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Abstract

Nondestructive plant phenotyping forms a key technique for unraveling molecular processes underlying plant development and
response to the environment. While the emergence of high-throughput phenotyping facilities can further our understanding of plant
development and stress responses, their high costs greatly hinder scientific progress. To democratize high-throughput plant
phenotyping, we developed sets of low-cost image- and weight-based devices to monitor plant shoot growth and evapotranspiration.
We paired these devices to a suite of computational pipelines for integrated and straightforward data analysis. The developed tools
were validated for their suitability for large genetic screens by evaluating a cowpea (Vigna unguiculata) diversity panel for responses to
drought stress. The observed natural variation was used as an input for a genome-wide association study, from which we identified
nine genetic loci that might contribute to cowpea drought resilience during early vegetative development. The homologs of the
candidate genes were identified in Arabidopsis (Arabidopsis thaliana) and subsequently evaluated for their involvement in drought
stress by using available T-DNA insertion mutant lines. These results demonstrate the varied applicability of this low-cost
phenotyping system. In the future, we foresee these setups facilitating the identification of genetic components of growth, plant

architecture, and stress tolerance across a wide variety of plant species.

Introduction

Plant phenotyping provides a critical layer of information that
helps to decipher biological processes and genetic mechanisms
related to plant growth and development in response to various
environmental factors (Fahlgren et al. 2015a, 2015b; Tardieu
et al. 2017; Zhao et al. 2019). Plant phenotypes can differ in
spatial and temporal resolution, and reflect plant biochemistry,
physiology, morphology, as well as agronomic performance.
High-throughput plant phenotyping aids fundamental biology
research and plant breeders alike through the identification and
enhancement of traits related to disease resistance, plant per-
formance, and environmental resilience. Traditionally, plant phe-
notypes were collected using manual and destructive methods,
associated with high experimental cost, limited throughput, and
inconsistencies in data based on subjective interpretation of the
observations (Furbank and Tester 2011; Walter et al. 2015). Over
the last two decades, image-based technologies and the integra-
tion of robotics resulted in a more widespread adaptation of di-
verse approaches to nondestructively capture plant growth,
architecture, and physiology (Fiorani and Schurr 2013; Yang
et al. 2013). These nondestructive methods have propelled plant
science research forward by allowing for a higher number of rep-
licates, standardization of measurements, as well as increased
spatial and temporal resolution. The increased throughput of an
experiment allows for screening large populations of plants
which can be further utilized in forward genetic screens
(Chawade et al. 2019), or study the effect of various biostimulants

(Rouphael and Colla 2020). However, many phenotyping solutions
still require substantial monetary investment, or extensive engi-
neering experience, which is not widely accessible at the lab, de-
partment, or even university/institute level.

The surge in availability of low-cost computers and microcon-
trollers, such as Raspberry Pi and Arduino, has resulted in the de-
velopment of cost-effective phenotyping platforms, leading to
greater flexibility and affordability of plant phenotyping (Ellison
Mathe et al. 2022; Kondaveeti et al. 2022). Some of the previously
developed systems can be utilized to capture seed germination,
shoot, and root (Dhondt et al. 2014; Czedik-Eysenberg et al. 2018;
Colmer et al. 2020; Feldman et al. 2021; Bethge et al. 2023; Li
etal. 2023; Ohlsson et al. 2024). Most of the developed applications
such as PhenoTiki or PYM rely on top-view imaging (Minervini
et al. 2017; Valle et al. 2017), which is suitable in plants growing
in horizontal plane or field conditions with unlimited vertical
space to accommodate sufficient plant-camera distance. The
PhenoBox setup (Czedik-Eysenberg et al. 2018) utilizes the side-
view imaging of plants with complex architecture. However, its
high costs can be prohibitive for many laboratories to adopt.
While these low-cost solutions diversify image-based phenotyp-
ing, they require extensive engineering experience and equip-
ment, as well as proficiency in programming and data analysis.
Hence, thereis an increasing demand for cost-effective phenotyp-
ing solutions that offer both low-cost hardware and streamlined
data analysis approaches accompanied by clear instructions
for ease of use, catering to a wider scope of users. The
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high-throughput nature of image-based phenotyping is driven by
image-processing software (Berry et al. 2018; Das Choudhury et al.
2019; Jiang and Li 2020). The development of plant computer vi-
sion (PlantCV) was an important milestone for plant phenotyping,
offering a high level of flexibility within image processing pipe-
lines using custom Python scripts (Fahlgren et al. 2015a). The
open-source nature of PlantCV and its high volume of users re-
sulted in further extensions to wider applications, and commun-
ity contributions, and ensured the sustainability of the software
(Gehan et al. 2017; Berry et al. 2018; Hodge et al. 2021; Alberto
Gutierrez Ortega et al. 2021; Casto et al. 2022). While PlantCV of-
fers pipelines to analyze images being produced by RGB (Red-
Green-Blue), hyperspectral, and chlorophyll fluorescence camera
scripts (Fahlgren et al. 2015a), RGB cameras remain the most
widely accessible and thus have the highest application for plant
research. Based on RGB images, traits such as plant area, convex
hull, width, and height can be evaluated automatically, once the
pixels belonging to the plant are isolated from the background
(Gehan et al. 2017). Phenotypes related to tissue color and disease
symptoms can be extracted after parametrization of the pipeline
or training with machine learning modules (Abbasi and Fahlgren
2016). Plant architecture traits, such as the number of branches,
can also be extracted, however, the precision of the automated
trait extraction is highly dependent on plant species and complex-
ity (Godin 2000). PlantCV has successfully been adopted for the
evaluation of a growing number of crops, including maize (Zea
mays), rice (Oryza sativa), cassava (Manihot esculenta), and more
(Hairmansis et al. 2014; Kolhar and Jagtap 2023). While the avail-
able image-processing tools form a robust basis of image-based
phenotyping (Rossi et al. 2022; Zhang et al. 2022), most of them
are characterized by a strong reliance on computational user ex-
pertise. Computational pipelines often require either generating
customized scripts for large-scale data processing or producing
self-trained parameters for machine learning purposes.
Additionally, adapting imaging hardware and software from di-
verse sources requires extensive optimization by end users. The
programming and engineering requirement for plant phenotyping
forms a substantial hindrance in the widespread application of
low-cost phenotyping solutions. Thus, a low-cost phenotyping
solution with integrated hardware and software, as well as the
ability to accommodate a wide range of plants, is sorely needed.
Research into environmental stress resilience, particularly
concerning freshwater availability, is crucial for safeguarding fu-
ture agricultural productivity. Drought impacts 80% of farmlands
worldwide, and this percentage is growing with the progressing
climate change (Meza et al. 2020). Reduced rainfall and shrinking
water supplies in the soil lead to reduced crop growth, transpira-
tion, and yield, resulting in an agricultural drought (Satoh et al.
2022). Prolonged periods of reduced water supply lead to gradual
depletion of soil water supplies, taking place over months or years,
resulting in hydrological drought (Satoh et al. 2022), which forces
agricultural systems to adapt to this new reality. Plants evolved
several mechanisms to adapt to drought stress conditions, includ-
ing signaling pathways to limit water loss through transpiration
(Hughes et al. 2017) synthesis of compatible solutes that serve
as osmolytes to help with turgor maintenance, efficient water ex-
tractions, and protection from oxidative damage (Akashi et al.
2001). Partitioning biomass into steep, cheap, and deep root sys-
tems can enhance scavenging for deeper layers of water resources
(Grieder et al. 2014), whereas maintenance of a large root/shoot
ratio prioritizing water acquisition over (Chen et al. 2004). While
most drought research has thus far been performed in staple
crops and Arabidopsis, the indigenous crops used by smallholder

farmers are becoming prominent objects of interest for more in-
sight into drought resilience (Cullis and Kunert 2017). The applica-
tion of drought stress varies tremendously across scientific
literature, ranging from complete water withdrawal (Choudhury
etal. 2022) to exposing the plants to osmotic agents, such as man-
nitol, sorbitol, or polyethylene glycol (Trontin et al. 2014). Various
applications of drought stress highlight the specific aspects of
drought stress responses selected by the researchers, each with
its own advantages and drawbacks (Harrison et al. 2014). While
soil-based water withdrawal experiments are prevalent due to rel-
atively low effort requirements, these setups do not account for
variable water-use by the plants, and typically favor genotypes
that restrict their transpiration, and thus are able to conserve
the water more efficiently (Correa et al. 2019). On the other
hand, watering the plants to lower soil water-holding capacity is
accounting for differences in transpiration, but requires time-
consuming daily watering to the reference weight of each pot.
Maintenance of lower soil water-holding capacity mimics mild
drought stress, which occurs most frequently, based on the histor-
ical records (Harrison et al. 2014). Image-based phenotyping ap-
proaches have been applied to monitor plant growth under
water scarcity (Petrozza et al. 2014; Correa et al. 2019; Marchetti
et al. 2019), however, the availability of image-based tools is
restricting the number of species that have been studied thus
far. Hence, there is a growing need for protocols and experimen-
tal setups suitable for high-throughput plant phenotyping are
necessary.

