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Abstract. We formulate a class of mean field games on a finite state space

with variational principles resembling those in continuous-state mean field
games. We construct a controlled continuity equation featuring a nonlinear

activation function on graphs induced by finite-state reversible continuous time

Markov chains. In these graphs, each edge is weighted by the transition prob-
ability and invariant measure of the original process. Using these controlled

dynamics on the graph and the dynamic programming principle for the value

function, we derive several key components: the mean field game systems, the
functional Hamilton-Jacobi equations, and the master equations on a finite

probability space for potential mean field games. The existence and unique-
ness of solutions to the potential mean field game system are ensured through

a convex optimization reformulation in terms of the density-flux pair. We also

derive variational principles for the master equations of both non-potential
games and mixed games on a continuous state space. Finally, we offer sev-

eral concrete examples of discrete mean field game dynamics on a two-point

space, complete with closed-formula solutions. These examples include discrete
Wasserstein distances, mean field planning, and potential mean field games.

1. Introduction. Mean field games (MFGs) model the dynamical behavior of a
large number of identical players through their state distribution and strategies.
The mean field game theories were developed independently by Lasry and Lions
[42] and Caines, Huang, and Malhame [41]. Nowadays, MFGs play a crucial
role in various modeling applications such as mathematical finance, swarm robot-
ics/drones, pandemic control, generative models, and Markov decision processes
in reinforcement learning [9, 15, 38, 44, 45, 46, 60]. In general, Nash equilibrium
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(NE) [54] requires a player to anticipate other players’ strategies. However, obtain-
ing complete information on others’ strategies is nearly impossible. On one hand,
Caines, Huang, and Malhame [41] first noted that as the number of players ap-
proaches infinity, only the state distribution of the population over a time interval
is sufficient to determine a Nash equilibrium for the original finite many players, up
to an ϵ error. On the other hand, Lasry and Lions [42] directly study the limit
N → +∞ of the Nash equilibrium system for N -players. Building on this, MFGs
with a continuum of players assume that an indistinguishable individual player im-
plements strategies based only on the state distribution of the population, without
explicitly anticipating the strategies of other individual players [41, 42, 6]. This
setup is formulated as a value function for the indistinguishable individual, adher-
ing to a dynamic programming principle within a fixed time horizon T , given the
state distribution of the population over the time interval [0, T ]; see (1). Moreover,
if the state distribution of the population reaches a NE, meaning that the popu-
lation and their strategy satisfy a mean field game system (see [6] and (13)), then
individual players must adopt a strategy consistent with that of the population
in order to achieve the optimal payoff function; see [6] and Proposition 2.2. This
approach allows one to study MFGs through the mean field game system.

In particular, a potential mean field game [6, 53] is formulated as an optimal
control problem in a probability density space equipped with Wasserstein metrics
[1, 4, 59], in which both the running cost and the terminal profit are function-
als of population density. Moreover, the value function for populations satisfies a
functional Hamilton-Jacobi equation (HJE) in Wasserstein space (see (17) and also
[7, 27]). The MFG system (13) serves as the associated bi-characteristics for the
functional Hamiltonian system [7, Theorem 3.12]. The value function also provides
a viscosity solution to the functional HJE [21, 28]. For more careful studies on the
regularity of this viscosity solution, we refer to [28, 24].

Beyond the MFG system, Lions introduced the master equation in his renowned
courses at Collége de France [47]. The solution to the master equation is a scalar
value function that describes optimal strategies and dynamics for both individuals
and populations in MFGs. The master equation fully characterizes the dynamics
of individuals and population behaviors. Moreover, its solution can be used to
construct an approximate solution to the Nash system, which describes the Nash
equilibrium for N -player games [7, Section 1.2].

In the special case of potential games, the master equation (25) is a derived equa-
tion by taking the derivatives in the functional HJE (17); see [7, Theorem 3.12]. The
existence and uniqueness of the classical solution to the deterministic master equa-
tion for potential games were very recently established by Gangbo and Meszaros
[24], based on the regularities of the viscosity solution to the functional HJE under
certain assumptions. For the existence and uniqueness of classical solutions to the
first/second-order master equations in MFGs with noise/common noise, we refer to
[7].

In non-potential games, we derive the variational principle in Proposition 2.9
for master equation (26), whose solution is the value function of individual players
guided by the mean field trajectories of the population density function in MFG
system (13); see also the mixed game case in Proposition 2.11 for the master equa-
tion (30). Compared with the potential games, for which the variational principle
for master equation always holds since the master equation is a derived equation
from the functional HJE, one no longer has a functional HJE for general games.
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Nevertheless, the solution to the MFG system (13) still serves as guiding trajecto-
ries in the variational principle for the master equation. This variational principle
gives a Lax-Oleinik type solution representation for master equation (26).

However, the aforementioned MFG dynamics are defined only on a continuous
state space. Many models, such as evolutionary game theory as discussed by Hof-
bauer and Sigmund [40], are usually formulated on a finite state space. A prime
example is the Stag-Hunt game, in which the state space contains only two points,
either in a cooperative or non-cooperative way.

In this paper, we address the following question: Can potential and non-potential
mean field game models be formulated on a finite state space using variational prin-
ciples? Furthermore, what are the corresponding functional Hamilton-Jacobi equa-
tions and master equations on finite states?

To tackle this question, we propose an alternative approach that considers a class
of MFG dynamics on a weighted, undirected graph. This graph is formulated from
a reversible Markov chain, describing the underlying state-to-state relationships
along with transition barriers. A critical aspect of this discrete version of MFG is
the effective description of controlled dynamics on graphs while incorporating the
original Markov chain and energy landscape. We formulate an associated optimal
control problem, where the value function is computed by subtracting the running
cost from the terminal profit.

One natural method to define controlled dynamics on the graph is through a
controlled continuous-time Markov chain. Here, the control variable dictates the
transition rate. This method allows us to maintain a Markov chain with a con-
trolled Q-matrix, which is an approach first studied in [34, 37] along with the
corresponding HJE and Nash equilibria. Examples and derived master equations
are also discussed by Carmona and Delarue [9, 18]. However, it is important to
note that the original graph structure and the energy landscape cannot be preserved
in the controlled Q-matrix, as pointed out in Remark 3.14.

As an alternative, we introduce a different approach for controlled dynamics on
graphs, inspired by Mass’s discrete Benamou-Breiner formulation (50) of the dis-
crete Wasserstein distance on a finite probability space [48]. In Mass’s formulation,
the controlled dynamics are represented by a continuity equation (51) on the graph,
which incorporates a nonlinear activation function θ(x, y). The graph structure and
the invariant measure of the original jump process are included as weight functions
within this nonlinear continuity equation. This continuity equation is motivated
by reformulating the forward equation for finite-state, time-continuous reversible
Markov chains as either Onsager’s gradient flows on graphs with quadratic dissipa-
tion, or as generalized gradient flows on graphs; see discussions in Sections 3.1 and
3.2.

We next formulate the potential mean field games as an optimal control problem,
with controlled dynamics given by a continuity equation (51) on a graph with a
nonlinear activation function θ(x, y). The nonlinear activation function θ can be
chosen to represent either the Onsager type dissipation or the dissipation function
in a generalized gradient flow; see Section 3.2. In the case of potential games, we
formulate this optimal control problem as a convex optimization problem in terms
of the density-flux pair, with a linear constraint. Based on this reformulation,
the existence and uniqueness of solutions are shown in Proposition 3.12. We then
derive the associated functional HJE (64) on the finite probability space. Its bi-
characteristics are given by the potential mean field game system (63). We also
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present a derived master equation (74) by taking derivatives in the functional HJE
(64) for the case of potential games.

We extend the master equation (76) to non-potential games on a finite state space
and develop the relation between the discrete MFG system and the general master
equation on a finite state space. Finally, we illustrate mean field game dynamics on
a two-point state space. Examples in Section 5 encompass generalized Wasserstein
distances, mean field planning problems, and potential MFGs on graphs.

As previously mentioned, numerous studies on mean field games in both continu-
ous and finite state spaces are available in the literature. We focus our comparisons
on developments particularly related to MFGs on graphs. [34] studies continuous-
time, finite-state MFGs, and this study has been extended to include discrete-time,
finite-state MFGs [33]. These works explore a variational optimal control prob-
lem that modifies the transition rate through a controlled Q-matrix. In [36], mean
field games on graphs and associated discrete master equations are developed. Re-
cently, [10, 11, 3] employ probabilistic approaches to construct and analyze mean
field games and master equations on finite states, studying the mean-field limit
convergence from finite player games to mean field games. Concurrently, discrete
optimal transport and generalized gradient flow structures on graphs have been a
challenging and emerging field of study [12, 48, 50], with recent developments cited
in [52, 57]. These studies identify various gradient flow structures for reversible
Markov chains, including original formulations based on Onsager’s principle [55]
and generalized gradient flows in metric spaces [1]. Our formulation of MFGs on
a graph is rooted in the construction of a controlled continuity equation featuring
a nonlinear activation function and a cost functional in a finite probability space.
Notably, the nonlinear continuity equation utilizes the original Q-matrix and its
invariant measure by defining a weight for each edge of the graph. Based on this
weighted graph, the controlled continuity equation (see (53)) inherently captures
the original energy landscape of a large system. In contrast, a natural approach of
treating the Q-matrix as a control variable in a linear continuity equation may lose
this structural information. While this original structure could be incorporated into
the running cost as potential energy, doing so effectively is particularly challeng-
ing for large systems. Our approach uses the original Q-matrix and its invariant
measure as graph weights in a nonlinear continuity equation that incorporates an
activation function. This enables us to study the variational formula for value func-
tions that solve the master equations for both non-potential and mixed games. We
note that nonlinear activation functions introduce a class of continuity equations
that nonlinearly depend on densities. Such equations have been extensively studied
in the context of gradient flows and optimal transport on graph [12, 48, 50]. Our
formulation thus extends existing studies on discrete optimal transport to the mod-
eling and computation of discrete-state mean field control problems and games. It
is worth mentioning that the work in [26] obtained the well-posedness of Hamilton-
Jacobi equations on Wasserstein spaces on graphs. Their work can be seen as an
analytic result to our formulations for mean-field games on graph. We also refer
the reader to [17] for zero time horizon limits and to [5, 2] for a large discount limit
that reduces the MFG to a best-response strategy in a kinetic system [16].

The paper is organized as follows. In Section 2, we review mean field games and
master equations in continuous state domains. We also derive variational principles
for master equations including mixed strategy-type master equations. Section 3
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revisits discrete Onsager’s gradient flows and the generalized gradient flow struc-
ture on a graph, which is induced by a reversible Markov chain. We employ the
continuity equation with a nonlinear activation function to formulate an optimal
control problem for modeling potential MFGs on a finite state space. Functional
Hamilton-Jacobi equations and master equations on finite state space are then de-
rived. In Section 4, we extend this formulation to non-potential games, deriving
master equations and mixed strategy master equations. Finally, Section 5 presents
illustrations of MFG dynamics on a two-point state space.

