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A major challenge for density functional theory (DFT) is its failure to treat static correlation,
yielding errors in predicted charges, band gaps, van der Waals forces, and reaction barriers. Here we
combine one- and two-electron reduced density matrix (1- and 2-RDM) theories with DFT to obtain
a universal O(N®) generalization of DFT for static correlation. Using the lowest unitary invariant
of the cumulant 2-RDM, we generate a 1-RDM functional theory that corrects the convexity of
any DFT functional to capture static correlation in its fractional orbital occupations. Importantly,
the unitary invariant yields a predictive theory by revealing the dependence of the correction’s
strength upon the trace of the two-electron repulsion matrix. We apply the theory to the barrier
to rotation in ethylene, the relative energies of the benzynes, as well as an 11-molecule, dissociation
benchmark. By inheriting the computational efficiency of DFT without sacrificing the treatment
of static correlation, the theory opens new possibilities for the prediction and interpretation of
significant quantum molecular effects and phenomena.

Introduction:  The success of density functional
theory (DFT) [1-3] lies in its ability to improve upon
the energies and properties of mean-field theories like
Hartree-Fock while retaining the computational scaling
of a one-electron theory. Nonetheless, the exact energy
functional of DFT, originally postulated by Hohenberg
and Kohn [4], is not known in a practical form, which
leads to limitations in the prediction of charges [5, 6],
van der Waals forces [7], barrier heights [8], and bi- and
multi-radicals [9]. These limitations largely arise from
the inability of DFT to provide a complete description
of static (or multi-reference) electron correlation, which
occurs when two or more Slater determinants contribute
equally or nearly equally to the wave function. Recently,
it has been shown that modern density functionals
typically improve the energy over more established
functionals at the expense of other properties including
electron density [10, 11], implying that such improve-
ments may be arising in part from an overfitting of the
energy rather than a fundamental enhancement of the
underlying functional.

In this Letter we combine DFT [1-3] and its exten-
sions [12-22] with 1-RDM [23-40] and 2-RDM [41-68]
theories to obtain a universal O(N?3) generalization of
DFT for static correlation. We consider the invariants
of the cumulant part of the 2-RDM [45-48] with respect
to one-body unitary transformations [69, 70]. Using the
lowest order invariant, we derive a universal transforma-
tion of DFT into a 1-RDM functional theory (1-RDMFT)
whose convexity naturally allows the orbital occupations
to become fractional upon correlation. Critically, the
correction, derived from the cumulant invariant, has an
explicit dependence on the trace of the electron-repulsion
matrix that correctly determines the magnitude of the
correction, removing a significant limitation of previous
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work [21, 38], to realize a predictive theory. The
quadratic dependence of the functional on the 1-RDM
produces a quadratic semidefinite program that we
solve using an efficient boundary-point algorithm for
semidefinite programming [63] developed for variational
2-RDM theory [41, 42, 57-68]. To demonstrate, we
apply the functional theory to examining the barrier
to rotation in ethylene [71], the relative energies of
the benzynes [72], as well as a benchmark based on
the dissociation energies of 11 molecules [73]. The
cumulant-based generalization of DFT has the potential
to extend the reach of DFT to treat a broader range of
molecules and materials including those whose properties
are significantly influenced by static correlation.

Theory: Consider the energy of any many-electron
atom or molecule in a finite basis of r spin orbitals as
a functional of the 1- and 2-RDMs [28]

Eorpm['D,2D] = Tr(*H'D) + Tr(*V?D) (1)

in which 'H is the matrix representation of the one-
electron kinetic energy and nuclear-electron Coulomb
terms, 2V is the matrix representation of the two-electron
repulsion term, and 'D and 2D are the 1- and 2-RDMs,
normalized to N and N (N — 1)/2, respectively. We can
re-express the 2-RDM in terms of its cumulant expan-
sion [45-48]

D='DA'D + 2A (2)

where A denotes the antisymmetric (or Grassmann) ten-
sor product [45] and 2A is the cumulant (or connected)
part of the 2-RDM. Hence, the energy can also be written
as a functional of the 1-RDM and the cumulant 2-RDM

