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Abstract 
Nondestructive plant phenotyping forms a key technique for unraveling molecular processes underlying plant development and 
response to the environment. While the emergence of high-throughput phenotyping facilities can further our understanding of plant 
development and stress responses, their high costs greatly hinder scientific progress. To democratize high-throughput plant 
phenotyping, we developed sets of low-cost image- and weight-based devices to monitor plant shoot growth and evapotranspiration. 
We paired these devices to a suite of computational pipelines for integrated and straightforward data analysis. The developed tools 
were validated for their suitability for large genetic screens by evaluating a cowpea (Vigna unguiculata) diversity panel for responses to 
drought stress. The observed natural variation was used as an input for a genome-wide association study, from which we identified 
nine genetic loci that might contribute to cowpea drought resilience during early vegetative development. The homologs of the 
candidate genes were identified in Arabidopsis (Arabidopsis thaliana) and subsequently evaluated for their involvement in drought 
stress by using available T-DNA insertion mutant lines. These results demonstrate the varied applicability of this low-cost 
phenotyping system. In the future, we foresee these setups facilitating the identification of genetic components of growth, plant 
architecture, and stress tolerance across a wide variety of plant species.
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Introduction
Plant phenotyping provides a critical layer of information that 
helps to decipher biological processes and genetic mechanisms 
related to plant growth and development in response to various 
environmental factors (Fahlgren et al. 2015a, 2015b; Tardieu 
et al. 2017; Zhao et al. 2019). Plant phenotypes can differ in 
spatial and temporal resolution, and reflect plant biochemistry, 
physiology, morphology, as well as agronomic performance. 
High-throughput plant phenotyping aids fundamental biology 
research and plant breeders alike through the identification and 
enhancement of traits related to disease resistance, plant per
formance, and environmental resilience. Traditionally, plant phe
notypes were collected using manual and destructive methods, 
associated with high experimental cost, limited throughput, and 
inconsistencies in data based on subjective interpretation of the 
observations (Furbank and Tester 2011; Walter et al. 2015). Over 
the last two decades, image-based technologies and the integra
tion of robotics resulted in a more widespread adaptation of di
verse approaches to nondestructively capture plant growth, 
architecture, and physiology (Fiorani and Schurr 2013; Yang 
et al. 2013). These nondestructive methods have propelled plant 
science research forward by allowing for a higher number of rep
licates, standardization of measurements, as well as increased 
spatial and temporal resolution. The increased throughput of an 
experiment allows for screening large populations of plants 
which can be further utilized in forward genetic screens 
(Chawade et al. 2019), or study the effect of various biostimulants 

(Rouphael and Colla 2020). However, many phenotyping solutions 
still require substantial monetary investment, or extensive engi
neering experience, which is not widely accessible at the lab, de
partment, or even university/institute level.

The surge in availability of low-cost computers and microcon
trollers, such as Raspberry Pi and Arduino, has resulted in the de
velopment of cost-effective phenotyping platforms, leading to 
greater flexibility and affordability of plant phenotyping (Ellison 
Mathe et al. 2022; Kondaveeti et al. 2022). Some of the previously 
developed systems can be utilized to capture seed germination, 
shoot, and root (Dhondt et al. 2014; Czedik-Eysenberg et al. 2018; 
Colmer et al. 2020; Feldman et al. 2021; Bethge et al. 2023; Li 
et al. 2023; Ohlsson et al. 2024). Most of the developed applications 
such as PhenoTiki or PYM rely on top-view imaging (Minervini 
et al. 2017; Valle et al. 2017), which is suitable in plants growing 
in horizontal plane or field conditions with unlimited vertical 
space to accommodate sufficient plant-camera distance. The 
PhenoBox setup (Czedik-Eysenberg et al. 2018) utilizes the side- 
view imaging of plants with complex architecture. However, its 
high costs can be prohibitive for many laboratories to adopt. 
While these low-cost solutions diversify image-based phenotyp
ing, they require extensive engineering experience and equip
ment, as well as proficiency in programming and data analysis. 
Hence, there is an increasing demand for cost-effective phenotyp
ing solutions that offer both low-cost hardware and streamlined 
data analysis approaches accompanied by clear instructions 
for ease of use, catering to a wider scope of users. The 
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high-throughput nature of image-based phenotyping is driven by 
image-processing software (Berry et al. 2018; Das Choudhury et al. 
2019; Jiang and Li 2020). The development of plant computer vi
sion (PlantCV) was an important milestone for plant phenotyping, 
offering a high level of flexibility within image processing pipe
lines using custom Python scripts (Fahlgren et al. 2015a). The 
open-source nature of PlantCV and its high volume of users re
sulted in further extensions to wider applications, and commun
ity contributions, and ensured the sustainability of the software 
(Gehan et al. 2017; Berry et al. 2018; Hodge et al. 2021; Alberto 
Gutierrez Ortega et al. 2021; Casto et al. 2022). While PlantCV of
fers pipelines to analyze images being produced by RGB (Red– 
Green–Blue), hyperspectral, and chlorophyll fluorescence camera 
scripts (Fahlgren et al. 2015a), RGB cameras remain the most 
widely accessible and thus have the highest application for plant 
research. Based on RGB images, traits such as plant area, convex 
hull, width, and height can be evaluated automatically, once the 
pixels belonging to the plant are isolated from the background 
(Gehan et al. 2017). Phenotypes related to tissue color and disease 
symptoms can be extracted after parametrization of the pipeline 
or training with machine learning modules (Abbasi and Fahlgren 
2016). Plant architecture traits, such as the number of branches, 
can also be extracted, however, the precision of the automated 
trait extraction is highly dependent on plant species and complex
ity (Godin 2000). PlantCV has successfully been adopted for the 
evaluation of a growing number of crops, including maize (Zea 
mays), rice (Oryza sativa), cassava (Manihot esculenta), and more 
(Hairmansis et al. 2014; Kolhar and Jagtap 2023). While the avail
able image-processing tools form a robust basis of image-based 
phenotyping (Rossi et al. 2022; Zhang et al. 2022), most of them 
are characterized by a strong reliance on computational user ex
pertise. Computational pipelines often require either generating 
customized scripts for large-scale data processing or producing 
self-trained parameters for machine learning purposes. 
Additionally, adapting imaging hardware and software from di
verse sources requires extensive optimization by end users. The 
programming and engineering requirement for plant phenotyping 
forms a substantial hindrance in the widespread application of 
low-cost phenotyping solutions. Thus, a low-cost phenotyping 
solution with integrated hardware and software, as well as the 
ability to accommodate a wide range of plants, is sorely needed.

Research into environmental stress resilience, particularly 
concerning freshwater availability, is crucial for safeguarding fu
ture agricultural productivity. Drought impacts 80% of farmlands 
worldwide, and this percentage is growing with the progressing 
climate change (Meza et al. 2020). Reduced rainfall and shrinking 
water supplies in the soil lead to reduced crop growth, transpira
tion, and yield, resulting in an agricultural drought (Satoh et al. 
2022). Prolonged periods of reduced water supply lead to gradual 
depletion of soil water supplies, taking place over months or years, 
resulting in hydrological drought (Satoh et al. 2022), which forces 
agricultural systems to adapt to this new reality. Plants evolved 
several mechanisms to adapt to drought stress conditions, includ
ing signaling pathways to limit water loss through transpiration 
(Hughes et al. 2017) synthesis of compatible solutes that serve 
as osmolytes to help with turgor maintenance, efficient water ex
tractions, and protection from oxidative damage (Akashi et al. 
2001). Partitioning biomass into steep, cheap, and deep root sys
tems can enhance scavenging for deeper layers of water resources 
(Grieder et al. 2014), whereas maintenance of a large root/shoot 
ratio prioritizing water acquisition over (Chen et al. 2004). While 
most drought research has thus far been performed in staple 
crops and Arabidopsis, the indigenous crops used by smallholder 

farmers are becoming prominent objects of interest for more in
sight into drought resilience (Cullis and Kunert 2017). The applica
tion of drought stress varies tremendously across scientific 
literature, ranging from complete water withdrawal (Choudhury 
et al. 2022) to exposing the plants to osmotic agents, such as man
nitol, sorbitol, or polyethylene glycol (Trontin et al. 2014). Various 
applications of drought stress highlight the specific aspects of 
drought stress responses selected by the researchers, each with 
its own advantages and drawbacks (Harrison et al. 2014). While 
soil-based water withdrawal experiments are prevalent due to rel
atively low effort requirements, these setups do not account for 
variable water-use by the plants, and typically favor genotypes 
that restrict their transpiration, and thus are able to conserve 
the water more efficiently (Correa et al. 2019). On the other 
hand, watering the plants to lower soil water-holding capacity is 
accounting for differences in transpiration, but requires time- 
consuming daily watering to the reference weight of each pot. 
Maintenance of lower soil water-holding capacity mimics mild 
drought stress, which occurs most frequently, based on the histor
ical records (Harrison et al. 2014). Image-based phenotyping ap
proaches have been applied to monitor plant growth under 
water scarcity (Petrozza et al. 2014; Correa et al. 2019; Marchetti 
et al. 2019), however, the availability of image-based tools is 
restricting the number of species that have been studied thus 
far. Hence, there is a growing need for protocols and experimen
tal setups suitable for high-throughput plant phenotyping are 
necessary.

