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How complex is the structure of quantum geometry? In several approaches, the spacetime atoms are
obtained by the SUð2Þ intertwiner called quantum tetrahedron. The complexity of this construction has a
concrete consequence in recent efforts to simulate such models and toward experimental demonstrations of
quantum gravity effects. There are, therefore, both a computational and an experimental complexity inherent
to this class of models. In this paper, we study this complexity under the lens of stabilizer entropy (SE). We
calculate the SE of the gauge-invariant basis states and its average in the SUð2Þ-gauge invariant subspace.
We find that the states of definite volume are singled out by the (near) maximal SE and give precise bounds
to the verification protocols for experimental demonstrations on available quantum computers.
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I. INTRODUCTION

Understanding whether gravity admits a quantum for-
mulation is one of the most intriguing challenges of modern
physics. In the last decade, quantum information theory has
provided new conceptual and mathematical tools to inves-
tigate the structure of spacetime at the quantum scale.
Entanglement entropy has been used to probe the holo-
graphic architecture of spacetime, supporting the idea of
entanglement as an essential resource to the emergence of
classical spacetime geometry [1–5]. Recently, also fostered
by new perspectives in quantum gravity phenomenology,
the use of quantum information tools to design and
investigate experimental evidence for quantum features of
the gravitational field has attracted much attention [6–8].

Within the limits of current experimental technology, the
first widely available quantum computers today allow us to
simulate quantum gravity states, providing suggestions,
predictions, and setup ideas for future experiments [9–11].
In this scenario, we expect nonstabilizer resources to play a

double key role. Gently speaking, nonstabilizerness is a
core property of quantum states describing the complexity
of the expression of their density operator in a specific
operator basis (in the case of qubit systems, the Pauli
operator basis), and its interplay with entanglement is known
to be the essential ingredient needed to unlock quantum
advantage [12,13]. Recently, this resource has been shown to
be given an entropic meaning, as stabilizer entropy (SE),
making it both computable [14] and measurable [15]. SE
directly affects the cost (in terms of classical resources) of
simulating a quantum state or process: a n-qubit state or
circuit using a number t of nonstabilizer resources can be
simulated with a classical computer at a computational cost
that scales as expðtÞpolyðnÞ [16]. In particular, it provides
bounds on the fidelity reachable in experimental realizations
of quantum states [17]. Moreover, SE is involved in the onset
of universal, complex patterns of entanglement [18,19],
quantum chaos [20–23], complexity in the wave function
of quantum many-body systems [24,25], and decoding
algorithms from black hole’s Hawking radiation [26–29].
States and processes with high nonstabilizer resources are
generically exponentially harder to simulate on a classical
computer, and they are harder to certificate in experimental
protocols. An analysis of such resources is therefore vital in
order to assess the simulability of quantum gravity states. At
the same time, we expect such property to provide a new
tool, in addition to entanglement, to investigate the emer-
gence of classical spacetime in quantum gravity.
In this work, we explore the novel direction of looking at

the nonstabilizerness of quantum gravity states in the setting
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of nonperturbative theories. We consider a description
of quantum geometry given in terms of spin network states,
a general tool shared by lattice gauge theory [30] and
several background-independent approaches to quantum
gravity (like loop quantum gravity [31,32], state sum
models [33,34], and group field theories [35–37]), where
they provide a gauge-invariant basis for the field. A spin
network is represented by a graph Γ, with edges and nodes
colored, respectively, by SUð2Þ spin halves and intertwiner
operators [32].
Each node of the network graph is dual to a quantum

polyhedron geometry, with a number of faces equal to the
valence of the node. We focus on a single 4-valent node,
that is an SUð2Þ-gauge invariant state corresponding to a
quantum tetrahedron [38–41].
We study the nonstabilizerness of quantum tetrahedron

states using stabilizer entropy (SE) [14]. The first result of
the work is that the states that diagonalize the oriented
volume operator are the ones with highest value of SE: this
result provides a new lower bound for the number of
preparations needed in future experimental setups of quan-
tum gravity states. To our knowledge, at present, this bound,
obtained from the calculated intertwiner states nonstabili-
zerness has not been fully reached yet (see, e.g., the data
from the experiments realized in [9]). As a second result, we
show that the projection into the gauge invariant Hilbert
space associated to the process of constructing the quantum
tetrahedron out of a collection of four qubits inherently
requires nonstabilizer resources. Such resources become an
intrinsic feature of the quantum geometry state, reflecting in
the computational complexity of a simulation of such
processes, in a way that is ultimately dependent on the
structure of the gauge invariant space itself.
The paper is organized as follows. Section II provides

the basic notions of the stabilizer formalism necessary for
our analysis. We recall the definition of Pauli operators, the
Clifford group, and construct the set of pure stabilizer
states, highlighting the necessity to go beyond this set of
states in order to unlock quantum advantage. Then, we
introduce the definition of stabilizer entropy as an entropic
measure of nonstabilizerness of a pure quantum state, as
well as its properties. In Sec. III, we introduce the setting
of quantum gravity. We realize a quantum tetrahedron via
projection into the SU(2) gauge invariant (intertwiner)
subspace of a spin network Hilbert space. We show the
most general intertwiner state for any SU(2) spin − j irrep
and then focus on the case of j ¼ 1=2. In Secs. IV and VI,
we compute the nonstabilizerness of the logical basis and
of the volume eigenstates basis elements. Then, these
numerical results provide an estimate of the upper bound
of the fidelity of the experiment in [9]; we compare our
estimations with the experimental fidelity obtained. In
Sec. V, we extend the analysis to nonstabilizerness of
subspaces, in order to investigate the cost of projection in
terms of nonstabilizer resources. To this end, we introduce

the average SE gap onto a subspace, and we show that this
quantity is directly dependent from the internal structure of
said subspace in the form of its projector. Finally, we apply
our obtained results to the intertwiner subspace and
conclude that imposing the SUð2Þ-gauge invariance has
an intrinsic cost in terms of nonstabilizer resources.