The above arguments motivated the development of an open-
source system consisting of three hardware setups (PhenoRig,
PhenoCage, and AWWESmMo) and easy-to-use computational
pipelines that streamline image collection, watering individual
pots to their respective target weight, and data analysis. Our sys-
tem was built using low-cost and lightweight materials, which can
be used to effectively monitor physiological responses in response
to stress across a wide variety of species. This integrated system
substantially reduces the cost and time necessary to collect repro-
ducible image and evapotranspiration data and lowers the com-
putational barrier to extract phenotypic data (RaspiPheno Pipe).
Moreover, the developed shiny app (RaspiPheno App) is a dynamic
tool for downstream statistical data analysis, sample comparison,
and data interpretation. To demonstrate the system’s capacity,
we used the developed tools to screen a natural diversity panel
of 368 cowpea genotypes and, through the Genome-Wide
Association Study (GWAS), identified genes associated with
drought response during early vegetative growth. The described
suite of phenotyping solutions, as well as data analysis pipelines,
will promote affordable plant phenotyping and accelerate the dis-
covery of genes and physiological traits contributing to stress
resilience.

Results

Phenotypic hardware design of the system

Toincrease the accessibility of plant phenotyping, we developed a
set of mobile, affordable, and customizable phenotyping setups.
The setups were designed to fit into conventional growth cham-
bers with limited vertical space (Fig. 1) and allow the evaluation
of plants with different types of architecture. The top-view
PhenoRig setup was designed to image the growth of plants for
which the majority of growth occurs within two dimensions,
such as Arabidopsis rosettes (Fig. 1A). Plants with more complex
architecture can be imaged using side-view PhenoCage setup
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Figure 1. PhenoRig, PhenoCage, and AWWEsmo: three facilities were constructed using lightweight materials with 3D printed accessories for data
collection purpose. A) PhenoRig system: including a frame to hold two Raspi cameras and a Raspi computer. A tray holding plants is placed at the
bottom of the frame to display plants’ top-view characteristics. B) PhenoCage system: including a frame to hold one Raspi camera and a Raspi
computer. A rotating booth is placed at the center of the cage with a constant rotation rate to represent plant architectures from different sides.

C) AWWESmo system: including a container for water replenishment (blue), and a water pump that integrates a weight scale controlled by an Arduino
Uno R3-derived console (red). Precise water replenishment is executed by the input weight (grams) of the console.

(Fig. 1B). Within PhenoCage setup a plant is positioned on a rotat-
ing platform, and seven consecutive images are taken to ad-
equately capture the projected shoot area as the estimation of
plant’s digital biomass. To monitor plant evapotranspiration, we
developed an Automatic Weighing and Watering device to study
Evapotranspiration (AWWEsmo) that automatically records
pot weight and waters it to the reference weight (Fig. 1C).
AWWEsmo accuracy relies on a HX711 load cell, which was re-
ported to drift across varying temperatures, and thus requires fre-
quent calibration. While the platforms we developed here consist
of low-cost materials that have limited lifespan and accuracy, the
individual components could be replaced by higher quality com-
ponents driven by more advanced sensor technologies for in-
creased precision. Within the experimental conditions described
below, we did not experience low accuracy of AWWEsmo, as com-
pared to the 0.1g laboratory scale (Supplementary Fig. S1).
However, we did observe reduced accuracy when the device was
used in growth chambers with substantially different tempera-
ture (Supplementary Fig. S1), and thus advice for the developed
AWWEsmo device to be calibrated within the growth chamber
conditions and checked frequently for its accuracy.

The individual devices rely on Raspberry Pi computers
(PhenoRig and PhenoCage) and Arduino microcontrollers
(AWWEsmo) for data acquisition, which lend themselves to flexi-
ble and cost-effective setups that can be easily adapted to accom-
modate a wider range of species or alternative hardware
components. The PhenoCage can be used to monitor the growth
of Arabidopsis continuously, using an automatically deployed
imaging command, while PhenoRig and AWWEsmo require the
user to feed the plants into the setup and deploy the image/meas-
ure command manually. The current design of PhenoRig allows
imaging of a standard full tray of Arabidopsis plants with two

cameras, where each camera can capture a grid of 4x4 plants
(Fig. 2A), with the total capacity of PhenoRig being an 8x4
plant grid. PhenoCage, on the other hand, has a capacity of one
plant, as the complex 3D architecture of the shoot does not permit
simultaneous imaging of multiple plants. To ensure the best re-
sults in image processing, we recommend putting two to four
white tags on top of the pots for PhenoRig, to correct for white bal-
ance between the individual images, and calibrate the projected
shoot size into mm? (Fig. 2B). For the PhenoCage, we suggest using
a white background for white balance corrections (Fig. 2, A and B).
As the distance between the plant and camera in the PhenoCage
setup is determined per plant species, and the sum of projected
pixels from seven side view angles will be larger than the shoot pro-
jected area, thus we donotrecommendrecalculating the projected
plant size from pixels into projected leaf area (mm?), but rather
keep it in artificial units (pixels). Additional accessories installed
for image collection and illumination, include RasPi cameras,
LED lights, LCD touch screens, and 3D-printed accessories holders
(Supplementary Figs. S2 and S3).

To effectively address data analysis of images collected over
multiple days and devices, we developed a computational pipeline
(RaspiPheno Pipe) that automates image distribution, storage, and
subsequent data extraction based on experimental design into a
repeatable workflow (Fig. 3). This pipeline parallelizes image seg-
mentation steps and deploys them on batches of images to exam-
ine projected shoot area and architectural traits (Fig. 3). This
optimized image extraction process requires (1) the positional in-
formation of white balance markers and region of interest (ROI,
Fig. 2), (2) specific thresholds and coordinates used for extracting
plant objects from RGB images, and (3) storage locations for input
and output files. Quantitative data generated and organized by
the RaspiPheno Pipe can be analyzed using the RaspiPheno App,
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Figure 2. PhenoRig and PhenoCage images. A) RGB images output of Raspi camera of Arabidopsis (left panel) and tepary bean (right panel). The red
squares highlight the area used for white balance correction in the subsequent steps. Blue squares indicate the ROIs for image processing. B) Output
images after processing using PlantCV pipeline. The blue edge highlights the perimeter of the leaf area (green tissue) and the purple edge defines the

convex hull area of each individual plant.

an interactive and programming-free analytical application pow-
ered by the Shiny R package (https:/rstudio.github.io/shiny/
authors.html). RaspiPheno App was designed to address the stat-
istical analysis of data associated with shoot area and architectur-
al traits among customized independent variable groups (e.g.
genotypes or treatments). Within RaspiPhe App the user can
match the information on genotype and treatment with quantita-
tive values from each plant as the data reshaping process (Fig. 3).
The integrated data are then presented as time-series graphs, and
user can perform data curation to smooth noisy data and generate
a predicted, or transformed dataset (see Methods). Alternatively,
the user can generate a clean dataset by removing data points be-
yond the standard deviation (sps) of values predicted by the
smoothing function. RaspiPheno App can calculate the growth
rate for the user within a customized time interval (e.g. 12 or
24 h) to characterize the differences in plant growth under differ-
ent conditions using pairwise or multiple-group tests (Fig. 3). More
information on using RaspiPheno App can be found at (https:/
github.com/Leon-Yu0320/BTI-Plant-phenotyping/tree/main/RasP
iPheno_APP).

Together, the RaspiPheno Pipe and RaspiPheno App provide an
integrated framework for extracting data from images and
quickly analyzing the phenotypic data. As a web-browser inte-
grated RShiny application, the RaspiPheno App streamlines
what is typically a command line-based statistical analysis into
an intuitive and interactive process. As the developed tools have
limited computational requirements, they can be run on a stand-
ard laptop with an internet connection. We aim for these open-
source hardware and software packages to simplify the data

extraction process that often hinders data analysis and delays sci-
entific progress.

The instructions for constructing system hardware using
inexpensive wooden or aluminum frames can be accessed at
protocols.io (Yu and Julkowska 2022), whereas the necessary parts
for constructing each setup are listed in Supplementary Tables S1
to S3. The RaspiPheno App and RaspiPheno Pipe are available,
along with the detailed instructive user manuals and example
datasets, on the GitHub repository (https:/github.com/Leon-
Yu0320/BTI-Plant-phenotyping). Together, PhenoRig, PhenoCage,
and AWWEsmo represent a basic suite of plant phenotyping tools
that significantly accelerate research and can be instrumental in
screening populations of accessions or mutants under diverse
conditions. The construction of each setup requires minimal
financial investment (less than 200 USD) and thus contributes to
democratizing plant phenotyping tools in a wide range of potential
users.

