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ABSTRACT
In a cyber-physical system (CPS), the interconnection of cyber and
physical components occurs through a network. This structure,
particularly cyber components and networks, makes it susceptible
to malicious attacks. One of the solutions to this CPS security issue
is to employ end-to-end homomorphic encryption (HE) that allows
direct computations on encrypted data. Despite its promise, HE
only supports basic operations, such as addition and multiplication,
which limits its application areas. Numerical methods have been
presented to perform a comparison operation in the HE domain.
However, they suffer from a slow processing speed due to an in-
herently high number of iterations. To accelerate a homomorphic
comparison operation, this paper introduces a novel approach that
scales inputs using an asymmetric input range in thresholding.
Additionally, parallelism in HE-based multilevel thresholding is
explored and exploited through the use of a parallel processing ap-
plication programming interface for further acceleration. Compared
to a previous comparison operation method, the proposed method
achieves comparable accuracy with fewer iterations, resulting in
a 48% reduction in execution time on an edge computing device.
Furthermore, employing an additional thread using parallelism
increases this reduction to 63%.

CCS CONCEPTS
• Security and privacy→ Cryptography.
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1 INTRODUCTION
A cyber-physical system (CPS) typically consists of cyber com-
ponents such as cloud servers and edge computing devices for
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information processing, physical components like sensors and ac-
tuators, and communications between cyber and physical compo-
nents. However, its openness and connectivity make it susceptible
to malicious attacks [21]. Therefore, extensive research has been
conducted on enhancing privacy and security for CPS. Implement-
ing general encryption and decryption techniques in CPS requires
the decryption of encrypted data on cyber components, leaving
secret keys and decrypted data vulnerable to potential attackers.

One of the solutions to address this challenge is employing ho-
momorphic encryption (HE). This technique enables direct com-
putation of encrypted data without the need for decryption [7].
Therefore, there is no need to store secret keys on cyber compo-
nents, and sensitive information remains protected from attackers.
Compared to alternative cryptography techniques, HE requires less
data transmissions between cyber and physical components. Due to
these capabilities, HE has found extensive application across vari-
ous real-world domains, including machine learning [15], genomics
research [20, 22], managing infrastructures [3], password process-
ing [9], speech processing [11], and image processing [19, 24, 26].

HE schemes are categorized into two types: bit-wise and word-
wise schemes. Typically, word-wise schemes exhibit better perfor-
mance in arithmetic operations over large-scale encrypted data
than bit-wise schemes [17]. Within word-wise HE schemes, there
is a further classification based on the data type of plaintext data.
For instance, the BFV scheme is tailored for plaintext integers [12],
whereas the CKKS scheme, which is used in this paper, is designed
for plaintext real/complex numbers [5].

Despite its promise, HE encounters several issues that hinder its
practical application. One significant challenge is the limited types
of operations over encrypted data. Although addition, subtraction,
and multiplication are commonly supported in many word-wise
HE schemes, the requirements of numerous real-world applica-
tions extend beyond these basic operations. Specifically, one of the
frequently used operations is a comparison operation. To employ
this operation in the HE domain, numerical methods have been
devised to approximate a comparison operation using additions,
subtractions, and multiplications [6, 8].

HE hides plaintext data using noise, and the level of noise in-
creases with each operation over a ciphertext (also called homo-
morphic operation). When this level exceeds a certain threshold,
decryption fails to produce correct results. In particular, homomor-
phic multiplication, considerably slower than homomorphic addi-
tion and subtraction, significantly amplifies noise levels. Therefore,
the number of homomorphic multiplications is defined as depth
and carefully managed. The numerical methods for a comparison
operation have iterations, each involving multiple multiplications,
thus leading to slow processing speed and depth-related challenges.
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Several studies have explored efficient approximate comparison
operations in the HE domain [23, 26]. However, the research re-
mains insufficient. Specifically, there is a scarcity of studies focusing
on lightweight methods tailored to accelerate approximate compar-
ison operations by leveraging application-specific features. Such
approaches are particularly advantageous for cyber components
constrained by limited hardware resources and network bandwidth.