Esrpm[' D2 A] = E['D] + E2[PA] (3)
in which

E'D]=Te(*H'D) + Tr(*V'D A'D) (4)
EAPA] = Tr(?V 2A). (5)



Because the cumulant 2-RDM can be decomposed
into three orthogonal subspaces based on the unitary
group [69], known as the unitary decomposition [70], we
have

A =200+ %A +2A, (6)
or
ESPA] = Ef PAo] + ECPA + ER[PAq] - (7)
where
ERPAx] = Tr(PV 2Ay). (8)

Because the zeroth component of the unitary decompo-
sition of the cumulant 2-RDM is [69]

2

2A
Bo = r(r—1)

Tr(?A) 21 (9)

in which 27 is the two-electron identity matrix, we can
express the zeroth component of the cumulant correction
to the energy as follows

2

Eg[PAo] = rr—1)

Tr(?V)Tr(A). (10)

However, the trace of the cumulant 2-RDM can be ex-
pressed in terms of the 1-RDM’s idempotency [74-77]

Tr(2A) = —%ﬁ(lp —-1D% (11)

in which 1 D* denotes the square of the 1-RDM, and the
trace of 2V can be expressed in terms of the two-electron
repulsion integrals in physics notation

Te(*V) = QZ (2(ijllig) — (i31l53)) (12)

where the tilde denotes the index of the spatial part of
the spin orbital. Therefore, using Egs. (11) and (12)
in Eq. (10), we can express the zeroth component of the
cumulant energy correction as a functional of the 1-RDM

ESAo) = —Te(*D — 'D?) (13)

where
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Approximating the cumulant energy with its zeroth-
order component yields a 1-RDM functional theory that
corrects the Hartree-Fock energy.

The correction mainly accounts for static correlation.
To see this, we consider the contribution of energetically
low-lying excitations to the electron correlation, known
as dynamic correlation. The largest contribution arises

from the double excitations in which two electrons
in occupied orbitals are promoted to two unoccupied
orbitals. These excitations appear in off-diagonal terms
of the cumulant 2-RDM in which both upper indices
correspond to unoccupied orbitals and both lower indices
correspond to occupied orbitals [55]. These elements,
however, only contribute to the final energy term from
the unitary decomposition. Consequently, the zeroth
energy term, arising from the trace of the cumulant
2-RDM, primarily accounts for static correlation. We
can alternately establish the relationship between this
correction and static correlation from directly evaluating
the trace of the cumulant 2-RDM. The cumulant’s trace
equals the trace of the idempotency relation for the
1-RDM [74-77]. The 1-RDM only deviates significantly
from idempotency when its occupation numbers are
highly fractional—far from zero and one, which occurs
primarily when an atom or molecule possesses significant
static correlation.

Previous work showed that we can transform DFT into
a 1-RDMFT by adding a correction functional [21, 38]

Erpmrr['D] = Epprar[' D] + C[' D] (15)
in which

Eppr4r['D] = Epprlp] + (T['D] — Tylp])  (16)
Eprrlp] = Ts[p] + Vp] + Fie[p] (17)

where p is the one-electron density, T;[p] is the non-
interacting kinetic energy functional, T'[* D] is the inter-
acting kinetic energy functional, V[p] is the sum of the
external and Hartree potentials, Fy.[p] is the exchange-
correlation functional, and C[' D] is the correction func-
tional. An approximate form for C['D] we derived to
be [38]

C['D] = —wTr(*D — D% (18)

in which w was an unknown parameter whose value, we
showed, depends on the molecular system. Comparing
Eq. (18) with Eqgs. (13) and (14), however, we find that
w = ~y or that w depends on a subset of the electron
repulsion integrals. We introduce a damping factor
k € [0,1] such that w = kv to account for the fact
that the density functional already includes some of
the static correlation. Importantly, «, we observe, is
largely independent of the molecular system because the
system-dependent behavior is captured by the trace of
the two-body interaction matrix, and hence, for a given
approximate density functional a single value for the
damping parameter can be used across molecules. While
the damping parameter does vary with the choice of
the density functional, its optimal magnitude increases
linearly with the amount of Hartree-Fock exchange.
Consequently, we find that a greater correction for
electron correlation is required for DF'T functionals with
a greater degree of Hartree-Fock exchange. Using the



correction with DFT rather than Hartree-Fock theory
has the important advantage that DFT already has a
good approximation to the dynamic correlation.