Stress-induced changes in Arabidopsis, cowpea,
and tepary beans

To test the efficacy of the developed tools, we evaluated the im-
ages produced by our setup for their sensitivity to detect the effect
of abiotic stress on three species—Arabidopsis, cowpea, and tep-
ary beans (Figs. 4 and 5). Arabidopsis Col-0 plants were treated
with salt stress (100 mm NacCl effective concentration) 2 wk after
germination and imaged every 30 min for the following 2 wk.
This method has been previously described in (Awlia et al. 2016),
and applied to the Arabidopsis diversity panel, without any
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observation of premature leaf senescence (Awlia et al. 2021). We
observed a consistent decrease in rosette size starting from 6 d
after induction of salt stress (Fig. 4A). While continuous imaging
can provide highly detailed information, it is also prone to varia-
tion due to leaf movement throughout the day. To reduce this var-
iation, the rosette size data was modeled over the entire
experimental time course using a smooth spline function within
PhenoApp (Fig. 4B). Smooth spline modeling provides the means
for smoothing noisy data through function estimates, balancing
a measure of goodness of fit with a derivative based measure of
the smoothness. Moreover, smooth spline functions can be de-
ployed to identify potential outliers and eliminate specific points
from the data set based on standard deviations from the spline
(Fig. 4C). Plotting the increase in the rosette size of individual
plants using smooth splines significantly reduced the noise
caused by diurnal movements of leaves, and thus provides a
clearer image of the plant’s growth trajectory. We used the col-
lected data to calculate daily rosette growth rate by fitting a linear
regression to daily changes in rosette size, and plotting the change
in growth rate throughout the experiment. The daily growth rate
decreased significantly within 2 d of salt treatment application
(Fig. 4D). The difference in growth rate between control and salt-
stressed plants increased over the duration of the experiment

(Fig. 4D). These results suggest that our PhenoRig setup allows
us to identify differences between plants grown under control
and salt stress conditions with high sensitivity, detecting signifi-
cant differences as early as 2 d after stress in daily rosette growth
rate.

To evaluate the efficacy of the PhenoCage setup for more com-
plex plant architectures, five cowpea accessions and two tepary
accessions were exposed to drought stress at 17 d after germina-
tion. For the two weeks after stress application, the weight of
each pot was monitored and adjusted by replenishing freshwater
daily using AWWEsmo, while changes in shoot size were recorded
every 2 d using the PhenoCage setup (Fig. 5). We did not account
forincreased plant size throughout the experiment, and the target
weight was determined for each pot based on the soil weight
alone. As some plants required additional support structure,
due to their climbing or prostrate growth habit, we designed a
stackable 3D printed trellis, which resulted in minimal obstruc-
tion of the imaged plant area (Supplementary Fig. S4). Drought
stress was applied through a gradual reduction in soil water-
holding capacity from 60% to 10% for both cowpea and tepary
beans. The differences between control and drought stress plants
were observed after 5 and 6d for cowpea and tepary beans,
respectively (Fig. 5, A and B). We observed a high correlation
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smooth spline data was subsequently used for calculating the daily growth rate for each measured plant. The difference in daily growth rate between
plants exposed to control and salt stress treatment was calculated using a t-test. The *, **, **, and *** represent P-values below 0.05, 0.01, 0.001, and

0.0001, respectively.

(R=0.92 for cowpea and R=0.95 for tepary) between the plant
fresh weight and projected shoot area recorded on the final day
of the experiment for both cowpea and tepary beans (Fig. 5, C
and D), indicating the high reliability of the PhenoCage system
to nondestructively estimate the changes in digital biomass.
When we calculated the growth rate for each plant throughout
the entire experiment, we observed significant differences
between genotypes and treatments for tepary bean and cowpea
alike (Fig. 5, E and F). The weight of the pot and watering data, col-
lected through AWWEsmo, was used to calculate the daily evapo-
transpiration rate for each plant. As the target drought weight was
reached 2 d after the initial treatment application, the differences
in evapotranspiration were also evident within 2d after
monitoring soil water-holding capacity (Supplementary Fig. S5).
Evapotranspiration of tepary beans and cowpeas substantially de-
creased in response to drought stress (Fig. 5, G and H). High

variability of growth rate and evapotranspiration of cultivated
tepary beans (reflected by high standard deviation) corresponded
to the high variation in plant size exhibited by this genotype with-
in the experiment (Fig. 5, F and H). When comparing the median
evapotranspiration per plant throughout the entire experiment
(Fig. 5, G and H), significant differences were observed exclusively
under drought stress conditions. Cowpea accessions Suvita-2 and
UCR?779 showed the highest and lowest evapotranspiration under
drought stress, respectively. Cultivated tepary bean accession
(TDP-22) showed higher rate of evapotranspiration compared to
the wild tepary bean accession (TDP-359). We did not calibrate
the evapotranspiration results to daily transpiration rates due to
high trait complexity, as the substantial portion of evapotranspi-
ration constitutes water evaporation from the pot. Nevertheless,
AWWEsmo allowed us to impose reproducible drought stress con-
ditions for all studied plants. The above results indicate that
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Figure 5. Examples of cowpea and tepary bean data were collected using PhenoCage and AWWEsmo setups. The seedlings of five cowpea accessions and
two tepary bean accessions were germinated for 17 d, and exposed to control treatment or drought stress (60% and 10% soil water-holding capacity,
respectively). A) The increase in shoot area was modeled using the smooth spline function over the recorded data for cowpea with mean values
represented by bold lines and the standard error by shaded area. B) Tepary bean over the course of 12 d following the drought stress application (average
values and standard error were visualized by bold lines and gray shaded area). The difference between treatments was calculated using ANOVA with *, **,
**, and *** indicating the P-values below 0.05, 0.01, 0.001, and 0.0001, respectively. The Pearson correlation between the projected shoot area and the
fresh weight of the shootrecorded at thelast day of the experiment was examined in both (C) cowpea and (D) tepary bean. The growth rate was calculated
based on the smooth spline modelled data for (E) five cowpea accessions and (F) two tepary bean accessions for individual conditions. The median
evapotranspiration rate, was calculated based on the data collected using AWWEsmo for (G) five cowpea accessions and (H) two tepary bean accessions.
The mean values per group were marked by black horizontal lines and the effect of the genotype within individual treatment was tested using ANOVA,
and the significantly different groups of cowpea accessions were additionally determined using Tukey HSD test (P-value < 0.05).
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Figure 6. Drought stress-induced changes in natural diversity panel of cowpea. Three hundred and sixty-eight accessions were exposed to 20% soil
water-holding capacity (SWHC—Drought) or 60% (SWHC—Control) 16 d after sowing. The plants were monitored for an increase in shoot biomass and
evapotranspiration over the period of 2 wk. A) Correlation between digital biomass and fresh weight on the last day of measurement. Pearson
correlation coefficient (R) and P-value of the correlation are presented in the upper left corner of the graph. B) Increase in digital biomass over the
experiment for plants exposed to control and drought treatments: Each solid line represents data for each sample, with dashed lines standing for mean
value and gray shaded area for standard error (se), C) The growth rate was calculated by fitting linear function to digital biomass for each accession for
the duration of the treatment with gray dots stand for each sample and the colored dots for mean value (applies to panels D, F, G, and H). D) Relative
growth rate was calculated for each accession by dividing the genotype-specific growth rate recorded under drought conditions by the growth rate
recorded under control conditions. E) Evapotranspiration was estimated for each plant by measuring the pot weight every day of the experiment,
watering it to the reference weight, and calculating the difference in weight between consecutive days (solid lines and gray shaded area correspond to
mean value and standard error). The (F) quantum yield (F,/F»’), (G) leaf temperature (C) and (H) chlorophyll content were measured using the
PhotoSynQ MultiSpeq device. The significant differences between control and drought stress were tested using a Student’s t-test, and *, **, ***, and ***

represent P-value <0.05, 0.01, 0.001 and 0.0001, respectively.

PhenoCage and AWWEsmo can detect differences between treat-
ments as well as subtle differences in plant growth rate and evap-
otranspiration between genotypes for plants with complex
architecture, such as cowpea and tepary beans.

Drought-stress-induced changes in the cowpea
diversity panel

To illustrate the suitability of the developed system for a capacity
required by a high-throughput phenotyping experiment, we
screened a cowpea miniCore diversity panel (Muhoz-Amatriain
et al. 2021), consisting of 368 accessions, for drought stress-
induced changes in growth rate, evapotranspiration, and photo-
synthetic efficiency (Supplementary Tables S4 and S5). One repli-
cate per accession per treatment was germinated in
well-watered conditions. Once 80% of the plants developed the
first trifoliate leaf, pot weight was monitored and adjusted to target
weights, corresponding to 60% and 20% of soil water-holding ca-
pacity for control and drought stress, respectively. Daily evapo-
transpiration was monitored for 14 d, with digital plant biomass
collected every other day with the PhenoCage. Additional meas-
urements on photosystem II efficiency were collected from each
plantat6and 13 d after stress application. At the end of the experi-
ment, fresh weight data were collected from shoot material for
each plant.

