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Abstract

We study a class of regularized proximal operators in Wasserstein-2 space. We derive
their solutions by kernel integration formulas. We obtain the Wasserstein proximal
operator using a pair of forward–backward partial differential equations consisting of a
continuity equation and a Hamilton–Jacobi equation with a terminal time potential
function and an initial time density function. Following Heaton et al. (Global solutions
to nonconvex problems by evolution of Hamilton–Jacobi PDEs, 2022. arXiv:2202.11014)
and Osher et al. (A Hamilton–Jacobi-based proximal operator, 2022. arXiv:2211.12997),
we regularize the PDE pair by adding forward and backward Laplacian operators. We
apply Hopf–Cole type transformations to rewrite these regularized PDE pairs into
forward–backward heat equations. We then use the fundamental solution of the heat
equation to represent the regularized Wasserstein proximal with kernel integral
formulas. Numerical examples show the effectiveness of kernel formulas in
approximating the Wasserstein proximal operator.

Keywords: Wasserstein proximal operators, Hopf–Cole type transformations,
Schrödinger bridge systems, Heat kernels

1 Introduction
Proximal operators are essential tools in optimization. Recently, proximal operators in
probability space equippedwith theWasserstein-2metric have shown tobeuseful in scien-
tific computing [17] and machine learning [3,18]. The proximal operator inWasserstein-
2 space is called the Wasserstein proximal operator [1]. An interesting example is the
Wasserstein proximal operator of the Kullback–Leibler (KL) divergence, known as the
JKO (Jordan–Kinderlehrer–Otto) scheme [12]. This has been used to approximate the
Wasserstein gradient flow as a backward Euler scheme in time discretizations.
However, computing the Wasserstein proximal operator requires an optimization pro-

cedure. One has to develop an optimization step to compute or approximateWasserstein
metrics and energy functionals. This paper proposes an alternative approach to approx-
imate the Wasserstein proximal operator. We use an optimal control formulation of the
Wasserstein proximal operator, whose minimizer forms a pair of forward–backward par-
tial differential equations, including continuity and Hamilton–Jacobi equations. We add
forward–backward Laplacian operators into the PDE system as a regularization. Applying
Hopf–Cole type transformations enables us to rewrite the PDE system into forward–
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backward heat equations. Using the fundamental solution of two heat equations, we write
the regularized Wasserstein proximal of linear energy explicitly with a simple kernel for-
mula.Weapply the same idea to the regularizedWasserstein proximal of nonlinear energy.
This turns into a nonlinear integral equation, which can be solved by simple fixed-point
iteration methods.
We now present the approximation of Wasserstein proximal of linear energy below.

Consider a linear energy functional

V(ρ) =
∫
Rd

V (x)ρ(x)dx,

where V ∈ C1(Rd) is a given function. Denote a scalar constant T > 0 and ρ0 ∈ P2(Rd),
where P2(Rd) is the probability density set with finite second moment. Consider the
Wasserstein proximal operator of the linear energy below:

ρT := WProxTV (ρ0) := arg min
q∈P2(Rd )

V(q) + W(ρ0, q)2

2T
,

whereW(ρ0, q) is the Wasserstein-2 distance between ρ0 and q, and the minimization is
taken among all probability density functions qwith the finite secondmoment.We denote
theminimizer ρT = q as theWasserstein proximal operator. According to the Benamou–
Brenier formula [2] and simple derivations in Sect. 2, the Wasserstein proximal operator
forms an optimal control problem, whose minimizer satisfies a forward–backward PDE
system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ(t, x) + ∇x · (
ρ(t, x)∇x�(t, x)

) = 0,

∂t�(t, x) + 1
2
‖∇x�(t, x)‖2 = 0,

ρ(0, x) = ρ0(x), �(T, x) = −V (x).

(1)

Here, t ∈ [0, T ], �(0, ·), �(T, ·) are initial and terminal value solutions for the Hamilton–
Jacobi equation, and ρT satisfies the Wasserstein proximal operator of linear energy.
In this paper, motivated by regularized proximal operators in Euclidean space [11,20],

we study a regularized PDE system of Eq. (1). For a constant scalar β > 0, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ(t, x) + ∇x · (
ρ(t, x)∇x�(t, x)

) = β�xρ(t, x),

∂t�(t, x) + 1
2
‖∇x�(t, x)‖2 = −β�x�(t, x),

ρ(0, x) = ρ0(x), �(T, x) = −V (x).

(2)

By applyingHopf–Cole type transformations, we demonstrate that Eq. (2) has the solution
below:⎧⎪⎪⎨

⎪⎪⎩
ρ(t, x) = (GT−t ∗ e−

V
2β )(x) ·

(
Gt ∗ ρ0

GT ∗ e−
V
2β

)
(x),

�(t, x) = 2β log
(
GT−t ∗ e−

V
2β

)
(x).

where ∗ is a convolution operator and Gt is the scaled heat kernel denoted as

Gt (x, y) := 1√
(4πβt)d

e−
‖x−y‖2
4βt .