The contributions of this paper are as follows:

• We modify inputs of a numerical method for a comparison
operation used in thresholding. In particular, an asymmetric
input range characteristic is used to reduce the required
iterations of a numerical method. It leads to a reduction in
the execution time and a decrease in depth consumption
while achieving comparable accuracy.
• We explore parallelism in multilevel thresholding that in-
volves comparison operations for further acceleration. To
exploit this parallelism, a parallel processing application pro-
gramming interface is utilized.
• We evaluate the HE-based 3-level thresholding with our pro-
posed methods, in terms of depth, accuracy, and execution
time, on a workstation and an edge computing device. Our
proposed methods improve the feasibility of integrating HE
into real-time CPS.

2 BACKGROUND
2.1 Homomorphic Encryption
A word-wise HE scheme consists of the following operations:

• KeyGen(𝜆): takes a security parameter 𝜆 and generates a
secret key sk, a public key pk, and an evaluation key evk.
• Enc(𝜇, pk): encrypts a plaintext message 𝜇 into a ciphertext
ct using a provided public key.
• Dec(ct, sk): decrypts a ciphertext ct into a plaintext message
using a secret key.
• HomAdd(ct1, ct2, evk): performs addition between cipher-
texts ct1 and ct2 of messages 𝜇1 and 𝜇2 using an evaluation
key and produces a ciphertext of a message 𝜇1 + 𝜇2.
• HomMul(ct1, ct2, evk): performs multiplication between ci-
phertexts ct1 and ct2 of messages 𝜇1 and 𝜇2 using an evalu-
ation key and produces a ciphertext of a message 𝜇1 · 𝜇2.

Besides, subtraction of ciphertexts is available through a variant
of HomAdd, and one of the operands in homomorphic operations
can be a plaintext message (e.g., homomorphic multiplication be-
tween a ciphertext and a plaintext constant). These operations are
implemented in open-source libraries, such as Microsoft SEAL [25],
EPFL Lattigo [1], Zama TFHE [27], and OpenFHE [2].

Many word-wise HE schemes support encoding with packing
techniques, which include multiple plaintext messages into a single
ciphertext, to improve processing speed. For example, the CKKS
scheme allows 𝑁 /2 messages within a ciphertext when the poly-
nomial degree, which is a parameter of this scheme, is set to 𝑁 . A
homomorphic operation on a ciphertext processes multiple mes-
sages in a single instruction/multiple data manner.

With each homomorphic operation, the magnitude of noise
grows. Bootstrapping is a procedure to refresh this noise, and HE
using this technique is called fully HE [14]. However, due to its

Algorithm 1 Comp(𝑥,𝑦;𝑛,𝑑) [8]
Input: normalized real numbers 𝑥,𝑦 ∈ [0, 1]
Input: the number of iterations 𝑛,𝑑 ∈ N
Output: approximate 1 if 𝑥 > 𝑦, 0 if 𝑥 < 𝑦, and 1/2 otherwise
1: 𝑎 ← 𝑥 − 𝑦
2: for (𝑖 = 1; 𝑖 ≤ 𝑑 ; 𝑖 = 𝑖 + 1) do
3: 𝑎 ← 𝑓𝑛 (𝑎)
4: end for
5: return (𝑎 + 1)/2

(a) (b)

Figure 1: Two types of approximate sign functions used in
Comp [8]. (a) when 𝑛 = 2 (b) when 𝑛 = 3.

significant computational overhead, bootstrapping proves imprac-
tical for numerous real-time CPS. This paper, in alignment with
this consideration, opts against the use of bootstrapping, focusing
instead on minimizing total depth.

2.2 Homomorphic Comparison Operation
To perform logical and non-polynomial operations, which are not
basic operations supported in word-based HE schemes, several
studies have adopted numerical methods. Specifically, Cheon et
al. presented a numerical method for comparison operation [8].
Algorithm 1 shows the approximate comparison operation referred
to as Comp. It involves a nested loop. The outer loop has 𝑑 iterations,
and the inner loop corresponds to an approximate sign function 𝑓𝑛
with 𝑛 iterations (𝑓𝑛 (𝑎) ≈ 𝑎

|𝑎 | ). The definition of 𝑓𝑛 (𝑎), which is an
increasing function in [-1, 1], is as follows:

𝑓𝑛 (𝑎) =
𝑛∑︁
𝑗=0

1
4𝑗
·
(
2 𝑗
𝑗

)
· 𝑎(1 − 𝑎2) 𝑗 . (1)