II. STABILIZER FORMALISM
AND STABILIZER ENTROPY

In this section, we review the stabilizer formalism and its
role in the quantum computation framework.
Let H ≃ C2⊗n a n-qubit system and Pn be the Pauli

group acting on H. Define the Clifford group CðnÞ ⊂ UðnÞ
as the normalizer of the Pauli group, namely, CðnÞ ≔
fC∈UðnÞ; s:t: ∀P∈Pn; CPC† ¼ P0 ∈Png [42]. Hence,
given a computational basis fjiig of H as the common
eigenbasis of the operators belonging to Z2 ≔ f1; Zg⊗n,
one can define the set of pure stabilizer states of H as the
full Clifford orbit of fjiig [43], namely,

STAB ¼ fCjii; C∈ CðnÞg: ð1Þ

Stabilizer states share some properties with regard to the
computational complexity of simulating quantum proc-
esses using classical resources; these properties are
summarized by the Gottesman-Knill theorem, which states
that any quantum process that can be represented with
initial stabilizer states upon which one performs
(i) Clifford unitaries, (ii) measurements of Pauli operators,
(iii) Clifford operations conditioned on classical random-
ness, can be perfectly simulated by a classical computer in
polynomial time [42]. This means that stabilizer states and
Clifford operators are not actually “quantum” from a
computational perspective, since they do not provide any
advantage over classical computers. Since the set of
stabilizer states is by definition closed under Clifford
operations, a certain amount of resources beyond the
Clifford group is needed to prepare a generic state in the
Hilbert space: this quantity is referred to as nonstabilizer-
ness of this state, which has been proven to be a useful
resource for universal quantum computation [44] and for
which several measures have been proposed [43,45]. For
our analysis, we are going to use two entropic nonstabilizer-
ness measures called 2-stabilizer Rényi entropy (SE) [14]
and its linear counterpart. They are defined starting from the
probability distribution ΞPðjψiÞ ≔ d−1tr2ðPjψihψ jÞ, with
P∈Pn and d ¼ dimðHÞ ¼ 2n, associated to the tomogra-
phy of the quantum state ψ . Then, the 2-stabilizer Rényi
entropy for pure states is defined as

M2ðjψiÞ ≔ − logdkΞPðjψiÞk22
¼ − logd−1

X
P∈Pn

tr4ðPjψihψ jÞ; ð2Þ
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whereas the linear SE is defined as

MlinðjψiÞ ≔ 1 − dkΞPðjψiÞk22
¼ 1 − d−1

X
P∈Pn

tr4ðPjψihψ jÞ: ð3Þ

Both M2 and Mlin are: (i) faithful, i.e., MðψÞ ¼ 0 ⇔
ψ ∈STAB, otherwise MðψÞ > 0; (ii) invariant under
Clifford operators, namely MðCψC†Þ ¼ MðψÞ, whereas
M2 is also additive under tensor product of quantum
states [14]. Both measures can also be written in a more
compact form,

M2ðjψiÞ ¼ − log dtrQψ⊗4;

MlinðjψiÞ ¼ 1 − dtrQψ⊗4; ð4Þ

with Q ≔ d−2
P

P∈Pn
P⊗4. This construction can be gen-

eralized in a straightforward way to the Pauli group
(namely, the Heisenberg-Weyl group) for qudits, that is,
l-level systems [46], and the SE are defined exactly as in
Eq. (4); see Appendix C for details.
Stabilizer entropies quantify the computational complex-

ity of qubit states by the entropy of the distribution over the
Pauli basis: states with high values ofM2 orMlin require an
exponential amount of classical resources to be simulated
and hence, are those which may exhibit quantum advantage.
Moreover, a result shown in [17] establishes a bound

between SE and minimum number of copies needed to
achieve a certain fidelity in certification protocols: there-
fore, from a computational perspective, the knowledge of
SE of quantum gravity states is an essential tool to optimize
time and resources involved in the preparation of the states
on a quantum computer, once a desired value of fidelity has
been established.

III. QUANTUM TETRAHEDRON

Spin networks are symmetric tensor network states
defined by a graphs Γ, labeled by SU(2) irreducible
representations and intertwining operators. In loop quantum
gravity, such states encode the quantum description of the
3D space manifold into purely combinatorial and algebraic
variables [47,48]. More generally, spin networks can be
defined as abstract quantum many-body-like collections of
fundamental quanta of space, connected by maximally
entangled states to describe quantized discrete spatial
geometries [37,49,50].
Consider a given graph Γ. To each edge e of Γ we

associate a half-integer spin variable je labeling a
ð2je þ 1Þ-dimensional SUð2Þ irreducible representation
space Hje . At the same time, each N-valent node n carries
an intertwiner state jIni in the SUð2Þ-invariant Hilbert
space HI ¼ InvSUð2Þ½⊗N

i¼1 Hji �, which is the degeneracy
space associated to the recoupling of the N spins meeting

at the node into a singlet (gauge invariant) representation.
A spin-network basis state is the triple jΓ; fjeg; fIngi,
defined by the direct sum over je of the tensor product of
the gauge invariant states jIni at all nodes,

jΓ; fjeg; fIngi ≔ ⨁
fjeg

⨁
n
jIni: ð5Þ

Spin network states can be enriched with a geometric
interpretation: each N-valent node is dual to a (N − 1)-
simplex, represented at the quantum level by the inter-
twiner state. Accordingly, a 4-valent intertwiner state jIi
describes the quantized geometry of a 3-simplex, namely a
quantum tetrahedron [51,52]. In the context of LQG, the
presence of clearly defined geometric operators, such as
the area operator and the volume operator [41,47], further
strengthens the geometric interpretation; in particular, the
volume operator acting on a 4-valent node is given by

V̂ ¼
� ffiffiffi

2
p

3

�2

ð8πγÞ3ð−i½  J1 ·  J2;  J1 ·  J3�Þ; ð6Þ

and has a diagonal representation on the intertwiner
basis [53]. Note that this operator is Hermitian but not
positive, since it also keeps information of the space
orientation [34]. The two possible signs split the degen-
eracy between the eigenvalues.
For the sake of our work, we focus on the case of a single

4-valent intertwiner with all spins fixed to the same value j.
The Hilbert space of the tensor product of the four spins j
recoupling into the total spin J can be written as

H⊗4
j ¼ ⨁

4j

J¼0

DJ
jHJ; ð7Þ

where the multiplicity spaces (or degeneracy spaces) DJ
j

consist in the spaces of SUð2Þ-invariant intetrtwiner states
in the tensor product of the total spin Hilbert spaceHJ with
the individual spins H⊗4

j .
A state jIi∈ InvSUð2Þ½H⊗4

j � can be written as the recou-
pling of four spins j  mi ¼⊗4

i¼1 jmii∈H⊗4
j into the singlet

(J ¼ 0),

jIi ¼ N
X2j
K¼0

XK
M¼−K

X
f  mg

CK;M
jm1jm2

CK;−M
jm3jm4

j  mi; ð8Þ

where N is a normalization factor and CKM
jmijmk

are the
Clebsch-Gordan coefficients involved in the intermediate
recoupling of the two pairs of spins j into two states with
spin K; to ensure the final recoupling into a singlet state, the
magnetic indices M have opposite signs. We use the
shorthand notation