2. Review of mean field game system and master equations on continu-
ous state space. Before we study the MFG on graph, we give a comprehensive
review for the MFG on continuous state space because we aim to establish the same
variational structure and derivations for MFG on graph. As this section is mainly
the review of known results, we illustrate the main derivations for the completeness
of this paper and provide pedagogical proofs for this section in the Appendix A.

We first review some definitions and dynamics of potential mean field games on
a continuous domain (assumed to be Td, a d-dimensional torus) of configuration
states x ∈ Td for players in Section 2.1 and Section 2.2. We also explain how
a solution to a MFG system (13) gives a Nash equilibrium in Section 2.3. One
can then reformulate the MFG system (13) for population state distribution ρs
and population policy function Φs as a Hamiltonian system (19) with a functional
Hamiltonian H(ρ,Φ) (16). This Hamiltonian system is exactly the bi-characteristics
of a Hamilton-Jacobi equation (17) for U(ρ, t) in probability space P(Td) equipped
with Wasserstein metric. It is known that the solution U(ρ, t) to this functional
HJE (17) is represented as a value function (9) with a dynamic programming prin-
ciple. To describe the optimal strategy (a.k.a. control, decision-making, response,
action, drift, velocity, transition rate, etc, depending on the setup of games) for
both individual state xs and population state distribution ρs(x) at time s of all the
players in the mean field game, we revisit the master equation (26) from the value
function perspective for u(x, ρ, t) in both potential game and general game cases in
Section 2.5 and Section 2.6.

In non-potential games, we derive the variational principle in Proposition 2.9 for
master equation (26), whose solution u(x, ρ, t) is represented as the value function
of individual players guided by the mean field trajectories for population state
distribution ρs and population policy function Φs, t ≤ s ≤ T in MFG system
(13); see also the mixed game case in Proposition 2.11 for the master equation
(30). Compared with the potential games, one no longer has a functional HJE for
general games, thus the variational principle for the functional HJE can not be
used. Nevertheless, the solution to the MFG system (13) still serves as guiding
trajectories in the variational principle for the master equation. This variational
principle gives a Lax-Oleinik type solution representation for master equation (26).

We also discuss the connection with the Nash equilibria and develop a master
equation (30) for value function U(q, ρ, t) for mixed strategy mean field games. Here
we only consider deterministic MFG without noise/common noise and refer to [7]
for a more general setting with various noises and the associated first/second order
master equations.

2.1. Indistinguished individual player HJE in Td. Denote ρt = ρt(·) ∈ P(Td)
as the state distribution of population of players at fixed t. In general Nash equilib-
rium requires a player to anticipate other players’ strategy. However, MFG assumes
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that an indistinguished individual player implements strategies only based on state
distribution ρt of population and does not anticipate the strategies of other players
[41, 42, 6]. Here, indistinguished player means that the payoff function (the terminal
profit subtract the running cost) are same for each individual players. Under those
assumptions, one can show the optimal strategy for individual players are indeed
a feedback control, where the control variable only depends on the current state
(graph function). Meanwhile, given a population state distribution ρt, the value
function (maximal payoff function) satisfies an HJE derived from the dynamic pro-
gramming principle; see Proposition 2.1. In Section 2.6, we will give a variational
principle for the general master equation for mean field games, which verifies that
given MFG dynamics, the individual players must follow the optimal strategy in
MFG to achieve the best payoff function.

Given a population state distribution ρt, the individual value function under the
simplest setup is descirbed below. First, consider the terminal profit G : Td ×
P(Td) → R such that G(xT , ρT ) depending on the terminal state xT and terminal
population state density ρT . Second, consider Lagrangian L(x, v) on Td × Rd and
the running cost L(xs, vs) at time s for an individual player with the additional
potential energy F : Td × P(Td) → R such that F (xs, ρs) depending on the state
xs and population state density ρs at time s ∈ [t, T ]. We also assume that the
Lagrangian L(x, v) is strictly convex and coercive (superlinear) w.r.t the second
variable v. Thus the individual value function is defined as

Φ(x, t) = sup
vs,xs

(
G(xT , ρT )−

∫ T

t

(L(xs, vs)− F (xs, ρs)) ds

)
,

s. t. ẋs = vs, t ≤ s ≤ T, xt = x.

(1)

Here the optimization is taken to maximize the terminal profit subtract running
cost, which follows the convention in the optimal control theory. Given a popula-
tion state density ρs, t ≤ s ≤ T , the total individual value function can be under-
stood as that individual players want to maximize the terminal profit subtracting
the running cost. We take this formulation following the Lax-Oleinik semigroup
representation for the value function. From now on, for the clarity of notations,
we use the shorthand notations xs, vs, or ρs to denote the curves with parameter
s ∈ [t, T ]. Particularly, for MFG system later, we use the notation (ρs(·),Φs(·)),
t ≤ s ≤ T as the solutions which be regarded as curves in function spaces.

One can derive the Euler-Lagrange equations using the Lagrangian multiplier
ps ∈ Rd

sup
(vs,xs)

inf
ps

(
G(xT , ρT )−

∫ T

t

[L(xs, vs)− F (xs, ρs) + ps · (ẋs − vs)] ds

)
. (2)

Then the optimal individual trajectories follow

ẋs = vs = ∂pH̃(xs, ps; ρs), ṗs = −∂xH̃(xs, ps; ρs), t ≤ s ≤ T. (3)

Here H(x, p) := supv (v · p− L(x, v)) is the convex conjugate of L(x, v) and

H̃(x, p; ρ) := H(x, p) + F (x, ρ). (4)

The following proposition for HJE of the value function is reformulated from [6, 7].

Proposition 2.1 ([6, 7]). Given a population state density ρs, s ∈ [t, T ]. Let Φ(x, t)
be the classical solution to the dynamic HJE

∂tΦ(x, t) +H(x,∇Φ(x, t)) + F (x, ρt) = 0, t ≤ T, Φ(x, T ) = G(x, ρT ). (5)
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Then Φ(x, t) is the individual value function given by (1). Moreover, the optimal
velocity for individual players along the optimal curve achieving the best profit value
in (1) is given by feedback control in the form

ẋs = ∂pH(xs,∇Φ(xs, s)). (6)

We remark that the value function Φ(x, t) in (1) may not be differential at some
point, nevertheless it is well known that Φ(x, t) is the Lax-Oleinik representation for
the viscosity solution to HJE. Although the dynamic programming principle does
not require continuous derivatives, for simplicity, we only present the proposition
and its proof by assuming Φ(x, t) is classical solution with continuous derivatives
w.r.t. t and x.

2.2. Potential mean field game system. In this subsection, we revisit the po-
tential mean field game and give a variational derivation of the associated MFG
system (13).

We adapt the notation of the first variation of a functional U : P(Td) → R from
[7, Definition 2.1]. We call δU

δρ : P(Td)×Td → R the first variation of the functional

U if

d

dε

∣∣∣
ε=0

U(ρ+ ερ̃) =

∫
Td

δU
δρ

(ρ, x)ρ̃(x) dx for any ρ̃ such that

∫
ρ̃(x) dx = 0. (7)

Notice the definition of the first variation above is unique up to a constant. Without
loss of generality, one can set this constant such that

∫
δU
δρ (ρ, x) dx = 0.

Assume there exist functionals F ,G : P(Td) → R such that

δF
δρ

(ρ, x) = F (x, ρ),
δG
δρ

(ρ, x) = G(x, ρ). (8)

This assumption is referred as a potential game. We still consider the terminal
profit G(ρT ) depending on the terminal population state density ρT . We consider
the running cost for population given by the integration of L(x, vs(x)) multiplied
by the density function ρs(x) at each time s, subtracted by the potential energy
functional F(ρs). Notice the integration is represented as a summation of individual
cost L(x, ẋ) with ẋ replaced by mean field velocity vs(x). Then the mean field value
functional for a population is defined as

U(ρ, t) := sup
vs,ρs

{
G(ρT )−

∫ T

t

(∫
Td

L(x, vs(x))ρs(x) dx−F(ρs)

)
ds

}
,

s. t. ∂sρs +∇ · (ρsvs) = 0, t ≤ s ≤ T, ρt = ρ.

(9)

Notice this is a finite time horizon optimal control formulation with the control
variable vs(·). We also refer to [21, 29] for an infinite time horizon optimal control
formulation for the underlying stochastic process for the distribution ρs, which is
particularly useful for the transition path theory and the long time behaviors of
mean field games [35].

Similarly, one can derive the Euler-Lagrange equations using Lagrangian multi-
plier Φs(x)

sup
vs,ρs

inf
Φs

(
G(ρT ) −

∫ T

t

(∫
Td

[L(x, vs(x))ρs(x) + Φs(x)(∂sρs(x) + ∇ · (ρs(x)vs(x)))] dx − F(ρs)

)
ds

)
.

(10)
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Then the Euler-Lagrange equations are

∂sρs(x) +∇ · (ρs(x)vs(x)) = 0,

L(x, vs(x))− ∂sΦs(x)− vs(x) · ∇Φs(x)− F (x, ρs) = 0,

∂vL(x, vs(x))−∇Φs(x) = 0,

ΦT (x) = G(x, ρT ).

(11)

Notice the definition of the convex conjugate,

H(x,∇Φs(x)) = sup
v

(v · ∇Φs(x)− L(x, v)) = vs(x) · ∇Φs(x)− L(x, vs(x)),

vs(x) solves ∂vL(x, vs) = ∇Φs(x). (12)

Hence using vs(x) = ∂pH(x,∇Φs(x)), (11) becomes MFG system

∂sρs(x) +∇ · (ρs(x)∂pH(x,∇Φs(x))) = 0, t ≤ s ≤ T,

∂sΦs(x) +H(x,∇Φs(x)) + F (x, ρs) = 0, t ≤ s ≤ T,

ρt(x) = ρ(x), ΦT (x) = G(x, ρT ).

(13)

This MFG system for population state distribution ρs(x) and population policy
function Φs(x), t ≤ s ≤ T , was first proposed in [42]; see also [7]. The existence
and uniqueness of weak solution to (13) can be found in [8] under the assumption
that H(x, p) is strictly convex in p and F (x, ρ), G(x, ρ) are monotone in ρ.

2.3. MFG system gives the Nash equilibrium for general games. Although
the variational deviation above for MFG system (13) is only for the potential games,
nevertheless, the solution to MFG system (13) gives the Nash equilibrium for general
games.