The above arguments motivated the development of an open- 
source system consisting of three hardware setups (PhenoRig, 
PhenoCage, and AWWESmo) and easy-to-use computational 
pipelines that streamline image collection, watering individual 
pots to their respective target weight, and data analysis. Our sys
tem was built using low-cost and lightweight materials, which can 
be used to effectively monitor physiological responses in response 
to stress across a wide variety of species. This integrated system 
substantially reduces the cost and time necessary to collect repro
ducible image and evapotranspiration data and lowers the com
putational barrier to extract phenotypic data (RaspiPheno Pipe). 
Moreover, the developed shiny app (RaspiPheno App) is a dynamic 
tool for downstream statistical data analysis, sample comparison, 
and data interpretation. To demonstrate the system’s capacity, 
we used the developed tools to screen a natural diversity panel 
of 368 cowpea genotypes and, through the Genome-Wide 
Association Study (GWAS), identified genes associated with 
drought response during early vegetative growth. The described 
suite of phenotyping solutions, as well as data analysis pipelines, 
will promote affordable plant phenotyping and accelerate the dis
covery of genes and physiological traits contributing to stress 
resilience.

Results
Phenotypic hardware design of the system
To increase the accessibility of plant phenotyping, we developed a 
set of mobile, affordable, and customizable phenotyping setups. 
The setups were designed to fit into conventional growth cham
bers with limited vertical space (Fig. 1) and allow the evaluation 
of plants with different types of architecture. The top-view 
PhenoRig setup was designed to image the growth of plants for 
which the majority of growth occurs within two dimensions, 
such as Arabidopsis rosettes (Fig. 1A). Plants with more complex 
architecture can be imaged using side-view PhenoCage setup 
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(Fig. 1B). Within PhenoCage setup a plant is positioned on a rotat
ing platform, and seven consecutive images are taken to ad
equately capture the projected shoot area as the estimation of 
plant’s digital biomass. To monitor plant evapotranspiration, we 
developed an Automatic Weighing and Watering device to study 
Evapotranspiration (AWWEsmo) that automatically records 
pot weight and waters it to the reference weight (Fig. 1C). 
AWWEsmo accuracy relies on a HX711 load cell, which was re
ported to drift across varying temperatures, and thus requires fre
quent calibration. While the platforms we developed here consist 
of low-cost materials that have limited lifespan and accuracy, the 
individual components could be replaced by higher quality com
ponents driven by more advanced sensor technologies for in
creased precision. Within the experimental conditions described 
below, we did not experience low accuracy of AWWEsmo, as com
pared to the 0.1 g laboratory scale (Supplementary Fig. S1). 
However, we did observe reduced accuracy when the device was 
used in growth chambers with substantially different tempera
ture (Supplementary Fig. S1), and thus advice for the developed 
AWWEsmo device to be calibrated within the growth chamber 
conditions and checked frequently for its accuracy.

The individual devices rely on Raspberry Pi computers 
(PhenoRig and PhenoCage) and Arduino microcontrollers 
(AWWEsmo) for data acquisition, which lend themselves to flexi
ble and cost-effective setups that can be easily adapted to accom
modate a wider range of species or alternative hardware 
components. The PhenoCage can be used to monitor the growth 
of Arabidopsis continuously, using an automatically deployed 
imaging command, while PhenoRig and AWWEsmo require the 
user to feed the plants into the setup and deploy the image/meas
ure command manually. The current design of PhenoRig allows 
imaging of a standard full tray of Arabidopsis plants with two 

cameras, where each camera can capture a grid of 4 × 4 plants 
(Fig. 2A), with the total capacity of PhenoRig being an 8 × 4 
plant grid. PhenoCage, on the other hand, has a capacity of one 
plant, as the complex 3D architecture of the shoot does not permit 
simultaneous imaging of multiple plants. To ensure the best re
sults in image processing, we recommend putting two to four 
white tags on top of the pots for PhenoRig, to correct for white bal
ance between the individual images, and calibrate the projected 
shoot size into mm2 (Fig. 2B). For the PhenoCage, we suggest using 
a white background for white balance corrections (Fig. 2, A and B). 
As the distance between the plant and camera in the PhenoCage 
setup is determined per plant species, and the sum of projected 
pixels from seven side view angles will be larger than the shoot pro
jected area, thus we do not recommend recalculating the projected 
plant size from pixels into projected leaf area (mm2), but rather 
keep it in artificial units (pixels). Additional accessories installed 
for image collection and illumination, include RasPi cameras, 
LED lights, LCD touch screens, and 3D-printed accessories holders 
(Supplementary Figs. S2 and S3).

To effectively address data analysis of images collected over 
multiple days and devices, we developed a computational pipeline 
(RaspiPheno Pipe) that automates image distribution, storage, and 
subsequent data extraction based on experimental design into a 
repeatable workflow (Fig. 3). This pipeline parallelizes image seg
mentation steps and deploys them on batches of images to exam
ine projected shoot area and architectural traits (Fig. 3). This 
optimized image extraction process requires (1) the positional in
formation of white balance markers and region of interest (ROI, 
Fig. 2), (2) specific thresholds and coordinates used for extracting 
plant objects from RGB images, and (3) storage locations for input 
and output files. Quantitative data generated and organized by 
the RaspiPheno Pipe can be analyzed using the RaspiPheno App, 

A B

C

Figure 1. PhenoRig, PhenoCage, and AWWEsmo: three facilities were constructed using lightweight materials with 3D printed accessories for data 
collection purpose. A) PhenoRig system: including a frame to hold two Raspi cameras and a Raspi computer. A tray holding plants is placed at the 
bottom of the frame to display plants’ top-view characteristics. B) PhenoCage system: including a frame to hold one Raspi camera and a Raspi 
computer. A rotating booth is placed at the center of the cage with a constant rotation rate to represent plant architectures from different sides. 
C) AWWESmo system: including a container for water replenishment (blue), and a water pump that integrates a weight scale controlled by an Arduino 
Uno R3-derived console (red). Precise water replenishment is executed by the input weight (grams) of the console.
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an interactive and programming-free analytical application pow
ered by the Shiny R package (https://rstudio.github.io/shiny/ 
authors.html). RaspiPheno App was designed to address the stat
istical analysis of data associated with shoot area and architectur
al traits among customized independent variable groups (e.g. 
genotypes or treatments). Within RaspiPhe App the user can 
match the information on genotype and treatment with quantita
tive values from each plant as the data reshaping process (Fig. 3). 
The integrated data are then presented as time-series graphs, and 
user can perform data curation to smooth noisy data and generate 
a predicted, or transformed dataset (see Methods). Alternatively, 
the user can generate a clean dataset by removing data points be
yond the standard deviation (SDs) of values predicted by the 
smoothing function. RaspiPheno App can calculate the growth 
rate for the user within a customized time interval (e.g. 12 or 
24 h) to characterize the differences in plant growth under differ
ent conditions using pairwise or multiple-group tests (Fig. 3). More 
information on using RaspiPheno App can be found at (https:// 
github.com/Leon-Yu0320/BTI-Plant-phenotyping/tree/main/RasP 
iPheno_APP).

Together, the RaspiPheno Pipe and RaspiPheno App provide an 
integrated framework for extracting data from images and 
quickly analyzing the phenotypic data. As a web-browser inte
grated RShiny application, the RaspiPheno App streamlines 
what is typically a command line-based statistical analysis into 
an intuitive and interactive process. As the developed tools have 
limited computational requirements, they can be run on a stand
ard laptop with an internet connection. We aim for these open- 
source hardware and software packages to simplify the data 

extraction process that often hinders data analysis and delays sci
entific progress.

The instructions for constructing system hardware using 
inexpensive wooden or aluminum frames can be accessed at 
protocols.io (Yu and Julkowska 2022), whereas the necessary parts 
for constructing each setup are listed in Supplementary Tables S1 
to S3. The RaspiPheno App and RaspiPheno Pipe are available, 
along with the detailed instructive user manuals and example 
datasets, on the GitHub repository (https://github.com/Leon- 
Yu0320/BTI-Plant-phenotyping). Together, PhenoRig, PhenoCage, 
and AWWEsmo represent a basic suite of plant phenotyping tools 
that significantly accelerate research and can be instrumental in 
screening populations of accessions or mutants under diverse 
conditions. The construction of each setup requires minimal 
financial investment (less than 200 USD) and thus contributes to 
democratizing plant phenotyping tools in a wide range of potential 
users.

Stress-induced changes in Arabidopsis, cowpea, 
and tepary beans
To test the efficacy of the developed tools, we evaluated the im
ages produced by our setup for their sensitivity to detect the effect 
of abiotic stress on three species—Arabidopsis, cowpea, and tep
ary beans (Figs. 4 and 5). Arabidopsis Col-0 plants were treated 
with salt stress (100 mM NaCl effective concentration) 2 wk after 
germination and imaged every 30 min for the following 2 wk. 
This method has been previously described in (Awlia et al. 2016), 
and applied to the Arabidopsis diversity panel, without any 

A

B

Figure 2. PhenoRig and PhenoCage images. A) RGB images output of Raspi camera of Arabidopsis (left panel) and tepary bean (right panel). The red 
squares highlight the area used for white balance correction in the subsequent steps. Blue squares indicate the ROIs for image processing. B) Output 
images after processing using PlantCV pipeline. The blue edge highlights the perimeter of the leaf area (green tissue) and the purple edge defines the 
convex hull area of each individual plant.
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observation of premature leaf senescence (Awlia et al. 2021). We 
observed a consistent decrease in rosette size starting from 6 d 
after induction of salt stress (Fig. 4A). While continuous imaging 
can provide highly detailed information, it is also prone to varia
tion due to leaf movement throughout the day. To reduce this var
iation, the rosette size data was modeled over the entire 
experimental time course using a smooth spline function within 
PhenoApp (Fig. 4B). Smooth spline modeling provides the means 
for smoothing noisy data through function estimates, balancing 
a measure of goodness of fit with a derivative based measure of 
the smoothness. Moreover, smooth spline functions can be de
ployed to identify potential outliers and eliminate specific points 
from the data set based on standard deviations from the spline 
(Fig. 4C). Plotting the increase in the rosette size of individual 
plants using smooth splines significantly reduced the noise 
caused by diurnal movements of leaves, and thus provides a 
clearer image of the plant’s growth trajectory. We used the col
lected data to calculate daily rosette growth rate by fitting a linear 
regression to daily changes in rosette size, and plotting the change 
in growth rate throughout the experiment. The daily growth rate 
decreased significantly within 2 d of salt treatment application 
(Fig. 4D). The difference in growth rate between control and salt- 
stressed plants increased over the duration of the experiment 

(Fig. 4D). These results suggest that our PhenoRig setup allows 
us to identify differences between plants grown under control 
and salt stress conditions with high sensitivity, detecting signifi
cant differences as early as 2 d after stress in daily rosette growth 
rate.