In this previous work, a mixed composition 𝑓 ◦ · · · ◦ 𝑓 ◦ 𝑔 is
introduced as a replacement for 𝑓 ◦ · · · ◦ 𝑓 ◦ 𝑓 to accelerate conver-
gence. The polynomial function 𝑔𝑛 exhibits a sharper slope than 𝑓𝑛 ,
but its function values oscillate within the intervals [1 − 𝜏, 1] and
[−1,−1 + 𝜏], where 𝜏 is a small constant. Therefore, 𝑔𝑛 is employed
during the first iteration (𝑖 = 1), with 𝑓𝑛 taking over thereafter
(𝑖 > 1). 𝑔𝑛 (𝑎)’s with 𝜏 of 1/4 introduced in [8] are as follows:
• 𝑔1 (𝑎) = − 1359

210 · 𝑎
3 + 2126

210 · 𝑎
• 𝑔2 (𝑎) = 3796

210 · 𝑎
5 − 6108

210 · 𝑎
3 + 3334

210 · 𝑎
• 𝑔3 (𝑎) = − 12860

210 · 𝑎
7 + 25614

210 · 𝑎
5 − 16577

210 · 𝑎
3 + 4589

210 · 𝑎
• 𝑔4 (𝑎) = 46623

210 ·𝑎
9− 113492

210 ·𝑎
7 + 97015

210 ·𝑎
5− 34974

210 ·𝑎
3 + 5850

210 ·𝑎
Fig. 1 compares the graphs of 𝑓𝑛 (𝑎) and 𝑔𝑛 (𝑎) where 𝑎 ∈ [−1, 1].

In some real-world applications, such as thresholding for images,
one of the inputs to be compared by Comp is a constant. Suppose
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that𝑦 of Algorithm 1 is a (normalized) constant 𝑡 ∈ (0, 1). The range
of 𝑎 in Algorithm 1 then changes from [−1, 1] to [−𝑡 , 1 − 𝑡]. When
using 𝑓𝑛 (𝑎), it limits the range of comparison output values from
[0, 1] to [𝑐𝑚𝑖𝑛 , 𝑐𝑚𝑎𝑥 ] where 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 stand for Comp(0, 𝑡 ;𝑛,𝑑)
and Comp(1, 𝑡 ;𝑛,𝑑), respectively. The values of 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 can
be computed in advance. The optimal outcomes when employing
Comp involve attaining values that closely approach 0 and 1 while
minimizing the number of iterations. Transforming the range of
comparison output values for 𝑎 ∈ [−𝑡 , 1−𝑡] back to [0, 1] results in a
sharper slope for the approximate sign function, which helps reduce
the number of iterations. Based on this, Shyi and Kim [26] proposed
a shifting-and-scaling-based fast convergence (SSFC) method, of
which equation is presented in (2).

Comp-SSFC(𝑥, 𝑡 ;𝑛,𝑑) = Comp(𝑥, 𝑡 ;𝑛,𝑑) − 𝑐𝑚𝑖𝑛

𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛
. (2)

Compared to the original Comp, Comp-SSFC requires one more mul-
tiplication with a constant 1/(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛), increasing the total
depth by 1 in the HE domain.

3 FAST CONVERGENCE METHOD
Comp-SSFC enables fast convergence when the number of iterations
is small. However, as the number increases, the gain decreases
because the value of 𝑐𝑚𝑎𝑥 and the value of 𝑐𝑚𝑖𝑛 become closer to 1
and 0, respectively. In this case, the added computation and depth
consumption becomeworthless. Furthermore, an error occurs when
the value of 𝑥 is near 𝑡 (i.e., 𝑎 ≈ 0) because of the shift. This error
is amplified as iterations progress.

To solve these problems, we propose a lightweight input scaling-
based fast convergence method for an approximate comparison op-
eration, which is referred to as Comp-ISFC. In contrast to Comp-SSFC,
which conducts post-processing on comparison outputs, Comp-ISFC
scales comparison inputs prior to executing the operation, which
compresses the approximate sign graph along the 𝑎 axis. The for-
mula for the proposed method for scaling inputs of 𝑔𝑛 (𝑎), which is
denoted by𝑤𝑛 (𝑎), is shown in (3).

𝑤𝑛 (𝑎) = 𝑔𝑛 (
𝑎

𝑘
) . (3)

The value of 𝑘 is determined based on the value of 𝑡 as follows:

𝑘 =

{
1 − 𝑡, if 0 ≤ 𝑡 < 1/2,
𝑡, otherwise.

