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Deep Autoencoder-Based Z-Interference Channels
With Perfect and Imperfect CSI
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Abstract— A deep autoencoder (DAE)-based structure for end-
to-end communication over the two-user Z-interference channel
(ZIC) with finite-alphabet inputs is designed in this paper. The
proposed structure jointly optimizes the two encoder/decoder
pairs and generates interference-aware constellations that
dynamically adapt their shape based on interference intensity to
minimize the bit error rate (BER). An in-phase/quadrature-phase
(I/Q) power allocation layer is introduced in the DAE to guar-
antee an average power constraint and enable the architecture
to generate constellations with nonuniform shapes. This brings
further gain compared to standard uniform constellations such
as quadrature amplitude modulation. The proposed structure is
then extended to work with imperfect channel state information
(CSI). The CSI imperfection due to both the estimation and
quantization errors are examined. The performance of the DAE-
ZIC is compared with two baseline methods, i.e., standard
and rotated constellations. The proposed structure significantly
enhances the performance of the ZIC both for the perfect and
imperfect CSI. Simulation results show that the improvement is
achieved in all interference regimes (weak, moderate, and strong)
and consistently increases with the signal-to-noise ratio (SNR).
For instance, more than an order of magnitude BER reduction
is obtained with respect to the most competitive conventional
method at weak interference when SNR > 15dB and two bits
per symbol are transmitted. The improvements reach about two
orders of magnitude when quantization error exists, indicating
that the DAE-ZIC is more robust to the interference compared
to the conventional methods.

Index Terms— Interference channel, Z-interference, imperfect
CSI, autoencoder, constellation design.

I. INTRODUCTION

NTERFERENCE is a central issue in today’s multi-cell
networks. The information-theoretic model for a multi-cell
network is the interference channel (IC). There have been
many efforts to find the capacity of the IC either with the
same generality and accuracy used by Shannon for point-to-
point systems [3], [4], [5], [6] or by seeking approximate
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solutions with a guaranteed gap to optimality at any signal-
to-noise ratio (SNR) [7]. However, the capacity region of
the two-user IC is only known for strong interference where
decoding and canceling the interference is optimal [3]. Also,
at very weak interference, sum-capacity is achievable by
treating interference as noise [8], [9], [10], whereas, in general,
decoding part of the interference and treating the remaining
as noise is the best achievable scheme to date [5].

The aforementioned Shannon-theoretic works are based on
Gaussian inputs. Despite being theoretically optimal, Gaussian
alphabets are continuous and unbounded, and thus, are rarely
applied in real-world communication. In practice, signals are
generated using finite alphabet sets, such as phase-shift keying
(PSK) and quadrature amplitude modulations (QAM). The
performance gap between the finite alphabet input and the
Gaussian input design is non-negligible [11]. However, con-
ventional finite-alphabet approaches are based on predefined
uniform constellations like QAM. These constellations are
defined for point-to-point systems [12], [13], [14], [15] and
their constellation shaping is oblivious to interference. Such an
inability to respond to interference is an obstacle to improving
the bit-error rate and spectral efficiency of today’s interference-
limited communication systems.

In this paper, we consider the two-user single-input single-
output (SISO) one-sided IC, also known as the Z-interference
channel (ZIC). With Gaussian signaling, the capacity region of
this channel is known only in the strong and very strong inter-
ference regimes [6]. However, Gaussian signaling is unsuitable
for practical applications. Previous work has studied ZIC
with finite alphabet sets in specific regimes and predefined
uniform constellations. In [16], it is shown that rotating one
input constellation (alphabet) can improve the sum-rate of
the two-user IC in strong/very strong interference regimes.
Later, an exhaustive search for finding the optimal rotation
of the signal constellation was presented in [17]. In addition,
a signaling design is proposed in [18] which applies a rotation
to the channel which resembles rotating the input. The main
focus of the above papers is to maximize the achievable
rates, and they do not study bit-error rate (BER) performance.
However, BER is a key metric and interference can severely
reduce the BER by distorting the received constellation, when
uniform constellations like QAM are employed.

Recent research has proved end-to-end learning as a promis-
ing approach for encoding, decoding, and signal representation
to reduce BER [19]. Particularly, deep autoencoder (DAE) is
a popular architecture for implementing end-to-end learning.
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It consists of an encoder that transforms input data into a
low-dimensional representation to find its structure and a
decoder that reconstructs the original input from this represen-
tation. DAE-based end-to-end communication is an emerging
approach to finite-alphabet communication in which BER is
the main performance measure and constellation design is
inherent. DAE-based communication is introduces both for
single- and multi-user systems by various groups [19], [20],
[21], [22], [23], [24]. These studies indicate that the DAE
surpasses current solutions and enhances performance beyond
conventional methods [24].

Specifically, utilizing two DAEs for the transmitter/receiver
pairs enables effective signal separation/decoding of original
data even in the presence of interference, thereby paving the
way for enhancing communication performance over the IC,
as investigated in prior studies [19], [25], [26]. However, these
studies have limitations as they focus solely on symmetric
interference scenarios and compare their results against simple
baselines like quadrature phase shift keying (QPSK), despite
the fact that QPSK performs much worse than rotated QPSK
in the context of the IC [16], [17], [18]. Further, the DAE
designs in [19], [25], and [26] produce symbols with fixed
power levels and lack the ability to generalize to QAM-like
constellations. Thus, they do not efficiently use the in-phase
and quadrature-phase (I/Q) plane. Additionally, these designs
assume perfect knowledge of channel state information (CSI),
and the transition from perfect CSI to imperfect CSI remains
unexplored.