To evaluate the efficacy of the PhenoCage setup for more com
plex plant architectures, five cowpea accessions and two tepary 
accessions were exposed to drought stress at 17 d after germina
tion. For the two weeks after stress application, the weight of 
each pot was monitored and adjusted by replenishing freshwater 
daily using AWWEsmo, while changes in shoot size were recorded 
every 2 d using the PhenoCage setup (Fig. 5). We did not account 
for increased plant size throughout the experiment, and the target 
weight was determined for each pot based on the soil weight 
alone. As some plants required additional support structure, 
due to their climbing or prostrate growth habit, we designed a 
stackable 3D printed trellis, which resulted in minimal obstruc
tion of the imaged plant area (Supplementary Fig. S4). Drought 
stress was applied through a gradual reduction in soil water- 
holding capacity from 60% to 10% for both cowpea and tepary 
beans. The differences between control and drought stress plants 
were observed after 5 and 6 d for cowpea and tepary beans, 
respectively (Fig. 5, A and B). We observed a high correlation 
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(R = 0.92 for cowpea and R = 0.95 for tepary) between the plant 
fresh weight and projected shoot area recorded on the final day 
of the experiment for both cowpea and tepary beans (Fig. 5, C 
and D), indicating the high reliability of the PhenoCage system 
to nondestructively estimate the changes in digital biomass. 
When we calculated the growth rate for each plant throughout 
the entire experiment, we observed significant differences 
between genotypes and treatments for tepary bean and cowpea 
alike (Fig. 5, E and F). The weight of the pot and watering data, col
lected through AWWEsmo, was used to calculate the daily evapo
transpiration rate for each plant. As the target drought weight was 
reached 2 d after the initial treatment application, the differences 
in evapotranspiration were also evident within 2 d after 
monitoring soil water-holding capacity (Supplementary Fig. S5). 
Evapotranspiration of tepary beans and cowpeas substantially de
creased in response to drought stress (Fig. 5, G and H). High 

variability of growth rate and evapotranspiration of cultivated 
tepary beans (reflected by high standard deviation) corresponded 
to the high variation in plant size exhibited by this genotype with
in the experiment (Fig. 5, F and H). When comparing the median 
evapotranspiration per plant throughout the entire experiment 
(Fig. 5, G and H), significant differences were observed exclusively 
under drought stress conditions. Cowpea accessions Suvita-2 and 
UCR779 showed the highest and lowest evapotranspiration under 
drought stress, respectively. Cultivated tepary bean accession 
(TDP-22) showed higher rate of evapotranspiration compared to 
the wild tepary bean accession (TDP-359). We did not calibrate 
the evapotranspiration results to daily transpiration rates due to 
high trait complexity, as the substantial portion of evapotranspi
ration constitutes water evaporation from the pot. Nevertheless, 
AWWEsmo allowed us to impose reproducible drought stress con
ditions for all studied plants. The above results indicate that 
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Figure 4. Example of Arabidopsis PhenoRig data. Arabidopsis seedlings were exposed to salt stress 2 wk after germination. The trays containing Col-0 
seedlings exposed to salt stress/mock treatment (Control) were placed under PhenoRig setup and imaged every 30 min for 2 wk. A) The increase in the 
projected rosette area was observed over 2 wk following the salt stress exposure. Each solid point represents one data point, along with mean values 
(dashed lines) and standard error (gray shaded area) represented (applies to panels C and D). B) In order to reduce the noise in data, we curated data for 
each individual plant using smooth spline function with different levels of sigma to identify data points as potential outliers. C) Data derived from the 
smooth spline function was calculated for all the samples used for imaging within our experiment, which significantly reduced noise levels. D) The 
smooth spline data was subsequently used for calculating the daily growth rate for each measured plant. The difference in daily growth rate between 
plants exposed to control and salt stress treatment was calculated using a t-test. The *, **, ***, and **** represent P-values below 0.05, 0.01, 0.001, and 
0.0001, respectively.
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Figure 5. Examples of cowpea and tepary bean data were collected using PhenoCage and AWWEsmo setups. The seedlings of five cowpea accessions and 
two tepary bean accessions were germinated for 17 d, and exposed to control treatment or drought stress (60% and 10% soil water-holding capacity, 
respectively). A) The increase in shoot area was modeled using the smooth spline function over the recorded data for cowpea with mean values 
represented by bold lines and the standard error by shaded area. B) Tepary bean over the course of 12 d following the drought stress application (average 
values and standard error were visualized by bold lines and gray shaded area). The difference between treatments was calculated using ANOVA with *, **, 
***, and **** indicating the P-values below 0.05, 0.01, 0.001, and 0.0001, respectively. The Pearson correlation between the projected shoot area and the 
fresh weight of the shoot recorded at the last day of the experiment was examined in both (C) cowpea and (D) tepary bean. The growth rate was calculated 
based on the smooth spline modelled data for (E) five cowpea accessions and (F) two tepary bean accessions for individual conditions. The median 
evapotranspiration rate, was calculated based on the data collected using AWWEsmo for (G) five cowpea accessions and (H) two tepary bean accessions. 
The mean values per group were marked by black horizontal lines and the effect of the genotype within individual treatment was tested using ANOVA, 
and the significantly different groups of cowpea accessions were additionally determined using Tukey HSD test (P-value < 0.05).
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PhenoCage and AWWEsmo can detect differences between treat
ments as well as subtle differences in plant growth rate and evap
otranspiration between genotypes for plants with complex 
architecture, such as cowpea and tepary beans.

Drought-stress-induced changes in the cowpea 
diversity panel
To illustrate the suitability of the developed system for a capacity 
required by a high-throughput phenotyping experiment, we 
screened a cowpea miniCore diversity panel (Muñoz-Amatriaín 
et al. 2021), consisting of 368 accessions, for drought stress- 
induced changes in growth rate, evapotranspiration, and photo
synthetic efficiency (Supplementary Tables S4 and S5). One repli
cate per accession per treatment was germinated in 
well-watered conditions. Once 80% of the plants developed the 
first trifoliate leaf, pot weight was monitored and adjusted to target 
weights, corresponding to 60% and 20% of soil water-holding ca
pacity for control and drought stress, respectively. Daily evapo
transpiration was monitored for 14 d, with digital plant biomass 
collected every other day with the PhenoCage. Additional meas
urements on photosystem II efficiency were collected from each 
plant at 6 and 13 d after stress application. At the end of the experi
ment, fresh weight data were collected from shoot material for 
each plant.

As in pilot experiments, the high correlation between fresh 
weight and projected shoot area (Fig. 6A) indicated that our 
PhenoCage system produces a good estimate for digital plant bio
mass. Tracking progression in shoot size allowed shoot growth to 
be modeled using smooth splines, revealing significant differences 
in shoot size starting from 4 d after initial drought stress applica
tion (Fig. 6B). Based on the increase in shoot area, the growth rate 
was also estimated for each genotype, with significant differences 
observed between control and drought stress conditions (Fig. 6C, 
Supplementary Table S6). Additionally, the relative impact of 
stress on growth rate was calculated for each genotype by dividing 
the genotypic mean growth rate observed under drought stress 
conditions by the genotypic mean growth rate observed under con
trol conditions (Fig. 6D, Supplementary Table S6). While on aver
age, growth rate was reduced to 0.6 of the rate observed under 
control conditions, 19 accessions displayed increased vigor under 
drought stress (relative growth rate > 1, Supplementary Table S6), 
while 64 accessions showed severe drought stress sensitivity (de
fined as relative growth rate < 0.4, Supplementary Table S6). 
Upon further inspection, we identified that most of the high-vigor 
accessions showed relatively small postures and slow growth rate 
under control conditions. As the data presented here is based only 
on one experimental replicate, the validation of the accessions 
showing low and high vigor is necessary using more biological 
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Figure 6. Drought stress-induced changes in natural diversity panel of cowpea. Three hundred and sixty-eight accessions were exposed to 20% soil 
water-holding capacity (SWHC—Drought) or 60% (SWHC—Control) 16 d after sowing. The plants were monitored for an increase in shoot biomass and 
evapotranspiration over the period of 2 wk. A) Correlation between digital biomass and fresh weight on the last day of measurement. Pearson 
correlation coefficient (R) and P-value of the correlation are presented in the upper left corner of the graph. B) Increase in digital biomass over the 
experiment for plants exposed to control and drought treatments: Each solid line represents data for each sample, with dashed lines standing for mean 
value and gray shaded area for standard error (SE), C) The growth rate was calculated by fitting linear function to digital biomass for each accession for 
the duration of the treatment with gray dots stand for each sample and the colored dots for mean value (applies to panels D, F, G, and H). D) Relative 
growth rate was calculated for each accession by dividing the genotype-specific growth rate recorded under drought conditions by the growth rate 
recorded under control conditions. E) Evapotranspiration was estimated for each plant by measuring the pot weight every day of the experiment, 
watering it to the reference weight, and calculating the difference in weight between consecutive days (solid lines and gray shaded area correspond to 
mean value and standard error). The (F) quantum yield (Fv′/Fm′), (G) leaf temperature (C) and (H) chlorophyll content were measured using the 
PhotoSynQ MultiSpeq device. The significant differences between control and drought stress were tested using a Student’s t-test, and *, **, ***, and **** 
represent P-value < 0.05, 0.01, 0.001 and 0.0001, respectively.
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and experimental replications. Drought-treated plants transpired 
significantly less water than control plants (Fig. 6E), and on aver
age, the evapotranspiration decreased to 0.55 of the levels ob
served under control conditions (Supplementary Fig. S6, 
Supplementary Table S7). While drought stress was observed to re
duce quantum yield (Fv′/Fm′) only during the early phase of the ex
periment (Fig. 6F, Supplementary Table S7), a decrease in 
chlorophyll content (SPAD) was observed only at the later stage 
of the experiment (Fig. 6H, Supplementary Table S7). On the other 
hand, the drought stress significantly increased leaf temperature 
both at the early and late stages of drought stress treatment 
(Fig. 6G). In summary, these results illustrate that variability in 
drought stress responses across a large and diverse panel of plants 
with complex architecture can be captured through our 
PhenoCage setup.