The cumulant-based correction can also be viewed
as a correction to the convexity of the energy func-
tional [78]. The Hartree-Fock energy is a concave
functional of the 1-RDM [79, 80]. This concave property
causes the solutions of Hartree-Fock theory to occur at
extreme points along the boundary of the convex set
of 1-RDMs that correspond to Slater determinant wave
functions [80]. The correct 1-RDM energy functional is
convex which causes its solutions, when correlated, to lie
inside the convex set of 1-RDMs [81]. Incorporation of
the cumulant-based energy correction, which is a convex
functional of the 1-RDM, increases the convexity of both
the Hartree-Fock and DFT-based energy functionals.
This enhancement of convexity generates a movement,
described by Schilling and Schilling as a force [33],
arising from correlation that drives the 1-RDM into the
convex set and away from its boundary.

Results: We apply the I-RDMFT to treat the barrier
to rotation in ethylene [71], the relative energies of the
benzynes [72], as well as a benchmark based on the
atomization energies of 11 molecules [73]. We use the
formula w = kv with v in Eq. (14) and « = 0.158 for
correcting both SCAN-DFT [82] and PBE-DFT [83],
which we denote as SCAN-RDMFT and PBE-RDMFT,
respectively (see Table S1 in the Supplemental Material
(SM)). Previous work showed empirically that the ratio
of the optimal weight for correcting the Hartree-Fock
method to the optimal weight for correcting the SCAN-
DFT functional is a constant [21], which determines the
value of k. The fact that x is significantly less than unity
indicates that the SCAN and PBE functionals already
account for a significant percentage of 2Ag; nonetheless,
as shown below, the missing part is critical to both
generating the fractional occupations and correcting the
energy errors. Because the degree to which a functional
accounts for this term should be independent of the
molecule, we can understand why a single value of k for
a given functional is likely to be accurate across a wide
range of molecules. All calculations use the correlation-
consistent polarized valence double-zeta (cc-pVDZ) basis
set [84]. We solve the 1-RDMFT by an O(N?) self-
consistent-field method, detailed in Refs. [21, 38], that
solves a semidefinite program by the boundary-point
algorithm developed in Ref. [63] for variational 2-RDM
theory [57-68]. In general, the 1-RDMFT can be readily
implemented on top of existing self-consistent-field
implementations of DFT. While DFT can in princi-
ple employ only the occupied molecular orbitals, the
1-RDMFT can also exploit just the non-negligible frac-
tionally occupied orbitals, which will be a small fraction
of the total number of orbitals. Calculations with
the complete-active-space self-consistent-field method
(CASSCF) [85] and the anti-Hermitian contracted
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FIG. 1. CyHs rotational barrier potential energy sur-

faces obtained from CASSCF(12,12)/ACSE, CCSD(T), PBE-
RDMFT, SCAN-RDMFT, PBE-DFT, SCAN-DFT, and
CASSCF(12,12)/tPBE calculations with a cc-pVDZ basis set.

Schrodinger equation (ACSE) [49, 51] are performed
with the Quantum Chemistry Package in Maple [86],
and calculations with coupled cluster with single, dou-
ble, and pertubative triple excitations [CCSD(T)] [87]
and multi-configuration pair density functional theory
(MC-PDFT) [14] are performed with PySCF [88].