A. Motivation and Contribution

The above limitations has motivated us to investigate DAEs
potential for the long-lasting problem of interference in more
practical settings. We shed light on DAE-based communication
over asymmetric interference with both perfect and imperfect
CSI. Specifically, we design and train novel DAE-based archi-
tectures for the ZIC with finite-alphabet inputs. In the ZIC,
two DAEs should be considered in two transmitter-receiver
pairs. The two DAE pairs cooperate to avoid interference
and adapt their constellation to the interference intensity. Our
work is motivated by the following question: Can we design
interference-aware constellations using DAEs? Will the gains
remain/vanish if CSI is not perfect? We answer these questions
by developing new structures and explaining how the designed
nonuniform constellations lend themselves to interference mit-
igation in different regimes, and thus improving the BER.

The ZIC is characterized by local, short-range interference
[27], where far-away users are not affected by interference.
This simple channel model is a fundamental building block
for more complex interference networks and its understanding
is crucial in the field of interference research. As such, it has
been widely studied in the literature of interference [6], [28],
[29], as it provides insights into the limits interference-limited
scenarios. By understanding the behavior of interference in
the ZIC, we can develop more effective strategies to mitigate
interference in more complex networks.

The main contributions of the paper are as follows:

o We design a DAE-based transmission structure for the

ZIC and demonstrate its effectiveness across weak,
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moderate, and strong interference levels. We propose
incorporating an average power constraint normalization
layer that enables nonuniform constellations, resulting in
more efficient utilization of the I/Q plane. The designed
constellations are adaptive to the interference intensity,
and morph in a way that the ‘receivers’ see distin-
guishable symbols, thereby improving BER even in the
presences of interference. We also conduct a neural
network ablation study to demonstrate the impact and
necessity of each design element in our proposed model.
This analysis provides valuable insights into the signifi-
cance of each component and also serves to validate the
overall architectural effectiveness.

o We extend the proposed structure to the finite-alphabet
ZIC with imperfect CSI, where we consider both estima-
tion and quantization errors. Particularly, CSI estimation
errors pose confuses for DAE training and testing per-
formance. Meanwhile, quantization errors, arising from
limited feedback capacity, introduce undesirable rotations
to the constellations. In order to develop a DAE that is
robust against these errors, we introduce an equivalent
system model that reduces the CSI parameters and ulti-
mately lowers the BER.

o Our design directly accepts the transmission bits as its
input rather than converting them to symbols and using
one-hot vectors for the DAE input. This has two advan-
tages. First, our design can directly minimize the BER
and we do not need to worry about optimal bit-to-symbol
mapping. Second, it reduces the complexity as to transmit
b bits, the input and output layers require only b neurons
whereas the one-hot vector method needs 2° neurons.

It worth mentioning that, for benchmarking purposes,
we use rotated uniform constellations, which have been proven
to be more competitive than their unrotated counterparts. Our
proposed DAE-ZIC shows significantly better BER perfor-
mance for all interference regimes (weak, moderate, and strong
interference). For perfect CSI, when averaged over SNRs
from O to 20dB, 44% reduction in BER is achieved. At certain
SNRs and interference regimes, the improvement is over an
order of magnitude. For imperfect CSI, the overall reduction is
about 40%. The gap between the DAE-ZIC and conventional
methods is even larger when quantization error is applied.

B. Organization

The remainder of this paper is organized as follows.
We elaborate on the ZIC system model in Section II. The
DAE design and the training approach are introduced in
Section III. The system model with an imperfect CSI is
derived in Section IV. The modifications for the DAE with an
imperfect CSI is introduced in Section V. Numerical results
are presented in Section VI, and the paper is concluded in
Section VII.

Notation: (-)T denotes transpose, E{-} denotes expectation,
and diag(A1,...,A,) represents the diagonal matrix with
elements A1, ..., \,. N(i,02) and CN(p1,0%) are real and
complex Gaussian distributions where p and o2 are the mean
and variance. | - | is the amplitude of a complex number.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 31,2024 at 14:02:37 UTC from IEEE Xplore. Restrictions apply.



ZHANG AND VAEZI: DEEP AUTOENCODER-BASED Z-INTERFERENCE CHANNELS WITH PERFECT AND IMPERFECT CSI 863

ny ~CN(0,0?)
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ny ~ CN(0, 6%)
Fig. 1. System model of the ZIC.

II. SYSTEM MODEL OF ZIC WITH PERFECT CSI

Figure 1 shows the system model of a two-user complex
SISO ZIC with perfect CSI. The two transmitter-receiver pairs
wish to reliably transmit their messages while the transmission
of the first pair interferes with the transmission of the second.
The four nodes are named Tx/, Tx2, RxI, and Rx2, as shown
in Fig. 1. h;; refers to the channel gain from the ith transmitter
to the jth receiver and ¢,j € {1,2}. For ZIC, hy; = 0. The
received signals at the receivers can be written as

(1)
(1b)

y1 = h1iz1 + ha1zo + 1y,

Y2 = hoowa + na,

in which x; and z5 denote the transmitted symbols of Tx/ and
Tx2. The transmitted signals are complex-valued with finite-
alphabets and variances E{|z|?} = P, and E{|x5]?} = P» in
which P; and P, are the power budgets of the two transmitters.
The channel coefficients are complex random variables

hij £ i’ ~ CN (pn, 07), (2)

where p, and o} are the mean and variance of the channel
distribution, and 7;; and 6;; represent the magnitude and phase
of hj;. Also, n; and ng are the complex-valued independent
and identically distributed (i.i.d.) additive white Gaussian noise
with zero means and variances o? and o3. Without loss of
generality, we assume the noise powers at the two receivers’
sides are the same, i.e., 0 = 05 = o2 [28].

