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Deep Autoencoder-Based Z-Interference Channels

With Perfect and Imperfect CSI
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Abstract— A deep autoencoder (DAE)-based structure for end-
to-end communication over the two-user Z-interference channel
(ZIC) with finite-alphabet inputs is designed in this paper. The
proposed structure jointly optimizes the two encoder/decoder
pairs and generates interference-aware constellations that
dynamically adapt their shape based on interference intensity to
minimize the bit error rate (BER). An in-phase/quadrature-phase
(I/Q) power allocation layer is introduced in the DAE to guar-
antee an average power constraint and enable the architecture
to generate constellations with nonuniform shapes. This brings
further gain compared to standard uniform constellations such
as quadrature amplitude modulation. The proposed structure is
then extended to work with imperfect channel state information
(CSI). The CSI imperfection due to both the estimation and
quantization errors are examined. The performance of the DAE-
ZIC is compared with two baseline methods, i.e., standard
and rotated constellations. The proposed structure significantly
enhances the performance of the ZIC both for the perfect and
imperfect CSI. Simulation results show that the improvement is
achieved in all interference regimes (weak, moderate, and strong)
and consistently increases with the signal-to-noise ratio (SNR).
For instance, more than an order of magnitude BER reduction
is obtained with respect to the most competitive conventional
method at weak interference when SNR > 15dB and two bits
per symbol are transmitted. The improvements reach about two
orders of magnitude when quantization error exists, indicating
that the DAE-ZIC is more robust to the interference compared
to the conventional methods.

Index Terms— Interference channel, Z-interference, imperfect
CSI, autoencoder, constellation design.

I. INTRODUCTION

I
NTERFERENCE is a central issue in today’s multi-cell

networks. The information-theoretic model for a multi-cell

network is the interference channel (IC). There have been

many efforts to find the capacity of the IC either with the

same generality and accuracy used by Shannon for point-to-

point systems [3], [4], [5], [6] or by seeking approximate
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solutions with a guaranteed gap to optimality at any signal-

to-noise ratio (SNR) [7]. However, the capacity region of

the two-user IC is only known for strong interference where

decoding and canceling the interference is optimal [3]. Also,

at very weak interference, sum-capacity is achievable by

treating interference as noise [8], [9], [10], whereas, in general,

decoding part of the interference and treating the remaining

as noise is the best achievable scheme to date [5].

The aforementioned Shannon-theoretic works are based on

Gaussian inputs. Despite being theoretically optimal, Gaussian

alphabets are continuous and unbounded, and thus, are rarely

applied in real-world communication. In practice, signals are

generated using finite alphabet sets, such as phase-shift keying

(PSK) and quadrature amplitude modulations (QAM). The

performance gap between the finite alphabet input and the

Gaussian input design is non-negligible [11]. However, con-

ventional finite-alphabet approaches are based on predefined

uniform constellations like QAM. These constellations are

defined for point-to-point systems [12], [13], [14], [15] and

their constellation shaping is oblivious to interference. Such an

inability to respond to interference is an obstacle to improving

the bit-error rate and spectral efficiency of today’s interference-

limited communication systems.

In this paper, we consider the two-user single-input single-

output (SISO) one-sided IC, also known as the Z-interference

channel (ZIC). With Gaussian signaling, the capacity region of

this channel is known only in the strong and very strong inter-

ference regimes [6]. However, Gaussian signaling is unsuitable

for practical applications. Previous work has studied ZIC

with finite alphabet sets in specific regimes and predefined

uniform constellations. In [16], it is shown that rotating one

input constellation (alphabet) can improve the sum-rate of

the two-user IC in strong/very strong interference regimes.

Later, an exhaustive search for finding the optimal rotation

of the signal constellation was presented in [17]. In addition,

a signaling design is proposed in [18] which applies a rotation

to the channel which resembles rotating the input. The main

focus of the above papers is to maximize the achievable

rates, and they do not study bit-error rate (BER) performance.

However, BER is a key metric and interference can severely

reduce the BER by distorting the received constellation, when

uniform constellations like QAM are employed.

Recent research has proved end-to-end learning as a promis-

ing approach for encoding, decoding, and signal representation

to reduce BER [19]. Particularly, deep autoencoder (DAE) is

a popular architecture for implementing end-to-end learning.
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It consists of an encoder that transforms input data into a

low-dimensional representation to find its structure and a

decoder that reconstructs the original input from this represen-

tation. DAE-based end-to-end communication is an emerging

approach to finite-alphabet communication in which BER is

the main performance measure and constellation design is

inherent. DAE-based communication is introduces both for

single- and multi-user systems by various groups [19], [20],

[21], [22], [23], [24]. These studies indicate that the DAE

surpasses current solutions and enhances performance beyond

conventional methods [24].

Specifically, utilizing two DAEs for the transmitter/receiver

pairs enables effective signal separation/decoding of original

data even in the presence of interference, thereby paving the

way for enhancing communication performance over the IC,

as investigated in prior studies [19], [25], [26]. However, these

studies have limitations as they focus solely on symmetric

interference scenarios and compare their results against simple

baselines like quadrature phase shift keying (QPSK), despite

the fact that QPSK performs much worse than rotated QPSK

in the context of the IC [16], [17], [18]. Further, the DAE

designs in [19], [25], and [26] produce symbols with fixed

power levels and lack the ability to generalize to QAM-like

constellations. Thus, they do not efficiently use the in-phase

and quadrature-phase (I/Q) plane. Additionally, these designs

assume perfect knowledge of channel state information (CSI),

and the transition from perfect CSI to imperfect CSI remains

unexplored.