As in pilot experiments, the high correlation between fresh
weight and projected shoot area (Fig. 6A) indicated that our
PhenoCage system produces a good estimate for digital plant bio-
mass. Tracking progression in shoot size allowed shoot growth to
be modeled using smooth splines, revealing significant differences
in shoot size starting from 4 d after initial drought stress applica-
tion (Fig. 6B). Based on the increase in shoot area, the growth rate
was also estimated for each genotype, with significant differences
observed between control and drought stress conditions (Fig. 6C,
Supplementary Table S6). Additionally, the relative impact of
stress on growth rate was calculated for each genotype by dividing
the genotypic mean growth rate observed under drought stress
conditions by the genotypic mean growth rate observed under con-
trol conditions (Fig. 6D, Supplementary Table S6). While on aver-
age, growth rate was reduced to 0.6 of the rate observed under
control conditions, 19 accessions displayed increased vigor under
drought stress (relative growth rate > 1, Supplementary Table S6),
while 64 accessions showed severe drought stress sensitivity (de-
fined as relative growth rate<0.4, Supplementary Table S6).
Upon further inspection, we identified that most of the high-vigor
accessions showed relatively small postures and slow growth rate
under control conditions. As the data presented here is based only
on one experimental replicate, the validation of the accessions
showing low and high vigor is necessary using more biological
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Figure 7. Identification of genetic components of drought stress responses in cowpea through GWAS. GWAS was performed using ASReml-based script
on 368 accessions using 42,711 SNPs and kinship matrix as a co-factor. GWAS associations were examined for overlap between control and drought
stress conditions, —log10(P-value) score, minor allele frequency, and effect size. The selected associations that were observed exclusively for drought
stress-treated plants are highlighted in pink. The upper panel represents Manhattan plots, with a pink line representing the Bonferroni threshold (equal
to —1og10(0.05/# SNPs). The bottom panel represents the effect size observed for SNPs. The SNPs selected for further investigation (Supplementary

Table S9) are highlighted with dark-pink outline.

and experimental replications. Drought-treated plants transpired
significantly less water than control plants (Fig. 6E), and on aver-
age, the evapotranspiration decreased to 0.55 of the levels ob-
served under control conditions (Supplementary Fig. S6,
Supplementary Table S7). While drought stress was observed tore-
duce quantum yield (F,'/F,,’) only during the early phase of the ex-
periment (Fig. 6F, Supplementary Table S7), a decrease in
chlorophyll content (SPAD) was observed only at the later stage
of the experiment (Fig. 6H, Supplementary Table S7). On the other
hand, the drought stress significantly increased leaf temperature
both at the early and late stages of drought stress treatment
(Fig. 6G). In summary, these results illustrate that variability in
drought stress responses across a large and diverse panel of plants
with complex architecture can be captured through our
PhenoCage setup.

Identification of genes underlying drought
responses

Toidentify genetic components underlying the diversity observed
in the cowpea miniCore population (Fig. 7), we used the collected
phenotypic data in combination with the SNPs acquired from
SNP array (Munioz-Amatriain et al. 2021) as input for a GWAS
(Supplementary Table SS7). We examined the identified associa-
tions for their association strength and predicted effect size
(Fig. 7). In total, we identified 59 significantly associated SNPs,
which could be grouped into 25 loci, based on SNPs falling into
30 kb window (corresponding to genome-average linkage disequi-
librium within cowpea genome, Supplementary Table S8). In total,
we identified 10 loci specific to control conditions, 12 drought-
specific loci, and 3 loci shared between the traits measured under

control and drought stress conditions (Supplementary Tables S8
and S9). Based on the association strength (-log(P-value) > 5.45),
effectsize (8 >3x SD), and the traits, we prioritized 9 loci for further
investigation. For allidentified associations, we examined the pre-
dicted genes in the genome annotation within the linkage disequi-
librium (30 kbps) of identified SNPs (Lonardi et al. 2019).

Growth rate under drought stress was associated with one SNP
on chromosome 1, positioned within the coding region of
Vigun01g250400, which, according to the genome annotation, is
a putative homolog of the Arabidopsis gene AT4G14180, which
encodes a Putative Recombination initiation Defect protein
(AtPRD1), required for DNA double-strand break formation during
meiosis. The two genes directly up and downstream of the associ-
ated SNP (Vigun01g250500 and Vigun01g250600) are hypothesized
to encode pentatricopeptide repeat and zinc-finger (C2H2 type)
family proteins, respectively. We identified two drought-specific
associations with evapotranspiration use efficlency under
drought stress (Fig. 7, Supplementary Table S9), located on chro-
mosomes 5 and 8. The association on chromosome 5 was found
within Vigun05g246700, which is a putative homolog of
Arabidopsis AT3G25830, encoding a monoterpene 1,8-cineole syn-
thase (AtTPS-Cin). The monoterpene 1,8-cineole was previously
associated with decreased root growth in Brassica campestris
(Koitabashi et al. 1997), and AtTPS-Cin is expressed in
Arabidopsis roots (Chen et al. 2004). The association on chromo-
some 8 was found within Vigun08g112100, which encodes a puta-
tive cowpea homolog of AT2G40690, a nuclear-encoded
NAD-dependent glycerol-3-phosphate dehydrogenase family pro-
tein associated with flux of fatty acids in the chloroplast (Singh
et al. 2016). The neighboring genes (Vigun08g112000 and
Vigun08g112200) encode homologs of sucrose transporter (SUT4,
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AT1G09960) and transcription factor (WKRY70, AT3G56400)
(Supplementary Table S9).

We found the most significant associations with nonphotochem-
ical quenching (NPQ) under drought. However, the majority of these
associations (3 out of 5 loci) were also identified under control condi-
tions (Supplementary Table S7). The most prominent drought-
specific association was located on chromosome 4, within
Vigun04g051200, which encodes a cowpea homolog of Arabidopsis
glutaredoxin family protein, AT5G39865 (Supplementary
Table S9). To evaluate the function of identified genes in drought
stress response, we examined the available homozygous T-DNA in-
sertion lines of the putative Arabidopsis homologs of the identified
cowpea candidate genes (Supplementary Table S9, Supplementary
Figs. S7 to S10). The available mutants were grown alongside Col-0
wild-type in the soil pots, and at 2 wk after germination, the pot
weight was adjusted to target weight corresponding to 60% and
10% soil water-holding capacity for control and drought treatments
respectively. The plants were imaged every 30 min using the
PhenoRig system, while their weight was recorded and adjusted
every second-day using AWWEsmo. The initial screen revealed
that out of 43 T-DNA insertion lines, six and two lines developed sig-
nificantly larger or smaller rosettes, respectively when compared to
Col-0 under drought stress conditions (t-test P-value<0.05,
Supplementary Figs. S7 and S8). Eight and four T-DNA insertion lines
showed, respectively, increased or decreased evapotranspiration
rates under drought stress compared to Col-0 (Supplementary Fig.
S9). Nine and two lines showed increased or decreased leaf temper-
ature, respectively, whereas five lines showed a significant decrease
in NPQ (Supplementary Fig. S9). In total, six T-DNA insertion lines
showed overlap in the measured phenotypes under drought condi-
tions (EVT2 to 2, EVT3-2, EVT6-2, EVTS8, GR4-1 and NPQ6-3 targeting
1,8-cineole synthase, alpha carbonic anhydrase 7, WRKY70, CAAX
amino-terminal protease family, xyloglucan endo-transglucosy-
lase/hydrolase 16, and pentatricopeptide repeat protein (PPR), re-
spectively, Supplementary Table S9). As it is possible that other
alleles targeting these genes were not detected as significantly differ-
ent from Col-0 due to a low number of replicates (n=4 per genotype
per condition), we performed an additional experiment with an in-
creased number of replicates (n=12) (Figs. 8 to 10).

The 13 selected mutants were grown under control and drought
(20% soil-water holding) conditions. Under both control and
drought conditions, all 13 of the mutant lines used the same
amount of water as the Col-0 plants (Supplementary Fig. S10), in-
cluding the identified loci initially linked to evapotranspiration
(Fig. 8). Significantly larger rosettes were observed in the mutant
lines targeting genes encoding 1,8-cineole synthase (AtTPS27,
EVT2-2), CAAX amino terminal protease (EVTS8), Alpha carbonic
anhydrase 7 (AtACA7, EVT3-1, EVT3-2) under drought conditions
but not under control conditions (Fig. 8, Supplementary Fig. S11).
The mutant line targeting WRKY70 (EVT6-2) had significantly (P
<0.05; t-test) larger rosettes under both control and drought con-
ditions (Fig. 8, Supplementary Fig. S11). Under control conditions
alone, for the last part of the experiment, we observed significantly
larger rosette sizes in EVT6-1, which also targets WRKY70
(Supplementary Figs. S11 and S12). For the CAAX protease and
AtACA7,weobserved thatall T-DNA insertion lines targeting these
genes showed a significant increase in rosette size (Fig. 8, D and F).
AtACA7 is predominantly expressed in root stele (Brady et al.
2007), and its expression under abiotic stress was not reported in
previous studies (Kilian et al. 2007). CAAX protease is expressed
in the new leaves (Klepikova et al. 2016), and its expression does
not change in response to drought or osmotic stress (Kilian et al.
2007). Only one of the two screened T-DNA insertion lines for

TPS27 and WRKY70 showed significant increase in rosette size
under drought stress (Fig. 8, B and H, Supplementary Fig. S12).
Based on the previous data, WRKY70 is expressed in the senescing
leaf petiole (Klepikova et al. 2016), but its expression is unaltered
by drought stress in Col-0 (Kilian et al. 2007). On the other hand,
TPS27 is known to be expressed in the root stele (Brady et al.
2007) and is increased by exposure to osmotic, salt, and drought
stresses (Kilian et al. 2007). These results suggest that the identi-
fied candidate genes are potentially involved in drought resilience
through the maintenance of vegetative growth under both control
and drought stress conditions.