A. The Equivalent System Model of the ZIC

It is known that, without loss of generality, the channel gains
of the direct transmission links can be modeled as one, shown
in Fig. 2(b), [28], [29]. The interference gain is also real-
valued for both real- and complex-valued systems. When CSI
is available and if we apply pre- and post-processing illustrated
in Fig. 2(a), such a system model in Fig. 1 is equivalent to
that of Fig. 2(b).! The Tx2 applies e/(?11=921) to cancel the
phase of hoy and align its phase with that of h1;. The Rx/ and
Rx2 applies hi}' and hoy e?(?217011) to normalize the channel
gain to one. Then, the received post-processed signals are

J1 = hi'yr = o1+ roary w2 + by, (3a)
Yo = hoy %21 yy = x5 + ej021n1h2_21. (3b)

By defining
Va £ rarg, (4a)

'We describe this process here as we will need later in Section IV where
CSI is not perfect.

nl o
Transmitter 1 | X1 hiy = ry e/ Vi » Receiver 1
(TxI) 3 " (RxI)
Transmitter 2 8 / [ 2| Receiver 2
(Tx2) Iy = rpel® (Rx2)
exey 1=621) n Iy i =01
(a) Original system model
i
Transmitter 1 | X1 V i =1 ‘,?\ _ ? Vi Receiver 1
(TxI) A o (Rx1)
z
A i}
Transmitter 2 | X2 L Y2 Receiver 2
(Tx2) iy = 1 T (Rx2)
ny
(b) Equivalent system model
Fig. 2. The equivalent system model of the ZIC.
_ A —1 _ A i0 —1
n1 = nihiy, and, ng = " nihy, (4b)
we have the system model in Fig. 2(b) as
71 = huxy + Vaxs + 7, (5a)
Yo = hooxs + nio. (5b)

where illl = BQQ = 1 and Bgl =
channel gains.

Thus, the two system models in Fig. 1 and Fig. 2 are
equivalent. Hence, we follow the existing studies and use the
system model in Fig. 2(b), and consider a fixed /« at each
time. It is worth mentioning that both actual channel gains and
noise (h;; and ny, 4,5 € {1,2}) are Gaussian. In this paper,
we assume a slow fading scenario with

Vo are the equivalent

n; ~ CN(0,02r;%). (6)

III. DEEP AUTOENCODER WITH PERFECT CSI

Existing studies [16], [31] use standard QAM constellations
at each transmitter. Such constellations are fixed and are
not adjustable according to the interference intensity. To fur-
ther improve the transmission performance, we propose a
DAE-based transmission for the two-user ZIC, named DAE-
ZIC. The architecture is shown in Fig. 3.

A. The Architecture of DAE-ZIC

The DAE-ZIC consists of two pairs of DAEs. Each pair
performs an end-to-end transmission, which includes input
bits, autoencoder at the transmitter, channel and noise layers,
autoencoder at the receiver, and final output bits.

1) Network Input: Each transmitter sends N bits to the
corresponding receiver. The interference channel coefficient
\/a is known at the transmitter and receiver and is appended
to the input bit vector. Then, both the transmitters and receivers
have the knowledge of the CSI. The two transmitters are
expected to jointly design their constellations and the receivers
will decode correspondingly.
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Fig. 3.

The architecture of the two-user DAE-ZIC implemented by two pairs of deep autoencoders. Each transmitter of the ZIC contains two sub-networks.

Sub-network 1 mainly generates the constellation and sub-network 2 is used to implement the average power constraint. The receivers decode their bits from
the received signal. This architecture is based on the system model in Fig. 2(b). n is a power control parameter defined in (15).

2) Transmitter DAE: As shown in Fig. 3, the DAE of
the transmitter contains two sub-networks: Sub-network 1 and
Sub-network 2. Sub-network I converts the input bit-vector to
symbols with unit power in the I/Q components. Sub-network 2
performs power allocation, which controls the power of the
I/Q components. The two sub-networks combines in parallel
to yield a nonuniform constellation. The batch normalization
in sub-network 1 together with sub-network 2 realize the
average power constraint at the transmit antenna. Having an
average power constraint is necessary especially for SISO
systems. In this way, the I/Q plane is used efficiently, like
QAM. Otherwise, the DAE can only produce constant-power
constellations, like PSK, where constellation points are on a
circle which is not efficient in terms of BER.

The components of sub-network 1 are fully connected layers
(FCNN), residual connections, or shortcuts, to alleviate the
vanishing gradient effect, and the output batch normalization
layer. The activation function of the FCNN layers is tanh,
except for the last layer which has two hidden nodes and no
activation function.

Let the batch size be Np. The output of the last FCNN is

Xfcnn = [XI Q }a

fonns Xfenn (7)
where xI, = and x2 € RV2*! are the outputs of the two
hidden nodes and represent I/Q of the complex-valued signal.
Since the FCNN has unbounded outputs, it cannot guarantee a
power constraint at the transmitter. We propose the transmitter
design shown in Fig. 3 to achieve an average power constraint
at each antenna. First, we use batch normalization in sub-
network 1 to unify the average power of I/Q independently.
The batch normalization layer linearly normalizes x}.  and

Q . . . 1
Xinns 10 Which the normalized vectors xp and x5 are

given by

1 1 1
XB = ﬂ " Xfenno X% = ﬁQ ’ X?cnn’ (®)

where 3 £ [, YT contains two factors for normalization.

In sub-network 2, the power allocation of the I/Q com-
ponents is determined by the FCNN layers, which take the
input value y/« into account. The FCNN layers calculates the
powers of I/Q components, and the power normalization block
limits the total power to P, thus achieving the intended power
control. The powers of XIB and X% (i.e., each batch of I/Q
signals) are multiplied by 4" and 7?, which are the outputs
of Sub-network 2. Defining the input and output of the power
normalization layer as v, 2 [, 77 € R?>*! and v £
[v', ¥Q)T € R?*! respectively, the power normalization layer
normalizes its input and scales its power, i.e., v = VP, %
Thus, vy = P,. Such an operation can be done via the
Lambda layer in KERAS [32]. Finally, the outputs of the
batch normalization and power normalization are multiplied
together, i.e.,

1

2 Q. Q
out "Xp-

20 xh, xQ 2y )

X,

The powers of x., and onul are 7' and 9, respectively.
In short, batch normalization is applied to I and Q components
separately and along the time axis (batch by batch) while
power normalization scales the power of I/Q components at
each time to reach the average power constraint. That is,
the two normalization operations are implemented in different
dimensions. The final output of the transmitter is

X2 [Xloutv XoQu[]
=[x}, x3] - diag(¥)

Q

= [X}cnn? Xfcnn] . dlag(B) : diag(W)' (10)
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Fig. 4. Form a SISO complex-valued channel by a 2 x 2 MIMO real-valued
channel.

where x[ . and x?cnn are the output of the FCNN layer in

sub-network 1 and represent the preliminary I/Q signals, 3
normalizes the power of each batch, and ~ controls the power
of the I/Q signals such that average power is P;.