In particular, we obtain an integral representation for the terminal density function:

ρ(T, x) =
∫
Rd

K (x, y)ρ(0, y)dy, (3)
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where K : Rd × R
d → R is a kernel function

K (x, y) := e−
1
2β (V (x)+ ‖x−y‖2

2T )

∫
Rd e−

1
2β (V (z)+ ‖z−y‖2

2T )dz
.

For a fixed variable y ∈ R
d , the kernel function K (x, y) is a Gibbs distribution or softmax

function of variable x with constant 1
2β and function V (x)+ 1

2T ‖x − y‖2. Formula (3) is a
kernel integration representation of the regularized Wasserstein proximal operator. For
simplicity of discussion, we only consider the regularized Wasserstein proximal operator
computation in the one-dimensional spatial domain. In future work, we shall study the
estimation and approximation of proposed high-dimensional kernel integration formulas.
We also remark that if u(t, x) := −�(T − t, x), t ∈ [0, T ] in the second equation of

system (2), then u(t, x) satisfies the classical initial value Hamilton–Jacobi equation

∂tu(t, x) + 1
2
‖∇xu(t, x)‖2 = β�xu(t, x), u(0, x) = V (x).

In this case, the solution u(t, x) = −�(T − t, x) for regularized Wasserstein proximal
operator also recovers the solution in [11,20]. Numerical methods developed in [11,20]
could be useful to estimate high-dimensional kernel integration formulas.
Wasserstein proximal operators have been widely studied [1]. The regularized Wasser-

stein proximal dynamics (2) and their Hopf–Cole type transformations [19] have been
widely studied in Schrödinger bridge systems [6,22,23] and Schrödinger equations
[4,19]; see also generalized Hopf–Cole type transformations [15]. In particular, there
are Schrödinger–Follermer diffusions [8], which are closely related to the equation sys-
tem (2).We also remark that the optimal control formulation of theWasserstein proximal
operator is a variational problem in potential mean-field games; see [13]. It has been used
in studying and computing particular classes of mean-field control and mean-field games
[9,10]. Compared to all the above studies, we study Schrödinger bridge systems with dif-
ferent boundary conditions. It contains a given initial time density function and a terminal
time potential function, different from fixed initial and terminal time density functions
as in Schrödinger bridge systems. This allows us to obtain a closed-form kernel integra-
tion update, at least for regularized Wasserstein proximal operators of linear energies.
For nonlinear potential energies, our kernel formula also provides an iterative update to
compute Wasserstein proximal operators.
The paper is organized as follows. We introduce Wasserstein proximal operators of

linear energies, their diffusion regularizations and minimization systems in Sect. 2. In
Sect. 3, we derive the kernel representation of regularized Wasserstein proximal of linear
energies. Finally, we generalize the kernel formulation forWasserstein proximal operators
of nonlinear energies in Sect. 4. Numerical experiments of proposed kernel functions are
presented in Sect. 5.

2 RegularizedWasserstein proximal operators of linear energies
In this section, we study a class of mean-field control problems that lead to regularized
proximal operators of linear energies in Wasserstein-2 space. We derive the minimizing
equations, which is a forward–backward PDE system.
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2.1 Wasserstein proximal operators of linear energies

Consider the proximal operator of linear energy in Wasserstein-2 space.

ρT := WProxTV (ρ0) := arg min
q∈P2(Rd )

V(q) + W(ρ0, q)2

2T
. (4)

Here,W denotes the Wasserstein-2 distance between two densities ρ0 and ρ; see [1,21].
Recall that theWasserstein-2 distance can be recast as an optimal control problem, known
as the Benamou–Brenier formula [2]. Consider

W(ρ0, q)2

2T
:= inf

ρ,v,ρT

∫ T

0

∫
Rd

1
2
‖v(t, x)‖2ρ(t, x)dxdt,

where the minimizer is taken among all vector fields v : [0, T ] × R
d → R

d , density
functions ρ : [0, T ) × R

d → R, such that

∂tρ(t, x) + ∇ · (ρ(t, x)v(t, x)) = 0, ρ(0, x) = ρ0(x), ρ(T, x) = q(x).

Wasserstein proximal operators are useful in designing sampling algorithms. However,
the Wasserstein proximal operator (4) does not have a closed-form update. One needs to
apply numerical methods to compute the variational problem (4).

2.2 RegularizedWasserstein proximal operators of linear energies

In this subsection, we consider a regularized Wasserstein proximal operator, which adds
a diffusive term to the continuity equation of the Benamou–Brenier formula. This reg-
ularization forms an interesting mean-field control problem. We then derive the related
minimizing system with initial-terminal conditions. In the next section, we demonstrate
that this minimizing system has a closed-form kernel representation.