First, we calculate the potential energy surface for
the C-C bond rotation in CyH4, which corresponds
to a transition from a double bond well captured by
a single reference approach at a 0° dihedral angle
to a strongly correlated biradical at a 90° dihedral
angle. The results, plotted in Fig. 1, reveal a general
overestimation of the barrier height in single-reference
methods, with errors of 26.21, 31.50, and 6.70 kcal/mol
for PBE-DFT, SCAN-DFT, CCSD(T) respectively, as
compared to a CASSCF(12,12)/ACSE reference (here
we use the (N,r/2) convention where N is the number
of electrons and r/2 is the number of spatial orbitals
in the active space). 1-RDMFT yields significant
improvements with errors of -6.51, and 0.33 kcal/mol for
PBE-RDMFT and SCAN-RDMFT, respectively. These
results compare favorably to tPBE MC-PDFT, which
yields an error of 5.72 kcal/mol. (The “t” in the acronym
tPBE denotes the translation of the conventional PBE
exchange-correlation functional in DFT to an on-top
functional for use in MC-PDFT [14].) The DFT and
1-RDMFT potential energy surfaces reveal identical
relative energies along the HCCH dihedral angle until
the 1-RDMFTs yield fractionally occupied orbitals,



TABLE I. Dissociation errors in kcal/mol for a sub-
set of the MR-MGN-BE17 test set compared to the
CASSCF (valence)/ACSE energies. Dissociation data taken
at 5A internuclear distances.

Dissociation errors
DFT RDMFT  MC-PDFT

PBE SCAN PBE SCAN tPBE
B, — 2B 19.53 23.01 -2.12 -0.87 10.73
Cy — 2C 101.47 85.63 12.12 23.38 7.80
CN — C+N 125.34 139.02 29.47 48.28 17.69
CO; — C+20/|172.11 205.46 8.17 46.22 35.37
F; — 2F 73.84 84.91 -19.13 -17.53 22.51
NF3; — N+ 3F |184.18 205.46 71.10 96.94 68.28
NO — N+O 142.28 156.00 36.58 57.72 22.81
So — 28 58.21 153.34 -40.02 -27.79 17.41
SiO — Si+ 0O 67.55 251.27 -36.07 -15.28 8.77
CO—C+0 94.62 359.51 -26.09 -0.47 12.27
Ny — 2N 219.93 213.67 43.61 T71.57 20.08
MSE 114.46 127.85 7.06 25.65 22.15
MUE 114.46 127.85 29.50 36.91 22.15

starting at the 54° and 57° dihedral angles, for PBE and
SCAN respectively, owing to increasingly strong static
correlation. A plot of the orbital occupations along the
dihedral angle is available in Fig. S1 of the SM. Both
PBE-RDMFT and SCAN-RDMFT are able to remove
correctly the energetic discontinuity observed in DFT at
the 90° dihedral angle caused by the degeneracy of the
highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) resulting in a
smooth potential energy surface. CCSD(T) and tPBE
MC-PDFT, however, increasingly deviate from the
reference CASSCF(12,12)/ACSE curve with a maximal
error at the 90° dihedral angle, where they both fail to
fully resolve the multi-reference character, resulting in
the overestimation of the barrier height compared to the
ACSE and the 1-RDMFTs.

Next, we apply PBE-RDMFT and SCAN-RDMFT to
a subset of the multi-reference main group non-metal
bond energy molecular test set (MR-MGN-BE17) [73],
previously developed as set of systems for testing the
accuracy of density functionals on bond dissociations.
Equilibrium geometries and reference dissociation en-
ergies are obtained by scanning over the molecules’
limited degrees of freedom using the ACSE seeded with
a valence CASSCF calculation. The results, displayed in
Table I, yield mean unsigned errors (MUEs) of 29.50 and
36.91 kcal/mol for PBE-RDMFT and SCAN-RDMFT,
respectively, compared to the reference CASSCF/ACSE
energies. Here, CASSCF calculations utilize active
spaces encompassing all valence electrons and orbitals.
These results present significant improvements over tra-
ditional PBE-DFT and SCAN-DFT’s MUEs of 114.46
and 127.85 kcal/mol with an approximate 4-fold reduc-
tion in error. This is the result of I-RDMFT fractionally
occupying the valence orbitals as the molecules dissociate