3) Channel Implementation: The channel is formed follow-
ing (1). The complex-valued SISO channel is achieved by real
values intuitively shown in Fig. 4. At RxI, the received signal

is g1 = 7} + jiys

1 I 1 =1
Y1 1 7 ) n
4] o 4]+ 4
] = ]+ ()]
where i} and g? are the I/Q components of the received signal,
x{ and 29 are the I/Q components of the :the transmitter,
and ﬁi,ﬁ? ~ N(0,30%r;;%) are the I/Q components of the

complex-valued. Similarly, the received signal for Rx2 is 3o =

b + j7s
1 I —1
Y ) no
"ol = +1_0]-
Lg] LS] [ng}

The additive Gaussian white noise (AWGN) is implemented
by a Gaussian noise layer in KERAS. The noise power is set
according to SNR in the training and testing stages.

4) Receiver DAE: The received signals are y; and 9.
To ensure the receiver networks have a finite input range,
we use batch normalization layers in KERAS unifying the
power of the received signals, i.e.,

Y

12)

=1, Vie{1,2},

ys,i =& Ui, E{lys,i (13)

where £ is a coefficient to reach the unit power. The process
details and settings are the same as those in the transmitter.
We further define the desired signal for RxI as

Tp = z1 + Vawxs. (14)

xp,1 contains the true desired signal z; and the interference
\/azxs. The goal of the receiver is to decode z; for an arbitrary
2o in its constellation. The desired signal of Rx2 is xp 2 £
r9. However, the normalization of the received signal (13)
causes the power of the desired signal to vary with the SNR.
Hence, the autoencoder should adjust the decoding boundary
according to the SNR, which is an extra burden. So, we turn to
normalize the desired signal using linear factor, 1, multiplied
on the batch normalization output, i.e.,

P .
14 =24,
ON

Yp,i =10 Y,is N = vie{1,2}, (15

where Pp ; is the power of the desired signal rp; and o%; is
the noise power. The batch normalization normalizes the
desired signals using pre-processing 7). Then, the normalized
signal, yp ;, together with the feature of the ZIC, hq; = Va,
are sent to the rest of the FCNN layers. The final output of
the DAE is an estimation of the transmitted bit-vectors, §; and
S2, as shown in Fig. 3.

The activation function of the output layer is sigmoid
function, i.e., f(s) = H% Thus, assuming the input of the
final layer, marked as Rx Output in Fig. 3, of ith receiver is
¥ r,i» the output equations can be written as §; = f(yr,;). The
sigmoid function is commonly used because it outputs a value
between 0 and 1, which can be interpreted as a probability of
the input belonging to the positive class. This function is also
differentiable, which is important for backpropagation during
training of neural networks.

5) Loss Function: In our DAE-ZIC, each receiver has its
own estimation of the transmitted bits. Then, the overall loss
function of the DAE-ZIC is £L = Lq + L», where £; and
Lo are the loss at Rx/ and Rx2. Each output vector in the two
receivers represents binary messages, then the network can be
trained using binary cross-entropy loss:

Np
> (sin) " log8ip + (1 —si) " log(1 = 8;.n),

n=1

1

(16)

where ¢ € {1, 2} distinguishes the users, Np is the batch size,
S;,n 1s the nth input bit-vector in the batch, and §;,, is the
corresponding output. The loss function treats each element
of the DAE output as a 0/1 classification task. The binary
cross-entropy loss function is commonly used for multi-label
classification problems, where each example can have multi-
ple binary labels. The loss function measures the difference
between the predicted probability of each label being present
in the example and the true probability of the label being
present. Finally, the loss is the summation of the loss of N,
tasks, where N, is the number of bits in the transmission.
In the training process, the backpropagation algorithm passes
L1 to Rxl and it will further go to 7x/ and Tx2, whereas Lo
affects Rx2 and 7Tx2.

B. Training Procedure of the DAE-ZIC

Due to the difficulty of training a single network across all
values of the interference gain «, distinct instances of DAEs
are employed for a few different ranges of «.. For each training
session, a value for IV, is selected and the desired range for
& € [Qmin, Ymax| is specified. During the training process,
all four sub-networks are trained simultaneously. The DAE is
trained iteratively using random values of a within this inter-
val. For each «, the DAE undergoes training for £, epochs
with a mini-batch size of Np and a constant learning rate of
l.. After training the DAE for NN, different values of «, the
learning rate is reduced to d.l,.. A comprehensive description
of the training procedure, including the simultaneous training
of all sub-networks to adapt to the ZIC interference patterns,
can be found in Algorithm 1.
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Algorithm 1 Training Procedure for the DAE-ZIC

1: Fix Ny, amin, and appax.

Set P, = 1W and SNR= 10dB.

Set N, = 30,000, the number of channels.

Set E, = 10, the number of the epochs.

Set Np = 10%, the batch size.

Set I, = 1072, the initial learning rate, which will drop
to d,l, = 0.95!, after every Ny = 200 trained channels.
7. Initialize the DAE-ZIC network.

8: for index i, from 1 to N, do
9: Uniformly and randomly select one & € [(min, Gmax)-

AN A R

10: Randomly generate h1; and hos using (2).