Comparing the HJE for individual game (5) and the MFG system (13), the
microscopic optimal strategy and value function Φ(x, t; ρs∈[t,T ]) are consistent with
solutions Φs(x) to the mean field game system (13), i.e., (14). This gives a Nash
equilibrium for general games. Meanwhile, the optimal velocity in the continuity
equation in (11) agrees with the individual optimal velocity, which, after evaluated
at xs, is given by feedback control vs = ∂pH(xs,∇Φ(xs, s)). In summary, we state
the following consistent proposition.

Proposition 2.2. Suppose the MFG system has a solution (ρs,Φs), t ≤ s ≤ T . Let
Φ(x, t; ρs∈[t,T ]) be the value function in the individual game in (1) with the given
population ρs∈[t,T ]. Then we have

Φ(x, t; ρs∈[t,T ]) = Φs(x), t ≤ s ≤ T for any t ≤ T, x ∈ Td. (14)

Moreover, the optimal velocity for the individual player following ODE (6) is same
as the mean field velocity in the continuity equation

∂sρs(x) +∇ · (ρs(x)∂pH(x,∇Φs(x))) = 0.

This optimal strategy for individual players achieves a Nash equilibrium.

We emphasize that although individual player implements strategies without an-
ticipating the strategies of other players, they can still achieve a Nash equilibrium.
This is because the mean field game system has a solution and the individual op-
timal strategy/velocity is given by a feedback control. In Section 2.6, by using a
variational principle for the master eqaution, we show that individual choose the



MASTER EQUATIONS FOR FINITE STATE MEAN FIELD GAMES 9

best strategy which consistent with the MFG optimal strategy associated with spe-
cific initial population state density function. We also refer to [6] for the rigorous
justification of the mean field limit of N -player Nash system.

Remark 2.3. Define F(ρ) as a functional of ρ such that δF(ρ)
δρ (x) = F̃ (ρ(x)) for

some function F̃ (y). Define G(ρ) as a functional of ρ such that δG(ρ)
δρ (x) = G̃(ρ(x))

for some function G̃(y). Notice in the potential game above, the terminal profit func-

tional and cost functional are not the total cost from individuals
∫
F̃ (ρ(x))ρ(x) dx.

For instance, let f be the antiderivative of F̃ such that F̃ (y) = f ′(y), and f(y) =∫ y

0
F̃ (s) ds+c, then the functional F(ρ) =

∫
Td f(ρ(x)) dx. In the case that f(0) = 0

and f ′′(y) ≥ 0, then

F(ρ) ≤
∫
Td

F̃ (ρ(x))ρ(x) dx, (15)

which is known as the price of anarchy.

2.4. Functional Hamilton-Jacobi equations in P(Td) for potential games.
In this section, we review the dynamic HJE (17) on the probability space P(Td) for
the value function U(ρ, t) in the mean field game (9) and recast the MFG system (13)
as a Hamiltonian dynamics (19) in terms of a functional Hamiltonian H. Precisely,
define a functional H : P(Td)× C1(Td) → R

H(ρ(·),Φ(·)) :=
∫
Td

H(x,∇xΦ(x))ρ(x) dx+ F(ρ). (16)

Then we have the following proposition showing that the value function in (9) solves
the dynamic HJE on the probability space P(Td). This proposition is reformulated
from [6, 7]. We refer to Appendix A for the proofs.

Proposition 2.4 ([6, 7]). Assume U(ρ, t) is a unique classical solution to the func-
tional HJE in P(Td)

∂tU(ρ, t) +H(ρ,
δU
δρ

) = 0, t ≤ T, U(ρ, T ) = G(ρ). (17)

Then U(ρ, t) is the value function defined in the mean field game (9). In detail,
(17) is recast as∂tU(ρ, t) +

∫
Td

H(x,∇x
δU
δρ

(ρ, x, t))ρ(x) dx+ F(ρ) = 0, t ≤ T,

U(ρ, T ) = G(ρ).

Notice the solution to functional HJE may not be unique and shall be understood
in the viscosity solution sense. In finite dimensions, the viscosity solution to HJE
is given by a Lax-Oleinik semigroup solution, which is exactly the value function in
the optimal control formulation. Naturally, the notion of the viscosity solution to
HJE (17) can also be defined as the value function in (9); see [28]. This definition
immediately provides the existence and uniqueness of the viscosity solution to HJE
(17). We refer to [28, 24] for careful study for the regularity of the viscosity solution
to (17), which is then used to obtain the unique classical solution to the master
equation for potential games under some assumptions.
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Notice by elementary computations,

δH
δΦ

(ρ,Φ, x) =−∇ · (∂pH(x,∇Φ(x))ρ(x))

δH
δρ

(ρ, x,Φ) =H(x,∇Φ(x)) + F (x, ρ),
(18)

where the argument x in the variation w.r.t. ρ or Φ is according to the definition (7).
We remark the continuity equation and HJE in (13) can be recast as a Hamiltonian
dynamics in terms of the functional Hamiltonian H in (16)

∂sρs(x) =
δH
δΦ

(ρs,Φs, x), ∂sΦs(x) = −δH
δρ

(ρs, x,Φs), t ≤ s ≤ T ;

ρt(x) = ρ(x), ΦT (x) = G(x, ρT ).
(19)

In the shorthand notations, the Hamiltonian system (19) can be regarded as curves
in function space

∂sρs =
δH
δΦ

(ρs,Φs), ∂sΦs = −δH
δρ

(ρs,Φs), t ≤ s ≤ T. (20)

In summary, we have the following corollary.

Corollary 2.5. Assume U(ρ, t) is a unique classical solution to (17). Then the
continuity equation in MFG system (13) can be solved from

∂sρs(x) =
δH
δΦ

(
ρs,

δU
δρ

(ρs, ·), x
)
, s ≤ t ≤ T, ρt = ρ. (21)

In other words, ρs solved in (21) is a Lagrangian graph in P(Td) and then Φs in
MFG system (13) can be solved by

∂sΦs(x) = −δH
δρ

(ρs, x,Φs), ΦT (x) = −δG
δρ

(ρT ). (22)

Meanwhile, the optimal velocity in the continuity equation in (9) is given by

vs(x) = ∂pH(x,∇Φs(x)) = ∂pH

(
x,∇δU

δρ
(ρs, x)

)
. (23)

Corollary 2.6. Suppose H(x, p) satisfies homogeneous degree β condition for the
second variable, i.e., H(x, λp) = λβH(x, p) for any λ ≥ 0. Then given the trajectory
(ρs,Φs), t ≤ s ≤ T of the MFG system (13), the value function U(ρ, t) can be
represented as

U(ρ, t) = G(ρT )− (β − 1)H0 + β

∫ T

t

F(ρs) ds, (24)

where H0 is a constant.

This Corallary will be used in Section 5 for closed formula solutions in applica-
tions.

2.5. Master equations for potential games in P(Td). In this section, we first
give a derived master equation (25) for u(x, ρ, t) in the case of potential games.
Inspired by the master equation for this special case, in the next section, we will
derive a master equation (26) for general mean field game and represent the solution
via a variational principle.
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We start from the potential game assumption, i.e., there exist functionals F ,G :
P(Td) → R such that (8) holds. Then we have the following lemma. This lemma
is reformulated from [7, Theorem 3.12].

Lemma 2.7 ([7]). Let U(ρ, t), t ≤ T be a solution to HJE (17) and assume (8)
holds. Denote u(x, ρ, t) := δ

δρU(ρ, x, t) + β(ρ, t) for some β(ρ, t). Then u(x, ρ, t)

satisfies the following functional PDE system

∂tu(x, ρ, t) +
δ

δρ
H(ρ, x, u(·, ρ, t)) = 0, t ≤ T, u(x, ρ, T ) =

δG
δρ

(ρ, x), (25)

where the last argument x in the variation is in the sense of definition (7). In detail,

∂tu(x, ρ, t) +H(x,∇xu(x, ρ, t)) +
δF
δρ

(ρ, x)

+

∫
DpH(y,∇yu(y, ρ, t))∇y[

δu

δρ
(x, ρ, y, t)]ρ(y) dy = 0, t ≤ T,

u(x, ρ, T ) =
δG
δρ

(ρ, x),

where the notation ∇y[
δu
δρ (y, ρ, x, t)] means that we first take the first variation

δu
δρ (y, ρ, x, t) of u(y, ρ, t) based on (7) and then take the derivative w.r.t the first

variable y.

2.6. Variational principle of master equations for general mean field games.

Without the assumption of potential games, the goal of this section is to derive
the master equation for u(x, ρ, t), t ≤ T describing the optimal strategy for both
individuals and their population

∂tu(x, ρ, t) +H(x,∇xu(x, ρ, t)) + F (x, ρ)

+

∫
DpH(y,∇yu(y, ρ, t))∇y[

δu

δρ
(x, ρ, y, t)]ρ(y) dy = 0, t ≤ T,

u(x, ρ, T ) = G(x, ρ).

(26)

This master equation for general MFG was first derived as the large number limit
of the Nash system describing the Nash equilibrium for N - player games [7, Section
1.2]. The solution to master equation fully characterizes the dynamics of individuals
and population behaviors and can be used to construct an approximated solution to
the Nash system for N - player games. The well-posedness for the master equation
(26) is only established very recently for general Hamiltonian by Gangbo and
Meszaros [24]. This kind of Hamiltonian in master equation H(x, p) + F (x, ρ) is
known as separable Hamiltonian. We also refer to [25] for the global well-posedness
on the master equation for MFG with non-degenerate individual noise and non-
separable Hamiltonian.

In this subsection, we will give a variational principle (29) in Proposition 2.9 for
the solution to the general master equation under the assumption of the uniqueness
of the solution to the master equation. This variational principle not only gives a
Lax-Oleinik type solution representation but also shows that to achieve the optimal
strategy, the individual players must take the optimal velocity determined by the
initial population state density ρ and the associated MFG system (13). We refer to
Appendix A for all the proofs of this section.

In potential games, the variational principle for master equation always holds
since the master equation is a derived equation from the functional HJE, which has
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a Lax-Oleinik representation. Instead, for the general games, one no longer has a
functional HJE. Nevertheless, the solution to the MFG system (13) still serves as a
guiding trajectories in the variational principle for the master equation.

Before deriving the master equation (26), we first give the following lemma show-
ing that the solution to the master equation along trajectory ρs, t ≤ s ≤ T , in (13)
coincides with Φs in the MFG system (13).