A. Motivation and Contribution

The above limitations has motivated us to investigate DAEs

potential for the long-lasting problem of interference in more

practical settings. We shed light on DAE-based communication

over asymmetric interference with both perfect and imperfect

CSI. Specifically, we design and train novel DAE-based archi-

tectures for the ZIC with finite-alphabet inputs. In the ZIC,

two DAEs should be considered in two transmitter-receiver

pairs. The two DAE pairs cooperate to avoid interference

and adapt their constellation to the interference intensity. Our

work is motivated by the following question: Can we design

interference-aware constellations using DAEs? Will the gains

remain/vanish if CSI is not perfect? We answer these questions

by developing new structures and explaining how the designed

nonuniform constellations lend themselves to interference mit-

igation in different regimes, and thus improving the BER.

The ZIC is characterized by local, short-range interference

[27], where far-away users are not affected by interference.

This simple channel model is a fundamental building block

for more complex interference networks and its understanding

is crucial in the field of interference research. As such, it has

been widely studied in the literature of interference [6], [28],

[29], as it provides insights into the limits interference-limited

scenarios. By understanding the behavior of interference in

the ZIC, we can develop more effective strategies to mitigate

interference in more complex networks.

The main contributions of the paper are as follows:

• We design a DAE-based transmission structure for the

ZIC and demonstrate its effectiveness across weak,

moderate, and strong interference levels. We propose

incorporating an average power constraint normalization

layer that enables nonuniform constellations, resulting in

more efficient utilization of the I/Q plane. The designed

constellations are adaptive to the interference intensity,

and morph in a way that the ‘receivers’ see distin-

guishable symbols, thereby improving BER even in the

presences of interference. We also conduct a neural

network ablation study to demonstrate the impact and

necessity of each design element in our proposed model.

This analysis provides valuable insights into the signifi-

cance of each component and also serves to validate the

overall architectural effectiveness.

• We extend the proposed structure to the finite-alphabet

ZIC with imperfect CSI, where we consider both estima-

tion and quantization errors. Particularly, CSI estimation

errors pose confuses for DAE training and testing per-

formance. Meanwhile, quantization errors, arising from

limited feedback capacity, introduce undesirable rotations

to the constellations. In order to develop a DAE that is

robust against these errors, we introduce an equivalent

system model that reduces the CSI parameters and ulti-

mately lowers the BER.

• Our design directly accepts the transmission bits as its

input rather than converting them to symbols and using

one-hot vectors for the DAE input. This has two advan-

tages. First, our design can directly minimize the BER

and we do not need to worry about optimal bit-to-symbol

mapping. Second, it reduces the complexity as to transmit

b bits, the input and output layers require only b neurons

whereas the one-hot vector method needs 2b neurons.

It worth mentioning that, for benchmarking purposes,

we use rotated uniform constellations, which have been proven

to be more competitive than their unrotated counterparts. Our

proposed DAE-ZIC shows significantly better BER perfor-

mance for all interference regimes (weak, moderate, and strong

interference). For perfect CSI, when averaged over SNRs

from 0 to 20dB, 44% reduction in BER is achieved. At certain

SNRs and interference regimes, the improvement is over an

order of magnitude. For imperfect CSI, the overall reduction is

about 40%. The gap between the DAE-ZIC and conventional

methods is even larger when quantization error is applied.

B. Organization

The remainder of this paper is organized as follows.

We elaborate on the ZIC system model in Section II. The

DAE design and the training approach are introduced in

Section III. The system model with an imperfect CSI is

derived in Section IV. The modifications for the DAE with an

imperfect CSI is introduced in Section V. Numerical results

are presented in Section VI, and the paper is concluded in

Section VII.

Notation: (·)T denotes transpose, E{·} denotes expectation,

and diag(λ1, . . . , λn) represents the diagonal matrix with

elements λ1, . . . , λn. N (µ, σ2) and CN (µ, σ2) are real and

complex Gaussian distributions where µ and σ2 are the mean

and variance. | · | is the amplitude of a complex number.
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Fig. 1. System model of the ZIC.

II. SYSTEM MODEL OF ZIC WITH PERFECT CSI

Figure 1 shows the system model of a two-user complex

SISO ZIC with perfect CSI. The two transmitter-receiver pairs

wish to reliably transmit their messages while the transmission

of the first pair interferes with the transmission of the second.

The four nodes are named Tx1, Tx2, Rx1, and Rx2, as shown

in Fig. 1. hij refers to the channel gain from the ith transmitter

to the jth receiver and i, j ∈ {1, 2}. For ZIC, h21 = 0. The

received signals at the receivers can be written as

y1 = h11x1 + h21x2 + n1, (1a)

y2 = h22x2 + n2, (1b)

in which x1 and x2 denote the transmitted symbols of Tx1 and

Tx2. The transmitted signals are complex-valued with finite-

alphabets and variances E{|x1|2} = P1 and E{|x2|2} = P2 in

which P1 and P2 are the power budgets of the two transmitters.

The channel coefficients are complex random variables

hij ≜ rije
jθij ∼ CN (µh, σ2

h), (2)

where µh and σ2
h are the mean and variance of the channel

distribution, and rij and θij represent the magnitude and phase

of hij . Also, n1 and n2 are the complex-valued independent

and identically distributed (i.i.d.) additive white Gaussian noise

with zero means and variances σ2
1 and σ2

2 . Without loss of

generality, we assume the noise powers at the two receivers’

sides are the same, i.e., σ2
1 = σ2

2 = σ2 [28].

A. The Equivalent System Model of the ZIC

It is known that, without loss of generality, the channel gains

of the direct transmission links can be modeled as one, shown

in Fig. 2(b), [28], [29]. The interference gain is also real-

valued for both real- and complex-valued systems. When CSI

is available and if we apply pre- and post-processing illustrated

in Fig. 2(a), such a system model in Fig. 1 is equivalent to

that of Fig. 2(b).1 The Tx2 applies ej(θ11−θ21) to cancel the

phase of h21 and align its phase with that of h11. The Rx1 and

Rx2 applies h−1
11 and h−1

22 ej(θ21−θ11) to normalize the channel

gain to one. Then, the received post-processed signals are

ȳ1 = h−1
11 y1 = x1 + r21r

−1
11 x2 + n1h

−1
11 , (3a)

ȳ2 = h−1
22 ejθ21y2 = x2 + ejθ21n1h

−1
22 . (3b)

By defining
√

α ≜ r21r
−1
11 , (4a)

1We describe this process here as we will need later in Section IV where
CSI is not perfect.