Definition 1 Let β > 0 be a scalar, and ‖·‖ is the Euclidean norm. Consider the following
mean-field control problem:

inf
ρ,v,q

∫ T

0

∫
Rd

1
2
‖v(t, x)‖2ρ(t, x)dxdt +

∫
Rd

V (x)q(x)dx, (5)

where the minimizer is taken among all drift vector fields v : [0, T ] × R
d → R

d , density
functions ρ : [0, T ) × R

d → R and terminal time density function q : Rd → R, such that

∂tρ(t, x) + ∇ · (ρ(t, x)v(t, x)) = β�ρ(t, x), ρ(0, x) = ρ0(x), ρ(T, x) = q(x).

We denote the regularized proximal operator as

ρT := WProxTV ,β (ρ0),

where ρT is the solution for the density function in the variational problem (5) at time
t = T .

Remark 1 Wenote that when β = 0, variational problem (5) is theminimization problem
(4). We add a diffusion into the continuity equation in the variational problem (5). This
forms the regularized Wasserstein proximal operator.

We next derive the minimization system for mean-field control problem (5).

Proposition 2 (Regularized Wasserstein proximal dynamics) There exists a Lagrange
multiplier function � : [0, T ] × R

d → R, such that (ρ,�) satisfies the following forward–
backward PDE system.
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ(t, x) + ∇x · (
ρ(t, x)∇x�(t, x)

) = β�xρ(t, x),

∂t�(t, x) + 1
2
‖∇x�(t, x)‖2 = −β�x�(t, x),

ρ(0, x) = ρ0(x), �(T, x) = −V (x).

(6)

Here, the time variable satisfies t ∈ [0, T ], ρ(t, x) is the density function, and �(t, x) is the
potential function. Equation system (6) consists of a forward-time Fokker–Planck equa-
tion and a backward-time viscous Hamilton–Jacobi equation (Burgers’ equation). And the
terminal time density function is the regularized Wasserstein proximal density:

ρ(T, x) = q(x) = WProxTV ,β (ρ0).

Proof Denote a Lagrange multiplier function �. Consider the following saddle point
problem

inf
ρ,v,ρT

sup
�

L(ρ, v, ρT ,�),

where

L(ρ, v, ρT ,�) :=
∫ T

0

∫
Rd

1
2
‖v(t, x)‖2ρ(t, x)dxdt +

∫
Rd

V (x)ρ(T, x)dx

+
∫ 1

0

∫
Rd

�(t, x)
(
∂tρ(t, x) + ∇ · (ρ(t, x)v(t, x)) − β�ρ(t, x)

)
dxdt

=
∫ T

0

∫
Rd

1
2
‖v(t, x)‖2ρ(t, x)dxdt +

∫
Rd

V (x)ρ(T, x)dx

+
∫
Rd

�(T, x)ρ(T, x)dx −
∫
Rd

�(0, x)ρ(0, x)dx

+
∫ 1

0

∫
Rd

(
− ∂t�(t, x)ρ(t, x) − (∇�(t, x), v(t, x))ρ(t, x)

−β�(t, x)�ρ(t, x)
)
dxdt.

The saddle point system satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ

δv
L = 0,

δ

δ�
L = 0,

δ

δρ
L = 0,

δ

δρT
L = 0.

⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ(v − ∇�) = 0,

∂tρ + ∇ · (ρv) − β�ρ = 0,
‖v‖2
2

− ∂t� − ∇� · v − β�� = 0

�(T, x) + V (x) = 0.

Substituting v = ∇� into the third equality, we derive two PDEs (6). Thus, we denote
q(x) = ρ(T, x). �	

Remark 2 We repeat that ρT = WProxTV ,β (ρ0), where ρT (x) = ρ(T, x) represents the
density function at the terminal time t = T in PDE system (6).

3 Kernel formulation
In this section, we derive ρT with a kernel function (14). We solve a pair of forward–
backward PDE system involving a viscousHamilton–Jacobi equationwith a fixed terminal
time boundary condition. By using aHopf–Cole type transformation, we rewrite the PDEs
into forward–backward heat equations with nonlinear initial-terminal time conditions.
Thus, we solve the original PDE system (6).
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Proposition 3 (Hopf–Cole type transformations) Define a pair of variables (η, η̂) as

η(t, x) = e
�(t,x)
2β , η̂(t, x) = ρ(t, x)e−

�(t,x)
2β . (7)

I.e.,

�(t, x) = 2β log η(t, x), ρ(t, x) = η(t, x)η̂(t, x).

Then, Eq. (6) in term of (η, η̂) satisfies forward–backward heat equations with a nonlinear
initial-terminal time boundary condition:

⎧⎪⎪⎨
⎪⎪⎩

∂t η̂(t, x) = β�xη̂(t, x),

∂tη(t, x) = −β�xη(t, x),

η(0, x)η̂(0, x) = ρ0(x), η(T, x) = e
�(T,x)
2β = e−

V (x)
2β .

(8)

Proof The proof follows from classical calculations in Hopf–Cole type transformations.
For completeness of paper, we present the derivation of forward–backward heat equations
(8). Denote η(t, x) = e

�(t,x)
2β . Then

∂tη = ∂t (e
�(t,x)
2β ) = 1

2β
e

�
2β ∂t�.