Lemma 2.8. Let (ρs(·),Φs(·)), s ∈ [t, T ] be a classical solution solving the mean
field game system (13). Assume there exists a classical solution u(x, ρ, t) to master
equation (26). We also assume the classical solution to the following nonlocal HJE
in terms of Ψ(x, s) is unique

∂sΨ(x, s) +H(x,∇xΨ(x, s)) +

∫
DpH(y,∇yΨ(y, s)) · ∇y[

δu

δρ
(x, ρs, y, s)]ρs(y)dy

=R(x, s),

Ψ(x, T ) = G(x, ρT ),

(27)
where R(x, s) is a given forcing term. Then

Φs(x) = u(x, ρs, s), t ≤ s ≤ T. (28)

Particularly, Φt(x) = u(x, ρ, t).

We point out, this lemma implies that the solution (ρs(·),Φs(·)), s ∈ [t, T ] MFG
system (13) can be regarded as a bi-characteristics for the master equation. That
is, given any ρ, t, one can solve (ρs(·),Φs(·)), s ∈ [t, T ] and then u(x, ρ, t) = Φt(x).
Based on this characteristic method for master equation, it is natural to consider
the case that there might be no classical solution to MFG system (13), however,
beyond classical solution, one can consider a Lax-Oleinik type solution represented
as a value function of the following variation principle.

Now we are ready to propose the variational principle for the master equation:

u(x, ρ, t) = sup
vs, xs

(
G(xT , ρT )−

∫ T

t

(L(xs, vs)− F (xs, ρs)) ds

)
,

s. t. ẋs = vs, t ≤ s ≤ T, xt = x,

(ρs(·),Φs(·)), s ∈ [t, T ] solves MFG system (13) with initial data ρt = ρ.

(29)
We will prove this variational principle in Proposition 2.9 and use it to show that
given any initial population state density ρ and MFG trajectory (ρs,Φs), t ≤ s ≤ T ,
the individual player at state xs will take the best velocity vs(xs), as a feedback
control determined by the initial population state density ρt = ρ. This also means
the individual player has the best strategy only if one follows the strategy in MFG
system, which is known as the Nash’s equilibrium. More precisely, we have

Proposition 2.9. Suppose u(x, ρ, t) is a classical solution to the general Master
equation (26). Under the same assumption as Lemma 2.8, we know u(x, ρ, t) can
be expressed as the value function defined in (29).

We refer to Appendix A for the proofs of Proposition 2.9. We remark that
equation (26) and (25) are the same equation in the case of potential games. The
variational formula (29) can be used to define a weak solution in the Lax-Oleinik
form for the master equation (26); see [28, Definition 7.3].



MASTER EQUATIONS FOR FINITE STATE MEAN FIELD GAMES 13

2.7. Derivation of master equations for mixed games. In this section, we
denote the state distribution of individual player q and the state distribution of
population ρ in a mixed game. We aim to derive the following master equation
which describes the optimal strategy for both individual state distribution and the
population’s one

∂tU(q, ρ, t) +

∫
[H(x,∇x

δU

δq
(q, x, ρ, t)) + F (x, ρ)]q(x) dx

+

∫
∇y

δU

δρ
(q, ρ, y, t) · ∂pH(y,∇y

δU

δq
(q, y, ρ, t))ρ(y) dy = 0, t ≤ T,

U(q, ρ, T ) =

∫
G(x, ρ)q(x) dx.

(30)

This is indeed a derived equation from the master equation (26) via U(q, ρ, t) =∫
u(x, ρ, t)q(x) dx; see Lemma 2.10. We will show a variational representation for

the solution to (30) in Proposition 2.11. Before that, we provide the following
lemma.

Lemma 2.10. Let u(x, ρ, t) be the unique classical solution to master equation (26).
Then

U(q, ρ, t) :=

∫
u(x, ρ, t)q(x) dx (31)

satisfies the mixed master equation (30). Meanwhile δU
δq (q, x, ρ, t) = u(x, ρ, t), and

along the trajectory (ρs,Φs), t ≤ s ≤ T of MFG system (13),

δU

δq
(q, x, ρs, s) = u(x, ρs, s) = Φs(x), t ≤ s ≤ T. (32)

Now we generalize the variational principle for the master equation (26) to the
mixed game case. We claim the solution to (30) can be represented by the following
maximal profit value function

U(q, ρ, t) = sup
vs(·),qs(·),ρs(·)

(∫
qT (x)G(x, ρT ) dx−

∫ T

t

(L(x, vs(x))− F (x, ρs)) qs(x) dx ds

)
,

s. t. ∂sqs +∇ · (qsvs) = 0, t ≤ s ≤ T, qt = q,

(ρs(·),Φs(·)) solves MFG system (13) with initial data ρt = ρ.

(33)
This variational principle means that given any initial population state densityρ
and MFG trajectory (ρs,Φs), then the individual player at state xs will take the
best velocity vs(xs) determined by the population initial state density ρ. Precisely,
we have

Proposition 2.11. Assume U(q, ρ, t) is the unique classical solution solving the
master equation (30) for mixed game. Then U(q, ρ, t) can be represented as the
value function defined in (33). Moreover, the optimal velocity field for the state
distribution qs of individual player in the continuity equation ∂sqs +∇ · (qsvs) = 0
is given by

vs(x) = ∂pH

(
xs,∇x

δU

δq
(qs, x, ρs, s)

)
, t ≤ s ≤ T. (34)

This is same as the optimal velocity for the population state distribution ps in the
continuity equation ∂sρs(x) +∇ · (ρs(x)∂pH(x,∇Φs(x))) = 0.

We refer to Appendix A for the proofs of Proposition 2.11.
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3. Continuity equation with nonlinear activation function θ(x, y) on finite
states: gradient flows and potential mean field games. In this section, we
study mean field game dynamics on a finite state space. We start from a continuous-
time Markov chain on finite states. To formulate mean field control problems on
finite states, we first recast and then relax the continuity equation associated with
the continuous-time Markov chain to a continuity equation (41) with a nonlinear
activation function θ(x, y). This activation function comes from gradient flow refor-
mulations for the original continuity equations; see strong Onsager’s gradient flow
(40) and generalized gradient flow (49). We then recall discrete Benamou-Brenier
formula (50), which is the optimal control version of the Wasserstein metric on dis-
crete space. This motivates the formulation of a class of potential mean field games
(53) and mean field game dynamics (55) on a finite state space. We also derive
the master equations (74) on a reversible Markov process in the case of potential
games.

3.1. Reversible Markov chains and Onsager’s gradient flow. Consider a
time-continuous reversible Markov chain on a finite state X :=

{
1, 2, · · · , n

}
. Let

Q be a Q-matrix (i.e., generator of the Markov chain) satisfying row sum zero
n∑

j=1

Qij = 0, Qij ≥ 0, for j ̸= i.

Denote the finite probability space as

P(X ) :=
{
(pi)

n
i=1 ∈ Rn :

n∑
i=1

pi = 1, pi ≥ 0
}
.

Then the Kolmogorov forward equation for the law pi(t), i = 1, · · · , n satisfies

dpi
dt

=
n∑

j=1

Qjipj =
n∑

j=1

(Qjipj −Qijpi) . (35)

Assume the Markov chain is reversible and hence there is a unique positive invariant
measure π = (πi)

n
i=1 ∈ Rn, πi > 0, satisfying the detailed balance relation

Qijπi = Qjiπj . (36)

From row sum zero, one directly verify that
∑n

j=1Qjiπj = 0 for i = 1, · · · , n.
Using the detailed balance relation (36), equation (35) can be recast in a sym-

metric form

dpi
dt

=
n∑

j=1

ωij(
pj
πj

− pi
πi

) =
n∑

j=1

ωij
pj
πj
, where ωij := Qijπi. (37)

Since
∑

j Qij = 0, we also have
∑

j ωij = 0. That is ωii = −
∑

j ̸=i ωij < 0. One has

directly that ω is nonpositive-definite matrix ω ∈ Rn×n satisfying
n∑

j=1

ωij = 0, ωij = ωji,
n∑

i,j=1

ξiωijξj = −1

2

∑
i̸=j

ωij(ξi − ξj)
2 ≤ 0 ∀(ξi)ni=1 ∈ Rn.

Below, we rewrite equation (35) as an Onsager’s gradient flow. For any convex
function ϕ(x), ϕ′′ > 0, we have

dpi
dt

=
n∑

j=1

ωijθij(p)

(
ϕ′(

pj
πj

)− ϕ′(
pi
πi

)

)
, (38)
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where

θij(p) = θ

(
pi
πi
,
pj
πj

)
, with θ (x, y) :=

x− y

ϕ′(x)− ϕ′(y)
. (39)

We now recast the above Kolmogorov forward equation as Onsager’s gradient flow
form. Define

Kij(p) := −ωijθij(p), j ̸= i, Kii(p) := −
n∑

j=1,j ̸=i

Kij(p).

Notice (Kij(p)) : P(X ) → Rn×n is a nonnegative definite matrix K(p) ∈ Rn×n

satisfying
n∑

j=1

Kij(p) = 0.

Define free energy, also named ϕ–divergence, on the finite probability spaces:

Dϕ(p∥π) :=
n∑

i=1

ϕ(
pi
πi

)πi.

Then (38) can be recast as a strong Onsager’s gradient flow

dp

dt
= −K(p)∇pDϕ(p∥π), in detail

dpi
dt

= −
n∑

j=1

Kij(p)ϕ
′(
pj
πj

) = −
n∑

j=1

Kij(p)∂pjDϕ(p∥π),

where −∇pDϕ(p∥π) is the generalized force and K is the Onsager’s response matrix.
The energy dissipation law can be derived directly:

d

dt
Dϕ(p∥π) = −1

2

n∑
i,j=1
i̸=j

ωijθij(p)
(
∂piDϕ(p∥π)− ∂pjDϕ(p∥π)

)2 ≤ 0.

We present two examples for various choices of ϕ.

Example 3.1. Take ϕ(x) = x2

2 , then one has the standard gradient flow, which is
exactly (37).

Example 3.2 (Logarithm mean). Equation (40) also forms a gradient flow of
Kullback–Leibler (KL) divergence in P. In detail, consider ϕ(x) = x log x − x + 1
and then θ becomes logarithmic mean

θ(x, y) =
x− y

log x− log y
.

Then the free energy function forms the KL divergence

DKL(p∥π) =
n∑

i=1

pi log
pi
πi
.