P
f  mg to indicate the sum running over

the ð2jþ 1Þ4 basis element inH⊗4
j . In the following, we set
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all spins to the value j ¼ 1=2 (see Appendix C for a short
discussion on the case j ≠ 1=2). In this case, the spin
representation space reduces toH1

2
¼ spanfj↑i≡ j0i; j↓i≡

j1ig ≃ C2; therefore, each spin, which is dual to one of
the faces of the tetrahedron, is described by a qubit. The
Hilbert space of the tensor product of the four 1=2-spins
decomposes as

H⊗4
1
2

¼ ⨁
J
DJ

1
2

HJ ¼ 2H0 ⊕ 3H1 ⊕ H2: ð9Þ

The SUð2Þ-invariant subspace H0 comes with degeneracy
D0

1=2 ¼ 2; hence, any gauge invariant state jIi is a one qubit
state in the two-dimensional intertwiner Hilbert space,

HI ≔ InvSUð2Þ½H⊗4
1=2� ¼ H0 ⊕ H0 ≃ C2; ð10Þ

where we can choose a suitable basis fj0si; j1sig. We can
represent a 4-valent intertwiner state jIi∈HI both in the
computational basis fj0i; j1ig⊗4 of the 4-qubits spaceH⊗4

1=2

and in the logical basis fj0si; j1sig∈H0 ⊕ H0. In the
following, we will refer to a state jIi written in the logical
basis as a logical intertwiner qubit (LIQ) state [54].
In terms of the computational basis, the expression of the

elements of logical basis can be found using (8). Explicitly,
one finds [9,55]

j0si ¼
1

2
ðj0101i þ j1010i − j0110i − j1001iÞ;

j1si ¼
1ffiffiffi
3

p ½j0011i þ j1100i − 1

2
ðj0101i

þ j1010i þ j0110i þ j1001iÞ�: ð11Þ

A generic LIQ state is given by the following Bloch
representation,

jIðθ;ϕÞi ¼ cos
θ

2
j0si þ sin

θ

2
eiϕj1si; ð12Þ

where θ∈ ½0; π� and ϕ∈ ½0; 2πÞ are angles on the Bloch
sphere. Finally, it can be shown [9] that the eigenstates of
the volume operator take the following form:

jVþi ¼
1ffiffiffi
2

p ðj0si − ij1siÞ; ð13Þ

jV−i ¼
1ffiffiffi
2

p ðj0si þ ij1siÞ; ð14Þ

that means V̂jV�i ¼ �V0jV�i. These states represent
remarkable points on the Bloch sphere, as they are placed
at the equator and their angular coordinates are ðθ ¼ π

2
;

ϕ ¼ π
2
Þ and ðθ ¼ π

2
;ϕ ¼ 3π

2
Þ.

IV. STABILIZER ENTROPY OF A QUANTUM
TETRAHEDRON

We shall investigate whether the basis states of the
gauge invariant subspace HI ⊂ H⊗4

1=2 possess SE. In this
sense, we investigate whether the gates of the quantum
circuit associated with the construction of LIQ states jIi
from the computational basis belong to the Clifford group.
Without loss of generality, we can start from the reference
state j0i⊗4 and then look for unitary transformations such
that j0si ¼ U0s

j0i⊗4 and j1si ¼ U1s
j0i⊗4. Using the rela-

tions in Eq. (11), we can express the unitary operators U0s

and U1s
in terms of a set of unitary gates acting on a

stabilizer reference state in the 4-qubit Hilbert space.
Thereby, it is possible to realize the generic intertwiner
state jIðθ;ϕÞi via the quantum circuit given in Fig. 1 [9]
(see also [56] and [57,58] for different descriptions of
quantum spin network circuits). The only non-Clifford
gates in the circuit are the two special unitary operators, U
and V, which depend on the parameters θ and ϕ of the
output state jIðθ;ϕÞi.
Such operators can be written as 2 × 2 matrices [9],

U ¼

0
B@ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcþj2 þ jc−j2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcþj2 þ jc−j2

p
c�0

1
CA; ð15Þ

V ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcþj2 þ jc−j2

p �−cþ c�−
−c− −c�þ

�
; ð16Þ

where the coefficients c0 and c� are given by the following
functions of θ and ϕ:

c0 ¼
ffiffiffi
2

3

r
eiϕ sin

θ

2
; ð17Þ

c� ¼ 1ffiffiffi
2

p
�
−

1ffiffiffi
3

p eiϕ sin
θ

2
� cos

θ

2

�
: ð18Þ

Our first remark is that the SE of an intertwiner state
jIðθ;ϕÞi seen from the full space is entirely determined by
the gates U and V, which in general are not Clifford gates.

FIG. 1. Circuit realization of the intertwiner state jIðθ;ϕÞi.H is
the Hadamard gate, U and V are specific gates depending on θ
and ϕ, and the others are CNOT and anti-CNOT gates.
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Indeed, the calculation of the SE for the LIQ basis states
(see Appendix A for full details) gives

M2ðj0siÞ ¼ 0;

M2ðj1siÞ ¼ 0; 847997: ð19Þ

Hence, a generic superposition of these two basis states will
not be in general a stabilizer state. We can plot the SE of all
the intertwiner states in the basis of the Hilbert space H⊗4

1=2

as a function of the Bloch sphere representation of the
gauge invariant space HI (Fig. 2). In particular, we remark
the behavior of the volume eigenstates jV�i: from the SE
standpoint, they are located at the center of the regions of
maximal nonstabilizerness, and they belong to the same
Clifford orbit, having exactly the same value of SE,

M2ðjVþ=−iÞ ¼ 1; 16993: ð20Þ

We recall that the SE of these states is calculated with
respect to the full Pauli operator basis of H⊗4

1
2

, namely the

Pauli group of 4-qubits P4. This distinction is necessary
since, as we have seen in Eq. (19), the basis states
themselves are not stabilizer states in H⊗4

1
2

, whereas they

are stabilizers inHI . Finally, notice that these states are also
nonseparable in the tensor product structure associated to
H⊗4

1
2

, as a demonstration that both entanglement and SE are

necessary for the gauge structure [59–62].