Additionally, we observed larger (P <0.05; t-test) rosette size in
drought and control plants in three (NPQ6-2, NPQ6-4, NPQ6-5) of
the mutantlines targeting the Arabidopsis homolog to the gene as-
sociated with NPQ in cowpea, pentatricopeptide repeat superfam-
ily protein (AtPPR, Fig. 9A, Supplementary Fig. S11). For the NPQ6-1
mutant line, significantly larger rosette sizes were observed only
under drought stress conditions (Fig. 9B). Variations of the homol-
ogous genes among flve cowpea genomes that correspond to the
Arabidopsis AT3G02490 gene (Munoz-Amatriain et al. 2021), the 5’
UTR is the predominant site of sequence variation, containing
one insertion—deletion mutation and four SNPs (Fig. 9A). The line
targeting 5’ UTR in Arabidopsis gene region (NPQ6-2) showed sig-
nificant changes in rosette size, suggesting that 5’ UTR is indeed
playing an important role in this gene function (Fig. 9B).
However, as the mutation induced by T-DNA insertion is different
in size and character from INDELS in cowpea pangenome, we can-
not make any specific conclusions about the role of these muta-
tions. Only one of the five studied insertion lines did not show
significant changes in rosette size (NPQ6-3, Supplementary Fig.
S12). As the location of this insertion line is beyond the 3’ UTR, it
is likely that this mutation does not disturb expression of the
gene. PPR expression was reported to be ubiquitous (Klepikova
etal. 2016), and unaltered in response to drought or osmotic stress
(Kilian et al. 2007). These results suggest an involvement of penta-
tricopeptide repeat superfamily protein in the maintenance of ro-
sette growth under control and drought-stress conditions.

In the final locus that we investigated in further detail, the
Arabidopsis mutant line targeting xyloglucan endotransglucosy-
lase/transferase 16 (AtXTH16), which is homologous to the gene
associated with growth rate under drought stress in cowpea
(Fig. 10A), we observed larger (P<0.05; t-test) rosette size under
both control and drought conditions (Fig. 10B, Supplementary
Fig. S11). Within the cowpea pangenome (Liang et al. 2024 ) the
majority of the sequence variation resides within the gene coding
region (five SNPS, Fig. 10A) and 5’ UTR (two SNPs, one indel muta-
tions), however, we could not identify any T-DNA insertions tar-
geting this gene region in Arabidopsis. Expression of AtXTH16
was reported to occur predominantly in the developing leaves of
Arabidopsis (Klepikova et al. 2016), and is decreased in the initial
stage of drought stress exposure (Kilian et al. 2007). While we
could only identify one T-DNA insertion line for this gene, the
above results suggest that XTH16 might play a role in rosette
growth under control and drought-stress conditions. Overall, we
have identified six genes to potentially contribute to drought
stress tolerance by maintaining the rosette growth, as increased
rosette size was observed in both control and drought-stress con-
ditions (Figs. 8 to 10, Supplementary Fig. S11).

Discussion

Plant phenotyping plays a crucial role in plant breeding, genetic
research, and agricultural productivity, and is essential for
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Figure 8. Plant growth of evaporation loci-associated mutants relative to Col-0 plants under drought condition. A) Gene model (TSS: transcription start
site, marked by red asterisks) of 1,8-cineole synthase (AtTPS27, AT3G25830) and location of EVT2 T-DNA insertion numbers of SNP marked. B) Growth of
Col-0 and two AtTPS27 mutants under drought conditions with solid lines for each data point, the dashed lines for mean value, and shaded area for
standard error (applies to panels D, F, and H). C) Gene model of CAAX amino terminal protease (AT1G14270) and location of EVT8 T-DNA insertion.
D) Growth of Col-0 and protease mutants under drought conditions. E) Gene model of alpha carbonic anhydrase 7 (AtACA7, AT1G08080) and the
location of EVT3 T-DNA insertions. F) Growth of Col-0 and two AtACA7 mutants under drought conditions. G) Gene model of AtWRKY70 (AT3G56400)
and location of EVT6 T-DNA insertions. H) Growth of Col-0 and AtWRKY70 mutant under drought conditions. Only insertion sites with significant
differences of leaf area under the drought condition were displayed (t-test: P <0.05).
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Figure 9. Plant growth of NPQ loci-related mutants relative to Col-0 plants under drought condition. A) Gene model (TSS: transcription start site (red
asterisk), UTR: untranslated region, and CDS: coding sequences) of pentatricopeptide superfamily protein (AtPPR, AT3G02490) and location of the five
T-DNA insertion sites of mutants. In addition, the putative orthologous gene (BLASTN search: E-value < 1e05, identities > 95%) from cowpea was
identified from five published genome assemblies and gene annotations (UCR799, Suvita.2, SanZi, CBS.2, and IT97K). The multiple-alighment of five
putative orthologous genes revealed the high-level conservation across the coding region (1 SNP among five genes), as well as the 3" UTR (1 SNP) while
there were four insertions and deletions (INDELSs) identified across the 5" UTR. B) Growth of Col-0 and AtPPR mutants under drought conditions (dashed
lines represent mean score and shaded area corresponds to standard error). Only four out of five mutants along with significant differences of leaf area
between wild-type and mutants under drought conditions were plotted (t-test: P-value < 0.05). The significant differences between the wild type (Col-0)
and each mutant line were tested using a Student’s t-test, and *, **, ***, and *** represent P-value <0.05, 0.01, 0.001, and 0.0001 respectively.
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Figure 10. Plant growth of GR loci-related mutants relative to Col-0 plants under drought condition. A) Gene model (TSS: transcription start site (red
asterisk), UTR: untranslated region, and CDS: coding sequences) of xyloglucan endotransglucosylase/transferase 16 (AtXTH16, AT3G23730) which is
associated with growth rate and location of the T-DNA insertion site of one mutant. In addition, the orthologous gene from cowpea was identified from
five versions of genome assembly and annotation (UCR799, Suvita.2, SanZi, CBS.2, and IT97K). The multiple alignments of five orthologous genes
revealed the different levels of conservation (numbers of SNPs and INDELs across the 5’ UTR (2 SNPs and 1 INDEL), the coding region (5 SNPs), and the 3’
UTR (1 SNP)). B) Growth of Col-0 and AtXTH16 mutants under drought conditions (dashed lines represent mean score and shaded area corresponds to
standard error). This locus revealed the significant difference in leaf area in between wild-type and mutant (t-test: P-value < 0.05). The significant
differences between the wild type (Col-0) and CP.GR4 mutant line were tested using a Student’s t-test, and *, *, ***, and *** represent P-value < 0.05, 0.01,
0.001, and 0.0001 respectively.

understanding plant growth, development, and responses to the food security and climate change. Implementing computational
environment. Automated plant phenotyping methods provide tools into plant phenotyping enables the efficient processing and
valuable information that can be used to improve crop productiv- analysis of large amounts of images (Fahlgren et al. 2015a;

ity and sustainability, and to address global challenges such as Gehan et al. 2017). As plant phenotyping methods rely on
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computational tools, their adoption is often hindered by the re-
quirement of advanced programming skills and the lack of user-
friendly interfaces (Klukas et al. 2014; Zhou et al. 2018) Most wet
labs consist of scientists with limited programming or engineering
experience, and thus it is necessary to democratize the phenotyp-
ing tools derived from new technologies and algorithms, and toin-
crease the level of accessibility and convenience of novel tools for
the plant scientists.

Here, we present a cost-effective “all-in-one” solution, consist-
ing of three independent cost-effective hardware designs, data
processing pipelines, and data analysis platform that streamline
individual workflows into one experimental framework (Fig. 3).
We aim to break down the bottleneck in plant phenotyping by
combining phenotypic image collection with data analysis for
users without proficient programming experience. The developed
tools allow for navigation between plant images, intermediate da-
tasets, and data analysis. By following the detailed instructions,
users can collect data and execute data processing and analysis
steps without prior knowledge of engineering.