Then equation (40) becomes

dp

dt
= −K(p)∇pDKL(p∥π), (40)

where K(p) ∈ Rn×n is a symmetric non-negative definite matrix and ∇pDKL(p∥π) ∈
Rn is a vector. We refer to [48, 12, 51] for comprehensive studies on the Wasserstein-
2 gradient flow reformulation of (40) and the associated metric properties for
(P(X ),W2).
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It is easy to see that to formulate an Onsager’s gradient flow, θ(x, y) = x−y
ϕ′(x)−ϕ′(y)

with ϕ′′(x) > 0 will automatically satisfy (i) θ(x, y) = θ(y, x), (ii) θ(x, y) > 0 for
xy ̸= 0 and θ(x, y) ∈ C1. However, to formulate the mean field games, which is an
optimal control problem in P(X ), we need to relax the gradient flow as a general
continuity equation with nonlinear activation function θ(x, y) in the form of

d

dt
pi +

∑
j∈Ni

√
ωijθij(p)vij = 0, vij = −vji, i = 1, · · · , n. (41)

Here Ni is neighborhood index sets {j} of i such that ωij > 0. This discrete
continuity equation was proposed in Mass’s seminal paper [48] and used to study
the discrete Wasserstein distance in the Benamou-Brenier formulation as we will
explain in Definition 3.9. We remark in (41),

√
ωijθijvij represents a weighted net

flux from i to j, which is antisymmetric. Since the weight
√
ωijθij is symmetric,

hence vij is antisymmetric. More general representations for the fluxes read as

d

dt
pi +

∑
j∈Ni

(Jij − Jji) = 0, i = 1, · · · , n. (42)

This discrete continuity equation can be regarded as a dynamic version of Kirch-
hoff’s circuit laws on graphs, which will be rewritten in terms of a divergence opera-
tor on the graph in the next section. To ensure the positivity of pi in the continuity
equation (41), Mass proposed [48]

(iv) Positivity condition: θ(x, y) = 0, if xy = 0

and noticed that the logarithm mean in Example 3.2 satisfies this property. Due
to assumption (iv) for θ and the antisymmetric net flux in (41), the finite proba-
bility space is invariant, i.e., the continuity equation has positivity preserving, and
conservation of total probability. These four assumptions on θ were proposed in
[48].

From now on, we summarize the general properties of activation functions θ :
R+ × R+ → R+. Assume that the following conditions of θ hold:

(i)
θ(x, y) = θ(y, x);

(ii)
θ(x, y) > 0, if xy ̸= 0;

(iii)
θ(x, y) ∈ C1;

(iv)
θ(x, y) = 0, if xy = 0.

In the literature, nonlinear activation functions θ have been widely used in mod-
eling gradient flows and reaction-diffusion equations, for instance, in chemical reac-
tions [39, 49, 30], and evolutionary game theory [13, 43]. Given a high dimensional
point cloud, there are other natural ways to design a Markov chain on the point
cloud using geometric structures [32], which naturally provides an activation func-
tion.

There are other choices of activation functions θ other than the two examples
mentioned above. The following three activation functions (arithmetic mean, geo-
metric mean, and Harmonic mean) do not come from a convex function ϕ with
Onsager’s principle. However, we explain in the next subsection that it comes from
a generalized gradient flow.
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Example 3.3 (Arithmetic mean).

θ(x, y) =
x+ y

2
.

Example 3.4 (Geometric mean).

θ(x, y) =
√
xy.

Example 3.5 (Harmonic mean).

θ(x, y) =
2

1
x + 1

y

.

Notice Example 3.3 does not satisfy condition (iv).

3.2. Generalized gradient flow determines the activation functions θ(x, y).
We start from (37) and recast it as a generalized gradient flow w.r.t. the ϕ-
divergence Dϕ(p||π) =

∑
i ϕ(

pi

πi
)πi. A special example is Kullback–Leibler (KL)

divergence with ϕ(x) = x log x− x+ 1. From (37), we have

d

dt
Dϕ(p||π) =

∑
i

ϕ′(
pi
πi

)
dpi
dt

=
∑
i,j

ωijϕ
′(
pi
πi

)(
pj
πj

− pi
πi

)

=−
∑
i,j

1

2
ωij [ϕ

′(
pj
πj

)− ϕ′(
pi
πi

)](
pj
πj

− pi
πi

) ≤ 0.

(43)

Recall one choice of θ in (39), which can be rewritten as

ϕ′(x)− ϕ′(y) =
x− y

θ(x, y)
. (44)

Replacing
pj

πj
− pi

πi
using (44), then (43) becomes Onsager type dissipation relation

d

dt
Dϕ(p||π) =−

∑
i,j

1

2
ωijθij(p)[ϕ

′(
pj
πj

)− ϕ′(
pi
πi

)]2 ≤ 0. (45)

One indeed has more general choice of θ via general choice of dissipation function
ψ∗(ξ). Assume ψ∗(ξ) is an even, convex function and satisfies ψ∗(0) = 0. A directly
consequence of these conditions of ψ∗ is that

−(ψ∗)′(ξ) = (ψ∗)′(−ξ), ξ(ψ∗)′(ξ) ≥ 0.

Here ′ stands for derivative. Based on this, define a general θ such that

(ψ∗)′(ϕ′(x)− ϕ′(y)) =
x− y

θ(x, y)
. (46)

Then replacing
pj

πj
− pi

πi
using (46), then (43) becomes generalized dissipation relation

d

dt
Dϕ(p||π) =−

∑
i,j

1

2
ωijθij(p)[ϕ

′(
pj
πj

)− ϕ′(
pi
πi

)](ψ∗)′(ϕ′(
pj
πj

)− ϕ′(
pi
πi

)) ≤ 0.

(47)
We remark this general choice of θ based on given free energy function ϕ and
dissipation function ψ∗ always satisfies (i)-(iii) but assumption (iv) is not always
true; for instance Example 3.6 below.
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Based on this general choice of θ in (46), replacing
pj

πj
− pi

πi
using (46) again, the

forward equation (37) is recast as a generalized gradient flow

ṗi = −
∑
j

ωijθij(p)(ψ
∗)′
(
ϕ′(

pi
πi

)− ϕ′(
pj
πj

))

)
. (48)

Indeed, introduce the dissipation functional

Ψ∗(p, ξ) :=
1

2

∑
ij

ωijθij(p)ψ
∗(ξj − ξi).

Then ⟨∇ξΨ
∗(p, ξ), ξ̃⟩ = −

∑
ij ωijθij(p)(ψ

∗)′(ξj − ξi)ξ̃i and (48) becomes the gener-
alized gradient flow in a strong form

ṗ = ∇ξΨ
∗(p, ξ)

∣∣
ξ=−∇pDϕ(p||π)

. (49)

Particularly, taking ϕ(x) = x log x − x + 1, then ϕ′( pi

πi
) = log pi

πi
and we revisit

previous examples for activation functions as follows.

Example 3.6 (Arithmetic mean).

θ(x, y) =
x+ y

2
.

In this case, ψ∗(ξ) = 4 log(cosh(ξ/2)). Note that ψ∗(ξ) is not superlinear.

Example 3.7 (Geometric mean).

θ(x, y) =
√
xy.

In this case, ψ∗(ξ) = 4 cosh(ξ/2)− 4.

Example 3.8 (Harmonic mean).

θ(x, y) =
2

1
x + 1

y

.

In this case, ψ∗(ξ) = cosh(ξ)− 1.

This generalized gradient flow formulation for the jump process was first devel-
oped by [52]. We refer to [57] for a functional framework and analysis for generalized
gradient flows for jumping processes, as well as more general 1-homogeneous acti-
vation functions θ such as Stolarsky means.

3.3. Review of operators on weighted graphs and discrete optimal trans-
port. We first review standard calculus notations on a finite weighted graph. Then
we review discrete optimal transport problems in terms of the Benamou-Brenier for-
mula, which motivates an optimal control formulation for potential mean field games
on the finite probability space.

3.3.1. Calculus on finite weighted graphs. Consider a weighted graph G = (V,E, ω).
Here V := X = {1, 2, · · · , n} is the vertex set, and E := {(i, j), 1 ≤ i, j ≤ n, i ̸=
j, ωij > 0} is the edge index set with weights ωij > 0 for i ̸= j. Notice when we
say (i, j) ∈ E, then it automatically implies i ̸= j. Denote neighborhood index
sets Ni := {j : (i, j) ∈ E}. Given a function Φ: V → R, xi 7→ Φ(xi), denote Φi :=
Φ(xi) for i = 1, · · · , n. Then Φ can be identified as a vector (still denoted as Φ)
Φ = (Φ1, · · · ,Φn) ∈ Rn. For a function Φ, one defines a weighted gradient as a
function ∇ωΦ: E → R,

(i, j) 7→ (∇ωΦ)i,j :=
√
ωij (Φj − Φi).
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We call it a potential vector field on E. Obviously, it is antisymmetric

(∇ωΦ)i,j = −(∇ωΦ)j,i, (i, j) ∈ E.

A general vector field is a function on E such that v =
(
vij
)
(i,j)∈E

and is antisym-

metric
vij = −vji, (i, j) ∈ E.

The divergence of a vector field v is defined as a function divω (v) : E → R,

i 7→ divω (v)i :=
∑
j∈Ni

√
ωij vij .

For a function Φ on V , the graph Laplacian LωΦ: V → R is given by

LωΦ := divω

(
∇ωΦ

)
, i.e., i 7→ (LωΦ)i =

∑
j∈Ni

√
ωij (∇ωΦ)i,j =

∑
j∈Ni

ωij (Φj − Φi).

Using the fact that

ωii = −
∑
j∈Ni

ωij = −
n∑

j=1,j ̸=i

ωij ,

One identifies LωΦ = ωΦ , ω = (ωij) is a non-positive definite matrix. Laplacian
Lω defined above is called combinatorial Laplacian. Here we follow the convention
to regard the Laplacian operator as a non-positive operator. The definition of
operators ∇ω and divω is not unique. The choices of ∇ω and divω above are more
close to the continuum limit. Another common choice is more measure-theoretic.
Define ∇Φij = Φj − Φi, and div(J)i =

∑
j∈Ni

(J(i, j) − J(j, i)). In terms of our

notations, the net flux is divω (v)i =
∑

j∈Ni

√
ωijvij ; see [57] for more details. There

are also a normalized version of the graph Laplacian (a.k.a. probabilistic Laplacian)
to make the diagonal entries to be -1.

3.3.2. Discrete optimal transport problems. We recall the Definition 3.9 of the dis-
crete Wasserstein distance in the Benamou-Brenier formulation [48]. We also refer
to [20, 51] for the geodesic convexity of relative entropy and refer to [19, 58] for the
generalizations of nonlocal Wasserstein distances.

Consider the following generalized optimal control problem on the finite proba-
bility space.

Definition 3.9 ([48]). For any p0, p1 ∈ P(X ), α > 1, define the Wasserstein-α
distance Wα : P(X )× P(X ) → R as

Wα(p
0, p1)α := inf

pt,vt

{1
2

∫ 1

0

∑
(i,j)∈E

|vij(t)|α θij(pt)dt
}
, (50)

where the infimum is taken over continuously differentiable functions (pt, vt), t ∈
[0, 1] with vij = −vji, satisfying the discrete continuity equation with activation
function θ, i.e.,

d

dt
pt(i) + divω (θ(pt)vt)i = 0, p0 = p0, p1 = p1. (51)

In particular, if α = 2, W2 :=W is the discrete Wasserstein-2 distance [48].