And

�η = ∇ · (∇η) = ∇ ·
(

1
2β

e
�
2β ∇�

)

= 1
2β

(
∇e

�
2β ,∇�

)
+ 1

2β
e

�
2β ��

= 1
(2β)2

e
�
2β ‖∇�‖2 + 1

2β
e

�
2β ��

= 1
2β2 e

�
2β

(
1
2
‖∇�‖2 + β��

)
.

From the viscous Hamilton–Jacobi equation (6), we have

∂tη + β�η = 0.

Denote η̂(t, x) = ρ(t, x)e−
�(t,x)
2β . Then,

∂t η̂ = e−
�
2β

{
∂tρ − ρ

1
2β

∂t�
}
.

And

∇η̂ = ∇(ρe−
�
2β ) = ∇ρe−

�
2β + ρ∇e−

�
2β

= ∇ρe−
�
2β − 1

2β
ρ∇�e−

�
2β .

Hence,

�η̂ = ∇ · (∇η̂) = ∇ ·
(

∇ρe−
�
2β − 1

2β
ρ∇�e−

�
2β

)

= �ρe−
�
2β +

(
∇ρ,∇e−

�
2β

)
− 1

2β
(∇ρ,∇�)e−

�
2β − 1

2β
ρ��e−

�
2β

− 1
2β

ρ
(
∇�,∇e−

�
2β

)

= �ρe−
�
2β − 1

β
(∇ρ,∇�)e−

�
2β − 1

2β
ρ��e−

�
2β + 1

(2β)2
ρ‖∇�‖2
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= e−
�
2β

{
�ρ − 1

β
∇ · (ρ∇�) + 1

2β
ρ�� + 1

4β2 ρ‖∇�‖2
}

= 1
β
e−

�
2β

{
∂tρ − 1

2β
ρ∂t�

}
,

where we use the fact ∇ · (ρ∇�) = (∇ρ,∇�) + ρ��. Hence, we have

∂t η̂ − β�η̂ = 0.

�	

We next apply the heat kernel to represent the solution of PDE system (8). From Eq. (7),
we can derive solutions ρ(t, x) and �(t, x) in terms of ρ0(x) and V (x).

Proposition 4 (Kernel solutions) Denote a scaled heat kernel function:

Gt (x, y) := 1√
(4πβt)d

e−
‖x−y‖2
4βt , t ∈ (0, T ].

Assume that∫
Rd

e−
1
2β (V (z)+ ‖z−y‖2

2T )dz < +∞.

Then, the following solutions hold.
⎧⎪⎪⎨
⎪⎪⎩

ρ(t, x) =
(
GT−t ∗ e−

V
2β

)
(x) ·

(
Gt ∗ ρ0

GT ∗ e−
V
2β

)
(x),

�(t, x) = 2β log
(
GT−t ∗ e−

V
2β

)
(x).

(9)

So

ρ(t, x) = 1
(
4πβ

t(T−t)
T

) d
2

∫
Rd

∫
Rd

e−
1
2β (V (z)+ ‖x−z‖2

2(T−t) + ‖x−y‖2
2t )

∫
Rd e−

1
2β (V (ỹ)+ ‖y−ỹ‖2

2T )dỹ
ρ(0, y)dydz, (10)

and

�(t, x) = 2β log
(∫

Rd

1

(4πβ(T − t))
d
2
e−

1
2β (V (y)+ ‖x−y‖2

2(T−t) )dy
)
. (11)

Proof Denote ηt (x) = η(t, x). From ∂tη + β�η = 0, we have

η(t, x) = (GT−t ∗ ηT )(x) =
(
GT−t ∗ e−

V
2β

)
(x). (12)

When t = 0, we have

η(0, x) = (GT ∗ ηT )(x) = (GT ∗ e−
V
2β ).

From the initial time boundary condition ρ0(x) = η(0, x)η̂(0, x), we have

η̂(0, x) = ρ(0, x)
η(0, x)

= ρ0(x)
(GT ∗ ηT )(x)

= ρ0(x)

(GT ∗ e−
V
2β )(x)

.

And from ∂t η̂ − β�η̂ = 0, we have

η̂(t, x) = (Gt ∗ η̂0)(x) =
(
Gt ∗ ρ0

GT ∗ e−
V
2β

)
(x). (13)
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Plugging solution (12) and (13) into Hopf–Cole transformation (7), we obtain

ρ(t, x) = η(t, x) · η̂(t, x) =
(
GT−t ∗ e−

V
2β

)
(x) ·

(
Gt ∗ ρ0

GT ∗ e−
V
2β

)
(x),

and

�(t, x) = 2β log η(t, x) = 2β log
(
GT−t ∗ e−

V
2β

)
(x).

�	

In particular, we represent the solution ρ(T, x) by an integral kernel formula.