V. AVERAGE SE OF SUð2Þ-GAUGE
INVARIANT SUBSPACE

The reason for having different values of SE in the two
bases states, as shown in Eq. (11), is rooted in the gauge
structure of the intertwiner state. We shall explore and
generalize this result further. The SUð2Þ-gauge invariant
intertwiner space HI is a subspace of the Hilbert space of
four qubitsH⊗4

1
2

. However, the SE in a particular basis state

has hardly any physical meaning as any superposition of
states in HI is allowed and SE is not constant in any given
subspace. To associate SE in a meaningful way to a
subspace, one is also confronted with the choice of the
Pauli basis with respect to the SE must be computed. To be
concrete, if one has a state jψi∈HI , do we want to know
the SE of this state as a state expressed in the computational
basis of H⊗4 or in the computational basis of HI given
by fj0si; j1sig?
In the construction of a quantum gauge theory, one starts

with an ambient Hilbert space Htot. The gauge constraints
are expressed as local projectors ΠðsÞ and the gauge
invariant subspace is the global projection over all the
local gauge constraints,

HG ¼ ΠGHtot; ð21Þ

with ΠG ≔
Q

s ΠðsÞ.
We associate to a subspace HG its average SE with

respect to the Heisenberg-Weyl basis fDðiÞg ⊂ LðHiÞ. In
this notation, i ¼ 0 refers to the Heisenberg-Weyl basis in
Htot, while i ¼ G refers to the gauge invariant Hilbert space

HG. With this notation, the linear SE is MðiÞ
linðψÞ ≔

1 − ditr½QðiÞψ⊗4�; i∈ f0; Gg and the operator,

QðiÞ ≔ d−2i
X
ðp;qÞ

DðiÞ⊗4

ðp;qÞ ; ð22Þ

is defined accordingly with the corresponding Heisenberg-
Weyl (see Appendix C for details) basis. The average SE in
the subspace HG is then defined as

Mi ≔ EUG
MðiÞ

linðψUG
Þ ð23Þ

¼ 1 − ditr½QðiÞEUG
ψ⊗4
UG

�; ð24Þ

with EUG
denoting the unitary group average with respect to

the Haar measure overHG, and ψUG
≔ UGψU

†
G. In order to

perform the Haar average over the subspace HG we need
the following:
Lemma 1. Given any Hilbert spaceH ¼ HR ⊕ H⊥

R , with
dimðHÞ ¼ d and dimðHRÞ ¼ dR, the unitary Haar average
of k copies of the state over the subspace HR is given by

FIG. 2. Contour plot of the 2-stabilizer Rényi entropy
M2ðjIðθ;ϕÞiÞ as a function of the Bloch sphere angles
θ∈ ½0; π� and ϕ∈ ½0; 2πÞ. The two volume eigenstates, jVþi
and jV−i, are highlighted in the plot.
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EUR
ψ⊗k
UR

¼ cRðd; dRÞΠ⊗k
R EUψ

⊗k
U ; ð25Þ

with UR ∈UðHRÞ, U∈UðHÞ, ΠR the projector onto HR,
ψ ∈HR and cRðd; dRÞ ¼ ðdþk−1

k ÞðdRþk−1
k Þ−1.

A proof of this lemma is given in Appendix B 2. Based
on the above lemma, we obtain the general result,

Mi ¼ 1 − diciðd; diÞtr½QðiÞΠ⊗4
G EUψ

⊗4
U �; ð26Þ

where now EU denotes the Haar average over the full
unitary group on Htot.
Equation (26) shows explicitly how the gauge structure

enters the SE through the projector ΠG. When i ¼ G, this
projector becomes the identity map and the average SE has
no recollection of the gauge structure. In order to quantify
the amount of SE due to this structure, we define the
SE-gap as

ΔMðHGÞ ≔ M0 −MG

¼ EUG
Mð0Þ

lin ðψUG
Þ − EUG

MðGÞ
lin ðψUG

Þ: ð27Þ

For a general SUð2Þ-gauge structure, namely the spin j
intertwiner states, the projector ΠI reads (see Appendix C)

ΠI ¼ j0sih0sj þ j1sih1sj þ � � � þ j2jsih2jsj: ð28Þ

Let us now specialize these formulas to the case of
j ¼ 1=2, that is, the quantum tetrahedron. Using Lemma 1,
with k ¼ 4, H ¼ H⊗4

1
2

, HR ¼ HI and ΠI ¼ j0sih0sj þ
j1sih1sj being the projector onto the intertwiner space,
(see Appendix B for details), we find

M0 ¼ 17=45: ð29Þ

Now, notice that the logical states j0si; j1si in the
Pauli basis in which ZI ¼ j0sih0sj − j1sih1sj are obviously
stabilizer states with zero stabilizer entropy. Nevertheless,
even according to this Pauli basis, there will be a nonzero
value for the average stabilizer entropy. This space is
just a generic qubit C2 from the point of view of
the stabilizer entropy. The average SE in this space is
thus just the average stabilizer entropy of a qubit, namely

MI ≔ EUI
MðIÞ

lin ðψUI
Þ ¼ 1=5, as calculated in [14] (we also

explicitly show this calculation in Appendix B).
Putting the pieces together, we are able to calculate the

average SE gap, which reads

ΔMðHIÞ ¼ 8=45: ð30Þ

Avalue ofΔMðHIÞ greater than zero tells us that projecting
a generic 4-qubit state onto this gauge invariant subspace
has a cost in terms of nonstabilizer resources.

In particular, this means that the gauge structure bears a
cost in terms of simulability, which is very important as one
scales the system to many nodes.