Here and in the following context, (θ(pt)vt)ij is understood as θij(pt)vt(ij).
We notice that if in continuity equation (51) we take

vij = −
(
∇ω(ϕ

′(
p

π
))
)
i,j

= −√
ωij

(
ϕ′(

pj
πj

)− ϕ′(
pi
πi

)

)
,
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then it recovers the strong Onsager’s gradient flow (38). On the other hand, if we
take

vij =
√
ωij(ψ

∗)′
(
ϕ′(

pi
πi

)− ϕ′(
pj
πj

)

)
,

in the continuity equation (51), then it recovers the generalized gradient flow formu-
lation (49). In the next subsection, we generalize the optimal control formulation
in (3.9) to model potential mean field games on finite state spaces.

3.4. Potential mean field games and master equation on finite states. In
this subsection, we present the potential mean field game system on finite states (55)
and then derive the associated functional Hamilton-Jacobi equation (64) on P(X ),
whose bi-characteristics are the potential mean field game system (63). Finally, we
will also give a derived master equation (74) by directly taking derivatives in the
functional Hamilton-Jacobi equation (64).

Given a finite state space X =
{
1, 2, · · · , n

}
, we assume there exists a reversible

Markov chain (37) on X , which defines the weight ωij = Qijπi. This is equivalent
to prescribe a weighted undirected graph (V,E, ω). Then based on the assumptions
(i)-(iv) on the activation function θ(x, y) in Section 3.1, we are ready to set up
potential mean field games with the finite state set for players X =

{
1, 2, · · · , n

}
.

Denote pt = (pt(i))
n
i=1 ∈ P(X ) as the population state density at fixed t, which

represents the state density pi of the population at state i. To describe the dynamics
of the population state density ps, we regard vij in the continuity equation with
activation function θ(x, y) for ps as the control variable for the population. In
potential mean field games, the Nash equilibrium of all players aims to solve a
variational problem in the finite probability space. In detail, we define a potential
functional as F ∈ C1(P(X )) and we denote a terminal functional as G ∈ C1(P(X )).
We also consider a class of Lagrangian functions on a discrete set as a running cost.
Define Lij : R → R, such that

Lij(a) = Lji(a), for any (i, j) ∈ E, a ∈ R;
Lij(−a) = Lij(a), Lij(0) = 0;

Lij(a) is strictly convex and coercive (superlinear).

(52)

An example of Lij is given by

Lij(a) = a2.

Then we will see the running cost is exactly the discrete Benamou-Brenier formu-
lation (3.9) for the Wasserstein metric on P(X ).

Lemma 3.10. Assume L′′ ≥ 0, L(0) = 0 and θ(y, z) is concave w.r.t. (y, z). Then
we have the function Λ(x, y, z) := L( x

θ(y,z) )θ(y, z) is convex.

Proof. By elementary calculations, the second variation of Λ(x, y, z) is

d2

dε2

∣∣∣
ε=0

Λ(x+ εx̃, y + εỹ, z + εz̃) = θ[L(
x

θ
)− x

θ
L′(

x

θ
)]θ2 + L′′(

x

θ
)
x2

2θ
(x1 − θ1)

2 ≥ 0,

where x1 := x̃
x , θ1 :=

ỹθy+z̃θz
θ , θ2 := 1

2θ (ỹ
2θyy + 2ỹz̃θyz + z̃2θzz). Here in the first

term above, we used θ2 ≤ 0 due to concavity of θ, and L(v) − vL′(v) ≤ 0 due to
convexity of L and L(0) = 0.

We now define potential mean field games, which is formulated as an optimal con-
trol problem of population state density ps ∈ P(X ). This variational representation
(53) is discrete analogs of the one (9) in continuous state domain.
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Definition 3.11 (Potential games on finite state space). Denote a value function
U : P(X )× R+ → R as the maximum value of an optimal control problem

U(p, t) := sup
vs,ps

G(pT )−
∫ T

t

1

2

∑
(i,j)∈E

θij(ps)Lij(vs(ij))−F(ps)

 ds

 ,

s. t.
dps(i)

dt
+ divω (θ(ps)vs)i = 0, vs(ij) = −vs(ji), t ≤ s ≤ T, pt(i) = pi.

(53)
The above variational problem is taken among all continuously differentiable prob-
ability functions ps and vector field functions vs for the time interval s ∈ [t, T ].

Notice we add 1
2 factor in front of running cost to take into account the double

counting of vij due to vij = −vji.
We remark that in the optimal transport problem from p0 to p1 in the probability

space P(X ), [48, Theorem 3.12(2)] proved that the finiteness of Wasserstein distance
W (p0, p1) is equivalent to the support of p0 and p1 is invariant under some conditions
of θ(x, y). However, for our optimal control problem (53), the terminal density is
not fixed and is determined via a smooth terminal cost G. Thus an infinite running
cost is automatically excluded, and there is no need for additional conditions on θ.

Proposition 3.12. Assume L satisfies (52), θ(y, z) satisfies conditions (i)-(iv) and
θ(y, z) is further assumed to be concave w.r.t. (y, z). Moreover, suppose G(·) and
F(·) are concave. Then define mij := θij(p)vij and (53) can be reformulated as a
convex optimization problem for density-flux pair (ps,ms), t ≤ s ≤ T

U(p, t) := sup
(ms,ps)

G(pT )−
∫ T

t

1

2

∑
(i,j)∈E

θij(ps)Lij

(
ms(ij)

θij(ps)

)
−F(ps)

 ds

 ,

s. t.
dps(i)

dt
+ divω (ms)i = 0, ms(ij) = −ms(ji), t ≤ s ≤ T, pt(i) = pi.

(54)
Moreover, there exists a unique solution to this convex optimization problem.

From Lemma 3.10 and the assumptions for L, we know the total payoff is strictly
concave and coercive w.r.t the density-flux pair (ps,ms), t ≤ s ≤ T . Moreover, the
constraint is linear and hence concave. Thus this convex optimization problem has
a unique solution.

Next, we derive the Nash equilibrium of potential mean field games as the max-
imizer of variational problem (53).

Proposition 3.13 (Nash equilibrium in potential mean field games). Suppose the
assumption (52) on Lagrangian L holds. Let Hij be the convex conjugate of Lij,
i, j ∈ X . Assume ps > 0 for t ≤ s ≤ T , the Euler-Lagrange equations of variational
problem (53) are given below. (ps,Φs), t ≤ s ≤ T , satisfies

dps(i)

ds
+
∑
j∈Ni

√
ωijθij(ps)H

′
ij((∇ωΦs)i,j) = 0, t ≤ s ≤ T,

dΦs(i)

ds
+
∑
j∈Ni

Hij((∇ωΦs)i,j)
∂θij
∂pi

+
∂

∂pi
F(ps) = 0, t ≤ s ≤ T,

pt(i) = pi, ΦT (i) =
∂

∂pT (i)
G(pT ).

(55)
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Additionally, the optimal velocity in (53) is given by feedback control

vs(ij) = H ′
ij((∇ωΦs)i,j), (i, j) ∈ E.

Proof. We derive the Euler-Lagrange equations by using the Lagrangian multiplier
Φs = (Φs(i))

n
i=1, such that

sup
vs,ps,pT

inf
Φs

L(vs, ps, pT ,Φs). (56)

Here

L(vs, ps, pT ,Φs)

=G(pT )−
∫ T

t

1

2

∑
(i,j)∈E

Lij(vs(ij))θij(ps)−F(ps)

 ds−
∫ T

t

n∑
i=1

Φs(i)[
dps(i)

ds

+
∑
j∈Ni

√
ωijvs(ij)θij(ps)]ds

=G(pT )−
n∑

i=1

[ΦT (i)pT (i)− Φi(t)pt(i)] +

∫ T

t

n∑
i=1

ps(i)
d

ds
Φs(i)ds

−
∫ T

t

1

2

∑
(i,j)∈E

Lij(vs(ij))θij(ps)−
1

2

∑
(i,j)∈E

√
ωij(Φs(j)− Φs(i))vs(ij)θij(ps)−F(ps)

 ds,

where we have used the fact that∑
(i,j)∈E

=
n∑

i=1

∑
j∈Ni

.

Then the Euler-Lagrange equations are derived as

∂

∂vs(ij)
L = 0, (i, j) ∈ E;

∂

∂ps(i)
L = 0,

∂

∂Φs(i)
L = 0,

∂

∂pT (i)
L = 0, i ∈ V.

This implies that

(
L′

ij(vij)−
√
ωij(Φj − Φi)

)
θij(ps) = 0, (i, j) ∈ E

d

ds
Φs(i)−

∑
j∈Ni

[
Lij(vs(ij))−

√
ωij(Φs(j)− Φs(i))vs(ij)

] ∂

∂pi
θij(ps) +

∂

∂pi
F(ps) = 0,

d

ds
ps(i) +

∑
j∈Ni

√
ωijvs(ij)θij(ps) = 0,

ΦT (i) =
∂

∂pT (i)
G(pT ).

Based on the assumptions that ps > 0 and thus θij(ps) > 0, the first equation
becomes

L′
ij(vij)−

√
ωij(Φj − Φi) = 0, (i, j) ∈ E. (57)

By the definition of convex conjugate functions, we have

Hij(
√
ωij(Φj−Φi)) = sup

vij∈R1

(
vij ·

√
ωij(Φj− Φi)−Lij(vij)

)
, vij solves L′

ij(vij)=
√
ωij(Φj−Φi).

(58)
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Here ′ denotes the derivative and vij = H ′
ij(

√
ωij(Φj − Φi)) due to the derivatives

are inverse function of each other H ′ = (L′)−1. Hence we derive the equation:

dps(i)

ds
+
∑
j∈Ni

√
ωijθij(ps)H

′
ij(

√
ωij(Φs(j)− Φs(i))) = 0, t ≤ s ≤ T,

dΦs(i)

ds
+
∑
j∈Ni

Hij(
√
ωij(Φs(j)− Φs(i)))

∂θij(ps)

∂pi
+

∂

∂pi
F(ps) = 0, t ≤ s ≤ T,

pt(i) = pi, ΦT (i) =
∂

∂pT (i)
G(pT ).