The most significant advantage of the developed system is its
low cost and high versatility. As presented in the results, the hard-
ware pieces were constructed with lightweight and low-cost ma-
terials that are simple to assemble (Fig. 1, Supplementary Fig.
S2). Moreover, the system’s adaptability to a broad range of re-
search contexts was demonstrated by imaging a wide range of
plant species. We demonstrated the system’s precision by accu-
rately estimating the digital biomass for species grown under con-
trolled environmental conditions (Figs. 3 and 4). AWWEsmo
cannot be used to extract transpiration of the plants, but rather
evapotranspiration, which is substantially determined by the
evaporation of water from the pot (Supplementary Fig. S13).
Nevertheless, the device constructed using low-cost materials
could adjust the pot weight to the target weight, resulting in repro-
ducible mild drought stress and maintaining soil water-holding
capacity throughout the experiment. We would like to note that
on-line communities have noted a strong temperature-
dependence of the scale sensor precision used within our setup,
which would require repeated calibration based on the tempera-
ture fluctuations that are commonly observed within growth
chamber conditions (Supplementary Fig. S1). In future iterations
of AWWEsmo, one might consider replacing the HX711 scale
with more reliable weight sensors. Within the described setup,
we have checked the scale against a typical laboratory-grade scale
for accuracy every week and re-calibrated it if the discrepancy ex-
ceeded 1 g. Additionally, as the target weight is not adjusted for
the plant size, the described method can only be used for rela-
tively short drought stress experiments. For example, at the end
of our cowpea diversity experiment (Fig. 6E), we observed that
the evapotranspiration decreased in plants grown under control
conditions, probably because they started to experience water
limitation. While the difference in leaf temperature was main-
tained at the end of the experiment (Fig. 6G), we would caution
against experiments beyond 2 wk of drought stress using the de-
scribed method. Similarly, evapotranspiration yields significant
associations only when combined with plant fresh weight using
the GWAS approach, suggesting that evapotranspiration itself
might be too noisy of a trait by itself to be biologically meaningful.
Thus, evapotranspiration data derived from AWWEsmo should be
treated with caution, and its precision in the current iteration
might not be sufficient to detect small evapotranspiration
effects for smaller plants, such as Arabidopsis. We would
caution anyone to search for additional lines of evidence of plant’s
water-use to complement the measurements obtained with
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AWWEsmo. Nevertheless, the accessibility of the developed
suite of phenotyping tools provides a starting point for cost-
effective phenotyping solutions. The main objective of our system
is to monitor plant growth during the early vegetative develop-
mental stage, as this early stage has been the focus of many
experiments under controlled conditions (Behmann et al. 2014;
Zhang et al. 2020) and RGB image-based phenotyping is
reliable in predicting biomass (Rahaman et al. 2017; Banerjee
et al. 2020).

The high level of user-friendliness is another feature that
characterizes the system. Several published Raspberry Pi-based
systems such as “SPIRO”, “PhenoBox”, and “PhenoWell” are image-
based and controlled by low-cost computers for sustainable solu-
tions for high-throughput phenotyping (Czedik-Eysenberg et al.
2018; Feldman et al. 2021; Li et al. 2023; Ohlsson et al. 2024).
However, these platforms often rely on R or Python source code
for plant objects segmentation, and statistical comparisons,
which are making them inflexible for research-based data analy-
sis. In contrast, our developed suite of tools provides not only a
comprehensive overview of hardware and software, that has
been optimized into reproducible computational pipelines for
wider usage but also preserves the flexibility of data analysis
that is crucial for research-based use of these tools. To further
enable fast and reproducible data analysis, we developed an inter-
active ShinyApp, RaspiPheno App, to decode plant genotype
and treatment information, as well as to perform the data cura-
tion, smoothing, and visualization (https:/github.com/Leon-
Yu0320/BTI-Plant-phenotyping/tree/main/RasPiPheno_APP).

The use of a graphical interface app reduces the downstream
workload compared to some other Like other ShinyApps for bio-
logical data analysis (Julkowska et al. 2019; Ge 2020; Xiao and
Lam 2022). Our efforts enabled that the RaspiPheno App to provide
a fast and straightforward approach to data processing. Moreover,
the RaspiPheno App offers compatibility with data input derived
from previous steps, as it is fine-tuned to match the data output
format from the RaspiPheno Pipe. This direct data adoption re-
quires no further data reformatting, reducing the learning curve
required for new users. Integration of the RaspiPheno App into
the suite of developed tools allows for decoding of information
and assigning plant genotype and/or treatment to individual
plants, as well as other meta-features of an experimental design.
As a result, the streamlined RaspiPheno App enables the acquisi-
tion of high-quality plots and systematic statistical analysis of
plant growth, to address the specific biological questions about
the physiological and genetic basis of plants.

Within this work, we have demonstrated the system’s usability
using a cowpea diversity panel to drive the discovery of genes in-
volved in environmental resilience. The observed phenotypic var-
iation in cowpea (Fig. 6) was used as an input for GWAS (Fig. 7) to
identify genetic loci contributing to drought resilience. Previous
studies have identified cowpea as an important donor for drought
tolerance traits (Mufoz-Amatriain et al. 2021), however cowpea
phenotyping has thus far not been performed on dynamic traits,
such as growth rate or evapotranspiration during drought expo-
sure (Muchero et al. 2009; Verbree et al. 2015; Ravelombola et al.
2020; Nkomo et al. 2022). We observed that similarly to other
crop plants (Awlia et al. 2021), cowpea reduces its evapotranspira-
tion (Fig. 6E). On the other hand, the photosynthetic efficiency was
only affected in the early phase of drought stress exposure
(Fig. 6F). It has been previously reported that Arabidopsis plants
under salt stress have been found to decrease quantum yield dur-
ing early salt stress exposure and that this impacted growth main-
tenance (Awlia et al. 2021).
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To explore the potential genes involved in drought resilience
in cowpea, we examined available T-DNA insertion mutants in
Arabidopsis homologs to the set of cowpea genes with significant
trait associations. Our experiments revealed genes that are po-
tentially contributing to drought resilience (Figs. 8 to 10), high-
lighting the wusefulness of these low-cost, large-scale,
phenotyping approaches. Not all studied T-DNA insertion lines
showed significant changes in rosette growth rate under drought
conditions, and thus require further validation (e.g. AT3G25830
encoding 1,8-cineole synthase, AT1G14270 encoding CAAX ami-
no terminal protease, AT3G56400 encoding AtWRKY70, and
AT3G23730 encoding xyloglucan endotransglucosylase/transfer-
ase 16, Figs. 8, A to D, G, H and 10). Two out of two studied
T-DNA insertion lines targeting alpha carbonic anhydrase 7
(AtACA7, AT1G08080) and four out of five T-DNA insertion lines
targeting tetratricopeptide repeat super-family protein (AtPPR,
AT3G02490) showed convincing evidence for their potential in-
volvement in drought resilience (Figs. 8, E and F and 9, respec-
tively). Carbonic anhydrases are an abundant protein family
that has multiple isoforms and acts in carbon assimilation and
photosynthesis (Momayyezi et al. 2020). The three families, al-
pha, beta, and gamma are considered to have evolved separately
(Momayyezi et al. 2020) but have similar functions (Moroney
et al. 2001). The alpha carbonic anhydrases have the overall low-
est expression level (Polishchuk 2021). While no previous reports
cover the role of alpha carbonic anhydrases in drought stress re-
silience, the beta family has been studied extensively. The ex-
pression of beta carbonic anhydrases has been shown to both
increase (Polishchuk 2021) and decrease (Wang et al. 2016; Han
et al. 2019; Momayyezi et al. 2020) under drought. These con-
trasting findings, as well as our results, indicate the need for fur-
ther investigation into the role of alpha carbonic anhydrases in
drought response in plants.

PPRs in plants are known for their wide range of molecular
functions, including photosynthesis and environmental stress re-
sponses, including drought stress Arabidopsis plants exhibited
improved growth performance under drought stress when the ex-
pression of the PPR protein SLG1 was disrupted (Yuan and Liu
2012). However, Arabidopsis lines overexpressing another PPR
protein, SOAR1, also performed better under drought stress com-
pared to the wild type (Jiang and Li 2020). To our knowledge, the
PPR identified in this study (AT3G02490) has not been previously
studied in detail or reported as contributing to drought resilience.
Our previous findings highlight the diversity and complexity of
PPR proteins, emphasizing the need to characterize our identified
PPR further. The molecular context of these genes will be the focus
of future studies, revealing more mechanisms of drought resil-
ience across a wider range of species. Our results illustrate the po-
tential of the developed setup in gene discovery and identification
of resilience mechanisms for a wide diversity of plants. In the fu-
ture, the identified genes can serve as attractive targets for breed-
ing or genetic modification to further contribute to crop stress
resilience and food security.

Image-based phenotyping is the workhorse of high-throughput
phenotyping (Hall et al. 2022; Langstroff et al. 2022). The applica-
tion of high-throughput phenotyping in simple and cost-efficient
systems, like the one described in our manuscript, carries the po-
tential for a broader impact on plant science research without the
prohibitively high costs (Yangetal. 2013; Duetal. 2021; Zhou et al.
2021). The wide adoption of cost-effective solutions can lead to
tremendous progress in studying stress responses and identifying
genetic components of environmental resilience.

Materials and methods

Phenotyping facility development

Top-view imaging of Arabidopsis using PhenoRig

To continuously collect top-view images, we built a PhenoRig
where 32 pots (width: 6.5 cm x length: 6.5 cm xheight: 9 cm for
each insert), each containing a single Arabidopsis (A. thaliana)
plant, could be imaged simultaneously within one setup. We built
a wooden frame (length: 60 cm x width: 40 cm x height 43.5 cm for
the frame) to accommodate a standard 1,020 (~27.94 x 54.61 cm)
rectangular tray. The images were collected by two Raspberry Pi
cameras connected to a Raspberry Pi Zero computer through an
Arducam Multi-camera adapter, with flex cables. To prevent the
movement of plants during plant watering, a plastic tray was
anchored to the bottom of the PhenoRig. The imaging of plants
was performed every 30 min using the automated startup script
(described in the pheno-computational pipeline development sec-
tion below). No additional light source was installed, and the im-
ages collected during the night period were removed in the
automated data preparation workflow by specifying the start
and end time of the light period (hour-minute format: HH:MM)
of image collection each day as a parameter input for data alloca-
tion (https:/github.com/Leon-Yu0320/BTI-Plant-phenotyping).
The materials necessary to build a PhenoRig are listed in
Supplementary Table S1.