Identification of genes underlying drought 
responses
To identify genetic components underlying the diversity observed 
in the cowpea miniCore population (Fig. 7), we used the collected 
phenotypic data in combination with the SNPs acquired from 
SNP array (Muñoz-Amatriaín et al. 2021) as input for a GWAS 
(Supplementary Table SS7). We examined the identified associa
tions for their association strength and predicted effect size 
(Fig. 7). In total, we identified 59 significantly associated SNPs, 
which could be grouped into 25 loci, based on SNPs falling into 
30 kb window (corresponding to genome-average linkage disequi
librium within cowpea genome, Supplementary Table S8). In total, 
we identified 10 loci specific to control conditions, 12 drought- 
specific loci, and 3 loci shared between the traits measured under 

control and drought stress conditions (Supplementary Tables S8 
and S9). Based on the association strength (−log(P-value) > 5.45), 
effect size (ß > 3× SD), and the traits, we prioritized 9 loci for further 
investigation. For all identified associations, we examined the pre
dicted genes in the genome annotation within the linkage disequi
librium (30 kbps) of identified SNPs (Lonardi et al. 2019).

Growth rate under drought stress was associated with one SNP 
on chromosome 1, positioned within the coding region of 
Vigun01g250400, which, according to the genome annotation, is 
a putative homolog of the Arabidopsis gene AT4G14180, which 
encodes a Putative Recombination initiation Defect protein 
(AtPRD1), required for DNA double-strand break formation during 
meiosis. The two genes directly up and downstream of the associ
ated SNP (Vigun01g250500 and Vigun01g250600) are hypothesized 
to encode pentatricopeptide repeat and zinc-finger (C2H2 type) 
family proteins, respectively. We identified two drought-specific 
associations with evapotranspiration use efficiency under 
drought stress (Fig. 7, Supplementary Table S9), located on chro
mosomes 5 and 8. The association on chromosome 5 was found 
within Vigun05g246700, which is a putative homolog of 
Arabidopsis AT3G25830, encoding a monoterpene 1,8-cineole syn
thase (AtTPS-Cin). The monoterpene 1,8-cineole was previously 
associated with decreased root growth in Brassica campestris 
(Koitabashi et al. 1997), and AtTPS-Cin is expressed in 
Arabidopsis roots (Chen et al. 2004). The association on chromo
some 8 was found within Vigun08g112100, which encodes a puta
tive cowpea homolog of AT2G40690, a nuclear-encoded 
NAD-dependent glycerol-3-phosphate dehydrogenase family pro
tein associated with flux of fatty acids in the chloroplast (Singh 
et al. 2016). The neighboring genes (Vigun08g112000 and 
Vigun08g112200) encode homologs of sucrose transporter (SUT4, 
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Figure 7. Identification of genetic components of drought stress responses in cowpea through GWAS. GWAS was performed using ASReml-based script 
on 368 accessions using 42,711 SNPs and kinship matrix as a co-factor. GWAS associations were examined for overlap between control and drought 
stress conditions, −log10(P-value) score, minor allele frequency, and effect size. The selected associations that were observed exclusively for drought 
stress-treated plants are highlighted in pink. The upper panel represents Manhattan plots, with a pink line representing the Bonferroni threshold (equal 
to −log10(0.05/# SNPs). The bottom panel represents the effect size observed for SNPs. The SNPs selected for further investigation (Supplementary 
Table S9) are highlighted with dark-pink outline.
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AT1G09960) and transcription factor (WKRY70, AT3G56400) 
(Supplementary Table S9).

We found the most significant associations with nonphotochem
ical quenching (NPQ) under drought. However, the majority of these 
associations (3 out of 5 loci) were also identified under control condi
tions (Supplementary Table S7). The most prominent drought- 
specific association was located on chromosome 4, within 
Vigun04g051200, which encodes a cowpea homolog of Arabidopsis 
glutaredoxin family protein, AT5G39865 (Supplementary 
Table S9). To evaluate the function of identified genes in drought 
stress response, we examined the available homozygous T-DNA in
sertion lines of the putative Arabidopsis homologs of the identified 
cowpea candidate genes (Supplementary Table S9, Supplementary 
Figs. S7 to S10). The available mutants were grown alongside Col-0 
wild-type in the soil pots, and at 2 wk after germination, the pot 
weight was adjusted to target weight corresponding to 60% and 
10% soil water-holding capacity for control and drought treatments 
respectively. The plants were imaged every 30 min using the 
PhenoRig system, while their weight was recorded and adjusted 
every second-day using AWWEsmo. The initial screen revealed 
that out of 43 T-DNA insertion lines, six and two lines developed sig
nificantly larger or smaller rosettes, respectively when compared to 
Col-0 under drought stress conditions (t-test P-value < 0.05, 
Supplementary Figs. S7 and S8). Eight and four T-DNA insertion lines 
showed, respectively, increased or decreased evapotranspiration 
rates under drought stress compared to Col-0 (Supplementary Fig. 
S9). Nine and two lines showed increased or decreased leaf temper
ature, respectively, whereas five lines showed a significant decrease 
in NPQ (Supplementary Fig. S9). In total, six T-DNA insertion lines 
showed overlap in the measured phenotypes under drought condi
tions (EVT2 to 2, EVT3-2, EVT6-2, EVT8, GR4-1 and NPQ6-3 targeting 
1,8-cineole synthase, alpha carbonic anhydrase 7, WRKY70, CAAX 
amino-terminal protease family, xyloglucan endo-transglucosy
lase/hydrolase 16, and pentatricopeptide repeat protein (PPR), re
spectively, Supplementary Table S9). As it is possible that other 
alleles targeting these genes were not detected as significantly differ
ent from Col-0 due to a low number of replicates (n = 4 per genotype 
per condition), we performed an additional experiment with an in
creased number of replicates (n = 12) (Figs. 8 to 10).

The 13 selected mutants were grown under control and drought 
(20% soil–water holding) conditions. Under both control and 
drought conditions, all 13 of the mutant lines used the same 
amount of water as the Col-0 plants (Supplementary Fig. S10), in
cluding the identified loci initially linked to evapotranspiration 
(Fig. 8). Significantly larger rosettes were observed in the mutant 
lines targeting genes encoding 1,8-cineole synthase (AtTPS27, 
EVT2-2), CAAX amino terminal protease (EVT8), Alpha carbonic 
anhydrase 7 (AtACA7, EVT3-1, EVT3-2) under drought conditions 
but not under control conditions (Fig. 8, Supplementary Fig. S11). 
The mutant line targeting WRKY70 (EVT6-2) had significantly (P 
< 0.05; t-test) larger rosettes under both control and drought con
ditions (Fig. 8, Supplementary Fig. S11). Under control conditions 
alone, for the last part of the experiment, we observed significantly 
larger rosette sizes in EVT6-1, which also targets WRKY70 
(Supplementary Figs. S11 and S12). For the CAAX protease and 
AtACA7, we observed that all T-DNA insertion lines targeting these 
genes showed a significant increase in rosette size (Fig. 8, D and F). 
AtACA7 is predominantly expressed in root stele (Brady et al. 
2007), and its expression under abiotic stress was not reported in 
previous studies (Kilian et al. 2007). CAAX protease is expressed 
in the new leaves (Klepikova et al. 2016), and its expression does 
not change in response to drought or osmotic stress (Kilian et al. 
2007). Only one of the two screened T-DNA insertion lines for 

TPS27 and WRKY70 showed significant increase in rosette size 
under drought stress (Fig. 8, B and H, Supplementary Fig. S12). 
Based on the previous data, WRKY70 is expressed in the senescing 
leaf petiole (Klepikova et al. 2016), but its expression is unaltered 
by drought stress in Col-0 (Kilian et al. 2007). On the other hand, 
TPS27 is known to be expressed in the root stele (Brady et al. 
2007) and is increased by exposure to osmotic, salt, and drought 
stresses (Kilian et al. 2007). These results suggest that the identi
fied candidate genes are potentially involved in drought resilience 
through the maintenance of vegetative growth under both control 
and drought stress conditions.