Fig. 2. The equivalent system model of the ZIC.

n̄1 ≜ n1h
−1
11 , and, n̄2 ≜ ejθ21n1h

−1
22 , (4b)

we have the system model in Fig. 2(b) as

ȳ1 = h̄11x1 +
√

αx2 + n̄1, (5a)

ȳ2 = h̄22x2 + n̄2. (5b)

where h̄11 = h̄22 = 1 and h̄21 =
√

α are the equivalent

channel gains.

Thus, the two system models in Fig. 1 and Fig. 2 are

equivalent. Hence, we follow the existing studies and use the

system model in Fig. 2(b), and consider a fixed
√

α at each

time. It is worth mentioning that both actual channel gains and

noise (hij and ni, i, j ∈ {1, 2}) are Gaussian. In this paper,

we assume a slow fading scenario with

n̄i ∼ CN (0, σ2
i r−2

ii ). (6)

III. DEEP AUTOENCODER WITH PERFECT CSI

Existing studies [16], [31] use standard QAM constellations

at each transmitter. Such constellations are fixed and are

not adjustable according to the interference intensity. To fur-

ther improve the transmission performance, we propose a

DAE-based transmission for the two-user ZIC, named DAE-

ZIC. The architecture is shown in Fig. 3.

A. The Architecture of DAE-ZIC

The DAE-ZIC consists of two pairs of DAEs. Each pair

performs an end-to-end transmission, which includes input

bits, autoencoder at the transmitter, channel and noise layers,

autoencoder at the receiver, and final output bits.

1) Network Input: Each transmitter sends Ns bits to the

corresponding receiver. The interference channel coefficient√
α is known at the transmitter and receiver and is appended

to the input bit vector. Then, both the transmitters and receivers

have the knowledge of the CSI. The two transmitters are

expected to jointly design their constellations and the receivers

will decode correspondingly.
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Fig. 3. The architecture of the two-user DAE-ZIC implemented by two pairs of deep autoencoders. Each transmitter of the ZIC contains two sub-networks.
Sub-network 1 mainly generates the constellation and sub-network 2 is used to implement the average power constraint. The receivers decode their bits from
the received signal. This architecture is based on the system model in Fig. 2(b). η is a power control parameter defined in (15).

2) Transmitter DAE: As shown in Fig. 3, the DAE of

the transmitter contains two sub-networks: Sub-network 1 and

Sub-network 2. Sub-network 1 converts the input bit-vector to

symbols with unit power in the I/Q components. Sub-network 2

performs power allocation, which controls the power of the

I/Q components. The two sub-networks combines in parallel

to yield a nonuniform constellation. The batch normalization

in sub-network 1 together with sub-network 2 realize the

average power constraint at the transmit antenna. Having an

average power constraint is necessary especially for SISO

systems. In this way, the I/Q plane is used efficiently, like

QAM. Otherwise, the DAE can only produce constant-power

constellations, like PSK, where constellation points are on a

circle which is not efficient in terms of BER.

The components of sub-network 1 are fully connected layers

(FCNN), residual connections, or shortcuts, to alleviate the

vanishing gradient effect, and the output batch normalization

layer. The activation function of the FCNN layers is tanh,

except for the last layer which has two hidden nodes and no

activation function.

Let the batch size be NB . The output of the last FCNN is

Xfcnn ≜ [xI
fcnn, x

Q
fcnn], (7)

where xI
fcnn and x

Q
fcnn ∈ R

NB×1 are the outputs of the two

hidden nodes and represent I/Q of the complex-valued signal.

Since the FCNN has unbounded outputs, it cannot guarantee a

power constraint at the transmitter. We propose the transmitter

design shown in Fig. 3 to achieve an average power constraint

at each antenna. First, we use batch normalization in sub-

network 1 to unify the average power of I/Q independently.

The batch normalization layer linearly normalizes xI
fcnn and

x
Q
fcnn, in which the normalized vectors xI

B and x
Q
B are

given by

xI
B ≜ βI · xI

fcnn, x
Q
B ≜ βQ · xQ

fcnn, (8)

where β ≜ [βI, βQ]T contains two factors for normalization.

In sub-network 2, the power allocation of the I/Q com-

ponents is determined by the FCNN layers, which take the

input value
√

α into account. The FCNN layers calculates the

powers of I/Q components, and the power normalization block

limits the total power to Pt, thus achieving the intended power

control. The powers of xI
B and x

Q
B (i.e., each batch of I/Q

signals) are multiplied by γI and γQ, which are the outputs

of Sub-network 2. Defining the input and output of the power

normalization layer as γ0 ≜ [γI
0, γQ

0 ]T ∈ R
2×1 and γ ≜

[γI, γQ]T ∈ R
2×1 respectively, the power normalization layer

normalizes its input and scales its power, i.e., γ =
√

Pt
γ

0

|γ
0
| .

Thus, γT γ = Pt. Such an operation can be done via the

Lambda layer in KERAS [32]. Finally, the outputs of the

batch normalization and power normalization are multiplied

together, i.e.,

xI
out ≜ γI · xI

B , x
Q
out ≜ γQ · xQ

B . (9)

The powers of xI
out and x

Q
out are γI and γQ, respectively.

In short, batch normalization is applied to I and Q components

separately and along the time axis (batch by batch) while

power normalization scales the power of I/Q components at

each time to reach the average power constraint. That is,

the two normalization operations are implemented in different

dimensions. The final output of the transmitter is

X ≜ [xI
out, x

Q
out]

= [xI
B , x

Q
B ] · diag(γ)

= [xI
fcnn, x

Q
fcnn] · diag(β) · diag(γ). (10)
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Fig. 4. Form a SISO complex-valued channel by a 2×2 MIMO real-valued
channel.

where xI
fcnn and x

Q
fcnn are the output of the FCNN layer in

sub-network 1 and represent the preliminary I/Q signals, β

normalizes the power of each batch, and γ controls the power

of the I/Q signals such that average power is Pt.