VI. SIMULATIONS OF QUANTUM
GRAVITY STATES

Very recently, quantum gravity states have been physi-
cally implemented on quantum computers [9,10], and in
particular, quantum tetrahedra states. The very first layer of
difficulty that must be faced in a laboratory when attempting
to conduct a quantum experiment (including one regarding
simulations of quantum gravity states) is the preparation of
an initial state that is faithful to the theoretical one jψi.
Typically, a large initial sample must be prepared, resulting
in a mixed output ψ̃ from the processor. Ensuring the correct
functioning of quantum devices in terms of the accuracy of
the output requires a certification protocol [63]; one of the
possible measures of the quality of the realization ψ̃ of a
state jψi is the fidelity F ðjψi; ψ̃Þ ¼ trðψψ̃Þ that measures
the precision of preparation. It is known that SE can provide
useful indications in an experimental setting.
In this last section, we argue that the numerical results

found in (19) and (20) have a direct use in the recent
results on quantum gravity states simulations. Indeed, we
can use the SE of these states to estimate the maximum
fidelity achievable with a given number of preparations or,
conversely, the minimum number of preparations needed
to achieve a desired value of fidelity within a desired
error [17].
In [9], the authors present a realization of the intertwiner

states j0si; j1si as of Eq. (11) as well as the volume
eigenstates jVþi; jV−i on a 5-qubit (Yorktown) and a
15-qubit (Melbourne) IBM superconducting quantum com-
puter. By performing ten rounds of 1024 quantum mea-
surements, they obtained fidelity valuesF exp of the prepared
states with respect to the theoretical ones. As anticipated in
Sec. II, the explicit lower bound on the number Nmin

ψ̃ of
preparations needed to achieve an accuracy ϵ, with a
probability of failure δ, is related to the SE of the theoretical
state jψi as follows:

Nψ̃ ≥
2

ϵ2
ln

�
2

δ

�
exp½M2ðjψiÞ�: ð31Þ

Inverting this relation, one can get an upper bound on the
maximum achievable fidelity with a given number of
preparations N with failure probability δ,

Fmax ≤ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N
ln

�
2

δ

�s
exp

�
M2ðψÞ

2

�
: ð32Þ

As one can see from the Table I, the experimentally
obtained data for the fidelity is perfectly compatible with
the bounds provided by the SE. However, the authors used
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many more copies than the minimum shown in the table.
However, it is important to note that the constraints
provided by Eqs. (31) and (32) are purely theoretical,
hence independent of the inherent noise sources peculiar to
the specific implementation protocols and hardware used in
the experimental setting at hand. Nevertheless, by consid-
ering the SE of the states one wishes to prepare, the
hardware resources and the number of preparations can be
managed more efficiently in future experiments of quantum
gravity states.

VII. DISCUSSION

In this paper, we have shown that the gauge invariant
structure of quantum geometry states has a cost in terms of
nonstabilizer resources. This implies that simulations of
quantum geometry states can run more efficiently on a
quantum computer and that preparations of future experi-
ments can be more efficient if the nonstabilizer property of
the state is taken into account. Moreover, we have seen that
eigenstates of the oriented volume have near-maximal
amount of SE: this begs the question of why such states
possess greater quantum complexity, suggesting that a
correspondence between entanglement and geometry in
quantum gravity may extend at a deeper layer of quantum-
ness [64]. Concretely, the first step to answer this question
will be to repeat this analysis for a generic spin-j inter-
twiner and see if, also in that setting, the volume eigenstates
are states with maximum SE. A further intriguing direction
to explore is the role of nonstabilizer resources when taking
into account the quantum state associated to an actual spin
network, that is a collection of intertwiners describing a
quantum simplicial complex: in that general setting, one
should expect additional nonstabilizer resources coming
from the graph structure, that is the adjacency matrix,
describing the connectivity and the nontrivial additional
geometrical degrees of freedom described by the holono-
mies dressing the links. In particular, in this sense, we
expect that nonstabilizerness can be further used to char-
acterise the transition amplitudes, that is the evolution, of
quantum geometry states (see, e.g., [10]).

In general terms, the dependence of the SE gap from the
projector onto the intertwiner subspace opens to more
wide-reaching questions: how does the gauge structure
affect nonstabilizerness in a more general setting? Can we
use this formalism to characterize the SE of other quantum
gauge theories? Does Abelianity (or lack thereof) of the
gauge group play a role in the nonstabilizer resources of the
gauge invariant subspace?
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APPENDIX A: CALCULATION OF THE SE
OF THE INTERTWINER BASIS STATES

In this section, we show the details of the calculations of
the SE of the intertwiner basis state, namely the south and
north poles of the Bloch sphere (i.e., θ ¼ 0 and θ ¼ π).
Recalling the circuit realization of the intertwiner states in
(Fig. 1), we focus on the unitary operators U0, V0, U1, V1

involved in the preparation of basis states j0si and j1si,
which can be calculated by inserting in Eq. (17) ϕ ¼ 0 and
θ ¼ 0; π, respectively,

U0 ¼
�

0 1

−1 0

�
V0 ¼

1ffiffiffi
2

p
�−1 −1

1 −1

�
ðA1Þ

U1 ¼
ffiffiffi
2

3

r  
1 1ffiffi

2
p

− 1ffiffi
2

p 1

!
V1 ¼

1ffiffiffi
2

p
 
1 −1
1 1

!
: ðA2Þ

Notice that, with the exception of the unitaries that we
just calculated, all the gates involved in the circuit in (Fig. 1)
are Clifford gates. Hence, to estimate the magic of an
intertwiner state, we can focus our analysis on the reduced
2-qubit system given by the action of CV0ðU0 ⊗ 1Þ on
j0i⊗2, where CV0 is the controlled-V0 gate. The reduced
circuit is represented in Fig. 3.
This circuit returns the realization of j0si as a 2-qubit

state,

j0si2 ¼
1ffiffiffi
2

p ðj10i − j11iÞ: ðA3Þ

TABLE I. Comparison between the experimentally obtained
results of the fidelity in [9] and the bounds given by Eqs. (31)
and (32). Fmax is calculated using N ¼ 10240 and the probability
of failure δ is inferred using the Bienaymé-Čebyšëv inequality
assuming the statistical error σ as the variance of the probability
distribution.

jIi F exp σ M2 (1 − δ) Fmax Nmin
ψ̃

j0si 0,906 0,005 0 0,05 0,973 835
j1si 0,916 0,007 0,847997 0,05 0,959 2441
jVþi 0,918 0,009 1,16993 0,05 0,952 3535
jV−i 0,917 0,008 1,16993 0,05 0,952 3450

FIG. 3. 2-qubit circuit with the nontrivial contribution to the
magic of an intertwiner state.
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In this way, we rule out all trivial contribution to the
nonstabilizerness, isolating only the significant ones.
For the particular case of j0si, we can prove that the

magic produced by the operatorsU0 and V0 is 0; i.e., j0si is
a stabilizer state. Let us write the matrix form of the
operators,