Additionally, we observed larger (P < 0.05; t-test) rosette size in 
drought and control plants in three (NPQ6-2, NPQ6-4, NPQ6-5) of 
the mutant lines targeting the Arabidopsis homolog to the gene as
sociated with NPQ in cowpea, pentatricopeptide repeat superfam
ily protein (AtPPR, Fig. 9A, Supplementary Fig. S11). For the NPQ6-1 
mutant line, significantly larger rosette sizes were observed only 
under drought stress conditions (Fig. 9B). Variations of the homol
ogous genes among five cowpea genomes that correspond to the 
Arabidopsis AT3G02490 gene (Muñoz-Amatriaín et al. 2021), the 5′ 
UTR is the predominant site of sequence variation, containing 
one insertion–deletion mutation and four SNPs (Fig. 9A). The line 
targeting 5′ UTR in Arabidopsis gene region (NPQ6-2) showed sig
nificant changes in rosette size, suggesting that 5′ UTR is indeed 
playing an important role in this gene function (Fig. 9B). 
However, as the mutation induced by T-DNA insertion is different 
in size and character from INDELS in cowpea pangenome, we can
not make any specific conclusions about the role of these muta
tions. Only one of the five studied insertion lines did not show 
significant changes in rosette size (NPQ6-3, Supplementary Fig. 
S12). As the location of this insertion line is beyond the 3′ UTR, it 
is likely that this mutation does not disturb expression of the 
gene. PPR expression was reported to be ubiquitous (Klepikova 
et al. 2016), and unaltered in response to drought or osmotic stress 
(Kilian et al. 2007). These results suggest an involvement of penta
tricopeptide repeat superfamily protein in the maintenance of ro
sette growth under control and drought-stress conditions.

In the final locus that we investigated in further detail, the 
Arabidopsis mutant line targeting xyloglucan endotransglucosy
lase/transferase 16 (AtXTH16), which is homologous to the gene 
associated with growth rate under drought stress in cowpea 
(Fig. 10A), we observed larger (P < 0.05; t-test) rosette size under 
both control and drought conditions (Fig. 10B, Supplementary 
Fig. S11). Within the cowpea pangenome (Liang et al. 2024 ) the 
majority of the sequence variation resides within the gene coding 
region (five SNPS, Fig. 10A) and 5′ UTR (two SNPs, one indel muta
tions), however, we could not identify any T-DNA insertions tar
geting this gene region in Arabidopsis. Expression of AtXTH16 
was reported to occur predominantly in the developing leaves of 
Arabidopsis (Klepikova et al. 2016), and is decreased in the initial 
stage of drought stress exposure (Kilian et al. 2007). While we 
could only identify one T-DNA insertion line for this gene, the 
above results suggest that XTH16 might play a role in rosette 
growth under control and drought-stress conditions. Overall, we 
have identified six genes to potentially contribute to drought 
stress tolerance by maintaining the rosette growth, as increased 
rosette size was observed in both control and drought-stress con
ditions (Figs. 8 to 10, Supplementary Fig. S11).

Discussion
Plant phenotyping plays a crucial role in plant breeding, genetic 
research, and agricultural productivity, and is essential for 

10 | Plant Physiology, 2024, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiae237/7663519 by guest on 31 July 2024

http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data


5’ AT3G25830
TSS

EVT2-1

EVT2-2

3’ 3’ 5’
TSS

AT1G14270

EVT8

3’ 5’

TSS
AT3G56400

EVT6-2
EVT6-1

3’ 5’
TSS

AT1G08080

EVT3-2 EVT3-1

Total Time (minutes)

Total Time (minutes)

*
*

* * *

A C

B D

E G

F

IT97K

CB5.2

SanZi

Suvita.2

UCR799
G

en
o

m
e 

ve
rs

io
n

100% identities

IT97K

CB5.2

SanZi

Suvita.2

UCR799

G
en

o
m

e 
ve

rs
io

n

100% identities

IT97K

CB5.2

SanZi

Suvita.2

UCR799

G
en

o
m

e 
ve

rs
io

n

IT97K

SanZi

Suvita.2

UCR799

G
en

o
m

e 
ve

rs
io

n

100% identities

2 SNPs4 SNPs

600

0

100

200

300

400

500

700

600

0

100

200

300

400

500

700

H

600

0

100

200

300

400

500

700

100

200

300

400

500

0

600

100

200

300

400

500

700

0

800
600

S
m

o
o

th
ed

 r
o

se
tt

e 
ar

ea
 (

m
m

2 )

S
m

o
o

th
ed

 r
o

se
tt

e 
ar

ea
 (

m
m

2  )

N = 6
N = 8

N = 7
N = 8

N = 6
N = 8

N = 6
N = 5

N = 6
N = 8

Figure 8. Plant growth of evaporation loci-associated mutants relative to Col-0 plants under drought condition. A) Gene model (TSS: transcription start 
site, marked by red asterisks) of 1,8-cineole synthase (AtTPS27, AT3G25830) and location of EVT2 T-DNA insertion numbers of SNP marked. B) Growth of 
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understanding plant growth, development, and responses to the 
environment. Automated plant phenotyping methods provide 
valuable information that can be used to improve crop productiv
ity and sustainability, and to address global challenges such as 

food security and climate change. Implementing computational 
tools into plant phenotyping enables the efficient processing and 
analysis of large amounts of images (Fahlgren et al. 2015a; 
Gehan et al. 2017). As plant phenotyping methods rely on 

S
m

o
o

th
ed

 r
o

se
tt

e 
ar

ea
 (

m
m

2 )

Total Time (minutes)

A B

600

0

100

200

300

400

500

700

600

0

100

200

300

400

500

700

600

0

100

200

300

400

500

700

600

0

100

200

300

400

500

700

N = 6
N = 7

N = 6
N = 8

N = 6
N = 7

N = 6
N = 7

Figure 9. Plant growth of NPQ loci-related mutants relative to Col-0 plants under drought condition. A) Gene model (TSS: transcription start site (red 
asterisk), UTR: untranslated region, and CDS: coding sequences) of pentatricopeptide superfamily protein (AtPPR, AT3G02490) and location of the five 
T-DNA insertion sites of mutants. In addition, the putative orthologous gene (BLASTN search: E-value < 1e05, identities > 95%) from cowpea was 
identified from five published genome assemblies and gene annotations (UCR799, Suvita.2, SanZi, CB5.2, and IT97K). The multiple-alignment of five 
putative orthologous genes revealed the high-level conservation across the coding region (1 SNP among five genes), as well as the 3′ UTR (1 SNP) while 
there were four insertions and deletions (INDELs) identified across the 5′ UTR. B) Growth of Col-0 and AtPPR mutants under drought conditions (dashed 
lines represent mean score and shaded area corresponds to standard error). Only four out of five mutants along with significant differences of leaf area 
between wild-type and mutants under drought conditions were plotted (t-test: P-value < 0.05). The significant differences between the wild type (Col-0) 
and each mutant line were tested using a Student’s t-test, and *, **, ***, and **** represent P-value < 0.05, 0.01, 0.001, and 0.0001 respectively.

S
m

o
o

th
ed

 r
o

se
tt

e 
ar

ea
 (

D
ro

u
g

h
t)

Total Time (minutes)

A

5’ 3’

GR4-2

AT3G23730
TSS

UTR

UTR

UTR

UTR

UTR

1 SNP5 SNPs2 SNPs
1 INDEL

IT97K

CB5.2

SanZi

Suvita.2

UCR799

G
en

o
m

e 
ve

rs
io

n

UTR UTR

UTR

UTR

UTR

UTR

UTR

CDS

*

600

0

100

200

300

400

500

S
m

o
o

th
ed

 R
o

se
tt

e
A

re
a 

(m
m

2 ) 700

N = 6
N = 6

B

Figure 10. Plant growth of GR loci-related mutants relative to Col-0 plants under drought condition. A) Gene model (TSS: transcription start site (red 
asterisk), UTR: untranslated region, and CDS: coding sequences) of xyloglucan endotransglucosylase/transferase 16 (AtXTH16, AT3G23730) which is 
associated with growth rate and location of the T-DNA insertion site of one mutant. In addition, the orthologous gene from cowpea was identified from 
five versions of genome assembly and annotation (UCR799, Suvita.2, SanZi, CB5.2, and IT97K). The multiple alignments of five orthologous genes 
revealed the different levels of conservation (numbers of SNPs and INDELs across the 5′ UTR (2 SNPs and 1 INDEL), the coding region (5 SNPs), and the 3′ 
UTR (1 SNP)). B) Growth of Col-0 and AtXTH16 mutants under drought conditions (dashed lines represent mean score and shaded area corresponds to 
standard error). This locus revealed the significant difference in leaf area in between wild-type and mutant (t-test: P-value < 0.05). The significant 
differences between the wild type (Col-0) and CP.GR4 mutant line were tested using a Student’s t-test, and *, **, ***, and **** represent P-value < 0.05, 0.01, 
0.001, and 0.0001 respectively.

12 | Plant Physiology, 2024, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiae237/7663519 by guest on 31 July 2024



computational tools, their adoption is often hindered by the re
quirement of advanced programming skills and the lack of user- 
friendly interfaces (Klukas et al. 2014; Zhou et al. 2018) Most wet 
labs consist of scientists with limited programming or engineering 
experience, and thus it is necessary to democratize the phenotyp
ing tools derived from new technologies and algorithms, and to in
crease the level of accessibility and convenience of novel tools for 
the plant scientists.

Here, we present a cost-effective “all-in-one” solution, consist
ing of three independent cost-effective hardware designs, data 
processing pipelines, and data analysis platform that streamline 
individual workflows into one experimental framework (Fig. 3). 
We aim to break down the bottleneck in plant phenotyping by 
combining phenotypic image collection with data analysis for 
users without proficient programming experience. The developed 
tools allow for navigation between plant images, intermediate da
tasets, and data analysis. By following the detailed instructions, 
users can collect data and execute data processing and analysis 
steps without prior knowledge of engineering.