Proposition 5

ρ(T, x) =
∫
Rd

K (x, y,β , T, V )ρ(0, y)dy,

where K : Rd × R
d × R+ × R+ × C1(Rd) → R is the kernel function

K (x, y,β , T, V ) := e−
1
2β (V (x)+ ‖x−y‖2

2T )

∫
Rd e−

1
2β (V (z)+ ‖z−y‖2

2T )dz
. (14)

Proof We apply t = T in update (9) for the density function. �	

Remark 3 One can check that ρ(t, x) in formula (10) is a probability density function. I.e.,
ρ(t, x) ≥ 0, and

∫
Rd ρ(t, x)dx = 1. The fact that

∫
Rd ρ(t, x)dx is independent of t follows

the first equation in (6). In detail, formula (10) can be recast as

ρ(t, x) = 1

(4πβ
t(T−t)

T )
d
2

∫
Rd

∫
Rd

e−
1
2β (V (z)+ ‖y−z‖2

2T )e
− 1

2β
‖x− tz+(T−t)y

T ‖2
2 (T−t)t

T

∫
Rd e−

1
2β (V (ỹ)+ ‖y−ỹ‖2

2T )dỹ
ρ(0, y)dydz.

From this formula, we directly observe that ρ(t, x) is a probability density function.

Remark 4 We remark that�(t, x) in Eq. (11) is a solution for the viscousHamilton–Jacobi
equation, and ∇x�(0, x) = 2β∇x log(GT ∗ e−

V
2β )(x) approximates the proximal operator

of V (x) in Euclidean space; see [11,20].

Remark 5 We remark that Hopf–Cole type transformations have been used in study-
ing Schrödinger bridge systems [6,15,16,22,23]. One can construct Schrödinger-Föllmer
diffusion processes [8], which have applications in global optimization problems [7]. How-
ever, we are using different initial-terminal boundary conditions in the usual Schrödinger
bridge systems with fixed initial and terminal densities. The proposed system (6) has fully
closed-form solutions in both density function ρ and potential function �. The regular-
ized Wasserstein proximal operator of linear energies has closed-form representations.
Our approach can also work for nonlinear energies. See Eqs. (16), (17) in the next section.

We also present an analytical example of the integral kernel formula in Proposition 5.

Example 1 Consider

V (x) = 1
2
‖x − x0‖2,
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where x0 ∈ R
d is a fixed vector. From (11), we have

�(t, x) = βd log
1

T − t + 1
− ‖x − x0‖2

2(T − t + 1)
.

From (10), we have

ρ(t, x) = 1

(4πβ
t(T−t+1)

T+1 )
d
2

∫
Rd

e
− 1

4β t(T−t+1)
T+1

(x−
y
t + x0

T−t+1
1
t + 1

T−t+1
)2

ρ0(y)dy.

From (14), we obtain

ρ(T, x) = 1

(4πβ T
T+1 )

d
2

∫
Rd

e
− 1

4β T
T+1

(x−
y
T +x0
1
T +1

)2
ρ0(y)dy.

4 RegularizedWasserstein proximal operators of general energies
In this section, we study the regularizedWasserstein proximal operator of general energy
functionals.
Consider a functionalF : P2(Rd) → R. We study the proximal operator of energyF in

Wasserstein-2 space.

ρT = WProxF (ρ0) := arg min
q∈P2(Rd )

F (q) + W(ρ0, q)2

2T
.

Computing the Wasserstein proximal operator usually requires an optimization step.
Instead, we study a regularized optimal control problem.

Definition 6 Denote β > 0 as a scalar. Consider the following mean-field control prob-
lem:

inf
ρ,v,q

∫ T

0

∫
Rd

1
2
‖v(t, x)‖2ρ(t, x)dxdt + F (q), (15)

where the minimizer is taken among all vector fields v : [0, T ] × R
d → R

d , density
functions ρ : [0, T ) × R

d → R and terminal time density function q : Rd → R, such that

∂tρ(t, x) + ∇ · (ρ(t, x)v(t, x)) = β�ρ(t, x), ρ(0, x) = ρ0(x), ρ(T, x) = q(x).

We denote the regularized proximal operator as

ρT := WProxTF ,β (ρ0),

where ρT is the solution of density function in variational problem (15) at time t = T .

We can also represent the approximate proximal operator in a kernel representation.

Proposition 7 Denote the L2 first variation of functional F as

δ

δρ
F (ρ)(x) = F (x, ρ).

Then,

ρ(T, x) =
∫
Rd

K (x, y,β , T, ρT )ρ(0, y)dy, (16)
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where we define a kernel function K : Rd × R
d × R+ × R+ × P2(Rd) → R as

K (x, y,β , T, ρT ) := e−
1
2β (F (x,ρT )+ ‖x−y‖2

2T )

∫
Rd e−

1
2β (F (z,ρT )+ ‖z−y‖2

2T )dz
. (17)

Proof The proof follows from those in Sects. 2 and 3. We only need to replace V (x) by
δ
δρ
F (ρ)(x) = F (x, ρ). �	

Remark 6 We remark that for a general functional F (ρ), the kernel formula K depends
on ρT . We no longer have an explicit expression of ρT . Instead, we make use of equation
(16).