11: Normalize the channel using (5).

12: Update hot = y/a in the DAE-ZIC in (11).

13: Set the variance of the noise layer according to (6).
14: for index i, from 1 to E, do

15: Randomly generate Np bit vectors.

16: Update the weights of the DAE-ZIC using Adam.
17: end for

18: Set learning rate [, = d..l, if i, /Ny is an integer.

19: end for

IV. SYSTEM MODEL WITH IMPERFECT CSI

In this section, we consider the ZIC with imperfect CSI
and find its equivalent channel. The CSI imperfectness comes
from two sources: the error in the estimation of the CSI at
each receiver and the error due to the quantization of the CSI
before feeding it back to the transmitter. The system model
is depicted in Fig. 5(a), in which both the estimation error
and quantization error are considered. In general, the notation
is similar to Section II-A. One main difference is that the
estimation errors £;; occur at the receivers when we estimate
the channel coefficients ﬁij. The imperfectness of fzij affects
the decoding process. Besides, the quantization error occurs
when the parameters need to be fed back to another node. For
example, the Tx2 applies

0y £ Q(éu - é21)7

to cancel the phase of ho; where 617 and égl are estimated by
RxI and Q(-) is a quantization function. Ideally, 6, is expected
to be 911 — égl, however, the quantization error exists which
is defined as

a7

05 20, — (011 — 021), (18)

The quantization error is included in ho1 in Fig. 5(b). The
details of the system model and the two types of errors are
given as follows.

1) Estimation Error: The estimated channel gain is mod-
eled as in [33]

hij & #;¢7% = hy; (19)

— Eijs
where
hij ~ CN (pn, o)
is the actual channel with mean p; and variance J,QL, and

Eij ~ CN(O, 0'1275)

(20)

21
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V hiy = iy + ey

0)3
x &2

Tx1

Tx2
e/t

(a) Original system model with imperfect CSI. The angle 6, is the
pre-processing angle defined in (17).

(b) Equivalent system model with imperfect CSI. The angle 65 is the
quantization error defined in (18).

Fig. 5. System model of the ZIC with imperfect CSI.

is the estimation error in which ¢% is the variance of the
error, and ij € {11,21,22}. hi1 and hop are estimated by
Rx1 while ﬁgg is estimated by Rx2. The estimated channel
coefficients are determined by the actual channel and noise,
hence, fzij ~ CN (pip, 03 + 0%). Once the actual channel and
noise are determined, we have h;; = iL,] +¢€;; as the channels
in Fig. 5(a).

Tx2 keeps the pre-processing based on a feedback angle, 6,,.
Rx1 applies post-processing in Fig. 2 based on the ilij. Then,
y; in (3a) becomes

€ n , h €
7 = (1+ All)ml-l—Al—l—e]eq 2L 2L ) 1y, (22a)
hi1 hi1 hi o i
_ €22 n2
y2(1+A >$2+A , (22b)
haa haa
which can be rewritten as
U = h11z1 + ha122 + Ny, (23a)
Yo = hoowy + Mg, (23b)
by defining
hii & (14 eiihi;b), (24a)
hot 2 (o177 €% + eq1hTh), (24b)
i 2 nihyt ~ CN(0,0%7,2). (24c)

In (24b), 605 is the residual angle caused by the quantized
feedback, which is defined in (18) where 6, is the feedback
angle as (25b).

2) Quantization Error: Next, the transmitters require the
knowledge of CSI to perform pre-processing and modification
on constellation for enhanced performance. However, due to
the limited feedback resources, the feedback information is
quantized. This generates another source of imperfection. The
estimated and quantized parameters owned by each end are
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Fig. 6. Feedback process for the ZIC transmission. cg and 6, are the only
feedback parameters.

shown in Fig. 6. Rx/ has the estimated 711, 721, 611, and 62;.
Rx2 has the estimated 95, and 655. To make all the four nodes
access to the channel knowledge, both

ag = Q(&) = Q(73, - 717),
0y = Q(é) = Q(éu - é?l) = 011 — Oy1 + 05,

are sent to the transmitter and Rx2, where Q(-) is a uniform
quantizer with accuracy Ny, & is the estimation of the interfer-
ence intensity, 0= éll — égl, and 65 is the same quantization
error in (18). The quantizer Q(-) uniformly divides the region
of the input variable into 2"V« segments. The region for o and
angle are [0, 3] and [—, 7], respectively. The middle value of
the segment is the quantization result if the input value of Q(-)
is within this segment.

3) Implementation of the Imperfect ZIC: To implement
the imperfect channel model, we randomly generate actual
channels hi; and hoo and estimation errors €17, €92, and
€91. Then, ﬁn and 7122 are determined by (19). We give
interference gain « and then hyy = \ﬂew?l, where 651 is
a random uniformly distributed angle on [0, 27). After actual
channels are generated, the receivers will have the estimated
CSI and can normalize the channel as Fig. 5(b). The receivers
will then assume the channel gains are unity and the RxI
assumes the interference gain is & = |fa; 77, |

It is worth mentioning that, ¢; or g, will go to infinity when
the estimated channel gains (r1; or r92) are close to zero.
In this case, the transmission is not reliable due to the wrong
information obtained from the channel estimation no matter
if the equalization in (23a) is applied or not. The receivers
will suffer from a mismatch between the received symbol and
the constellation. In the channel generation for the imperfect
model, we keep the channel only if

(252)
(25b)

ez | | e
haa | Thi
where 7' is a threshold. We use 7' = 1 in this paper so that

the estimation errors is not dominating in h;; in (24a).
To summarize, for 4,5 € {1, 2},

€11

max( ) < T. (26)

’
hll

i

« The actual channels coefficients are h;; in (20).

o The estimated channels coefficients are Eij, as in (19);

o After the equalization, the equivalent channel coefficients
are h;;, as in (24a)-(24b);

e After normalization, Rx/ and Rx2 will assume the direct
channel gains are one and the interference gain is &.

e RxI knows both the estimated and quantized parameters.
Rx1 sends feedback parameters (&, and éq) to Txl, Tx2,
and Rx2.