U0 ⊗ 1 ¼

0
BBB@

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

1
CCCA ðA4Þ

CV0 ¼

0
BBBBB@

1 0 0 0

0 1 0 0

0 0 − 1ffiffi
2

p − 1ffiffi
2

p

0 0 1ffiffi
2

p − 1ffiffi
2

p

1
CCCCCA: ðA5Þ

We consider the state ψ0s
¼ j0si2h0sj2, which in the

Pauli basis reads

ψ0s
¼ 1

d

X
P∈P2

Trðψ0s
PÞP

¼ 1

4
ð1 ⊗ 1 − 1 ⊗ X − Z ⊗ 1þ Z ⊗ XÞ: ðA6Þ

The magic of the basis state is

M2ðψ0s
Þ ¼ − log d−1

X
P∈P2

tr4ðψ0s
PÞ: ðA7Þ

Since the trace of the product of Pauli matrices is equal to d
only if the product returns 1 ⊗ 1 and 0; otherwise, among
the terms of the sum in (A7), there are only four non-
vanishing contributions, which are the ones with P equal to
one of the terms in the Pauli decomposition of the state.
Equation (A7) returns

M2ðψ0s
Þ ¼ − log

�
d−1
�
d
4
þ d

4
þ d

4
þ d

4

��
¼ 0: ðA8Þ

Namely, the intertwiner state j0si is a stabilizer state.
We now repeat the same procedure for the state j1si.

First, we realize the operators as matrix,

U1 ⊗ 1 ¼

0
BBBBBBBBBB@

ffiffi
2
3

q
0 1ffiffi

3
p 0

0
ffiffi
2
3

q
0 1ffiffi

3
p

− 1ffiffi
3

p 0
ffiffi
2
3

q
0

0 − 1ffiffi
3

p 0
ffiffi
2
3

q

1
CCCCCCCCCCA

ðA9Þ

CV1 ¼

0
BBBB@

1 0 0 0

0 1 0 0

0 0 1ffiffi
2

p − 1ffiffi
2

p

0 0 1ffiffi
2

p 1ffiffi
2

p

1
CCCCA: ðA10Þ

The action of this operators on j0i⊗2 returns

j1si2 ¼
ffiffiffi
2

3

r
j00i − 1ffiffiffi

6
p j10i − 1ffiffiffi

6
p j11i: ðA11Þ

We write the state ψ1s
as

ψ1s
¼ 1

4

�
1 ⊗ 1þ 1

3
1 ⊗ X þ 2

3
1 ⊗ Z −

2

3
X ⊗ 1

−
2

3
X ⊗ X −

2

3
X ⊗ Z þ 2

3
Y ⊗ Y þ 1

3
Z ⊗ 1

−
1

3
Z ⊗ X þ 2

3
Z ⊗ Z

�
: ðA12Þ

There are ten nonvanishing contributions to the magic of
this state, each of which is equal to the fourth power of one
of the coefficients of (A12). Direct calculation returns

M2ðψ1s
Þ ¼ 0; 847997: ðA13Þ

APPENDIX B: AVERAGE SE GAP

In this section, we show the details of the calculations of
the average SE gap shown in Sec. V,

ΔMðHIÞ ≔ EUM
ð0Þ
lin ðψUÞ − EUM

ðIÞ
lin ðψUÞ; ðB1Þ

with EU denoting the unitary group average with respect to

the Haar measure, MðiÞ
linðψÞ ≔ 1 − ditrQðiÞψ⊗4; i ¼ f0; Ig

being the linear SE, di being the dimensions of the Hilbert
spaces involved (recall that dI is the dimension of the gauge
invariant intertwiner space, hence dI ¼ 2, whereas d0 is the
dimension of the ambient 4-qubit space, thus, d0 ¼ 16), and

QðIÞ ¼ 1

d2I

X
P∈P1

P⊗4

Qð0Þ ¼ 1

d20

X
P∈P4

P⊗4; ðB2Þ

with Pn being the Pauli group on n qubits modulo the
phases.

1. Haar averages and calculation of MI

We start by calculating EUM
ðIÞ
lin ðψUÞ since it is the

simplest one: plugging the definition of Mlin in the Haar
average reads
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EUM
ðIÞ
lin ðψUÞ ¼ EU1 − dItrQðIÞψ⊗4

U

¼ 1 − dItrQðIÞEUU⊗4ψ⊗4U†⊗4; ðB3Þ

since the Haar average is linear. Our focus, then, is on
evaluating

SPðIÞ ≔ EUtrQðIÞψ⊗4
U : ðB4Þ

In general, carrying out the Haar average of operators of
the form U⊗4XU†⊗4; X∈LðH⊗kÞ requires the knowledge
of the commutant of the k-tensored representation of the
unitary group, according to Schur’s Lemma. By the Schur-
Weyl duality, the basis of the full commutant of U⊗k is
constituted by the permutation operators acting over the k
copies of the Hilbert space of interest. In particular,
the average of the k copies of a state is carried out in
detail in [65] and reads

EUU⊗kψ⊗kU†⊗k ¼
�
dþ k − 1

k

�
−1
ΠðkÞ

sym; ðB5Þ

with

ΠðkÞ
sym ≔

1

k!

X
π∈ Sk

Tπ; ðB6Þ

being the projector onto the subspace of H⊗k, which is
symmetric under permutations of k objects. The result of
this average is to be expected by the fact that operators
belonging LðH⊗kÞ of the form ψ⊗k are actually symmetric
under permutation operators, so the weight associated to
each of this operators must be the same and is hence only
determined by the normalization.
The permutation operators relative to π ∈ Sk can be

written in the computational basis of H⊗k, namely
fji1…ikigdih¼1 in this way,

Tπ ¼
X
i1;…;ik

jπði1Þ…πðikÞihi1…ikj: ðB7Þ

Notice that the permutation operators are invariant under
k-copies of unitary operators U⊗k: this means that such
operators will have the same expression in any basis of
H⊗k. Now, starting In our case, we are interested in the
Haar average of four copies of the state, namely,

EUψ
⊗4
U ¼

�
dþ 3

4

�
−1 1

4!