3) Channel Implementation: The channel is formed follow-

ing (1). The complex-valued SISO channel is achieved by real

values intuitively shown in Fig. 4. At Rx1, the received signal

is ȳ1 = ȳI
1 + jȳQ

1 ,
[

ȳI
1

ȳQ
1

]

=

[

xI
1

xQ
1

]

+ h̄21 ·
[

xI
2

xQ
2

]

+

[

n̄I
1

n̄Q
1

]

, (11)

where ȳI
1 and ȳQ

1 are the I/Q components of the received signal,

xI
i and xQ

i are the I/Q components of the ithe transmitter,

and n̄I
i, n̄

Q
i ∼ N (0, 1

2σ2
Nr−2

ii ) are the I/Q components of the

complex-valued. Similarly, the received signal for Rx2 is ȳ2 =
ȳI
2 + jȳQ

2 ,
[

ȳI
2

ȳQ
2

]

=

[

xI
2

xQ
2

]

+

[

n̄I
2

n̄Q
2

]

. (12)

The additive Gaussian white noise (AWGN) is implemented

by a Gaussian noise layer in KERAS. The noise power is set

according to SNR in the training and testing stages.

4) Receiver DAE: The received signals are ȳ1 and ȳ2.

To ensure the receiver networks have a finite input range,

we use batch normalization layers in KERAS unifying the

power of the received signals, i.e.,

yB,i = ξ · ȳi, E{|yB,i|2} = 1, ∀i ∈ {1, 2}, (13)

where ξ is a coefficient to reach the unit power. The process

details and settings are the same as those in the transmitter.

We further define the desired signal for Rx1 as

xD,1 ≜ x1 +
√

αx2. (14)

xD,1 contains the true desired signal x1 and the interference√
αx2. The goal of the receiver is to decode x1 for an arbitrary

x2 in its constellation. The desired signal of Rx2 is xD,2 ≜

x2. However, the normalization of the received signal (13)

causes the power of the desired signal to vary with the SNR.

Hence, the autoencoder should adjust the decoding boundary

according to the SNR, which is an extra burden. So, we turn to

normalize the desired signal using linear factor, η, multiplied

on the batch normalization output, i.e.,

yD,i = η · yB,i, η ≜

√

1 +
PD,i

σ2
N

, ∀i ∈ {1, 2}, (15)

where PD,i is the power of the desired signal xD,i and σ2
N is

the noise power. The batch normalization normalizes the

desired signals using pre-processing η. Then, the normalized

signal, yD,i, together with the feature of the ZIC, h21 =
√

α,

are sent to the rest of the FCNN layers. The final output of

the DAE is an estimation of the transmitted bit-vectors, ŝ1 and

ŝ2, as shown in Fig. 3.

The activation function of the output layer is sigmoid

function, i.e., f(s) = 1
1+e−s . Thus, assuming the input of the

final layer, marked as Rx Output in Fig. 3, of ith receiver is

yF,i, the output equations can be written as ŝi = f(yF,i). The

sigmoid function is commonly used because it outputs a value

between 0 and 1, which can be interpreted as a probability of

the input belonging to the positive class. This function is also

differentiable, which is important for backpropagation during

training of neural networks.

5) Loss Function: In our DAE-ZIC, each receiver has its

own estimation of the transmitted bits. Then, the overall loss

function of the DAE-ZIC is L = L1 + L2, where L1 and

L2 are the loss at Rx1 and Rx2. Each output vector in the two

receivers represents binary messages, then the network can be

trained using binary cross-entropy loss:

Li =
1

NB

NB
∑

n=1

(si,n)T log ŝi,n + (1 − si,n)T log(1 − ŝi,n),

(16)

where i ∈ {1, 2} distinguishes the users, NB is the batch size,

si,n is the nth input bit-vector in the batch, and ŝi,n is the

corresponding output. The loss function treats each element

of the DAE output as a 0/1 classification task. The binary

cross-entropy loss function is commonly used for multi-label

classification problems, where each example can have multi-

ple binary labels. The loss function measures the difference

between the predicted probability of each label being present

in the example and the true probability of the label being

present. Finally, the loss is the summation of the loss of Ns

tasks, where Ns is the number of bits in the transmission.

In the training process, the backpropagation algorithm passes

L1 to Rx1 and it will further go to Tx1 and Tx2, whereas L2

affects Rx2 and Tx2.

B. Training Procedure of the DAE-ZIC

Due to the difficulty of training a single network across all

values of the interference gain α, distinct instances of DAEs

are employed for a few different ranges of α. For each training

session, a value for Ns is selected and the desired range for

α ∈ [αmin, αmax] is specified. During the training process,

all four sub-networks are trained simultaneously. The DAE is

trained iteratively using random values of α within this inter-

val. For each α, the DAE undergoes training for Ep epochs

with a mini-batch size of NB and a constant learning rate of

lr. After training the DAE for Nd different values of α, the

learning rate is reduced to drlr. A comprehensive description

of the training procedure, including the simultaneous training

of all sub-networks to adapt to the ZIC interference patterns,

can be found in Algorithm 1.
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Algorithm 1 Training Procedure for the DAE-ZIC

1: Fix Ns, αmin, and αmax.

2: Set Pt = 1W and SNR= 10dB.

3: Set Nα = 30, 000, the number of channels.

4: Set Ep = 10, the number of the epochs.

5: Set NB = 104, the batch size.

6: Set lr = 10−2, the initial learning rate, which will drop

to drlr = 0.95lr after every Nd = 200 trained channels.

7: Initialize the DAE-ZIC network.

8: for index iα from 1 to Nα do

9: Uniformly and randomly select one α ∈ [αmin, αmax].
10: Randomly generate h11 and h22 using (2).