(59)

Remark 3.14. We also compare our system to the MFG on graph associated with
the commonly used linear continuity equation on graph, which was first studied
in [34]; see also [18, 3] for the convergence analysis of the mean field limit from
N-player game and see [31] for the same controlled dynamics for general jump
processes. Starting from (37), one can consider a linear continuity equation with
αt(ij) being the controlled Q-matrix

dps(i)

ds
+
∑
j

(αt(ji)pt(j)− αt(ij)pt(i)) = 0. (60)

Here αij ≥ 0 for j ̸= i and
∑

j αij = 0. Then with the same notations for running
cost and terminal cost, we consider

U(p, t) := sup
αs,ps

G(pT )−
∫ T

t

1

2

n∑
i,j=1

ps(i)(αs(ij)− c)2 −F(ps)

 ds

 ,

s. t.
dps(i)

ds
+
∑
j

(αt(ji)pt(j)− αijpt(i)) = 0, t ≤ s ≤ T, pt(i) = pi.

(61)
Then by the same procedures in the above proposition, we have the Euler-Lagrangian
equations

dps(i)

ds
+
∑
j

(αt(ji)pt(j)− αt(ij)pt(i)) = 0, t ≤ s ≤ T, with αij = Φi − Φj + c

dΦs(i)

ds
+
∑
j

Hij(Φi − Φj) +
∂

∂pi
F(ps) = 0, t ≤ s ≤ T,

pt(i) = pi, ΦT (i) =
∂

∂pi
G(pT ).

Here Hij(β) =
β2

2 + cβ is the convex conjugate of the Lagrangian Lij(α) =
(α−c)2

2 .
Notice αij ≥ 0 for j ̸= i can be ensured by choosing the constant c sufficiently large
[18]. This coupled system is the mean field Nash equilibria on the graph that was
first proposed in [34]. However, we point out that the original graph structure and
the transition rate for the original jump process on that graph can not be maintained
in the control α. These lost structures could be recovered in the form of running
costs, but this procedure is rather complicated. Instead, our MFG formulation on
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a graph using the original Q-matrix and its invariant measure as an edge weight
ωij = Qijπi.

Again, we follow the dynamic programming principle to derive functional HJE
for value function U(p, t) in P(X ). Define a functional H : P × Rn → R as

H(p,Φ) :=
1

2

∑
(i,j)∈E

Hij((∇ωΦ)i,j)θij(p) + F(p). (62)

Proposition 3.15 (Hamilton-Jacobi equations on P(X )). The potential mean field
game system (55) is a Hamiltonian system in P(X )

d

ds
ps(i)=

∂

∂Φi
H(p,Φ),

d

ds
Φs(i)=− ∂

∂pi
H(p,Φ), t ≤ s ≤ T, pt(i)=pi,ΦT (i)=

∂

∂pT (i)
G(pT ).

(63)

Assume there exists a classical solution to the HJE in P(X )

∂

∂t
U(p, t) +H(p,∇pU(p, t)) = 0, t ≤ T, U(p, T ) = G(p). (64)

Then the value function in the mean field game (53) equals U(p, t) and (63) is the
bi-characteristics for HJE (64).

The HJE (64) reads as

∂

∂t
U(p, t) + 1

2

∑
(i,j)∈E

Hij

(
(∇ω∇pU(p, t))i,j

)
θij(p) + F(p) = 0, t ≤ T, U(p, T ) = G(p).

Here the notation means

(∇ω∇pU(p, t))i,j :=
√
ωij

( ∂

∂pj
U(p, t)− ∂

∂pi
U(p, t)

)
.

This ∇ω∇p is also the Wasserstein gradient ∇W in the discrete Wasserstein space,
as used in [24, 26].

Proof. We directly compute

∂

∂Φi
H(p,Φ) = −

∑
j∈Ni

√
ωijH

′
ij((∇ωΦ)i,j)θij(p), (65)

and

∂

∂pi
H(p,Φ) =

∑
j∈Ni

Hij((∇ωΦ)i,j)
∂θij(p)

∂pi
+

∂

∂pi
F(p). (66)

Hence equation (55) is a Hamiltonian system.
Denote the RHS of (53) as J(p, t). First, we prove J(p, t) ≤ U(p, t) for any C1

curve in P(X ), where U(p, t) is the solution to (64). Consider any C1 curve ps,
t ≤ s ≤ T , satisfying

d

ds
ps(i) +

∑
j∈Ni

√
ωijvs(ij)θij(ps) = 0, t ≤ s ≤ T, (67)



MASTER EQUATIONS FOR FINITE STATE MEAN FIELD GAMES 25

with any velocity vs(ij) for t ≤ s ≤ T . Then for any function ps(ij) with ps(ij) =
−ps(ji) , the running cost is∫ T

t

1

2

∑
(i,j)∈E

Lij(vs(ij))θij(ps)−F(ps)

 ds

≥
∫ T

t

1

2
[
∑

(i,j)∈E

vs(ij) · ps(ij)−Hij(ps(ij))]θij(ps)−F(ps)

 ds.

(68)

Taking the feedback control as ps(ij) = (∇ω∂pUs)i,j , we have

∫ T

t

[
∑

(i,j)∈E

1

2
vs(ij) · (∇ω∇pUs)i,j −

1

2
Hij(ps(ij))]θij(ps) − F(ps)

 ds

=

∫ T

t

 ∑
(i,j)∈E

1

2
vs(ij) · (∇ω∇pUs)i,jθij(ps) + ∂sU − ∂sU −

∑
(i,j)∈E

1

2
Hij(ps(ij))θij(ps) − F(ps)

 ds

=

∫ T

t

 ∑
(i,j)∈E

1

2
vs(ij) · (∇ω∇pUs)i,jθij(ps) + ∂sU

 ds,

(69)
where we used the equation (64) for U . Notice (67) and θijvij is antisymmetric.
Then
n∑

i=1

∂piUs · ṗi = −
n∑

i=1

∑
j∈Ni

∂piUs ·
√
ωijvs(ij)θji(ps) =

∑
(i,j)∈E

1

2
vs(ij) · (∇ω∇pUs)i,jθij(ps).

Thus the RHS of (69) becomes∫ T

t

d

ds
Us(ps) ds = U(pT , T )− U(p, t). (70)

Rearranging terms and taking supermum, this implies that the solution U(p, t) to
(64) always satisfies

U(p, t) ≥ J(p, t). (71)

Second, we prove the optimal curve in (53) is achieved at

vs(ij) = H ′
ij((∇ω∇pUs)i,j). (72)

And the optimal feedback control is Φs(i) = ∂piU(ps(i), s). Indeed, along (72)
the equality in (68) is achieved and the same argument gives that maximum profit
equals U(p, t).

We last derive master equations for potential mean field games in P(X ). Define
a vector functional u(p, t) = (ui(p, t)) : P(X ) × [0, T ] → Rn by u(p, t) = ∇pU(p, t),
i.e.,

ui(p, t) =
∂

∂pi
U(p, t). (73)

Proposition 3.16 (Master equations for potential mean field games in P(X )). The
vector functional u(p, t) defined in (73) satisfies the following master equation

∂

∂t
ui(p, t) +Dpi

H(p, u(p, t)) = 0, t ≤ T, u(p, T ) = ∇pG(p). (74)
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In detail,

∂

∂t
ui(p, t) +

∑
j∈Ni

Hij((∇ωu(p, t))i,j)
∂

∂pi
θij(p) +

∂

∂pi
F(p)

+
1

2

∑
(j,k)∈E

H ′
jk((∇ωu(p, t))j,k)(∇ω∇pui(p, t))j,kθjk(p) = 0, t ≤ T,

with

ui(p, T ) =
∂

∂pi
G(p).

Here, the notations read

(∇ωu(p, t))i,j=
√
ωji(uj(p, t)− ui(p, t)), (∇ω∇pui(p, t))j,k=

√
ωkj

( ∂

∂pk
ui(p, t)−

∂

∂pj
ui(p, t)

)
.

Proof. We compute ∂pi
H(p, u(p, t)) directly. From (65) and (66), we have

∂piH(p, u(p, t))

=
∂

∂pi
H(p, u) +

n∑
k=1

∂

∂uk
H(p, u)

∂

∂pi
uk(p, t)

=
∑
j∈Ni

Hij((∇ωu)i,j)
∂θij
∂pi

+
∂

∂pi
F(p)

+
n∑

k=1

[
∑
j∈Nk

H ′
jk(

√
ωjk(uk − uj))

√
ωjkθjk(p)]

∂

∂pi
uk(p, t)

=
∑
j∈Ni

Hij((∇ωu)i,j)
∂θij
∂pi

+
∂

∂pi
F(p)

+
1

2

∑
(j,k)∈E

H ′
jk((∇ωu)j,k)θjk(p)

√
ωjk

( ∂

∂pi
uk(p, t)−

∂

∂pi
uj(p, t)

)
.

We also notice ∂
∂pi

uk = ∂
∂pk

ui due to (73). Thus, this finishes the proof.

4. General mean field games and master equations on finite states. In
this section, we discuss general mean field games on finite states. We first present
the mean field game system and derive its master equation. We next formulate
the mixed strategy master equation on a finite state space. A connection between
mixed and classical master equations on finite states is also provided.

4.1. Mean field game systems on finite states. In this subsection, we gener-
alize the mean field game systems (55) for the population state density ps and the
population policy function Φs from potential games to general mean field games.
Define a C1 vector potential function F : P(X ) → Rn, such that F (p) = (Fi(p))

n
i=1.

Denote a C1 vector terminal function G : P(X ) → Rn, such that G(p) = (Gi(p))
n
i=1.

Definition 4.1 (General discrete MFG system). For the general mean field games,
the MFG system on finite states, a.k.a. the Nash equilibrium, is given by (ps,Φs),
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t ≤ s ≤ T satisfying

dps(i)

ds
+
∑
j∈Ni

√
ωijθij(ps)H

′
ij((∇ωΦs)i,j) = 0, t ≤ s ≤ T,

dΦs(i)

ds
+
∑
j∈Ni

Hij((∇ωΦs)i,j)
∂θij(ps)

∂pi
+ Fi(ps) = 0, t ≤ s ≤ T,

pt(i) = pi, ΦT (i) = Gi(pT ).

(75)

We remark that the solution to (75) is unique if one further assume the Lasry-
Lions monotonicity condition for F and G, i.e.,∑

i

(Fi(p)− Fi(q))(pi − qi) ≤ 0,
∑
i

(Gi(p)−Gi(q))(pi − qi) ≤ 0.

Notice in the potential game case, the concavity of F and G automatically implies
this monotone condition.

Next, we show that equation system (75) generalizes the one in potential mean
field games.

Proposition 4.2. Suppose that F and G are gradient vector functions. In other
words, there exists functionals F , G, such that

Fi(p) =
∂

∂pi
F(p), Gi(p) =

∂

∂pi
G(p).

Then equation system (75) satisfies the critical point of variational problem (53).

Proof. The proof follows from Definition 4.1. If F , G are gradient vector functions,
then equation (75) forms the Euler-Lagrange equation (55). This finishes the proof.