4.1 Examples

In this section, we present some examples of kernel representations. Consider an energy
functional

F (ρ) =
∫
Rd

V (x)ρ(x)dx + 1
2

∫
Rd

∫
Rd

W (x − y)ρ(x)ρ(y)dxdy +
∫
Rd

U (ρ(x))dx,

where V ∈ C1(Rd ;R), W ∈ C1(Rd ;R) is an interaction kernel function, with W (z) =
W (−z), z ∈ R

d , andU ∈ C1(Rd ;R) is an internal potential function. The L2 first variation
of F (ρ) satisfies

F (x, ρ) = δ

δρ
F (ρ)(x) = V (x) + (W ∗ ρ)(x) + U ′(ρ(x)).

Thus, the kernel function (17) satisfies

K (x, y,β , T, ρT ) := e−
1
2β (V (x)+(W∗ρT )(x)+U ′(ρT (x))+ ‖x−y‖2

2T )

∫
Rd e−

1
2β (V (z)+(W∗ρT )(z)+U ′(ρT (z))+ ‖z−y‖2

2T )dz
.

And the regularization Wasserstein proximal equation forms

ρT (x) =
∫
Rd

K (x, y,β , T, ρT )ρ0(y)dy.

We next present some examples for Eq. (16) and kernel function (17).

Example 2 Let V = U = 0. Then, the kernel function (17) satisfies

K (x, y,β , T, ρT ) := e−
1
2β ((W∗ρT )(x)+ ‖x−y‖2

2T )

∫
Rd e−

1
2β ((W∗ρT )(z)+ ‖z−y‖2

2T )dz
.

And the regularized Wasserstein proximal equation satisfies

ρT (x) =
∫
Rd

e−
1
2β ((W∗ρT )(x)+ ‖x−y‖2

2T )

∫
Rd e−

1
2β ((W∗ρT )(z)+ ‖z−y‖2

2T )dz
ρ0(y)dy.

Example 3 Let V = W = 0. Then, the kernel function (17) satisfies

K (x, y,β , T, ρT ) := e−
1
2β (U

′(ρT (x))+ ‖x−y‖2
2T )

∫
Rd e−

1
2β (U ′(ρT (z))+ ‖z−y‖2

2T )dz
.

And the regularized Wasserstein proximal equation satisfies

ρT (x) =
∫
Rd

e−
1
2β (U

′(ρT (x))+ ‖x−y‖2
2T )

∫
Rd e−

1
2β (U ′(ρT (z))+ ‖z−y‖2

2T )dz
ρ0(y)dy.
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5 Numerical experiments
In this section, we conduct several computational examples to numerically verify the
kernel formulations (14) and (17). We also discuss a fixed-point iteration algorithm that
uses the kernel formulation to calculate the Wasserstein proximal operator of general
functionals.

5.1 Validation the kernel formulation with optimization method

5.1.1 Solve the equivalent variational problem via primal-dual hybrid gradient (PDHG)

method

To numerically verify kernel formulations, we compute the mean-field control problem
(15) via theprimal-dual hybrid gradient approach.By introducing thefluxvariablem = ρv,
we can rewrite the mean-field control problem as the following constrained optimization
problem:

inf
ρ,m,q

∫ T

0

∫
Rd

‖m(t, x)‖2
2ρ(t, x)

dxdt + F (q), (18)

such that

∂tρ(t, x) + ∇ · m(t, x) = β�ρ(t, x), ρ(0, x) = ρ0(x), ρ(T, x) = q(x).

By introducing a Lagrangian multiplier �, we write optimization problem (18) into the
following saddle point problem:

inf
ρ,m,q

ρ(0,·)=ρ0(·)
ρ(T,·)=q(·)

sup
�

L(ρ, m, q,�), (19)

where

L(ρ, m, q,�) :=
∫ T

0

∫
Rd

‖m(t, x)‖2
2ρ(t, x)

dxdt + F (q)

+
∫ T

0

∫
Rd

�(t, x)
(
∂tρ(t, x) + ∇ · m(t, x) − β�ρ(t, x)

)
dxdt. (20)

Saddle point problem (19) is convex in (ρ, m, q) and concave in (�). We can directly
apply the primal-dual hybrid gradientmethod (PDHG) [5] to solve problem (19). The algo-
rithm takes proximal updates in the primal variables (ρ, m, q) and the dual variables (�)
iteratively, with extra extrapolating steps. For more details on using the PDHG algorithm
to solve mean-field control problems, we refer to [14].

5.1.2 Discretization scheme

For simplicity, we consider a one-dimensional finite domain
 = [−b, b] with the periodic
boundary condition. In the following examples, we set up a large enough finite spatial
domain with density ρ vanishing near the boundary. We use a uniform mesh for both
spatial and time intervals, with hx = 2b

Nx
, ht = T

NT
, forNx,NT > 0, and (tl , xj) = (lht , jhx −

b), for l = 0, . . . , Nt , j = 0, . . . , Nx − 1. For variables ρ,�, q, we denote the following grid
point approximation:

ρl
j = ρ(tl , xj), �l

j = �(tl , xj), qj = q(xj).