11: Normalize the channel using (5).

12: Update h̄21 =
√

α in the DAE-ZIC in (11).

13: Set the variance of the noise layer according to (6).

14: for index ie from 1 to Ep do

15: Randomly generate NB bit vectors.

16: Update the weights of the DAE-ZIC using Adam.

17: end for

18: Set learning rate lr = drlr if iα/Nd is an integer.

19: end for

IV. SYSTEM MODEL WITH IMPERFECT CSI

In this section, we consider the ZIC with imperfect CSI

and find its equivalent channel. The CSI imperfectness comes

from two sources: the error in the estimation of the CSI at

each receiver and the error due to the quantization of the CSI

before feeding it back to the transmitter. The system model

is depicted in Fig. 5(a), in which both the estimation error

and quantization error are considered. In general, the notation

is similar to Section II-A. One main difference is that the

estimation errors εij occur at the receivers when we estimate

the channel coefficients ĥij . The imperfectness of ĥij affects

the decoding process. Besides, the quantization error occurs

when the parameters need to be fed back to another node. For

example, the Tx2 applies

θq ≜ Q(θ̂11 − θ̂21), (17)

to cancel the phase of h21 where θ11 and θ̂21 are estimated by

Rx1 and Q(·) is a quantization function. Ideally, θq is expected

to be θ̂11 − θ̂21, however, the quantization error exists which

is defined as

θδ ≜ θq − (θ̂11 − θ̂21), (18)

The quantization error is included in h̄21 in Fig. 5(b). The

details of the system model and the two types of errors are

given as follows.

1) Estimation Error: The estimated channel gain is mod-

eled as in [33]

ĥij ≜ r̂ije
jθ̂ij = hij − εij , (19)

where

hij ∼ CN (µh, σ2
h) (20)

is the actual channel with mean µh and variance σ2
h, and

εij ∼ CN (0, σ2
E) (21)

Fig. 5. System model of the ZIC with imperfect CSI.

is the estimation error in which σ2
E is the variance of the

error, and ij ∈ {11, 21, 22}. ĥ11 and ĥ21 are estimated by

Rx1 while ĥ22 is estimated by Rx2. The estimated channel

coefficients are determined by the actual channel and noise,

hence, ĥij ∼ CN (µh, σ2
h + σ2

E). Once the actual channel and

noise are determined, we have hij = ĥij +εij as the channels

in Fig. 5(a).

Tx2 keeps the pre-processing based on a feedback angle, θq.

Rx1 applies post-processing in Fig. 2 based on the ĥij . Then,

ȳi in (3a) becomes

ȳ1 =

(

1 +
ε11

ĥ11

)

x1 +
n1

ĥ11

+ ejθq

(

ĥ21

ĥ11

+
ε21

ĥ11

)

x2, (22a)

ȳ2 =

(

1 +
ε22

ĥ22

)

x2 +
n2

ĥ22

, (22b)

which can be rewritten as

ȳ1 = h̄11x1 + h̄21x2 + n̄1, (23a)

ȳ2 = h̄22x2 + n̄2, (23b)

by defining

h̄ii ≜ (1 + εiiĥ
−1
ii ), (24a)

h̄21 ≜ (r̂21r̂
−1
11 ejθδ + ε21ĥ

−1
11 ), (24b)

n̄i ≜ niĥ
−1
ii ∼ CN (0, σ2

N r̂−2
ii ). (24c)

In (24b), θδ is the residual angle caused by the quantized

feedback, which is defined in (18) where θq is the feedback

angle as (25b).

2) Quantization Error: Next, the transmitters require the

knowledge of CSI to perform pre-processing and modification

on constellation for enhanced performance. However, due to

the limited feedback resources, the feedback information is

quantized. This generates another source of imperfection. The

estimated and quantized parameters owned by each end are
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Fig. 6. Feedback process for the ZIC transmission. αq and θq are the only
feedback parameters.

shown in Fig. 6. Rx1 has the estimated r11, r21, θ11, and θ21.

Rx2 has the estimated r22, and θ22. To make all the four nodes

access to the channel knowledge, both

αq = Q(α̂) = Q(r̂2
21 · r̂−2

11 ), (25a)

θq = Q(θ̂) = Q(θ̂11 − θ̂21) = θ̂11 − θ̂21 + θδ, (25b)

are sent to the transmitter and Rx2, where Q(·) is a uniform

quantizer with accuracy Nq, α̂ is the estimation of the interfer-

ence intensity, θ̂ = θ̂11 − θ̂21, and θδ is the same quantization

error in (18). The quantizer Q(·) uniformly divides the region

of the input variable into 2Nq segments. The region for α and

angle are [0, 3] and [−π, π], respectively. The middle value of

the segment is the quantization result if the input value of Q(·)
is within this segment.

3) Implementation of the Imperfect ZIC: To implement

the imperfect channel model, we randomly generate actual

channels h11 and h22 and estimation errors ε11, ε22, and

ε21. Then, ĥ11 and ĥ22 are determined by (19). We give

interference gain α and then h21 =
√

αeiθ21 , where θ21 is

a random uniformly distributed angle on [0, 2π). After actual

channels are generated, the receivers will have the estimated

CSI and can normalize the channel as Fig. 5(b). The receivers

will then assume the channel gains are unity and the Rx1

assumes the interference gain is α̂ = |r̂21r̂
−1
11 |2.

It is worth mentioning that, ȳ1 or ȳ2 will go to infinity when

the estimated channel gains (r11 or r22) are close to zero.

In this case, the transmission is not reliable due to the wrong

information obtained from the channel estimation no matter

if the equalization in (23a) is applied or not. The receivers

will suffer from a mismatch between the received symbol and

the constellation. In the channel generation for the imperfect

model, we keep the channel only if

max(

∣

∣

∣

∣

ε11

ĥ11

∣

∣

∣

∣

,

∣

∣

∣

∣

ε22

ĥ22

∣

∣

∣

∣

,

∣

∣

∣

∣

ε21

ĥ11

∣

∣

∣

∣

) < T. (26)

where T is a threshold. We use T = 1 in this paper so that

the estimation errors is not dominating in h̄ii in (24a).