(4)

For a constant 𝑡 , 1/𝑘 is pre-applied to the coefficients of 𝑔𝑛 (𝑎).
Therefore, Comp-ISFC has almost identical computational complex-
ity as the original Comp.

Fig. 2 compares 𝑔2 and𝑤2. Specifically, Figs. 2(a) and 2(b) present
comparisons for 𝑡 smaller than 0.5 and 𝑡 greater than 0.5, respec-
tively. Our 𝑤𝑛 shows a steeper slope than 𝑔𝑛 near the origin, re-
sulting in a faster convergence towards 1 or −1. However, due to
oscillations in its function values, 𝑤𝑛 does not always present a
more accurate result than 𝑔𝑛 . The gray arrows in Fig. 2 represent
the "reverse" area. However,𝑤𝑛 is located near 1 (between 1−𝜏 and
1) or −1 (between −1 and −1 + 𝜏 ) in this area. As𝑤𝑛 (𝑎) is an input
for 𝑓𝑛 in subsequent iterations, it satisfies 𝑓𝑛 (𝑤𝑛 (𝑎)) ≈ 𝑓𝑛 (1) = 1
or 𝑓𝑛 (𝑤𝑛 (𝑎)) ≈ 𝑓𝑛 (−1) = −1. Therefore, 𝑓 ◦ · · · ◦ 𝑓 ◦ 𝑤 shows
higher accuracy than 𝑓 ◦ · · · ◦ 𝑓 ◦ 𝑔 when using the same number
of iterations.

(a) (b)

Figure 2: Comparison of the 𝑔𝑛 and𝑤𝑛 functions. (a) when 𝑡

is smaller than 0.5 (b) when 𝑡 is greater than 0.5.

(a) (b)

Figure 3: Comparison of the 𝑓𝑛 and 𝑣𝑛 functions. (a) when 𝑛

is 2 (b) when 𝑛 is 3.

To further enhance the convergence speed, Comp-ISFC applies
input scaling to 𝑓𝑛 as well. The blue graphs in Fig. 3 depict 𝑓2 (𝑎) and
𝑓3 (𝑎). When 𝑎 exceeds the range [−1, 1], 𝑓𝑛 (𝑎) deviate from 1 or −1.
Nonetheless, they are maintained in proximity to 1 or −1 to some
extent, particularly when 𝑎 lies within [−𝑠 , 𝑠]. Therefore, 𝑓𝑛 (𝑎) is
modified as described by (5), and Comp-ISFC uses the composition
𝑣 ◦ · · · ◦ 𝑣 ◦𝑤 instead of 𝑓 ◦ · · · ◦ 𝑓 ◦ 𝑔.

𝑣𝑛 (𝑎) = 𝑓𝑛 (𝑠 · 𝑎) . (5)

The green graphs in Fig. 3 represent 𝑣2 and 𝑣3. The value of 𝑠 is
empirically set to 1.2 and is pre-applied to the coefficients of 𝑓𝑛 .

4 MULTITHREADING FOR THRESHOLDING
In this paper, Comp-ISFC is applied to multilevel image thresholding
in the HE domain. The same method in [24] is used: 1) multiple
comparison operations with different thresholds are performed;
2) the comparison results are added together (e.g., the ideal sum
is 0+0, 1+0, or 1+1 if two comparison operations are used for 3-
level thresholding); 3) the sum is multiplied by a constant (e.g., 127
is used for 3-level thresholding, with each pixel intensity value
represented as 0, 127, or 254). In this method, the total depth does
not increase even if the number of thresholds increases because
comparison operations are not performed in series.

To accelerate this application, we explore various levels of paral-
lelism. The first level of parallelism arises in multiple comparison
operations. These operations take the same input pixels but differ-
ent thresholds, which enables them to be executed concurrently.
The second level pertains to multiple ciphertexts generated from
the same image. Specifically, when the number of pixels in an im-
age exceeds the maximum limit accommodated by a ciphertext, the
image is divided into smaller sub-images. They are then encoded
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and encrypted into multiple independent ciphertexts, allowing for
parallel processing. The third level of parallelism exists within the
loop for the approximate sign functions.