Side-view imaging using PhenoCage

To adequately capture the digital biomass of the plants with com-
plex 3D architectures, such as bean plants, we developed a side-
view imaging PhenoCage platform. Within a cage (length: 90 cm
x width: 60 cm x height: 60 cm), we placed a rotating platform on
which a plant pot is placed. The background noise is limited by
white semilight-permeable plastic sheets attached to the frame.
The plant is illuminated from four sides and the top using LED
light bars to eliminate shading. The light intensity ensures the
short shutter speed of the camera, thereby ensuring clear images
of the constantly rotating plants. To ensure that all plants will be
positioned in the same way on the rotating platform, we attached
the pot that has been cut in half in the horizontal direction to the
rotating platform. The plants are imaged using one Raspberry
Pi camera connected to a Raspberry Pi 4. A household shell
script (PhenoCage_capture.sh) takes seven consecutive images,
representing a side view of the imaged plant taken every 51.4°
(https:/github.com/Leon-Yu0320/BTI-Plant-phenotyping/tree/
main/data_acquisition). The materials necessary to build a
PhenoCage are listed in Supplementary Table S2. Accessories to
hold the Raspberry Pi and monitor were designed using
TinkerCad (https:/www.tinkercad.com) and produced by a 3D
printer (PRUSA i3 MK3S+). Examples and details of the 3D printed
components can be found at https:/github.com/Leon-Yu0320/
BTI-Plant-phenotyping/tree/main/3Dprint. While the scale at
which the images were taken within the PhenoCage setup within
our manuscript constitutes 3 pixels/mm, we kept all the measure-
ments in pixels, as the scale of this setup will depend on the dis-
tance between the camera and the plant, that will be specific to
individual species studied.

Monitoring evapotranspiration using AWWEsmo

To monitor the plant evapotranspiration, we developed an
AWWEsmo. Using this device, the pots are placed on a scale,
where they are automatically weighed and watered to their target
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weight. We found that the system worked best with the smaller
square pots (width: 10.16 cm, length: 10.16 cm, height 11 cm),
that were used for cowpea and tepary beans experiments dis-
cussed below. The Arduino controller was connected to a load
cell (HX711) that served as a scale, and to a submerged 5-V
pump that was activated for a period calculated to be necessary
to reach the target weight. The controller and the mini-
breadboard were placed in a 3D-printed container, designed to
protect the electrical components from splatter and dust in the
growth chamber. The load cell constituting the scale was attached
to the thick plastic platform (thickness: 5 cm, diameter: 12 cm),
and a plastic saucer was glued to the platform, to prevent water
spillage onto the electrical components. The Arduino controller
as well as the load cell were housed in a 3D-printed design, that
accommodated two levelers, ensuring the scale leveling and sup-
port for the hose connected to the pump. The materials necessary
to build an AWWEsmo device are listed in Supplementary
Table S3, while detailed instructions on how to build and program
the device can be found at https:/github.com/ok84-star/
AAWSMO. Details on the 3D-printed designs can be found at
https://github.com/Leon-Yu0320/BTI-Plant-phenotyping/tree/main/
3Dprint/AWESmo. The detailed usage manual, including calibra-
tion and execution of the AWWEsmo, is available at protocols.io
(ulkowska et al. 2023; Khmelnitsky et al. 2023). Supplemental
Video on assembly can be found here: https:/youtu.be/
QUUVAQT6VA. The precision of the load cell was evaluated
against a laboratory scale (Kern EMB portable balance) to 0.1¢g
precision. The Arduino scale was calibrated prior to every experi-
ment using the scripts available at https:/github.com/ok84-star/
AAWSMO and checked during each measurement against the lab-
oratory scale mentioned previously.

Pheno-computational pipeline development

The plant image collection is integrated into a customizable shell
script, optimized for ISO, image sharpness (sh), contrast (co),
brightness (br), shutter speed (ss), and size of the image for indi-
vidual imaging conditions. For the PhenoRig setup, the automated
data collection was conducted with specifications of time interval
(unit: min), duration (unit: days), and hardware identifiers (for-
mat: RaspilD_cameralD). Once the image and experimental set-
tings are determined by the user, the imaging command is
deployed at determined time intervals using crontab which is
nested within the setup scripts. Users can launch the collection
by using a local Raspi computer, or connect Raspi computers to
the internet and launch the program remotely by a personal com-
puter (PC) or a server. For PhenoCage setup, image data collection
islaunched manually forindividual plants. For each plant, images
from seven sides were collected with a hardware identifier (for-
mat: RaspilD) and side numbers (format: sidel to side7). After
each experiment session for both PhenoRig and PhenoCage, im-
ages can be transferred using a USB flash drive or an SSH transfer
proxy to a server or other local devices.

After image collection, the pipeline requires experiment-
specific parameters as input to execute the image analysis cor-
rectly. The parameters guide key steps related to image transfor-
mation, masking, selection of regions of interest, and extraction of
phenotypic data into an image analysis protocol derived from
PlantCV image processing algorithm (Gehan et al. 2017), a tutorial
for parameter setup for PlantCV software was instructed using ex-
ample images collected with PhenoRig and PhenoCage (Yu and
Julkowska 2022). The computation pipelines and RasPiPheno
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Pipe are publicly available on GitHub with manual and
supplementary information provided (https:/github.com/Leon-
Yu0320/BTI-Plant-phenotyping).

The quantitative data obtained from collected images are subse-
quently analyzed for changes in digital biomass throughout time/
treatment. Prior to statistical data analysis, data collected using
PhenoCage is additionally processed by summarizing the pixels rep-
resenting the shoot projected area from seven side-view images.
Once the digital biomass of each plant is determined from either
side-view or top-view images, the genotype, replicate, and treatment
information is decoded using a meta-data table (https:/github.com/
Leon-Yu0320/BTI-Plant-phenotyping/tree/main/Results_example).
While PhenoRig images are decoded based on positional informa-
tion, the PhenoCage data is decoded based on the timestamp of the
image, assuming that the experiment is imaged sequentially in order
of the pot position. The decoded data is subsequently processed
under the framework RasPiPhenoApp (https:/github.com/Leon-
Yu0320/BTI-Plant-phenotyping), a web interactive and streamlined
analysis tool. Using the smooth spline, loess fit, or polynomial regres-
sion fit functions, each data point is curated to generate curated val-
ues as a smoothed dataset. The original data points that exceed the
one to three times standard deviation (sp) relative to corresponding
curated values can be classified as outliers. The user can remove spe-
cific points based on the customized cutoff (one to three times sp), to
generate a clean dataset. The growth rates (GR) are calculated using
a linear function either for the entire duration of the experiment
(PhenoCage) or for each day of the experiment (PhenoRig). The differ-
ences between treatments and/or genotypes (or in other single fac-
tors, two factors experiments) are subsequently tested using t-test,
Wilcox, ANOVA, or two-way ANOVA regarding the curated plant
leaf areq, the leaf area without outliers, and growth rate. The vis-
ualization of the graphs is performed using ggplot2 and ggpubr
packages (Wickham 2016). The integration of data analysis tools
into a graphical user interface is performed using shiny R package
(https:/shiny.rstudio.com).

Plant material and plant growth conditions
Arabidopsis thaliana experiment

Arabidopsis (A. thaliana) Col-0 seeds were sterilized for 10 min
with 50% (v/v) bleach and rinsed five times using Milli-Q water
and germinated on % strength x Murashige and Skoog (MS) me-
dium containing 0.5% (w/v) sucrose, 0.1% (w/v) 4-morpholinee-
thanesulfonic acid (MES), and 1% (w/v) agar. After 24h of
vernalization at 4 °C in the dark, the plates were placed in the
Conviron growth chamber with the light intensity of 130 to
150 umol m~ s~ in a 16 hlight/8 h dark cycle at 21 °C and 60% hu-
midity. At 7 d after germination, the seedlings were transplanted
to soil (Cornell Mix, per batch combine: 0.16 m® of peat moss,
20.84 kg of vermiculite, 0.59 kg of Uni-Mix fertilizer, and 2.27 kg
of lime) watered to 100% soil water-holding capacity and placed
in a walk-in growth chamber with the abovementioned condi-
tions. When the pots dried to the weight corresponding to 50%
of their water holding capacity, they were soaked for 1h in tap
water or a 200 mm NaCl solution, resulting in a concentration of
100 mm NaCl based on the 50% soil water holding capacity, which
corresponded to a moderate level of salt stress according to (Awlia
et al. 2021). We allowed the pots to be drained for 2 to 3 h to elim-
inate excess moisture. The pots were subsequently placed under
PhenoRigs equipped with an automated imaging system, and
the pot weight was measured and adjusted daily to maintain the
reference weight corresponding to 50% of the soil water-holding
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capacity throughout the experiment. At the end of the experi-
ment, fresh weight was collected for all imaged plants. The col-
lected images were processed using the pheno-computational
pipeline described above, and the data were processed in R
(Supplementary Table SS4). All the data was tested for ANOVA as-
sumptions, including homogeneity of variance and normal distri-
bution using MVApp (Julkowska et al. 2019).