As for the flux variablem, we denote

ml
j = [m+,l

j + m−,l
j ], m+,l

j := (
m(tl , xj)

)+ , m−,l
j := − (

m(tl , xj)
)− ;
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‖ml
j‖2 =

(
m+,l

j

)2 +
(
m−,l

j

)2
, ∇x · ml

j = m+,l
j − m+,l

j−1

hx
+ m−,l

j+1 − m−,l
j

hx
,

where u+ := max(u, 0) and u− = u+ − u. We discretize the above variational problem
with the finite difference method and obtain the following first-order scheme:

L̂(ρ, m,�, q) = hthx
∑

1≤l≤Nt
1≤j≤Nx

(‖ml
j‖2

2ρl
j

)
+ F̂ (q)

+ hthx
∑

0≤l≤Nt−1
1≤j≤Nx

�l
j

(
ρl+1
j − ρl

j

ht
+ ∇x · ml+1

j − β
ρl+1
j+1 + ρl+1

j−1 − 2ρl+1
j

h2x

)
.

More specifically, we consider the discretized energy functional F̂ as below:

F̂ (q) = hx
∑

1≤j≤Nx

(
V (xj)qj + U

(
qj

)) + h2x
2

∑
1≤i≤Nx
1≤j≤Nx

(
W (xi − xj)qiqj

)
.

Here, we denote ρT
M(x) := ρ(T, x) and use it to compare with the solution obtained from

the kernel formulation.
As for computation using kernel formulation, we use the Riemann sum. Taking the

linear energy functional as an example, i.e.,F (ρ) = ∫


V (x)ρ(x)dx, the kernel function in

Eq. (14) can be approximated by the following form:

K (xi, yj ,β , T, V ) = e−
1
2β (V (xi)+ ‖xi−yj‖2

2T )

hx
∑

1≤k≤Nx
e−

1
2β (V (zk )+

‖zk−yj‖2
2T )

.

Hence, the solution ρ(T, xi) via kernel integral formula can be expressed as

ρ(T, xi) = hx
∑

1≤j≤Nx

K (xi, yj ,β , T, V )ρ(0, yj).

From now on, we denote ρT
K (x) := ρ(T, x).

5.1.3 Example A

In the first example, we consider the regularized Wasserstein proximal operator of linear
energy F (ρ) = ∫



V (x)ρ(x)dx. For example parameters, we have the following setup:

b = 5, T = 0.2, β = 0.25,

V (x) = e−
(x+0.25)2

0.5 ,

ρ0(x) = 1
σ0

√
2π

e
− (x−0.25)2

2σ20 , σ0 = 0.1.

By applying different meshes Nx,Nt , we record the difference between ρT
M (obtained via

the optimization approach) and ρT
K (obtained via the kernel formula). From Table 1, we

observe the consistent convergence as refining the mesh grid, which suggests that our
kernel formula is precise when the energy functional is of linear form. In Fig. 1, we show
the numerical solutions of Example A.
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Table1 Record of ‖ρT
K − ρT

M‖L2 with different meshes of Example A

hx 0.0625 0.05 0.0313

‖ρT
K − ρT

M‖L2 0.0016 0.0011 0.0007

Fig. 1 Numerical results for Example A. Left: time evolution of ρ(t, x) for t ∈ [0, 0.2]. We examine how the
coefficients affect the regularized Wasserstein proximal operator and the resulting density distribution. In the
center, we vary T (0.1, 0.2, 0.5) with fixed β = 0.25; on the right, we vary β (0.125, 0.25, 0.5) with fixed T = 0.2.
Our observations reveal that with increasing values of T , the behavior can be effectively linked to the
perspective of mean-field control, which illustrates that optimal solutions shift with varying time T . As for σ ,
we can see the solutions are more diffusive with larger values of σ

Table2 Record of ‖ρT
K − ρT

M‖L2 with different meshes of Example B

hx 0.0625 0.05 0.0313

‖ρT
K − ρT

M‖L2 6.3e − 4 4.6e − 4 3.1e − 4

5.1.4 Example B

We now consider F (ρ) = 1
2

∫



∫


W (x − y)ρ(x)ρ(y)dxdy, where the energy functional is

quadratic on ρ. Specifically, we have

b = 5, T = 0.1, β = 0.1,

W (x − y) = λW (x − y)2, λW = 0.2,

ρ0(x) = 1
σ0

√
2π

e
− (x−0.5)2

2σ20 , σ0 = 0.1.

WithmeshNx, we first solve the corresponding variational problem and obtain ρT
M . Then,

we apply the kernel formulation to obtain

ρT
K (x) =

∫



K
(
x, y,β , T, ρT

M
)
ρ0(y)dy.

By varying the mesh, we obtained the difference ‖ρT
K − ρT

M‖L2 converges to 0 with the
order O(hx). See Table 2. This observation suggests that the kernel formulation could be
applied to the computation of Wasserstein proximal of interaction energy.