Tx1

Antenna A Antenna
Output i . pY @ Input

/@ 11

«

e

Tx2 ’ " Rx2

Antenna . M\ = Antenna

Output N 2 Input
/

&) \Y_

Fig. 7. Implementation of the channels inside the proposed DAE network.

Remark 1: 1f 0% = 0 and N, — oo (i.e., the CSI is
perfect), the system in Fig. 5(b) reduces to that of Fig. 2(b).

V. DEEP AUTOENCODER FOR ZIC WITH IMPERFECT CSI

The channel implementation should follow the imperfect
ZIC model in Section IV. The equivalent channels, Eij S, are
set into the channel layers inside the DAE-ZIC. Different
from the perfect channel case in (11)-(12) and Fig. 4, the I/Q
components become

1 I I

Nl _nm Ty = Lo ny

] = [ e g g e
1 I —1

Y2| _ n Lo ny

) = 3]+ g @7

in which 2! and x? are 1/Q components of the transmitted
signals, where i € {1,2} denotes the users; similarly, gj% and
g? are I/Q components of the received signals; and, T_L£ and
7 are the noises. H,; is the real form of the complex-valued
channel ﬁij in (24a)-(24b),

(28)

where }_Lij = l_zﬁj + jﬁ%. Therefore, we add an FCNN layer
to implement each of the channels. The weight of the channel
layer is P_L-j in (28). These channel layers have zero bias,
no activation function, and are non-trainable. The weight will
be replaced only if the channel is updated during the training
and testing.

In contrast to the scenario with perfect CSI, illustrated in
Fig. 3, the presence of imperfections in the CSI introduces
distinct considerations to our approach.

« Differences in parameters. In the case of imperfect CSI,
the parameter « is not directly available for utilization.
The imperfectness at Rx/ side comes from the estimation
of the interference gain & and angle 6. Rx! transmits 0y
and 6, (quantized values of & and é) to Tx1, Tx2, and Rx2,
as shown in Fig. 6. Thus, the information in three nodes
suffer from both sources of imperfectness, i.e., estimation
and quantization errors.

« Differences in network input configurations. For Rx/, the
input comprises the non-quantized v/é. Furthermore, Rx/
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is uniquely positioned to incorporate the quantization
error of the feedback angle, 65, as an additional input.
This is because Rx/ oversees the quantization process,
and thus is aware of the quantization discrepancy. As a
result, fs5 serves as an input to the network at RxI.

The training process with imperfect channels is similar to
Algorithm 1. We still use Algorithm 1 but lines 10-13 of that
algorithm will be replaced by Algorithm 2.

Algorithm 2 Channel Layer Preparation for DAE-ZIC

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 2, FEBRUARY 2024

TABLE I

ABLATION SETTINGS AND THEIR PERFORMANCE FOR
DIFFERENT VALUES OF «

Settings Proposed Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp. 6
Use shortcuts v - v v v v v
/o to sub-net 1 v v - v - v v
\/c to sub-net 2 v v v - - v -
\/a to the Rx v v v v v - v
Use sub-net 2 v v v v v v -
Performance Proposed Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6
a = 0.5 0.0252  0.0424 0.0324 0.0318 0.0340 0.0513 0.0934
a=1 0.0236  0.1207 0.0294 0.0288 0.0281 0.0488 0.0391
a=1.5 0.0212  0.1288 0.0253 0.0237 0.0308 0.0463 0.0328

1: Inputs: pp, U,QL, 0]25, T, and Nj,.

2: while 1 do

3 Randomly generate hi; and hosy using (20).

4 Randomly generate €11, €22, and €21 using (21).
5: if (26) satisfied then

6 Break.

7 end if

8: end while

9: Uniformly generate A, in 3 [, 7.

0: Update 65 using (18).

11: Normalize the channels using (24a) and (24b).

2: Set the channel layers using (27) and according to Fig. 7.
3:  Set the variance of the noise layer according to (24c).
4: Update a4 and 6, using (25a) and (25b).

5. Complete the feedback process according to Fig. 6.

—_

VI. PERFORMANCE ANALYSIS

The performance is evaluated and compared for the three
methods below:

e DAE-ZIC: The proposed method which designs new
constellations based on the interference intensity.
o Baseline-1: The transmitters directly use standard QAM.
e Baseline-2: TxI uses standard QAM, while Tx2 rotates
the standard QAM symbols based on the interference
intensity [16], [31].
First, we illustrate and analyze the constellations given by the
proposed DAE-ZIC methods with perfect CSI. Then, the BER
performance of the three methods is analyzed under perfect
CSI assumption. Finally, we compare the performance of the
three methods under imperfect channels, including imperfect
estimation and quantization in the feedback.

A. Network Ablation Study

In this section, we conduct an ablation study to analyze the
impact of network design and training parameters. Specifically,
we investigate the effects of incorporating residual connec-
tions and selecting various training parameters. To this end,
we design and perform six ablation experiments, which are
detailed in Table I. The first experiment (Exp. 1) examines
the presence or absence of shortcuts in the proposed method.
Through Exp. 2 to Exp. 5, we investigate the impact of
feeding or not feeding the training parameter /« into different
sub-networks at the transmitters and receives. Exp. 6 explores
the importance of Sub-network 2 which is a new design to
perform power allocation.

1) The Impact of Residual Connections: The incorporation
of residual connections into the proposed DAE has a signifi-
cant impact on its performance, especially for bit inputs. The
addition of these shortcuts enables the network to increase
its learning capacity and improve its performance without the
need for additional parameters or a wider network. Moreover,
these skip connections help preserve gradients, allowing the
network to learn representations at varying depths. As can be
seen in the first two columns of Table I, excluding residual
connections significantly increases the BER, indicating that
residual connections play a crucial role in the overall perfor-
mance of the proposed DAE-ZIC.