To summarize, for i, j ∈ {1, 2},

• The actual channels coefficients are hij in (20).

• The estimated channels coefficients are ĥij , as in (19);

• After the equalization, the equivalent channel coefficients

are h̄ij , as in (24a)-(24b);

• After normalization, Rx1 and Rx2 will assume the direct

channel gains are one and the interference gain is α̂.

• Rx1 knows both the estimated and quantized parameters.

Rx1 sends feedback parameters (α̂q and θ̂q) to Tx1, Tx2,

and Rx2.

Fig. 7. Implementation of the channels inside the proposed DAE network.

Remark 1: If σ2
E = 0 and Nq → ∞ (i.e., the CSI is

perfect), the system in Fig. 5(b) reduces to that of Fig. 2(b).

V. DEEP AUTOENCODER FOR ZIC WITH IMPERFECT CSI

The channel implementation should follow the imperfect

ZIC model in Section IV. The equivalent channels, h̄ijs, are

set into the channel layers inside the DAE-ZIC. Different

from the perfect channel case in (11)-(12) and Fig. 4, the I/Q

components become
[

ȳI
1

ȳQ
1

]

= H̄11

[

xI
1

xQ
1

]

+ H̄21

[

xI
2

xQ
2

]

+

[

n̄I
1

n̄Q
1

]

, (27a)

[

ȳI
2

ȳQ
2

]

= H̄22

[

xI
2

xQ
2

]

+

[

n̄I
2

n̄Q
2

]

, (27b)

in which xI
i and xQ

i are I/Q components of the transmitted

signals, where i ∈ {1, 2} denotes the users; similarly, ȳI
i and

ȳQ
i are I/Q components of the received signals; and, n̄I

i and

n̄Q
i are the noises. H̄ij is the real form of the complex-valued

channel h̄ij in (24a)-(24b),

H̄ij =

[

h̄I
ij −h̄Q

ij

h̄Q
ij h̄I

ij

]

. (28)

where h̄ij = h̄I
ij + jh̄Q

ij . Therefore, we add an FCNN layer

to implement each of the channels. The weight of the channel

layer is H̄ij in (28). These channel layers have zero bias,

no activation function, and are non-trainable. The weight will

be replaced only if the channel is updated during the training

and testing.

In contrast to the scenario with perfect CSI, illustrated in

Fig. 3, the presence of imperfections in the CSI introduces

distinct considerations to our approach.

• Differences in parameters. In the case of imperfect CSI,

the parameter α is not directly available for utilization.

The imperfectness at Rx1 side comes from the estimation

of the interference gain α̂ and angle θ̂. Rx1 transmits αq

and θq (quantized values of α̂ and θ̂) to Tx1, Tx2, and Rx2,

as shown in Fig. 6. Thus, the information in three nodes

suffer from both sources of imperfectness, i.e., estimation

and quantization errors.

• Differences in network input configurations. For Rx1, the

input comprises the non-quantized
√

α̂. Furthermore, Rx1
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is uniquely positioned to incorporate the quantization

error of the feedback angle, θδ , as an additional input.

This is because Rx1 oversees the quantization process,

and thus is aware of the quantization discrepancy. As a

result, θδ serves as an input to the network at Rx1.

The training process with imperfect channels is similar to

Algorithm 1. We still use Algorithm 1 but lines 10–13 of that

algorithm will be replaced by Algorithm 2.

Algorithm 2 Channel Layer Preparation for DAE-ZIC

1: Inputs: µh, σ2
h, σ2

E , T , and Nq.

2: while 1 do

3: Randomly generate h11 and h22 using (20).

4: Randomly generate ε11, ε22, and ε21 using (21).

5: if (26) satisfied then

6: Break.

7: end if

8: end while

9: Uniformly generate ∆θq in 1
2Nq

[−π, π].
10: Update θδ using (18).

11: Normalize the channels using (24a) and (24b).

12: Set the channel layers using (27) and according to Fig. 7.

13: Set the variance of the noise layer according to (24c).

14: Update αq and θq using (25a) and (25b).

15: Complete the feedback process according to Fig. 6.

VI. PERFORMANCE ANALYSIS

The performance is evaluated and compared for the three

methods below:

• DAE-ZIC: The proposed method which designs new

constellations based on the interference intensity.

• Baseline-1: The transmitters directly use standard QAM.

• Baseline-2: Tx1 uses standard QAM, while Tx2 rotates

the standard QAM symbols based on the interference

intensity [16], [31].

First, we illustrate and analyze the constellations given by the

proposed DAE-ZIC methods with perfect CSI. Then, the BER

performance of the three methods is analyzed under perfect

CSI assumption. Finally, we compare the performance of the

three methods under imperfect channels, including imperfect

estimation and quantization in the feedback.

A. Network Ablation Study

In this section, we conduct an ablation study to analyze the

impact of network design and training parameters. Specifically,

we investigate the effects of incorporating residual connec-

tions and selecting various training parameters. To this end,

we design and perform six ablation experiments, which are

detailed in Table I. The first experiment (Exp. 1) examines

the presence or absence of shortcuts in the proposed method.

Through Exp. 2 to Exp. 5, we investigate the impact of

feeding or not feeding the training parameter
√

α into different

sub-networks at the transmitters and receives. Exp. 6 explores

the importance of Sub-network 2 which is a new design to

perform power allocation.

TABLE I

ABLATION SETTINGS AND THEIR PERFORMANCE FOR

DIFFERENT VALUES OF α

1) The Impact of Residual Connections: The incorporation

of residual connections into the proposed DAE has a signifi-

cant impact on its performance, especially for bit inputs. The

addition of these shortcuts enables the network to increase

its learning capacity and improve its performance without the

need for additional parameters or a wider network. Moreover,

these skip connections help preserve gradients, allowing the

network to learn representations at varying depths. As can be

seen in the first two columns of Table I, excluding residual

connections significantly increases the BER, indicating that

residual connections play a crucial role in the overall perfor-

mance of the proposed DAE-ZIC.