5.1.5 Example C

In this example, we consider the energy being the Kullback–Leibler (KL) divergence, i.e.,
F (ρ) = λF

∫



ρ(x) log( ρ(x)
ρF (x) )dx. In detail, the example parameters are as follows:

b = 5, T = 0.2, β = 0.1, λF = 0.1,
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Table3 Record of ‖ρT
K − ρT

M‖L2 with different meshes of Example C

hx 0.0625 0.05 0.0313

‖ρT
K − ρT

M‖L2 2.5e − 4 1.7e − 4 7.8e − 5

Fig. 2 Numerical results for Example C. On the left, we show the time evolution of ρ(t, x) over the time
interval [0, 0.2]. On the right, we plot the example parameters ρ0 , ρF , the mean-field control problem solution
ρT
M and the density ρT

K (x) obtained via the kernel formulation

ρF (x) = 1
σF

√
2π

e
− x2

2σ2F , σF = 0.4,

ρ0(x) = 1
σ0

√
2π

e
− (x−0.5)2

2σ20 , σ0 = 0.2.

To avoid numerical instability, we also modify the KL divergence with

F (ρ) = λF

∫



ρ(x) log
(

ρ(x) + ε

ρF (x) + ε

)
dx, ε = 1e − 4.

Similarly toExampleB,wefirst solve the correspondingmean-field control problemwith
solution ρT

M . Via kernel formulation, we arrive at ρT
K (x) = ∫



K (x, y,β , T, ρT

M)ρ0(y)dy. By
refining the mesh, we observe the consistent convergence of numerical solutions. See
Table 3. This numerical result also suggests that, with proper regularization parameters,
the kernel formula of the regularized Wasserstein proximal operator is valid for general
functions. We present the regularized Wasserstein proximal and the time evolution of
(ρ(t, ·),�(t, ·)) in Fig. 2.

5.2 A fixed-point type iterative approach to compute the regularizedWasserstein proximal

For general functionalF (ρ), the kernel formulation can be modified as a fixed-point map,
i.e.,

ρn
itr(x) =

∫



K (x, y,β , T, ρn−1
itr )ρ0(y)dy, n = 1, 2, . . . , N. (21)

Such an iteration scheme can efficiently calculate the regularized Wasserstein proximal
operator.
We provide a numerical example to show that, with proper regularization (β > 0), the

scheme (21) is a fixed-point iteration. Moreover, its limit is the solution to the regularized
Wasserstein proximal.
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Table4 Record of ‖ρ20
itr − ρT

M‖L2 with different meshes of Example 3 using the fixed-point iteration

hx 0.0625 0.05 0.0313

‖ρ20
itr − ρT

M‖L2 1.2e−2 9.5e−3 6.4e−3

100 101

n

10-5

100

-5 -2.5 0 2.5 5

x

0

0.5

1

1.5

2

itr
0

itr
1

itr
5

itr
20

Fig. 3 Numerical results for the fixed-point iteration. On the left, we plot the difference in two adjacent
iterations, i.e., ‖ρn

itr − ρn−1
itr ‖L2 for the first 20 iterations. On the right, we plot some intermediate points of the

iteration process. We observe that at the 5th iteration, the density profile is already very close to the limit in
the L2 norm

100 101 102

n

10-4

10-3

10-2

10-1

100

-5 -2.5 0 2.5 5

x

0

0.5

1

1.5

2

itr
0

itr
1

itr
10

itr
40

M
T

Fig. 4 Numerical results for the fixed-point iteration of functionalF (ρ) = 0.5
∫



ρ(x)2dx . In the left figure,
we plot the difference between two adjacent iterations. In the right figure, we plot the density profiles of
some intermediate iteration processes and observe that the limit of the fixed-point scheme converges to ρT

M

We first consider the regularized Wasserstein proximal from Example C in Sect. 5.1.5.
To apply the fixed-point iteration, we fix the mesh size hx and set ρ0

itr = ρ0 as the
initialization. Then, we apply the scheme (21) via a Riemann summation. To check if
the fixed-point iteration limit is the regularized Wasserstein proximal, we compute the
scheme (21) with differentmeshNx and compare it with the solution of the corresponding
variational problem. Table 4 suggests that the limit point of the iteration (21) matches
nicely. We also present the iteration details in Fig. 3, which shows the fast convergence of
the fixed-point iteration.
Let us consider another example withF (ρ) = 0.5

∫



ρ(x)2dx, and apply the fixed-point
iteration (21). For other parameters, we set

b = 5, T = 1,β = 0.25,

ρ0(x) = 1
σ0

√
2π

e
− (x−0.5)2

2σ20 , σ0 = 0.1.
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Numerical results are shown in Fig. 4. We also compare the fixed-point iterations using
the kernel formula with the density ρT

M obtained by solving the corresponding variational
problem (18). These solutionsmatch pretty well after 40 steps of the fixed-point iteration.
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