2) The Impact of v/« at the Txs: We develop three exper-
iments (Exp. 2, Exp. 3, and Exp. 4) in which /« is fed
into either sub-networks or non and compare their BER
with the proposed network in which /a is fed into bot
sub-networks. While there is not big performance difference
between Exp. 2, Exp. 3, and Exp. 4, for all « settings, there
is a significant improvement when +/« is fed into both sub-
networks (proposed method). Sub-network 1 primarily focuses
on constellation design, whereas Sub-network 2 regulates
the power of I/Q dimension. Since y/« influences both the
constellation layout and the power distribution, providing /a
to each sub-network is essential for optimizing the overall
performance of the system.

3) The Impact of v/« at the Rx: Exp. 5 examines the
performance when /« is not fed to the decoder. This experi-
ment emphasizes the importance of incorporating interference
information at the decoder side, as otherwise the BER roughly
doubles (compared to the first column).

4) The Impact of Sub-Network 2: Exp. 6 demonstrates the
importance of Sub-network 2, which is a new design to ensure
different powers at I/Q dimensions. Our simulations reveal that
the DAE-designed constellations downgraded to PSK in the
absence of Sub-network 2. This explains why neglecting Sub-
network 2 yields results similar to the Baseline-2 which uses
rotated QPSK. On the contrary, as shown by the simulations,
the inclusion of Sub-network 2 allows the proposed structure
to design other shapes such as pulse-amplitude keying (PAM)
at each transmitter. The combination of these PAMs ultimately
yields a QAM-like constellation at the receiver affected by
interference. These findings further emphasize the importance
of incorporating Sub-network2, as it enables effective power
control across the I/Q dimensions, crucial for ensuring the
proper functioning of the constellations.
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Constellation of th DAE-ZIC and baselines at Rx/ for three values of a. The colors distinguish different symbols. Each of the four clusters of the

same color are caused by one of the four symbols from the interference with different noise.

B. Scenario I: Perfect CSI

1) Constellation Analysis: The received constellations at
Rx1 for all three methods (the two baselines and the proposed
DAE-ZIC) are shown in Fig. 8. In this simulation, we set
N, = 2 so that each user has 2"+ = 4 information symbols.
The channels are perfectly known, the transmit power is unity,
and the SNR is 8dB.

Each sub-figure of Fig. 8 contains four four-symbol clusters
differentiated by different colors. Each cluster refers to a
symbol transmitted to Rx/. Within each cluster, there are four
symbols, which are due to the symbols of Rx2. For example,
the blue colors denote symbol 1 of Rx/, each contaminated by
one of the symbols of Rx2 (interference) and AWGN noise.
It can be seen that the location and distribution of symbols
are different in each method. The constellations of Baseline-
1 (left column) are very crowded and even overlapped when
a = 1 in Fig 8d. This is because Tx2 strongly interferes with
the transmission of Tx/ to Rx/ by directly applying 4-QAM.
Baseline-2 (middle column) rotates the constellation of Tx2,
which enlarges the space between symbols and thus makes
the decoding easier. The proposed DAE-ZIC (right-column)

creates the most separable constellations. It can better make
use of the I/Q plane in constellation design based on the
interference intensity. The two cooperating DAEs can intelli-
gently choose and adjust various scaled constellation types to
avoid constellation overlapping. When oo = 0.5, the DAE-ZIC
designs parallelogram-shape constellations compared with the
square-shape constellations in the baselines. For o = 1, both
the constellation of both 7x/ and 7x2 morph to PAM. The
two PAM constellations are perpendicular to each other hence
the overlapping is eliminated. When o = 2, Tx/ uses a
parallelogram-shape QAM and 7x2 uses a PAM. By adapting
their constellations to the interference intensity, the two DAEs
cooperate to avoid constellation overlap as much as possible.
This is the main reason that the DAE-ZIC outperforms the
baselines.

In addition, compared with [26], where the symbols exhibit
nearly equal power in one stream, our design allows the 1/Q
domains to have different power levels by incorporates sub-
network 2. With this, the transmitter can generate QAM-like
constellations, further mitigating the impact of interference.
It is also worth noting that imperfect CSI is not considered in
[26], we will show in the next section.
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Fig. 9. The maximum (worst case) BER performance among the two users of DAE-ZIC versus SNR. The BER is averaged over different interference gains
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Fig. 10. The maximum (worst case) BER performance versus interference
gains. The SNR is fixed as 10dB.

2) BER Performance of the DAE-ZIC: To evaluate the
effectiveness of the DAE-ZIC, we compare the BER of the

three methods over SNR in [0, 20]dB and 0 < « < 3. For the
DAE-ZIC, we divide interval « € [0, 3] in to six sub-intervals,
ie, [0,0.5), [0.5,1), ..., [2.5,3]. For each sub-interval of «,
we train a DAE-ZIC through Algorithm 1.

The BER versus the SNR is shown in Fig. 9. In each sub-
figure, o is a fixed value. In general, the DAE-ZIC outperforms
the two baseline models, especially in moderate and strong
interference regimes. With N; = 3, performance of DAE-ZIC
drops at OdB. The reason is we have trained the network
at SNR = 10dB but have tested it for a range of SNRs
from O to 20dB. A potential way to improve is to train the
DAE-ZIC with a variety of SNRs.