Cowpea pilot experiment

The seeds of five cowpea accessions (CB5-2, IT97K-499, Sanzi,
Suvita-2, UCR799), representative of the wider diversity within
cowpea were germinated in square pots (width: 10.16 cm; length:
10.16 cm, height: 11 cm) filled with soil (Cornell Mix + Osmocote,
composed of Cornell Mix mentioned above with 2.27kg
Osmocote added per 1.631m°) (Liang et al. 2024). The plants
were germinated and grown in a Conviron growth chamber with
the light intensity at 350 to 415 yumol m~=2s ~! under a 12 h light
cycle at 26 °C/12 h dark cycle at 20 °C and 50% relative humidity.
We calculated vapor pressure deficit (VPD) using the R package
“plantecophys” (Duursma 2015). The daytime VPD was 1.17 kPa
and the nighttime VPD was 1.69 kPa. No additional nutrients
were added during the experiment. We used seven biological rep-
licates per accession per treatment for this experiment. The con-
trol and drought-treated plants were kept at 60% and 20% soil
water-holding capacity, respectively. To determine target weights
for each pot, we left the pots to air dry for 72 h and assigned this
weight to correspond to 0% water-holding capacity. We then satu-
rated the soil for 24 h, removed excess water, weighed the pots,
and assigned this value as the 100% soil water-holding capacity
weight. At this point, we sowed two seeds per pot and thinned it
to one seedling per pot after germination occurred. We initiated
tracking pot weight at 17 d after germination, watering each pot
to its target weight daily for 15 consecutive days. Drought treat-
ment target weights were reached on day 4 after tracking started.
We imaged the plants using the PhenoCage setup starting 17 d
after germination and subsequently every other day for the next
2 wk (resulting in a total of seven-time points, with each time
point consisting of seven images for each plant). At the end of
the experiment, the fresh weight of the cowpea shoot was col-
lected for all the imaged plants. The collected images were proc-
essed using the pheno-computational pipeline described above,
and the data was processed in R (Supplementary Table S4). All
of the data was tested for ANOVA assumptions, including homo-
geneity of variance and normal distribution using MVApp
(Julkowska et al. 2019).

Tepary bean pilot experiment

The seeds of twp tepary bean accessions (TDP359 and TDP22), rep-
resentative of the wild and cultivated tepary bean, respectively
(Munoz-Amatriain et al. 2021), were germinated in 4-in. pots filled
with soil (Cornell Mix + Osmocote) watered to 100% soil water-
holding capacity. We used six biological replicates of TDP359
(cultivated) and 12 replicates of TDP22 (wild) per treatment for
this experiment. The control and drought-treated plants were
kept at 60% and 10% soil water-holding capacity, respectively.
The drought was imposed as described for the cowpea pilot ex-
periment above and the growth chamber conditions were the
same as for the cowpea pilot experiment, described above. We im-
aged the plants using the PhenoCage setup starting at 17 d after
germination and repeated every second day for consecutive
2 wk. At the end of the experiment, the fresh weight of the tepary
bean shoot was collected for all the imaged plants. The collected

images were processed using the pheno-computational pipeline
described above, and the data was processed in R (Supplementary
Table S4). All the data was tested for ANOVA assumptions, including
homogeneity of variance and normal distribution using MVApp
(Julkowska et al. 2019).

Cowpea mini-core population screen

The cowpea mini-core population, consisting of 368 accessions
(Munoz-Amatriain et al. 2021) was screened as described for the
cowpea pilot experiments. The accessions were distributed over
six experiments, and we used five accessions (CB5-2, IT97K-499,
Sanzi, Suvita-2, and UCR799) as internal standards for each ex-
periment. One accession, TVu-9393 was excluded because it did
not germinate after multiple trials, and another accession,
TVu-3965, was omitted due to lack of seeds available. The drought
imposition and growth chamber conditions were the same as de-
scribed for the cowpea pilot experiment in the above sections. The
pot weight was monitored and adjusted every day, while imaging
of the plants using PhenoCage was performed every second day.
Due to the various growth habits of cowpeas, we occasionally
added transparent, 3D-printed support to ensure the upright posi-
tion of the plant. The weight of the support was accounted for in
the evapotranspiration data analysis. Additionally, we measured
photosynthetic efficiency, leaf temperature, and chlorophyll con-
tent using the PhotoSynQ device at 6 and 13 d after treatment ini-
tiation. At the end of each experiment, the fresh weight of the
cowpea shoot tissue was collected for all the imaged plants. The
collected images were processed using the pheno-computational
pipeline described above. This dataset includes six sets of experi-
ments, evaporation rate curation for individual plants, and the
side-view image data comparison derived per experiment was
performed using the R scripts (Supplementary Table S4).
Subsequently, individual experimental data were merged, mod-
eled using smooth splines, used to calculate growth rate and cu-
mulative evapotranspiration per gram of fresh weight, and
prepared for subsequent GWAS (Supplementary Table S4). The
raw and curated data can be accessed in open-access Zenodo
Repositories (overview and links are listed in Supplementary
Tables S5 to S7). All of the data was tested for ANOVA assump-
tions, including homogeneity of variance and normal distribution
using MVApp (Julkowska et al. 2019).

GWAS of drought stress responses in cowpea

All collected and curated phenotypic data were used for GWAS.
The kinship matrix was calculated for all included accessions us-
ing GAPIT (Wang and Zhang 2021), and included as a co-factor in
the GWAS mixed model (https:/github.com/arthurkorte/GWAS).
The GWAS model uses fast approximation (Zhang and Liu 2011)
and relies on the ASReml library (Butler et al. 2009). The results
files were subsequently processed to draw QQ-plots, indicating
any bias within the GWAS model, Manhattan plots to identify sig-
nificant associations above the Bonferroni threshold, as well as
the effect size plots to evaluate the estimated effect size of the
loci selected for further inspection (Supplementary Table S4).
The identified genomic regions were compared between the traits
mapped under control and drought stress conditions
(Supplementary Table S8). Loci identified exclusively under
drought stress conditions were considered for further evaluation.
The GWAS output files, as well as all the generated plots, can be
accessed in open-access Zenodo Repository (https:/doi.org/10.
5281/zenodo.7438567).
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Screening of homologs in Arabidopsis for their
contribution to drought resilience

The drought-specific loci identified through cowpea GWAS de-
scribed above were investigated for annotated genes within the
linkage disequilibrium (LD, 30kbp) of the identified SNP.
Arabidopsis sequence homologs to the genes within the LD were
acquired from the cowpea genome annotation (Lonardi et al.
2019). For each identified Arabidopsis homolog, we explored pub-
licly available homozygous T-DNA insertion lines that exclusively
target our gene of interest. The lines and their corresponding cow-
pea genes are listed in Supplementary Table S9. The seeds were or-
dered from ABRC (https:/abrc.osu.edu/), and the seeds of each
mutant line were grown alongside the Col-0 genotype, as described
for the Arabidopsis phenotyping experiment above. Two weeks
after germination, the seedlings were exposed to control or
drought stress conditions (60% and 10% of soil water-holding ca-
pacity, respectively). The plants were monitored for growth using
the PhenoRig setup every 30 min, while evapotranspiration of
every plant was monitored every 48 h using the AWWEsmo device.
Based on the results and phenotypes of mutants with significantly
affected growth rates under drought stress, we made a selection of
14 T-DNA insertion lines for further evaluation (CP.GR4-1, CP.
GR4-2, CP.NPQ6-1, CP.NPQ6-2, CP.NPQ6-3, CP.NPQ6-4, CP.NPQ6-
5, CP.EVT2-1, CP.EVT2-2, CP.EVT3-1, CP.EVT3-2, CP.EVTé6-1,
CP.EVT6-2, CP.EVTS, Supplementary Table S9). One hundred per-
cent water-holding capacity was determined as described above
for the Cowpea Pilot Experiment. Concurrently, we grew the 14
T-DNA insertion lines on % MS plates for 10d and transferred
the seedlings to the soil. Two weeks after germination, we initiated
tray imaging every 30 min. To efficiently bring the drought treat-
ment pots down to 20% water-holding capacity, we placed small
fans above them for a 90-min increment. The setup to induce
drought stress is depicted within Supplementary Fig. S14.
Seventeen days after germination, we began tracking water-use
every second day, and this day was marked as day 1 of stress.
Images were taken for 2 wk. Primary bolts were cut from plants
that began flowering within these 2 wk to prevent bias in the image
analysis. The data was analyzed in the same way as described in
previous experiments. The specific R markdown filesand raw data-
set can be accessed at https:/github.com/Leon-Yu0320/BTI-Plant-
phenotyping/tree/main/ImageData_curation_example.

Accession numbers

The list of specific mutant lines used in this study including their
accession number is listed in Supplementary Table S9.
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RaspiPheno App can be reached at https:/www.youtube.com/
channel/UCnO5hHc-héMs-vlg3_IFQSw.
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