Listing 1 presents the pseudocode of Comp-ISFC with OpenMP
directives [10]. It exploits the second and third parallelism lev-
els. HomSub and HomMulPlain stand for homomorphic subtraction
between ciphertexts and homomorphic multiplication between a
ciphertext and a plaintext constant, respectively. TermCal that in-
volves HomMul and HomMulPlain computes innermost loop results,
minimizing depth accumulation. Here are brief explanations about
the OpenMP directives used in this pseudocode:
• omp parallel for: distributes iterations of a loop among
available threads.
• omp parallel for collapse(2): parallelizes a nested loop.
• omp barrier: synchronizes threads.
• omp critical: executes only one thread at a time.

Leveraging these multiple levels of parallelism enables the concur-
rent execution of a substantial number of threads. This is particu-
larly advantageous for cloud servers with large hardware resources
and a cluster of edge computing devices.

1 #pragma omp parallel for
2 for (c=0; c<ct_no; c++) { # ct_no: no. ciphertexts
3 A[c] = HomSub(X[c], T); # X: input pixel , T: threshold
4 }
5 #pragma omp barrier
6 for (i=1; i≤d; i++)
7 #pragma omp parallel for collapse (2)
8 for (c=0; c<ct_no; c++) {
9 for (j=0; j≤n; j++) {
10 R1[j][c] = TermCal(A[c], C[j], j); # C: coefficient
11 #pragma omp critical
12 R2[c] = HomAdd(R2[c], R1[j][c]);
13 }
14 A[c] = R2[c];
15 }
16 #pragma omp barrier
17 #pragma omp parallel for
18 for (c=0; c<ct_no; c++) {
19 R3[c] = HomAdd(A[c], 1);
20 R4[c] = HomMulPlain(R3[c], 0.5); # result
21 }
22 #pragma omp barrier

Listing 1: Pseudocode of Comp-ISFC with OpenMP directives.

5 EVALUATION
5.1 Experimental Setup
In this section, Comp-ISFC is evaluated in HE-based 3-level thresh-
olding. The overall evaluation process is illustrated in Fig. 4, where
HE-based 3-level thresholding with the previous and proposed
approximate comparison operations is highlighted in gray. This
process is conducted on a workstation with Intel XeonW-2295 with
18 cores and 128 GB RAM. In addition, evaluation in an edge device
scenario is conducted using a Raspberry Pi 5, equipped with a 64-bit
quad-core ARM Cortex-A76 processor and 8 GB RAM [13].

For the implementation using CKKS functions, we employ the
Microsoft SEAL open-source library (version 3.6) [25]. The HE
parameters we consider include the security level 𝜆, polynomial
degree 𝑁 , and coefficient modulus bit count log𝑞. The security level
is set to 128 bits, which is one of the most popular in contemporary
real-world applications based on HE [7]. We set 𝑁 to 215 to ensure

Figure 4: Overall evaluation process.

(a) (b) (c) (d)

Figure 5: Input test images. (a) cameraman (b) lake (c) pirate
(d) woman.

Table 1: Total Depth in HE-based 3-Level Threshoding

𝑑 2 3 4
𝑛 2-3 4 2-3 4 2-3 4

Original Comp [8] 9 12 12 15 15 19
Comp-SSFC [26] 10 13 13 16 16 20
Comp-ISFC (this work) 9 12 12 15 15 19

ample depth. Our chosen security level and 𝑁 result in log𝑞 being
885-bits, enabling a maximum depth of approximately 20 [4].

Considering this maximum depth, 𝑑 and 𝑛 of the approximate
comparison operations are configured within the range of 2-4. For
all previous and proposed approximate comparison operations in
this section, 𝑔𝑛 or𝑤𝑛 is executed during the first iteration, while
𝑓𝑛 or 𝑣𝑛 is executed during subsequent 𝑑 − 1 iterations.

As input images, four 512×512 gray-scale standard test images
(cameraman, lake, pirate, and woman) are used, which are shown in
Fig. 5 [16]. Each pixel intensity in these images is represented using
8 bits. With 𝑁 of 215, each image is encoded and encrypted into
16 (= 512 × 512/215−1) ciphertexts. For 3-level thresholding, two
threshold values, 85 and 170, are selected. To meet the input range
requirements of the approximate comparison operations, these
thresholds are normalized to 0.33 and 0.67, respectively. Each pixel
intensity obtained by thresholding with approximate comparison
operations has a value close to 0, 127, or 254 as in [24].

To evaluate the accuracy of HE-based 3-level thresholding com-
pared to the original non-HE-based approach using precise compar-
ison operation, the popular peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) are used [18]. In partic-
ular, SSIM is used to evaluate the perceptual image quality, given
that the resulting pixel intensity values by HE-based thresholding
closely approximate 0, 127, and 254.