The BER performance versus o at SNR = 10dB is shown
in Fig. 10. In Fig. 10(a) and Fig. 10(b), we set N, = 2 and
NS = 3, i.e., M1 Mg 4 and M1 = M2 = 8.
When interference is very weak, ie., a € [0,0.25], the
three methods have similar BERs. The proposed DAE-ZIC
noticeably reduces the BER in weak, moderate, and strong
interference cases, where a € [0.5, 2]. From Fig. 10(a), using
DAE-ZIC over « € [0, 3], BER is reduced 75.7% and 44.29%
with respect to Baseline-1 and Baseline-2, respectively. When
a € [0.5,2], the improvement becomes 80.3% and 51.5%.
When the interference is very strong, e.g., o > 2.5, Baseline-
2 slightly outperforms the DAE-ZIC. The reason could be that
4-QAM with rotation may achieve optimal performance [16].
For Ny = 3 in Fig. 10(b), 44.4% and 31.5% BER reduction is
reached by the DAE-ZIC over a € [0,3]. For a € [0.5,2],
DAE-ZIC outperforms the other two methods with 45.0%
and 33.4%. Baseline-1 performs poorly for o € [0.5,2],
because the two added QAM constellations may get crossed
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Fig. 11. The maximum (worst) BER performance among the two users versus SNR when estimation error is considered.

and overlap. Thus, Rx/ cannot decode its message. Such a
phenomenon is alleviated in Baseline-2 which simply rotates
one QAM constellation and the added constellations still have
a reasonable symbol distance. The normalization layer allows
the DAE-ZIC to design constellations without any regular-
shape restrictions. Thus, the minimum distance at receivers
can be enlarged which results in a lower BER.

C. Scenario II: Imperfect CSI

The influences of the imperfect CSI on the BER perfor-
mance are shown as follows. Two types of imperfection are
analyzed independently: CSI estimation error and quantization
error. For imperfect CSI, both baselines use the system model
in Fig. 5(b). When decoding, Rx/ will take 65 into decoding.
The performance of the two baselines and the proposed DAE-
ZIC are evaluated for « € [0, 3] and SNR in [0, 20]dB. In the
simulation, the actual direct channel h;; ~ CN(1,0.1) where
i € {1,2}. The estimation error ¢;;s are in CA'(0,0%). Then
the estimated channels are obtained from (19). To be fair to
the users, we use the maximum (worst) BER between them
as the measurement. Each result is averaged over 500 random
channels.

1) CSI With Estimation Error: The BER versus interference
intensity « is shown in Fig. 12. Two levels of the estimation
error are examined. Specifically, o2 € {0.05,0.1}. The
proposed DAE-ZIC outperforms the baselines almost for any
a. The percentage of the BER reduction is shown in Table II.
With a fixed «, the BER versus SNR is shown in Fig. 11
for weak, moderate, and strong interference. Compared to the
baseline methods, the DAE-ZIC has a remarkable improve-
ment in BER performance in all interference and estimation
error levels. As mentioned earlier, the main difference between
the proposed DAE-ZIC and the baselines is that the network
is able to re-design the constellation based on the interference
intensity, and that is how the DAE-ZIC reduces the BER.

2) CSI With Feedback Quantization: When channel esti-
mation is perfect, the BER performance with feedback quan-
tization (with N, = 3) and without quantization (N, = 00)
is shown in Fig. 13. The DAE-ZIC outperforms the baselines
with and without feedback quantization. In addition, the quan-
tization error increases the BER of all methods. However, the
performance degradation of the DAE-ZIC is much less than
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Fig. 12.  The maximum (worst) BER performance of the two users under
the estimation error. The SNR is fixed as 10dB.

TABLE 11

BER REDUCTIONS OF DAE-ZIC COMPARED TO THE BASELINE
METHODS(IN PERCENTAGE AND « € [0, 3])

Compared to Baseline-1 Baseline-2
N 2 3 2 3
0 7577%  44.29% | 44.43%  31.50%
o% 0.05 55.40%  38.97% | 39.12%  31.43%
0.1 48.83%  35.81% | 41.41%  29.24%

the other two methods. Especially, for « = 1 and o« = 1.5),
where the interference is strong, the DAE-ZIC outperform
other methods by more than two orders of magnitude when
Ny = 3 and SNR = 20dB. Interestingly, Baseline-1 performs
better for N, = 3 compared to N, = oco. The reason is that
quantization of the angles may introduce rotation angle on
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Fig. 13. The maximum (worst) BER performance of the two users versus SNR. The quantization is considered while free from estimation error.

Tx2, acting like Baseline-2 unintentionally. This then reduces
the constellation overlapping and thus a better BER is reached.

With high interference intensities, i.e, « = 1 and o = 1.5,
the BER of the DAE-ZIC with quantization (N, = 3) is
only slightly degraded compared to the un-quantized case
(INg = 00). This is because, while Txs receive the quantized
CSI, Rxl knows CSI before and after quantization. Then,
it can to some extent correct the imperfectness in transmitters.
Therefore, there is no dramatic degradation for the DAE-
ZICs. On the other hand, Baseline-2 is more sensitive to the
quantization error and thus a big gap of the BER happens
between N, = oo and N, = 3. The reason is that Baseline-2
only rotates the constellation in 7x2, which highly depends on
the phase shifted by the channels.

VII. CONCLUSION

A novel DAE architecture for interference mitigation in
the two-user ZIC with perfect and imperfect CSI has been
proposed. The DAE-ZIC minimizes the BER by jointly design-
ing transmit and receive DAEs and optimizing them together.
In this architecture, the average power constraint is realized
by designing a normalization layer. This enables the proposed
DAE-ZIC to design more efficient symbols to achieve lower
BERs. BER simulations verify the effectiveness of the pro-
posed structure. We have compared the proposed DAE-ZIC
with two baseline models, and the DAE-ZIC outperforms both.
With quantized CSI, the gain obtained by the DAE-ZIC com-
pared to the best conventional method is remarkable and can be
as large as two orders of magnitude at SNR = 20 dB. Getting
back to the questions asked in the introduction, we conclude
that autoencoder is a viable solution for interference channels
and it outperforms the conventional methods by designing new,
nonuniform constellations which make the symbols separable
at the interfered receiver side.
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