2) The Impact of
√

α at the Txs: We develop three exper-

iments (Exp. 2, Exp. 3, and Exp. 4) in which
√

α is fed

into either sub-networks or non and compare their BER

with the proposed network in which
√

α is fed into bot

sub-networks. While there is not big performance difference

between Exp. 2, Exp. 3, and Exp. 4, for all α settings, there

is a significant improvement when
√

α is fed into both sub-

networks (proposed method). Sub-network 1 primarily focuses

on constellation design, whereas Sub-network 2 regulates

the power of I/Q dimension. Since
√

α influences both the

constellation layout and the power distribution, providing
√

α
to each sub-network is essential for optimizing the overall

performance of the system.

3) The Impact of
√

α at the Rx: Exp. 5 examines the

performance when
√

α is not fed to the decoder. This experi-

ment emphasizes the importance of incorporating interference

information at the decoder side, as otherwise the BER roughly

doubles (compared to the first column).

4) The Impact of Sub-Network 2: Exp. 6 demonstrates the

importance of Sub-network 2, which is a new design to ensure

different powers at I/Q dimensions. Our simulations reveal that

the DAE-designed constellations downgraded to PSK in the

absence of Sub-network 2. This explains why neglecting Sub-

network 2 yields results similar to the Baseline-2 which uses

rotated QPSK. On the contrary, as shown by the simulations,

the inclusion of Sub-network 2 allows the proposed structure

to design other shapes such as pulse-amplitude keying (PAM)

at each transmitter. The combination of these PAMs ultimately

yields a QAM-like constellation at the receiver affected by

interference. These findings further emphasize the importance

of incorporating Sub-network2, as it enables effective power

control across the I/Q dimensions, crucial for ensuring the

proper functioning of the constellations.
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Fig. 8. Constellation of th DAE-ZIC and baselines at Rx1 for three values of α. The colors distinguish different symbols. Each of the four clusters of the
same color are caused by one of the four symbols from the interference with different noise.

B. Scenario I: Perfect CSI

1) Constellation Analysis: The received constellations at

Rx1 for all three methods (the two baselines and the proposed

DAE-ZIC) are shown in Fig. 8. In this simulation, we set

Ns = 2 so that each user has 2Ns = 4 information symbols.

The channels are perfectly known, the transmit power is unity,

and the SNR is 8dB.

Each sub-figure of Fig. 8 contains four four-symbol clusters

differentiated by different colors. Each cluster refers to a

symbol transmitted to Rx1. Within each cluster, there are four

symbols, which are due to the symbols of Rx2. For example,

the blue colors denote symbol 1 of Rx1, each contaminated by

one of the symbols of Rx2 (interference) and AWGN noise.

It can be seen that the location and distribution of symbols

are different in each method. The constellations of Baseline-

1 (left column) are very crowded and even overlapped when

α = 1 in Fig 8d. This is because Tx2 strongly interferes with

the transmission of Tx1 to Rx1 by directly applying 4-QAM.

Baseline-2 (middle column) rotates the constellation of Tx2,

which enlarges the space between symbols and thus makes

the decoding easier. The proposed DAE-ZIC (right-column)

creates the most separable constellations. It can better make

use of the I/Q plane in constellation design based on the

interference intensity. The two cooperating DAEs can intelli-

gently choose and adjust various scaled constellation types to

avoid constellation overlapping. When α = 0.5, the DAE-ZIC

designs parallelogram-shape constellations compared with the

square-shape constellations in the baselines. For α = 1, both

the constellation of both Tx1 and Tx2 morph to PAM. The

two PAM constellations are perpendicular to each other hence

the overlapping is eliminated. When α = 2, Tx1 uses a

parallelogram-shape QAM and Tx2 uses a PAM. By adapting

their constellations to the interference intensity, the two DAEs

cooperate to avoid constellation overlap as much as possible.

This is the main reason that the DAE-ZIC outperforms the

baselines.

In addition, compared with [26], where the symbols exhibit

nearly equal power in one stream, our design allows the I/Q

domains to have different power levels by incorporates sub-

network 2. With this, the transmitter can generate QAM-like

constellations, further mitigating the impact of interference.

It is also worth noting that imperfect CSI is not considered in

[26], we will show in the next section.
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Fig. 9. The maximum (worst case) BER performance among the two users of DAE-ZIC versus SNR. The BER is averaged over different interference gains
which is uniformly distributed in the given interval.

Fig. 10. The maximum (worst case) BER performance versus interference
gains. The SNR is fixed as 10dB.

2) BER Performance of the DAE-ZIC: To evaluate the

effectiveness of the DAE-ZIC, we compare the BER of the

three methods over SNR in [0, 20]dB and 0 ≤ α ≤ 3. For the

DAE-ZIC, we divide interval α ∈ [0, 3] in to six sub-intervals,

i.e, [0, 0.5), [0.5, 1), . . ., [2.5, 3]. For each sub-interval of α,

we train a DAE-ZIC through Algorithm 1.

The BER versus the SNR is shown in Fig. 9. In each sub-

figure, α is a fixed value. In general, the DAE-ZIC outperforms

the two baseline models, especially in moderate and strong

interference regimes. With Ns = 3, performance of DAE-ZIC

drops at 0dB. The reason is we have trained the network

at SNR = 10dB but have tested it for a range of SNRs

from 0 to 20dB. A potential way to improve is to train the

DAE-ZIC with a variety of SNRs.

The BER performance versus α at SNR = 10dB is shown

in Fig. 10. In Fig. 10(a) and Fig. 10(b), we set Ns = 2 and

Ns = 3, i.e., M1 = M2 = 4 and M1 = M2 = 8.