5.2 Depth
The total depths in HE-based 3-level thresholding are shown in
Table 1. The depth consumed in the approximate sign functions
increases proportionally with ⌈log2 (𝑛 + 1)⌉ in our implementations,
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Table 2: PSNR Comparison in HE-based 3-Level Threshoding

𝑑 𝑛

Cameraman Lake Pirate Woman

[8] [26] this work [8] [26] this work [8] [26] this work [8] [26] this work
D1 D2 D1 D2 D1 D2 D1 D2

2 2 16.92 16.93 18.01 18.60 17.41 17.47 19.06 19.99 17.30 17.33 18.67 19.38 18.38 18.43 20.26 21.20
2 3 18.23 18.23 19.74 20.50 19.36 19.42 21.23 22.14 18.92 18.94 20.56 21.32 20.59 20.64 22.51 23.38
2 4 19.56 19.57 21.24 22.07 21.04 21.04 22.94 23.88 20.37 20.38 22.03 22.82 22.31 22.32 24.13 24.98
3 2 18.77 18.77 20.38 21.86 20.05 20.05 21.99 23.88 19.53 19.53 21.20 22.67 21.32 21.32 23.23 24.86
3 3 21.32 21.32 23.11 24.86 23.06 23.06 24.95 26.62 22.11 22.11 23.79 25.37 24.23 24.23 25.99 27.59
3 4 23.48 23.48 25.31 26.86 25.32 25.32 27.13 28.66 24.13 24.13 25.83 27.28 26.34 26.34 28.07 29.55
4 2 21.32 21.32 23.11 25.42 23.06 23.06 24.95 27.46 22.11 22.11 23.79 26.06 24.23 24.23 25.99 28.32
4 3 24.87 24.87 26.56 28.84 26.70 26.70 28.35 30.54 25.42 25.42 27.00 29.07 27.66 27.66 29.26 31.40
4 4 27.44 27.44 29.02 30.68 29.21 29.21 30.74 32.34 27.81 27.81 29.22 30.58 30.09 30.09 31.59 33.13

Table 3: SSIM Comparison in HE-based 3-Level Threshoding

𝑑 𝑛

Cameraman Lake Pirate Woman

[8] [26] this work [8] [26] this work [8] [26] this work [8] [26] this work
D1 D2 D1 D2 D1 D2 D1 D2

2 2 0.654 0.668 0.702 0.742 0.517 0.520 0.594 0.688 0.404 0.406 0.513 0.619 0.337 0.338 0.429 0.615
2 3 0.725 0.726 0.774 0.790 0.631 0.643 0.754 0.801 0.560 0.577 0.693 0.741 0.486 0.518 0.714 0.793
2 4 0.769 0.770 0.807 0.822 0.749 0.750 0.830 0.861 0.684 0.685 0.777 0.813 0.713 0.714 0.829 0.864
3 2 0.746 0.746 0.790 0.817 0.681 0.681 0.794 0.862 0.621 0.621 0.733 0.811 0.589 0.589 0.778 0.866
3 3 0.809 0.809 0.844 0.871 0.834 0.834 0.892 0.910 0.780 0.780 0.849 0.876 0.831 0.831 0.894 0.888
3 4 0.851 0.851 0.890 0.920 0.902 0.902 0.940 0.961 0.860 0.860 0.907 0.935 0.903 0.903 0.939 0.959
4 2 0.809 0.809 0.844 0.894 0.834 0.834 0.892 0.947 0.780 0.780 0.849 0.914 0.831 0.831 0.894 0.945
4 3 0.881 0.881 0.915 0.949 0.933 0.933 0.957 0.976 0.897 0.897 0.931 0.958 0.932 0.932 0.956 0.973
4 4 0.930 0.930 0.952 0.970 0.966 0.966 0.977 0.986 0.943 0.943 0.961 0.973 0.961 0.961 0.976 0.984

resulting in variations as 𝑛 changes from 3 to 4. Additionally, the
total depth in a comparison operation grows as 𝑑 increases. As
described in Sections 2.2, Comp-SSFC demands an additional depth,
when compared to the original Comp. In contrast, Comp-ISFC does
not require this as the multiplications with 1/𝑘 and 𝑠 are pre-applied
to the coefficients of the approximate sign functions.

