simultaneously, one requires at least three ancillary qubits to prepare all initial
states in the expanded Hilbert space. Alternatively, preparing different initial states separately and sampling
them using a multinomial distribution (as in our algorithm 2) becomes particularly valuable with limited
qubit resources or when the ancilla-based preparations are hard to perform.

For the calculation of Hy shown in figure 3, we have used the weight vector (8,7,...,1), before
normalization, and 7 = 0.000001. At a long bond distance, we seed the eight initial guesses with the eight
single Slater determinants with the lowest energies. Afterward, each state in the calculation is seeded with the
two most important Slater determinants of the corresponding state found in the previous calculation. While
the potential energy curves are highly degenerate towards dissociation, as the bond begins the form, the
energy curves separate. As shown in figure 3, for the dissociation curve on a noiseless simulator, our
algorithms give almost exact results (i.e. an error of around 10~* Hartree). Most calculations converged in
less than 200 iterations. We recall that this convergence speed does depend on the weight being assigned to
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each element, the initial guess, as well as the optimization method, suggesting opportunities for further
exploration and improvement.

4. Conclusions

In this paper, we have combined CQE, originally developed for the calculation of molecular ground states,
and the Rayleigh—Ritz variational principle for ensemble states into an excited-state CQE. Quite remarkably,
our scheme allows us to compute simultaneously an arbitrary number of lowest eigenstates while preserving
the favorable scaling and ease of implementation of the ground-state CQE. Unlike approaches based on the
unitary coupled cluster and related ansitze, that give an approximation to the cost function, our algorithm
provides a natural choice for the unitary operator through the measured residual. In our experiments with
molecular and model systems, we tackle multiple states simultaneously with excellent accuracy in both the
weakly and strongly correlated regimes. The ability to optimize near-degenerate states by assigning different
weights allows us to study both near-degeneracy and conical intersections, which can be used for
nonadiabatic chemistry. An interesting question for the future is how to use our algorithms for excited states
and spectroscopy when additional bosonic degrees are present. Finally, while we did not perform any
particular circuit optimization, it will be important to investigate how compact circuits can be produced for
excited state calculation in a similar fashion as is being done for ground states [49, 50].

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/damazz/Parallel-CQE. All codes to reproduce, examine, and improve our proposed analysis are
freely available online [51].
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