X
π∈ S4

Tπ

¼ ½ðdþ 3Þðdþ 2Þðdþ 1Þd�−1
X
π ∈ S4

Tπ: ðB8Þ

Substituting this expression in Eq. (B4), we get

EUtrQðIÞψ⊗4
U ¼ ½ðdI þ 3ÞðdI þ 2ÞðdI þ 1ÞdI�−1trQðIÞΠðIÞ

sym

¼ ½ðdI þ 3ÞðdI þ 2ÞðdI þ 1ÞdI�−1
1

d2I

X
π ∈ S4

X
P∈P2

trP⊗4TI
π: ðB9Þ

In order to tackle this calculation, one calculates the sums of the Pauli operators permutation by permutation: by means
of example, we show the calculation for one permutation, but the treatment is similar for all of them. Let us take, say, the
3-cycle (123): the permutation operator associated to this permutation reads

Tð123Þ ¼
X
ijkl

jkijlihijklj; ðB10Þ

hence,

trQðIÞTð123Þ ¼
1

d2I

X
P∈P2

X
ijkl

trP⊗4jkijlihijklj

¼ 1

d2I

X
P∈P2

X
ijk

trðPjkihijÞtrðPjiihjjÞtrðPjjihkjÞ
X
l

trðPjlihljÞ

¼ 1

d2I

X
P∈P2

X
ijk

trðPjkihijÞtrðPjiihjjÞtrðPjjihkjÞtrP

¼ 1

dI

X
ijk

trðjkihijÞtrðjiihjjÞtrðjjihkjÞ

¼ 1

dI

X
ijk

δkiδijδjk ¼
1

dI

X
jk

δjk ¼ 1; ðB11Þ
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where we used the fact that
P

l jlihlj ¼ 1 and trP ¼ dIδP;1.
Executing similar calculations for the other 23 elements of
S4 and summing all the contributions, one gets

EUtrQðIÞψ⊗4
U ¼ 4d2I þ 12dI þ 8

dIðdI þ 1ÞðdI þ 2ÞðdI þ 3Þ ¼
2

5
; ðB12Þ

hence,

EUM
ðIÞ
lin ðψUÞ ¼ 1 − dIEUtrQðIÞψ⊗4

U ¼ 1

5
: ðB13Þ

2. Haar averages on subspaces: Proof of Lemma 1

Let generic H ¼ HR ⊕ H⊥
R Hilbert space decomposed

in two orthogonal subspaces, with dimðHÞ ¼ d, HR ¼
spanfj1i;…; jdRig andH⊥

R ¼ spanfjdR þ 1i;…; jdig, and
the projector ΠR onto HR being

ΠR ¼
XdR
i¼1

jiihij: ðB14Þ

Applying the formula shown in Eq. (B8), the average onto
the subspace HR reads

EUR
ψ⊗k
UR

¼
�
dR þ k − 1

k

�
−1 1

k!

X
π ∈ Sk

TR
π ; ðB15Þ

whereas if we calculate the average onto the full Hilbert
space H, we get

EUψ
⊗k
U ¼

�
dþ k − 1

k

�
−1 1

k!

X
π ∈ Sk

Tπ: ðB16Þ

Now, it suffices to check that the action of k copies of the
projector onto the permutation operators representation on
the full Hilbert space gives the permutation operators
representation on the subspace HR. Applying the expres-
sion shown in Eq. (B7) for the permutation operators to this
case, we get

Π⊗k
R Tπ ¼

X
fi1;…;ikg∈ f1;dg×k

ΠRjπði1Þi…ΠRjπðikÞihi1…ikj:

ðB17Þ
One then notices that

ΠRjii ¼
� jii if i∈ f1; dRg
0 otherwise

; ðB18Þ

hence, Eq. (B17) reduces to

Π⊗k
R Tπ ¼

X
fi1;…;ikg∈ f1;dg×k

jπði1…ikÞihi1…ikj ¼ TR
π : ðB19Þ

Using this result, Eq. (B15) reads

EUR
ψ⊗k
UR

¼
�
dRþk−1

k

�
−1 1

k!

X
π∈Sk

TR
π

¼
�
dRþk−1

k

�
−1 1

k!
Π⊗k

R
1

k!

X
π∈Sk

Tπ

¼
�
dRþk−1

k

�
−1
�
dþk−1

k

�

×

�
dþk−1

k

�
−1
Π⊗k

R
1

k!

X
π

Tπ

≡cRðd;dRÞΠ⊗k
R EUψ

⊗k
U ; ðB20Þ

with

cðd; dRÞ ¼
�
dR þ k − 1

k

�
−1
�
dþ k − 1

k

�
ðB21Þ

which completes the proof. ▪

3. Calculation of M0

In this subsection, we use the result of Eq. (B20) to
calculate EUM

ð0Þ
lin ðψUÞ, which reads

EUM
ð0Þ
lin ðψUÞ ¼ 1 − d0EUI ∈UðHIÞtrQ

ð0ÞU⊗4
I ψ⊗4

I U†⊗4
I ;

ðB22Þ
and in particular, we focus on the evaluation of

SPð0Þ ≔ trQð0ÞEUI ∈UðHIÞU
⊗4
I ψ⊗4

I U†⊗4
I : ðB23Þ

Using the formula in Eq. (B20), Eq. (B23) reads

SPð0Þ ¼ cItrQð0ÞΠ⊗4
I EU∈UðH⊗4

1
2

ÞU
⊗4ψ⊗4U†⊗4; ðB24Þ

with ΠI ¼ j0sih0sj þ j1sih1sj. We can plug the generic
formula shown in Eq. (B8) and getting

SPð0Þ ¼ cI½dðdþ 1Þðdþ 2Þðdþ 3Þ�−1trQð0ÞΠ⊗4
I

X
π ∈ S4

Tπ

¼ ½ðdI þ 3ÞðdI þ 2ÞðdI þ 1ÞdI�trQð0ÞΠ⊗4
I

X
π∈ S4

TI
π:

ðB25Þ
The relevant difference between this calculation and that

carried out in Eq. (B13) is the representation of the
permutation operators TI

π: they now read

TI
π ¼

X
is;js;ks;ls

jπðisjskslsÞihisjskslsj; ðB26Þ

with all indices belonging to fj0si; j1sig as written in
Eq. (11). These are indeed operators acting on H⊗4

1
2

, but

they are not the full permutation operators ofH⊗4
1
2

, since the

indices of the sums do not run on all the basis elements of
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H⊗4
1
2

, but only on the intertwiner basis elements.

Substituting this expression [and the one in Eq. (B20)]
in Eq. (B23), we get

SPð0Þ ¼ ½ðdI þ 3ÞðdI þ 2ÞðdI þ 1ÞdI�−1

×
1

d20

X
π∈ S4

X
P∈P4

trP⊗4TI
π: ðB27Þ

The previous observation renders the calculation of
objects like trQð0ÞTI

π slightly more difficult, since we
cannot exploit the completeness relationship of basis
elements like we did in Eq. (B11), simply because
fj0si; j1sig is not a complete basis for H⊗4

1
2

. However,

by pure brute-force methods, we are able to evaluate this
object. We proceed permutation by permutation, as before:
the trace of Qð0Þ with a single permutation operator reads

trQð0ÞTðsÞ
π ¼ 1

d20

X
P

X
isjsksls

hπðisÞjPjisihπðjsÞjPjjsihπðksÞjPjksihπðlsÞjPjlsi: ðB28Þ

This sum is constituted by products of matrix elements of
16 × 16 matrices between two intertwiner basis elements,
which are 16-component vectors in the original H⊗4

1
2

basis.