which corrects DFT’s overestimation of the dissociated
limit. The 1-RDMFT MUEs also compare favorably to
the explicitly correlated tPBE MC-PDFT calculations’
MUE of 22.15 kcal/mol. Finally, consideration of the
mean signed error (MSE) for PBE-RDMFT of 7.06
kcal/mol, reveals a nearly equal over and underestima-
tion of the dissociation energies, while SCAN-RDMFT’s
MSE of 25.65 kcal/mol shows a stronger tendency to
overestimate the dissociation energies. As PBE-DFT,
SCAN-DFT, and tPBE never underestimate the dissoci-
ation energy their MSEs match their MUEs with values
of 114.46, 127.85, and 22.15 kcal/mol respectively.
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FIG. 2. Relative energies of meta and para-benzyne with
respect to ortho-benzyne from RDMFT and DFT with the
SCAN and PBE functionals, MC-PDFT using the tPBE func-
tional, and CCSD(T).

Finally, we investigate the relative energy differences
between the three geometric isomers of benzyne with
ground-state geometries obtained from Ref. [72], which
become increasingly strongly correlated with increasing
distance between the radical centers (ortho-benzyne <
meta-benzyne < para-benzyne) [89]. As both meta-
and ortho-benzyne have weak static correlation effects,
the 1-RDMFTs are expected to remain idempotent,
recovering traditional DFT’s energies. This is, indeed,
observed, with SCAN-RDMFT and SCAN-DFT both
producing energy differences of 9.34 kcal/mol between
the two isomers while PBE-RDMFT and PBE-DF'T yield
8.4 kcal/mol. These results are both within 1.1 kcal/mol
of CASSCF(4,4)/tPBE’s predicted energy difference of
9.5 kcal/mol. CCSD(T) deviates more significantly from
the previous results, yielding the largest energy difference
at 14.03 kcal/mol, which is in good agreement with the



experimentally predicted energy gap of 15.6 kcal/mol.
Calculation of the more strongly correlated para-isomer
yields more significant deviations between 1-RDMFT
and DFT, resulting in decreases in the para-ortho energy
differences obtained from SCAN-DFT and PBE-DFT
of 35.89 and 33.73 kcal/mol respectively to 30.62 and
27.41 kcal/mol from SCAN-RDMFT and PBE-RDMFT.
These 1-RDMFT values are within the experimental
error range and give significantly better agreement with
CCSD(T) and tPBE’s energy differences of 27.42 and
28.80 kcal/mol, respectively, compared to DFT.

Conclusions: We present a universal 1-RDMFT func-
tional for the treatment of strongly correlated systems,
based on a transformation of traditional DFT. While
the development of density-, 1-RDM-, and 2-RDM-based
theories often occur separately, here we combine aspects
of DFT and 2-RDM theory to develop a 1-RDMFT that
retains DFT’s O(N?) efficiency while realizing the abil-
ity to capture static correlation. Importantly, by using
the unitary invariants of the cumulant 2-RDM, we derive
a general formula for the magnitude of the correction—
the w parameter—in terms of the diagonal part of two-
electron interaction matrix, which overcomes a limita-
tion of earlier work, arising from the need to define

a system specific w value [21, 38]. The derived for-
mula for w can also be used to systematize related ap-
proaches, such as information density-matrix functional
theory (iDMFT) [37] and thermally-assisted-occupation
DFT (TAO-DFT) [13, 22], which rely on unknown fic-
titious temperatures in Fermi-Dirac distributions. We
can potentially improve the functional further by ap-
proximating the remaining terms of the unitary decom-
position, which we will investigate in future work. We
demonstrate the applicability of 1-RDMFT by investi-
gating a set of small molecular dissociations in the MR-
MGN-BE17 test set, as well as the rotational barrier
height of ethylene and the relative energy differences of
the benzyne isomers. Due to the 1-RDM correction in
the energy functional, I-RDMFT yields significant im-
provements over DFT in the presence of strong corre-
lation while recovering the DFT energy in the single-
reference limit. The 1-RDMFT opens new possibilities
for the treatment of static correlation in the accurate
prediction of molecular structures and processes.
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