The most significant advantage of the developed system is its 
low cost and high versatility. As presented in the results, the hard
ware pieces were constructed with lightweight and low-cost ma
terials that are simple to assemble (Fig. 1, Supplementary Fig. 
S2). Moreover, the system’s adaptability to a broad range of re
search contexts was demonstrated by imaging a wide range of 
plant species. We demonstrated the system’s precision by accu
rately estimating the digital biomass for species grown under con
trolled environmental conditions (Figs. 3 and 4). AWWEsmo 
cannot be used to extract transpiration of the plants, but rather 
evapotranspiration, which is substantially determined by the 
evaporation of water from the pot (Supplementary Fig. S13). 
Nevertheless, the device constructed using low-cost materials 
could adjust the pot weight to the target weight, resulting in repro
ducible mild drought stress and maintaining soil water-holding 
capacity throughout the experiment. We would like to note that 
on-line communities have noted a strong temperature- 
dependence of the scale sensor precision used within our setup, 
which would require repeated calibration based on the tempera
ture fluctuations that are commonly observed within growth 
chamber conditions (Supplementary Fig. S1). In future iterations 
of AWWEsmo, one might consider replacing the HX711 scale 
with more reliable weight sensors. Within the described setup, 
we have checked the scale against a typical laboratory-grade scale 
for accuracy every week and re-calibrated it if the discrepancy ex
ceeded 1 g. Additionally, as the target weight is not adjusted for 
the plant size, the described method can only be used for rela
tively short drought stress experiments. For example, at the end 
of our cowpea diversity experiment (Fig. 6E), we observed that 
the evapotranspiration decreased in plants grown under control 
conditions, probably because they started to experience water 
limitation. While the difference in leaf temperature was main
tained at the end of the experiment (Fig. 6G), we would caution 
against experiments beyond 2 wk of drought stress using the de
scribed method. Similarly, evapotranspiration yields significant 
associations only when combined with plant fresh weight using 
the GWAS approach, suggesting that evapotranspiration itself 
might be too noisy of a trait by itself to be biologically meaningful. 
Thus, evapotranspiration data derived from AWWEsmo should be 
treated with caution, and its precision in the current iteration 
might not be sufficient to detect small evapotranspiration 
effects for smaller plants, such as Arabidopsis. We would 
caution anyone to search for additional lines of evidence of plant’s 
water-use to complement the measurements obtained with 

AWWEsmo. Nevertheless, the accessibility of the developed 
suite of phenotyping tools provides a starting point for cost- 
effective phenotyping solutions. The main objective of our system 
is to monitor plant growth during the early vegetative develop
mental stage, as this early stage has been the focus of many 
experiments under controlled conditions (Behmann et al. 2014; 
Zhang et al. 2020) and RGB image-based phenotyping is 
reliable in predicting biomass (Rahaman et al. 2017; Banerjee 
et al. 2020).

The high level of user-friendliness is another feature that 
characterizes the system. Several published Raspberry Pi-based 
systems such as “SPIRO”, “PhenoBox”, and “PhenoWell” are image- 
based and controlled by low-cost computers for sustainable solu
tions for high-throughput phenotyping (Czedik-Eysenberg et al. 
2018; Feldman et al. 2021; Li et al. 2023; Ohlsson et al. 2024). 
However, these platforms often rely on R or Python source code 
for plant objects segmentation, and statistical comparisons, 
which are making them inflexible for research-based data analy
sis. In contrast, our developed suite of tools provides not only a 
comprehensive overview of hardware and software, that has 
been optimized into reproducible computational pipelines for 
wider usage but also preserves the flexibility of data analysis 
that is crucial for research-based use of these tools. To further 
enable fast and reproducible data analysis, we developed an inter
active ShinyApp, RaspiPheno App, to decode plant genotype 
and treatment information, as well as to perform the data cura
tion, smoothing, and visualization (https://github.com/Leon- 
Yu0320/BTI-Plant-phenotyping/tree/main/RasPiPheno_APP).

The use of a graphical interface app reduces the downstream 
workload compared to some other Like other ShinyApps for bio
logical data analysis (Julkowska et al. 2019; Ge 2020; Xiao and 
Lam 2022). Our efforts enabled that the RaspiPheno App to provide 
a fast and straightforward approach to data processing. Moreover, 
the RaspiPheno App offers compatibility with data input derived 
from previous steps, as it is fine-tuned to match the data output 
format from the RaspiPheno Pipe. This direct data adoption re
quires no further data reformatting, reducing the learning curve 
required for new users. Integration of the RaspiPheno App into 
the suite of developed tools allows for decoding of information 
and assigning plant genotype and/or treatment to individual 
plants, as well as other meta-features of an experimental design. 
As a result, the streamlined RaspiPheno App enables the acquisi
tion of high-quality plots and systematic statistical analysis of 
plant growth, to address the specific biological questions about 
the physiological and genetic basis of plants.

Within this work, we have demonstrated the system’s usability 
using a cowpea diversity panel to drive the discovery of genes in
volved in environmental resilience. The observed phenotypic var
iation in cowpea (Fig. 6) was used as an input for GWAS (Fig. 7) to 
identify genetic loci contributing to drought resilience. Previous 
studies have identified cowpea as an important donor for drought 
tolerance traits (Muñoz-Amatriaín et al. 2021), however cowpea 
phenotyping has thus far not been performed on dynamic traits, 
such as growth rate or evapotranspiration during drought expo
sure (Muchero et al. 2009; Verbree et al. 2015; Ravelombola et al. 
2020; Nkomo et al. 2022). We observed that similarly to other 
crop plants (Awlia et al. 2021), cowpea reduces its evapotranspira
tion (Fig. 6E). On the other hand, the photosynthetic efficiency was 
only affected in the early phase of drought stress exposure 
(Fig. 6F). It has been previously reported that Arabidopsis plants 
under salt stress have been found to decrease quantum yield dur
ing early salt stress exposure and that this impacted growth main
tenance (Awlia et al. 2021).
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To explore the potential genes involved in drought resilience 
in cowpea, we examined available T-DNA insertion mutants in 
Arabidopsis homologs to the set of cowpea genes with significant 
trait associations. Our experiments revealed genes that are po
tentially contributing to drought resilience (Figs. 8 to 10), high
lighting the usefulness of these low-cost, large-scale, 
phenotyping approaches. Not all studied T-DNA insertion lines 
showed significant changes in rosette growth rate under drought 
conditions, and thus require further validation (e.g. AT3G25830 
encoding 1,8-cineole synthase, AT1G14270 encoding CAAX ami
no terminal protease, AT3G56400 encoding AtWRKY70, and 
AT3G23730 encoding xyloglucan endotransglucosylase/transfer
ase 16, Figs. 8, A to D, G, H and 10). Two out of two studied 
T-DNA insertion lines targeting alpha carbonic anhydrase 7 
(AtACA7, AT1G08080) and four out of five T-DNA insertion lines 
targeting tetratricopeptide repeat super-family protein (AtPPR, 
AT3G02490) showed convincing evidence for their potential in
volvement in drought resilience (Figs. 8, E and F and 9, respec
tively). Carbonic anhydrases are an abundant protein family 
that has multiple isoforms and acts in carbon assimilation and 
photosynthesis (Momayyezi et al. 2020). The three families, al
pha, beta, and gamma are considered to have evolved separately 
(Momayyezi et al. 2020) but have similar functions (Moroney 
et al. 2001). The alpha carbonic anhydrases have the overall low
est expression level (Polishchuk 2021). While no previous reports 
cover the role of alpha carbonic anhydrases in drought stress re
silience, the beta family has been studied extensively. The ex
pression of beta carbonic anhydrases has been shown to both 
increase (Polishchuk 2021) and decrease (Wang et al. 2016; Han 
et al. 2019; Momayyezi et al. 2020) under drought. These con
trasting findings, as well as our results, indicate the need for fur
ther investigation into the role of alpha carbonic anhydrases in 
drought response in plants.

PPRs in plants are known for their wide range of molecular 
functions, including photosynthesis and environmental stress re
sponses, including drought stress Arabidopsis plants exhibited 
improved growth performance under drought stress when the ex
pression of the PPR protein SLG1 was disrupted (Yuan and Liu 
2012). However, Arabidopsis lines overexpressing another PPR 
protein, SOAR1, also performed better under drought stress com
pared to the wild type (Jiang and Li 2020). To our knowledge, the 
PPR identified in this study (AT3G02490) has not been previously 
studied in detail or reported as contributing to drought resilience. 
Our previous findings highlight the diversity and complexity of 
PPR proteins, emphasizing the need to characterize our identified 
PPR further. The molecular context of these genes will be the focus 
of future studies, revealing more mechanisms of drought resil
ience across a wider range of species. Our results illustrate the po
tential of the developed setup in gene discovery and identification 
of resilience mechanisms for a wide diversity of plants. In the fu
ture, the identified genes can serve as attractive targets for breed
ing or genetic modification to further contribute to crop stress 
resilience and food security.

Image-based phenotyping is the workhorse of high-throughput 
phenotyping (Hall et al. 2022; Langstroff et al. 2022). The applica
tion of high-throughput phenotyping in simple and cost-efficient 
systems, like the one described in our manuscript, carries the po
tential for a broader impact on plant science research without the 
prohibitively high costs (Yang et al. 2013; Du et al. 2021; Zhou et al. 
2021). The wide adoption of cost-effective solutions can lead to 
tremendous progress in studying stress responses and identifying 
genetic components of environmental resilience.

Materials and methods
Phenotyping facility development

Top-view imaging of Arabidopsis using PhenoRig
To continuously collect top-view images, we built a PhenoRig 
where 32 pots (width: 6.5 cm × length: 6.5 cm × height: 9 cm for 
each insert), each containing a single Arabidopsis (A. thaliana) 
plant, could be imaged simultaneously within one setup. We built 
a wooden frame (length: 60 cm × width: 40 cm × height 43.5 cm for 
the frame) to accommodate a standard 1,020 (∼27.94 × 54.61 cm) 
rectangular tray. The images were collected by two Raspberry Pi 
cameras connected to a Raspberry Pi Zero computer through an 
Arducam Multi-camera adapter, with flex cables. To prevent the 
movement of plants during plant watering, a plastic tray was 
anchored to the bottom of the PhenoRig. The imaging of plants 
was performed every 30 min using the automated startup script 
(described in the pheno-computational pipeline development sec
tion below). No additional light source was installed, and the im
ages collected during the night period were removed in the 
automated data preparation workflow by specifying the start 
and end time of the light period (hour–minute format: HH:MM) 
of image collection each day as a parameter input for data alloca
tion (https://github.com/Leon-Yu0320/BTI-Plant-phenotyping). 
The materials necessary to build a PhenoRig are listed in 
Supplementary Table S1.