5.3 Accuracy
Tables 2 and 3 show the PSNR and SSIM results in HE-based 3-level
thresholding. The proposed work includes two distinct designs: D1
uses 𝑓 ◦ · · · ◦ 𝑓 ◦𝑤 for approximate comparison operations, while
D2 uses 𝑣 ◦ · · · ◦ 𝑣 ◦𝑤 .

In general, the application of Comp-SSFC produces slightly better
results compared to the application of the original Comp for 𝑑 = 2.
However, as 𝑑 increases, the gain becomes negligible because 𝑐𝑚𝑖𝑛

and 𝑐𝑚𝑎𝑥 approach 0 and 1, respectively.
Comp-ISFC presents a notable enhancement in both PSNR and

SSIM values across all cases. On average, applying Comp-ISFC (D2)
yields PSNR values that are 13%, 15%, and 14% higher for 𝑑 of 2,
3, and 4, respectively, compared to applying the original Comp. In
terms of SSIM, the application of Comp-ISFC shows an increase of
31%, 15%, and 8% for 𝑑 values of 2, 3, and 4, respectively.

Considering the same 𝑑 , the results achieved by Comp-ISFC are
in most cases better than those of the previous works using one
larger 𝑛. This implies a reduction in total depth while achieving a
similar or slightly better accuracy.

When consuming the same depth, (𝑑, 𝑛) = (3, 3) shows higher
accuracy compared to (𝑑, 𝑛) = (2, 4). Similarly, (𝑑, 𝑛) = (4, 3) presents
higher accuracy than (𝑑, 𝑛) = (3, 4). This observation proves the
claim in [8] that 𝑑 has a greater impact on accuracy than 𝑛.

5.4 Execution Time
In this subsection, the execution time results (in minutes) in HE-
based 3-level thresholding are presented. Fig. 6 shows the results
on the workstation, and the number of threads changes from 1 to 8.
Due to space constraints, the results for 𝑛 = 3 are not included.

As 𝑑 increases while maintaining 𝑛, the outer loop of the approx-
imate comparison operations undergoes more iterations. Conse-
quently, the results show nearly linear growth. As 𝑛 increases from
2 to 4 while maintaining 𝑑 , all experimental cases (with different
approximate comparison operations, 𝑑 values, and thread counts)
present similar increase rates, 3.23× on average. Increasing the
thread count enhances processing speed. However, the improve-
ment is not exactly linear. Specifically, compared to the case where
a single thread is used, the average execution time increases by
1.68×, 3.09×, and 5.60× when the number of threads is 2, 4, and 8,
respectively. This is due to factors such as thread synchronization,
communication overhead, and shared resources.

Compared to the implementation using the original Comp, the
implementation using Comp-ISFC results in a mere 2% increase in
average execution time. When compared to the implementation
using Comp-SSFC, the proposed work reduces the average execution



GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Sunwoong Kim & Wonhee Cho

Figure 6: Execution time (minutes) on a workstation.

Figure 7: Execution time (minutes) on a Raspberry Pi.

time by 12%. This reduction stems from the fact that Comp-SSFC
requires an additional multiplication.

Fig. 7 presents the execution time results of HE-based 3-level
thresholding performed on the Raspberry Pi. Using a single thread
shows a 3.06× slower processing speed than that achieved on the
workstation. Using two threads enhances the processing speed by
47%. When scaling up to 4 threads, the processing speed becomes
slower. This slowdown may be attributed to contention for limited
hardware resources and synchronization overhead.

Compared to the single-thread implementation using the orig-
inal Comp with 𝑛 of 4, that using Comp-ISFC with 𝑛 of 3, showing
comparable accuracy, results in a 48% enhancement in execution
time on the Raspberry Pi. When the number of threads increases
to 2, this improvement increases to 63%.

6 CONCLUSION
This paper presents a novel method that exploits an asymmetric
input range and scales inputs for an approximate comparison op-
eration. It reduces the number of iterations and execution time
while showing comparable accuracy. Consequently, this method ex-
pands the feasibility of privacy-preserving real-world applications
executed on cyber components of CPS. Furthermore, this paper
explores parallelism inherent in HE-based multilevel thresholding
involving comparison operations and implements it using OpenMP.
In the experiments conducted with the Raspberry Pi, it was ob-
served that increasing the number of threads beyond 2 resulted
in a contrary effect. Therefore, as part of future work, we plan to
explore the utilization of a Raspberry Pi cluster for the application.
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