By separately calculating the four possible matrix elements
for each and every of the 256 operators of P4 (namely,
fh0SjPj0si;h0SjPj1si;h1SjPj0si;h1SjPj1sigP∈P4

), and com-
bining them according to the permutation π, and them
summing over the Pauli operators P, one is able to compute
objects of the form (B28). Repeating this method for the
24 permutation operators of S4 and summing the results,
one gets

EUtrQð0Þψ⊗4
U ¼ 7

180
; ðB29Þ

hence,

EUM
ð0Þ
lin ðψUÞ ¼ 1 − d0trQð0Þψ⊗4

U ¼ 17

45
; ðB30Þ

and finally, we can evaluate the average SE gap, which reads

ΔMðHIÞ ¼ EUM
ð0Þ
lin ðψUÞ − EUM

ðIÞ
lin ðψUÞ ¼

17

45
−
1

5
¼ 8

45
:

ðB31Þ

APPENDIX C: SE OF 4-VALENT INTERTWINER
WITH GENERIC SPIN

In this section, we introduce a generalized version of the
stabilizer entropy for qudit systems, following the lines
of [46]. This generalization is needed since the dimension
of the intertwiner Hilbert space associated with a quantum
tetrahedron with all spins equal to j∈ N

2
is 2jþ 1, accord-

ing to Peter-Weyl’s theorem. Indeed, we can write explic-
itly the intertwiner state in (8) as

jIi ¼ N
X2j
K¼0

XK
M¼−K

X
f  mg

CK;M
jm1jm2

CK;−M
jm3jm4

j  mi

¼ N

 X
f  mg

C0;0
jm1jm2

C00
jm3jm4

j  mi þ
X1
M¼−1

X
f  mg

C1;M
jm1jm2

C1;−M
jm3jm4

j  mi þ � � � þ
X2j

M¼−2j

X
f  mg

C2j;M
jm1jm2

C2j;−M
jm3jm4

jmi
!

¼ Nðj0si þ j1si þ � � � þ j2jsiÞ; ðC1Þ

where the states fj0si; j1si;…; j2jsig form a set of mutu-
ally orthogonal basis elements in the singlet subspace of the
Peter-Weyl decomposition of the original Hilbert space.
Hence, the projector on the gauge invariant subspace is

ΠI ¼ j0sih0sj þ j1sih1sj þ � � � þ j2jsih2jsj

¼
X2j
l¼0

Πl: ðC2Þ

For j ≠ 1=2, this implies that the intertwiner Hilbert
space is not a 2-level system; thus, the usual formulation of
stabilizer entropy for qubit systems cannot be applied to
such a case.
In order to establish a definition of stabilizer entropy for

generic qudit systems, we introduce the generalization of
Pauli group, namely the discrete Heisenberg-Weyl group.
Consider an one-dimensional Hilbert space H ≃ Cl; l∈N
and the space of linear operators acting on it, namely LðHÞ:
we define the boost and shift operators X; Z∈LðHÞ as
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Xjji ¼ jj ⊕l 1i ðC3Þ

Zjji ¼ ωjjji; ðC4Þ

withω ¼ e
2πi
l . The Heisenberg-Weyl operators are defined as

Dðp;qÞ ¼ τ−pqZpXq; ðC5Þ

with τ ¼ e
i
lπ . They form a basis for LðHÞ, given by the l2

operators fDð0;0Þ ¼ Idl2 ; Dðp;qÞjp; q∈Zlg, where the ortho-
gonality relation reads

trðDðp;qÞD
†
ðp0;q0ÞÞ ¼ lδp;p0δq;q0 : ðC6Þ

Finally, the Heisenberg-Weyl group is defined as the group
generated by such operators,

DðlÞ
1 ¼ hfDðp;qÞgi: ðC7Þ

Notice that for l ¼ 2, the Heisenberg-Weyl group reduces to
the usual Pauli group for qubit systems.
The Heisenberg-Weyl group acting on a n-qudit system

is simply given by the tensor product of n copies of the
Heisenberg-Weyl group for one qudit,

DðlÞ
n ¼ DðlÞ⊗n

1 : ðC8Þ

Any n-qudit state ψ ∈H⊗n can be written in the
Heisenberg-Weyl basis as follows:

ψ ¼ 1

d

X
 p∈Zn

l

X
 q∈Zn

l

trðψDð  p;  qÞÞDð  p;  qÞ; ðC9Þ

with d ≔ dimðH⊗nÞ ¼ ln. We can define the nor-
malized expected value of a n-qudit pure state over the
discrete Heisenberg-Weyl operators as ΞDð  p;  qÞ ðjψiÞ ≔
d−1hψ jDð  p;  qÞjψi2, and the α-stabilizer Rényi entropy on
qudit systems reads

MαðjψiÞ ¼ ð1 − αÞ−1 log
X
 p∈Zn

l

X
 q∈Zn

l

Ξα
Dð  p;  qÞ ðjψiÞ − log d:

ðC10Þ

In order to compute the SE of a quantum tetrahedron
state with j ≠ 1=2, we can refer to (8) and write the
intertwiner density matrix and its tomography in the
Heisenberg-Weyl basis,

I ¼
X

K;K0;M;M0

X
f  mgf  m0g

C�K0;M0
jm0

1
jm0

2
C�K0;−M0
jm0

3
jm0

4
CK;M
jm1jm2

CK;−M
jm3jm4

j  mih  m0j; ðC11Þ

I ¼ 1

d

X
Dð  p;  qÞ ∈D4

X
K;K0;M;M0

X
f  mgf  m0g

C�K0;M0
jm0

1
jm0

2
C�K0;−M0
jm0

3
jm0

4
CK;M
jm1jm2

CK;−M
jm3jm4

trðj  mih  m0jDð  p;  qÞÞDð  p;  qÞ; ðC12Þ

where the sums over K and K0 run from 0 to 2j, and the ones overM andM0 run, respectively, from −K to K and from −K0

to K; d ¼ ð2jþ 1Þ4 is the dimension of the Hilbert space over which the trace is performed.
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