Side-view imaging using PhenoCage
To adequately capture the digital biomass of the plants with com
plex 3D architectures, such as bean plants, we developed a side- 
view imaging PhenoCage platform. Within a cage (length: 90 cm 
× width: 60 cm × height: 60 cm), we placed a rotating platform on 
which a plant pot is placed. The background noise is limited by 
white semilight-permeable plastic sheets attached to the frame. 
The plant is illuminated from four sides and the top using LED 
light bars to eliminate shading. The light intensity ensures the 
short shutter speed of the camera, thereby ensuring clear images 
of the constantly rotating plants. To ensure that all plants will be 
positioned in the same way on the rotating platform, we attached 
the pot that has been cut in half in the horizontal direction to the 
rotating platform. The plants are imaged using one Raspberry 
Pi camera connected to a Raspberry Pi 4. A household shell 
script (PhenoCage_capture.sh) takes seven consecutive images, 
representing a side view of the imaged plant taken every 51.4° 
(https://github.com/Leon-Yu0320/BTI-Plant-phenotyping/tree/ 
main/data_acquisition). The materials necessary to build a 
PhenoCage are listed in Supplementary Table S2. Accessories to 
hold the Raspberry Pi and monitor were designed using 
TinkerCad (https://www.tinkercad.com) and produced by a 3D 
printer (PRUSA i3 MK3S+). Examples and details of the 3D printed 
components can be found at https://github.com/Leon-Yu0320/ 
BTI-Plant-phenotyping/tree/main/3Dprint. While the scale at 
which the images were taken within the PhenoCage setup within 
our manuscript constitutes 3 pixels/mm, we kept all the measure
ments in pixels, as the scale of this setup will depend on the dis
tance between the camera and the plant, that will be specific to 
individual species studied.

Monitoring evapotranspiration using AWWEsmo
To monitor the plant evapotranspiration, we developed an 
AWWEsmo. Using this device, the pots are placed on a scale, 
where they are automatically weighed and watered to their target 

14 | Plant Physiology, 2024, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiae237/7663519 by guest on 31 July 2024

https://github.com/Leon-Yu0320/BTI-Plant-phenotyping
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
https://github.com/Leon-Yu0320/BTI-Plant-phenotyping/tree/main/data_acquisition
https://github.com/Leon-Yu0320/BTI-Plant-phenotyping/tree/main/data_acquisition
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiae237#supplementary-data
https://www.tinkercad.com
https://github.com/Leon-Yu0320/BTI-Plant-phenotyping/tree/main/3Dprint
https://github.com/Leon-Yu0320/BTI-Plant-phenotyping/tree/main/3Dprint


weight. We found that the system worked best with the smaller 
square pots (width: 10.16 cm, length: 10.16 cm, height 11 cm), 
that were used for cowpea and tepary beans experiments dis
cussed below. The Arduino controller was connected to a load 
cell (HX711) that served as a scale, and to a submerged 5-V 
pump that was activated for a period calculated to be necessary 
to reach the target weight. The controller and the mini- 
breadboard were placed in a 3D-printed container, designed to 
protect the electrical components from splatter and dust in the 
growth chamber. The load cell constituting the scale was attached 
to the thick plastic platform (thickness: 5 cm, diameter: 12 cm), 
and a plastic saucer was glued to the platform, to prevent water 
spillage onto the electrical components. The Arduino controller 
as well as the load cell were housed in a 3D-printed design, that 
accommodated two levelers, ensuring the scale leveling and sup
port for the hose connected to the pump. The materials necessary 
to build an AWWEsmo device are listed in Supplementary 
Table S3, while detailed instructions on how to build and program 
the device can be found at https://github.com/ok84-star/ 
AAWSMO. Details on the 3D-printed designs can be found at 
https://github.com/Leon-Yu0320/BTI-Plant-phenotyping/tree/main/ 
3Dprint/AWESmo. The detailed usage manual, including calibra
tion and execution of the AWWEsmo, is available at protocols.io 
(Julkowska et al. 2023; Khmelnitsky et al. 2023). Supplemental 
Video on assembly can be found here: https://youtu.be/ 
QlJUVdQT6VA. The precision of the load cell was evaluated 
against a laboratory scale (Kern EMB portable balance) to 0.1 g 
precision. The Arduino scale was calibrated prior to every experi
ment using the scripts available at https://github.com/ok84-star/ 
AAWSMO and checked during each measurement against the lab
oratory scale mentioned previously.

Pheno-computational pipeline development
The plant image collection is integrated into a customizable shell 
script, optimized for ISO, image sharpness (sh), contrast (co), 
brightness (br), shutter speed (ss), and size of the image for indi
vidual imaging conditions. For the PhenoRig setup, the automated 
data collection was conducted with specifications of time interval 
(unit: min), duration (unit: days), and hardware identifiers (for
mat: RaspiID_cameraID). Once the image and experimental set
tings are determined by the user, the imaging command is 
deployed at determined time intervals using crontab which is 
nested within the setup scripts. Users can launch the collection 
by using a local Raspi computer, or connect Raspi computers to 
the internet and launch the program remotely by a personal com
puter (PC) or a server. For PhenoCage setup, image data collection 
is launched manually for individual plants. For each plant, images 
from seven sides were collected with a hardware identifier (for
mat: RaspiID) and side numbers (format: side1 to side7). After 
each experiment session for both PhenoRig and PhenoCage, im
ages can be transferred using a USB flash drive or an SSH transfer 
proxy to a server or other local devices.

After image collection, the pipeline requires experiment- 
specific parameters as input to execute the image analysis cor
rectly. The parameters guide key steps related to image transfor
mation, masking, selection of regions of interest, and extraction of 
phenotypic data into an image analysis protocol derived from 
PlantCV image processing algorithm (Gehan et al. 2017), a tutorial 
for parameter setup for PlantCV software was instructed using ex
ample images collected with PhenoRig and PhenoCage (Yu and 
Julkowska 2022). The computation pipelines and RasPiPheno 

Pipe are publicly available on GitHub with manual and 
supplementary information provided (https://github.com/Leon- 
Yu0320/BTI-Plant-phenotyping).

The quantitative data obtained from collected images are subse
quently analyzed for changes in digital biomass throughout time/ 
treatment. Prior to statistical data analysis, data collected using 
PhenoCage is additionally processed by summarizing the pixels rep
resenting the shoot projected area from seven side-view images. 
Once the digital biomass of each plant is determined from either 
side-view or top-view images, the genotype, replicate, and treatment 
information is decoded using a meta-data table (https://github.com/ 
Leon-Yu0320/BTI-Plant-phenotyping/tree/main/Results_example). 
While PhenoRig images are decoded based on positional informa
tion, the PhenoCage data is decoded based on the timestamp of the 
image, assuming that the experiment is imaged sequentially in order 
of the pot position. The decoded data is subsequently processed 
under the framework RasPiPhenoApp (https://github.com/Leon- 
Yu0320/BTI-Plant-phenotyping), a web interactive and streamlined 
analysis tool. Using the smooth spline, loess fit, or polynomial regres
sion fit functions, each data point is curated to generate curated val
ues as a smoothed dataset. The original data points that exceed the 
one to three times standard deviation (SD) relative to corresponding 
curated values can be classified as outliers. The user can remove spe
cific points based on the customized cutoff (one to three times SD), to 
generate a clean dataset. The growth rates (GR) are calculated using 
a linear function either for the entire duration of the experiment 
(PhenoCage) or for each day of the experiment (PhenoRig). The differ
ences between treatments and/or genotypes (or in other single fac
tors, two factors experiments) are subsequently tested using t-test, 
Wilcox, ANOVA, or two-way ANOVA regarding the curated plant 
leaf area, the leaf area without outliers, and growth rate. The vis
ualization of the graphs is performed using ggplot2 and ggpubr 
packages (Wickham 2016). The integration of data analysis tools 
into a graphical user interface is performed using shiny R package 
(https://shiny.rstudio.com).

Plant material and plant growth conditions

Arabidopsis thaliana experiment
Arabidopsis (A. thaliana) Col-0 seeds were sterilized for 10 min 
with 50% (v/v) bleach and rinsed five times using Milli-Q water 
and germinated on ½ strength × Murashige and Skoog (MS) me
dium containing 0.5% (w/v) sucrose, 0.1% (w/v) 4-morpholinee
thanesulfonic acid (MES), and 1% (w/v) agar. After 24 h of 
vernalization at 4 °C in the dark, the plates were placed in the 
Conviron growth chamber with the light intensity of 130 to 
150 µmol m−2 s−1 in a 16 h light/8 h dark cycle at 21 °C and 60% hu
midity. At 7 d after germination, the seedlings were transplanted 
to soil (Cornell Mix, per batch combine: 0.16 m3 of peat moss, 
20.84 kg of vermiculite, 0.59 kg of Uni-Mix fertilizer, and 2.27 kg 
of lime) watered to 100% soil water-holding capacity and placed 
in a walk-in growth chamber with the abovementioned condi
tions. When the pots dried to the weight corresponding to 50% 
of their water holding capacity, they were soaked for 1 h in tap 
water or a 200 mM NaCl solution, resulting in a concentration of 
100 mM NaCl based on the 50% soil water holding capacity, which 
corresponded to a moderate level of salt stress according to (Awlia 
et al. 2021). We allowed the pots to be drained for 2 to 3 h to elim
inate excess moisture. The pots were subsequently placed under 
PhenoRigs equipped with an automated imaging system, and 
the pot weight was measured and adjusted daily to maintain the 
reference weight corresponding to 50% of the soil water-holding 
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capacity throughout the experiment. At the end of the experi
ment, fresh weight was collected for all imaged plants. The col
lected images were processed using the pheno-computational 
pipeline described above, and the data were processed in R 
(Supplementary Table SS4). All the data was tested for ANOVA as
sumptions, including homogeneity of variance and normal distri
bution using MVApp (Julkowska et al. 2019).