When interference is very weak, i.e., α ∈ [0, 0.25], the

three methods have similar BERs. The proposed DAE-ZIC

noticeably reduces the BER in weak, moderate, and strong

interference cases, where α ∈ [0.5, 2]. From Fig. 10(a), using

DAE-ZIC over α ∈ [0, 3], BER is reduced 75.7% and 44.29%

with respect to Baseline-1 and Baseline-2, respectively. When

α ∈ [0.5, 2], the improvement becomes 80.3% and 51.5%.

When the interference is very strong, e.g., α > 2.5, Baseline-

2 slightly outperforms the DAE-ZIC. The reason could be that

4-QAM with rotation may achieve optimal performance [16].

For Ns = 3 in Fig. 10(b), 44.4% and 31.5% BER reduction is

reached by the DAE-ZIC over α ∈ [0, 3]. For α ∈ [0.5, 2],
DAE-ZIC outperforms the other two methods with 45.0%

and 33.4%. Baseline-1 performs poorly for α ∈ [0.5, 2],
because the two added QAM constellations may get crossed
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Fig. 11. The maximum (worst) BER performance among the two users versus SNR when estimation error is considered.

and overlap. Thus, Rx1 cannot decode its message. Such a

phenomenon is alleviated in Baseline-2 which simply rotates

one QAM constellation and the added constellations still have

a reasonable symbol distance. The normalization layer allows

the DAE-ZIC to design constellations without any regular-

shape restrictions. Thus, the minimum distance at receivers

can be enlarged which results in a lower BER.

C. Scenario II: Imperfect CSI

The influences of the imperfect CSI on the BER perfor-

mance are shown as follows. Two types of imperfection are

analyzed independently: CSI estimation error and quantization

error. For imperfect CSI, both baselines use the system model

in Fig. 5(b). When decoding, Rx1 will take θδ into decoding.

The performance of the two baselines and the proposed DAE-

ZIC are evaluated for α ∈ [0, 3] and SNR in [0, 20]dB. In the

simulation, the actual direct channel hii ∼ CN (1, 0.1) where

i ∈ {1, 2}. The estimation error εijs are in CN (0, σ2
E). Then

the estimated channels are obtained from (19). To be fair to

the users, we use the maximum (worst) BER between them

as the measurement. Each result is averaged over 500 random

channels.

1) CSI With Estimation Error: The BER versus interference

intensity α is shown in Fig. 12. Two levels of the estimation

error are examined. Specifically, σ2
E ∈ {0.05, 0.1}. The

proposed DAE-ZIC outperforms the baselines almost for any

α. The percentage of the BER reduction is shown in Table II.

With a fixed α, the BER versus SNR is shown in Fig. 11

for weak, moderate, and strong interference. Compared to the

baseline methods, the DAE-ZIC has a remarkable improve-

ment in BER performance in all interference and estimation

error levels. As mentioned earlier, the main difference between

the proposed DAE-ZIC and the baselines is that the network

is able to re-design the constellation based on the interference

intensity, and that is how the DAE-ZIC reduces the BER.

2) CSI With Feedback Quantization: When channel esti-

mation is perfect, the BER performance with feedback quan-

tization (with Nq = 3) and without quantization (Nq = ∞)

is shown in Fig. 13. The DAE-ZIC outperforms the baselines

with and without feedback quantization. In addition, the quan-

tization error increases the BER of all methods. However, the

performance degradation of the DAE-ZIC is much less than

Fig. 12. The maximum (worst) BER performance of the two users under
the estimation error. The SNR is fixed as 10dB.

TABLE II

BER REDUCTIONS OF DAE-ZIC COMPARED TO THE BASELINE

METHODS(IN PERCENTAGE AND α ∈ [0, 3])

the other two methods. Especially, for α = 1 and α = 1.5),

where the interference is strong, the DAE-ZIC outperform

other methods by more than two orders of magnitude when

Nq = 3 and SNR = 20dB. Interestingly, Baseline-1 performs

better for Nq = 3 compared to Nq = ∞. The reason is that

quantization of the angles may introduce rotation angle on
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Fig. 13. The maximum (worst) BER performance of the two users versus SNR. The quantization is considered while free from estimation error.

Tx2, acting like Baseline-2 unintentionally. This then reduces

the constellation overlapping and thus a better BER is reached.

With high interference intensities, i.e, α = 1 and α = 1.5,

the BER of the DAE-ZIC with quantization (Nq = 3) is

only slightly degraded compared to the un-quantized case

(Nq = ∞). This is because, while Txs receive the quantized

CSI, Rx1 knows CSI before and after quantization. Then,

it can to some extent correct the imperfectness in transmitters.

Therefore, there is no dramatic degradation for the DAE-

ZICs. On the other hand, Baseline-2 is more sensitive to the

quantization error and thus a big gap of the BER happens

between Nq = ∞ and Nq = 3. The reason is that Baseline-2

only rotates the constellation in Tx2, which highly depends on

the phase shifted by the channels.

VII. CONCLUSION

A novel DAE architecture for interference mitigation in

the two-user ZIC with perfect and imperfect CSI has been

proposed. The DAE-ZIC minimizes the BER by jointly design-

ing transmit and receive DAEs and optimizing them together.

In this architecture, the average power constraint is realized

by designing a normalization layer. This enables the proposed

DAE-ZIC to design more efficient symbols to achieve lower

BERs. BER simulations verify the effectiveness of the pro-

posed structure. We have compared the proposed DAE-ZIC

with two baseline models, and the DAE-ZIC outperforms both.

With quantized CSI, the gain obtained by the DAE-ZIC com-

pared to the best conventional method is remarkable and can be

as large as two orders of magnitude at SNR = 20 dB. Getting

back to the questions asked in the introduction, we conclude

that autoencoder is a viable solution for interference channels

and it outperforms the conventional methods by designing new,

nonuniform constellations which make the symbols separable

at the interfered receiver side.
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