Cowpea pilot experiment
The seeds of five cowpea accessions (CB5-2, IT97K-499, Sanzi, 
Suvita-2, UCR799), representative of the wider diversity within 
cowpea were germinated in square pots (width: 10.16 cm; length: 
10.16 cm, height: 11 cm) filled with soil (Cornell Mix + Osmocote, 
composed of Cornell Mix mentioned above with 2.27 kg 
Osmocote added per 1.631 m3) (Liang et al. 2024). The plants 
were germinated and grown in a Conviron growth chamber with 
the light intensity at 350 to 415 µmol m−2 s −1 under a 12 h light 
cycle at 26 °C/12 h dark cycle at 20 °C and 50% relative humidity. 
We calculated vapor pressure deficit (VPD) using the R package 
“plantecophys” (Duursma 2015). The daytime VPD was 1.17 kPa 
and the nighttime VPD was 1.69 kPa. No additional nutrients 
were added during the experiment. We used seven biological rep
licates per accession per treatment for this experiment. The con
trol and drought-treated plants were kept at 60% and 20% soil 
water-holding capacity, respectively. To determine target weights 
for each pot, we left the pots to air dry for 72 h and assigned this 
weight to correspond to 0% water-holding capacity. We then satu
rated the soil for 24 h, removed excess water, weighed the pots, 
and assigned this value as the 100% soil water-holding capacity 
weight. At this point, we sowed two seeds per pot and thinned it 
to one seedling per pot after germination occurred. We initiated 
tracking pot weight at 17 d after germination, watering each pot 
to its target weight daily for 15 consecutive days. Drought treat
ment target weights were reached on day 4 after tracking started. 
We imaged the plants using the PhenoCage setup starting 17 d 
after germination and subsequently every other day for the next 
2 wk (resulting in a total of seven-time points, with each time 
point consisting of seven images for each plant). At the end of 
the experiment, the fresh weight of the cowpea shoot was col
lected for all the imaged plants. The collected images were proc
essed using the pheno-computational pipeline described above, 
and the data was processed in R (Supplementary Table S4). All 
of the data was tested for ANOVA assumptions, including homo
geneity of variance and normal distribution using MVApp 
(Julkowska et al. 2019).

Tepary bean pilot experiment
The seeds of twp tepary bean accessions (TDP359 and TDP22), rep
resentative of the wild and cultivated tepary bean, respectively 
(Muñoz-Amatriaín et al. 2021), were germinated in 4-in. pots filled 
with soil (Cornell Mix + Osmocote) watered to 100% soil water- 
holding capacity. We used six biological replicates of TDP359 
(cultivated) and 12 replicates of TDP22 (wild) per treatment for 
this experiment. The control and drought-treated plants were 
kept at 60% and 10% soil water-holding capacity, respectively. 
The drought was imposed as described for the cowpea pilot ex
periment above and the growth chamber conditions were the 
same as for the cowpea pilot experiment, described above. We im
aged the plants using the PhenoCage setup starting at 17 d after 
germination and repeated every second day for consecutive 
2 wk. At the end of the experiment, the fresh weight of the tepary 
bean shoot was collected for all the imaged plants. The collected 

images were processed using the pheno-computational pipeline 
described above, and the data was processed in R (Supplementary 
Table S4). All the data was tested for ANOVA assumptions, including 
homogeneity of variance and normal distribution using MVApp 
(Julkowska et al. 2019).

Cowpea mini-core population screen
The cowpea mini-core population, consisting of 368 accessions 
(Muñoz-Amatriaín et al. 2021) was screened as described for the 
cowpea pilot experiments. The accessions were distributed over 
six experiments, and we used five accessions (CB5-2, IT97K-499, 
Sanzi, Suvita-2, and UCR799) as internal standards for each ex
periment. One accession, TVu-9393 was excluded because it did 
not germinate after multiple trials, and another accession, 
TVu-3965, was omitted due to lack of seeds available. The drought 
imposition and growth chamber conditions were the same as de
scribed for the cowpea pilot experiment in the above sections. The 
pot weight was monitored and adjusted every day, while imaging 
of the plants using PhenoCage was performed every second day. 
Due to the various growth habits of cowpeas, we occasionally 
added transparent, 3D-printed support to ensure the upright posi
tion of the plant. The weight of the support was accounted for in 
the evapotranspiration data analysis. Additionally, we measured 
photosynthetic efficiency, leaf temperature, and chlorophyll con
tent using the PhotoSynQ device at 6 and 13 d after treatment ini
tiation. At the end of each experiment, the fresh weight of the 
cowpea shoot tissue was collected for all the imaged plants. The 
collected images were processed using the pheno-computational 
pipeline described above. This dataset includes six sets of experi
ments, evaporation rate curation for individual plants, and the 
side-view image data comparison derived per experiment was 
performed using the R scripts (Supplementary Table S4). 
Subsequently, individual experimental data were merged, mod
eled using smooth splines, used to calculate growth rate and cu
mulative evapotranspiration per gram of fresh weight, and 
prepared for subsequent GWAS (Supplementary Table S4). The 
raw and curated data can be accessed in open-access Zenodo 
Repositories (overview and links are listed in Supplementary 
Tables S5 to S7). All of the data was tested for ANOVA assump
tions, including homogeneity of variance and normal distribution 
using MVApp (Julkowska et al. 2019).

GWAS of drought stress responses in cowpea
All collected and curated phenotypic data were used for GWAS. 
The kinship matrix was calculated for all included accessions us
ing GAPIT (Wang and Zhang 2021), and included as a co-factor in 
the GWAS mixed model (https://github.com/arthurkorte/GWAS). 
The GWAS model uses fast approximation (Zhang and Liu 2011) 
and relies on the ASReml library (Butler et al. 2009). The results 
files were subsequently processed to draw QQ-plots, indicating 
any bias within the GWAS model, Manhattan plots to identify sig
nificant associations above the Bonferroni threshold, as well as 
the effect size plots to evaluate the estimated effect size of the 
loci selected for further inspection (Supplementary Table S4). 
The identified genomic regions were compared between the traits 
mapped under control and drought stress conditions 
(Supplementary Table S8). Loci identified exclusively under 
drought stress conditions were considered for further evaluation. 
The GWAS output files, as well as all the generated plots, can be 
accessed in open-access Zenodo Repository (https://doi.org/10. 
5281/zenodo.7438567).
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Screening of homologs in Arabidopsis for their 
contribution to drought resilience
The drought-specific loci identified through cowpea GWAS de
scribed above were investigated for annotated genes within the 
linkage disequilibrium (LD, 30 kbp) of the identified SNP. 
Arabidopsis sequence homologs to the genes within the LD were 
acquired from the cowpea genome annotation (Lonardi et al. 
2019). For each identified Arabidopsis homolog, we explored pub
licly available homozygous T-DNA insertion lines that exclusively 
target our gene of interest. The lines and their corresponding cow
pea genes are listed in Supplementary Table S9. The seeds were or
dered from ABRC (https://abrc.osu.edu/), and the seeds of each 
mutant line were grown alongside the Col-0 genotype, as described 
for the Arabidopsis phenotyping experiment above. Two weeks 
after germination, the seedlings were exposed to control or 
drought stress conditions (60% and 10% of soil water-holding ca
pacity, respectively). The plants were monitored for growth using 
the PhenoRig setup every 30 min, while evapotranspiration of 
every plant was monitored every 48 h using the AWWEsmo device. 
Based on the results and phenotypes of mutants with significantly 
affected growth rates under drought stress, we made a selection of 
14 T-DNA insertion lines for further evaluation (CP.GR4-1, CP. 
GR4-2, CP.NPQ6-1, CP.NPQ6-2, CP.NPQ6-3, CP.NPQ6-4, CP.NPQ6- 
5, CP.EVT2-1, CP.EVT2-2, CP.EVT3-1, CP.EVT3-2, CP.EVT6-1, 
CP.EVT6-2, CP.EVT8, Supplementary Table S9). One hundred per
cent water-holding capacity was determined as described above 
for the Cowpea Pilot Experiment. Concurrently, we grew the 14 
T-DNA insertion lines on ½ MS plates for 10 d and transferred 
the seedlings to the soil. Two weeks after germination, we initiated 
tray imaging every 30 min. To efficiently bring the drought treat
ment pots down to 20% water-holding capacity, we placed small 
fans above them for a 90-min increment. The setup to induce 
drought stress is depicted within Supplementary Fig. S14. 
Seventeen days after germination, we began tracking water-use 
every second day, and this day was marked as day 1 of stress. 
Images were taken for 2 wk. Primary bolts were cut from plants 
that began flowering within these 2 wk to prevent bias in the image 
analysis. The data was analyzed in the same way as described in 
previous experiments. The specific R markdown files and raw data
set can be accessed at https://github.com/Leon-Yu0320/BTI-Plant- 
phenotyping/tree/main/ImageData_curation_example.

Accession numbers
The list of specific mutant lines used in this study including their 
accession number is listed in Supplementary Table S9.
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RaspiPheno App can be reached at https://www.youtube.com/ 
channel/UCnO5hHc-h6Ms-vlg3_IFQSw.
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