We remark equation (75) is more general than (55). For example, consider F (p) =
Wp, W ∈ Rn×n. If W ̸= WT, then F is not a gradient vector function. In this
case, equation (55) is not an Euler-Lagrange equation from potential games.

4.2. Master equations for general mean field games in P(X ). In this sub-
section, we propose a master equation for general mean field games in P(X ). This
describes the optimal strategies for both individual players and population.

Given Fi(p) and Gi(p) for i ∈ X , we define a vector value function

u : P(X )× R+ → Rn, (p, t) 7→ u(p, t) = (ui(p, t))
n
i=1,

such that (ui(t, p))
n
i=1 satisfies

∂

∂t
ui(p, t) +

∑
j∈Ni

Hij((∇ωu(p, t))i,j)
∂

∂pi
θij(p) + Fi(p)

+
1

2

∑
(j,k)∈E

H ′
jk((∇ωu(p, t))j,k)(∇ω∇pui(p, t))j,kθjk(p) = 0, t ≤ T,

(76)

with boundary condition at t = T

ui(p, T ) = Gi(p).

The following lemma shows that the solution to the master equation along tra-
jectory ρs in (75) coincides with Φs in the MFG system (75) on finite states.
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Lemma 4.3. Let (ps,Φs), t ≤ s ≤ T be a classical solution to the discrete mean
field game system (75). Let u(p, t) be a classical solution to (76). Then we have

Φs(i) = ui(ps(·), s) =: Φ̃i(s), t ≤ s ≤ T. (77)

Proof. In order to compare Φs(i) and Φ̃i(s) as PDE solutions, we denote Φi(s) =
Φs(i). Taking the time derivative w.r.t. s, we have

d

ds
Φ̃i(s) =

d

ds
ui(ps, s).

Hence
d

ds
Φ̃i(s)−

d

ds
Φi(s)

=∂sui(ps, s) +

n∑
k=1

∂

∂pk
ui(ps, s)

d

ds
ps(k)

+
∑
j∈Ni

Hij(
√
ωij(Φj(s)− Φi(s)))

∂θij(ps)

∂pi
+ Fi(ps)

=∂sui(ps, s) +

n∑
k=1

∂

∂pk
ui(ps, s)

(
−

∑
j∈Nk

H ′
kj(

√
ωkj(Φj(s)− Φk(s)))

√
ωkjθkj(ps)

)
+Hij(

√
ωij(Φj(s)− Φi(s)))

∂θij(ps)

∂pi
+ Fi(ps)

=∂sui(ps, s) +
1

2

∑
(j,k)∈E

√
ωkj

( ∂

∂pj
ui(ps, s)−

∂

∂pk
ui(ps, s)

)
H ′

kj(
√
ωkj(Φj(s)−Φk(s)))θkj(ps)

+
∑
j∈Ni

Hij(
√
ωij(Φj(s)− Φi(s)))

∂θij(ps)

∂pi
+ Fi(ps).

Then we apply the master equation for u to replace the first term in the last line

d

ds
Φ̃i(s)−

d

ds
Φi(s)

=
1

2

∑
(j,k)∈E

√
ωkj

( ∂

∂pj
ui(ps, s)−

∂

∂pk
ui(ps, s)

)
H ′

kj(
√
ωkj(Φj(s)− Φk(s)))θkj(ps)

+
∑
j∈Ni

Hij(
√
ωij(Φj(s)− Φi(s)))

∂θij(ps)

∂pi
+ Fi(ps)

− 1

2

∑
(j,k)∈E

√
ωjk

( ∂

∂pj
ui(ps, s)−

∂

∂pk
ui(ps, s)

)
H ′

kj(
√
ωjk(Φ̃j(s)− Φ̃k(s)))θkj(ps)

−Hij(
√
ωij(Φ̃j(s)− Φ̃i(s)))

∂θij(ps)

∂pi
− Fi(ps).

We move all the terms involving Φ to the left hand side and Φ̃ terms to the right
hand side

d

ds
Φi(s)

+
1

2

∑
(j,k)∈E

√
ωkj

( ∂

∂pj
ui(ps, s)−

∂

∂pk
ui(ps, s)

)
H ′

kj(
√
ωkj(Φj(s)− Φk(s)))θkj(ps)

+
∑
j∈Ni

Hij(
√
ωij(Φj(s)− Φi(s)))

∂θij(ps)

∂pi
)
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=
d

ds
Φ̃i(s)

+
1

2

∑
(j,k)∈E

√
ωjk

( ∂

∂pj
ui(ps, s)−

∂

∂pk
ui(ps, s)

)
H ′

kj(
√
ωjk(Φ̃j(s)− Φ̃k(s)))θkj(ps)

+Hij(
√
ωij(Φ̃j(s)− Φ̃i(s)))

∂θij(ps)

∂pi
=: Ri(s)

Now we regard above as an ODE system for the unknowns Φi(s), i = 1, · · · , n with
known force term Ri(s). At the termal time T , we have

Φi(T ) = Gi(pT ) = ui(pT , T ) = Φ̃i(T )

It is obvious that Φi(s) = Φ̃i(s) is one solution to this ODE. From the uniqueness
of ODE, we obtain

Φi(s) = Φ̃i(s), t ≤ s ≤ T.

This finishes the derivation.

We remark that we did not use the uniqueness of the master equation (80).
However, we refer to [18, section 3.4.3] for the uniqueness of the solution to the
master equation on graph for the case that continuity equation is linear, which uses
the stability result for the corresponding forward-backward SDEs. On the other
hand, with the same setup but not necessary separable Hamiltonian, the existence
and uniqueness of viscosity solution in Wasserstein space for the functional HJE
for (64) was obtained in [26]. If the classical solution to MFG system (75) exists,
then the viscosity solution becomes classical solution to HJE (64). Particularly,
under the assumption in Proposition 3.12, there exists a unique classical solution to
potential game (55). We also remark that for potential games in Rd, the existence
and uniqueness of the classical solution to the deterministic master equation were
established in [24], based on the regularities of the viscosity solution to the functional
HJE under certain assumptions.

4.2.1. Mixed strategy master equations on finite states. In this subsection, we in-
troduce a master equation for mixed strategy on finite states, which describes the
optimal strategy selection for both individual state density and population state
density.

Each individual player in the population makes their strategy or control repre-
sented by velocity field vij to jump among the finite states as a controlled stochastic
process in the finite state space with the density qs at time s. The dynamics of qs is
represented as a discrete continuity equation with activation function θ and veloc-

ity field vs,
dqi(s)

ds + divω (θ(qs)vs) = 0. To describe the optimal strategy selection
for both individual state density q and population state density p, denote a value
function U : P(X ) × P(X ) × R+ → R. We introduce a master equation for mixed
game.

Let ui(p, s) be the solution to discrete master equation (76). Multiply qi to
discrete master equation (76) and sum up. We have

∂

∂t

∑
i

qiui(p, t) +
∑
i

∑
j∈Ni

Hij((∇ωu(p, t))i,j)qi
∂

∂pi
θij(p) +

∑
i

qiFi(p)

+
1

2

∑
i

∑
(j,k)∈E

H ′
jk((∇ωu(p, t))j,k)(∇ω∇pui(p, t))j,kθjk(p)qi = 0, t ≤ T,

(78)
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Then take U(q, p, t) :=
∑n

i=1 qiui(p, t), we have

∂tU(q, p, t) +
∑

(i,j)∈E

Hij

(
(∇ω∇qU(q, p, t))i,j

)
qi

∂

∂pi
θij(p) +

n∑
i=1

qiFi(p)

+
1

2

∑
(i,j)∈E

H ′
ij

(
(∇ω∇qU(q, p, t))i,j

)
·
(
∇ω∇pU(q, p, t)

)
i,j
θij(p) = 0.

(79)
Therefore, we obtained U(q, p, t) satisfies the following discrete mixed game master
equation.

∂tU(q, p, t) +
∑

(i,j)∈E

Hij

(
(∇ω∇qU(q, p, t))i,j

)
qi

∂

∂pi
θij(p) +

n∑
i=1

qiFi(p)

+
1

2

∑
(i,j)∈E

H ′
ij

(
(∇ω∇qU(q, p, t))i,j

)
·
(
∇ω∇pU(q, p, t)

)
i,j
θij(p) = 0, t ≤ T,

U(q, p, T ) =
n∑

i=1

qiGi(p).

(80)
Furthermore, Lemma 4.3 then implies

∂qiU(q, p(·, s), s) = ui(p(·, s), s) = Φi(s). (81)

5. Mean field game systems on a two-point space. In this section, we present
several mean field game examples on a two-point state space X = {1, 2}. They
illustrate the proposed discrete mean field game models by finding the first integral
of the associated Hamiltonian systems. Then we find solutions of the Hamiltonian
systems by converting them into first-order equation (84). For example, we compute
Wasserstein-α distances on a two-point state space X . We also compute solutions in
mean field planning problems and potential mean field games with general potential
and terminal energies.

5.1. Problem formulation. We first apply the mean field game system (55) on
a two-point state space, denoted as X = {1, 2}. Given a weight ω12 = ω21 > 0,
denote p = (p1, p2)

T ∈ P(X ) ⊂ R2 as the population state density. We assume
that H12(a) = H12(−a), for a ∈ R1. Denote F ,G : P(X ) → R as potential and
terminal energies on the finite probability space. Write Fi(p) = ∂

∂pi
F(p) and

Gi(p) =
∂

∂pi
G(p), i = 1, 2. Concretely, we consider

F(p) =
1

2
W11p

2
1 +W12p1p2 +

1

2
W22p

2
2,

where W11, W12 =W21, W22, are constants. In this case,

F1(p) =W11p1 +W12p2, F2(p) =W21p1 +W22p2.
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We now present the discrete mean field game system (55) on the two-point state
space: 

dp1(s)

ds
+
√
ω12θ12(ps)H

′
12(

√
ω12(Φ2(s)− Φ1(s))) = 0,

dp2(s)

ds
+
√
ω12θ12(ps)H

′
12(

√
ω12(Φ1(s)− Φ2(s))) = 0,

dΦ1(s)

ds
+H12(

√
ω12(Φ2(s)− Φ1(s)))

∂θ12
∂p1

(ps) + F1(ps) = 0,

dΦ2(s)

ds
+H12(

√
ω12(Φ1(s)− Φ2(s)))

∂θ12
∂p2

(ps) + F2(ps) = 0,

(p1(t), p2(t)) = (p1, p2), (Φ1(T ),Φ2(T )) = (G1(pT ), G2(pT )).

We demonstrate that the above mean field game dynamics can be further sim-
plified. We can reduce the number of variables from 4 to 2. Denote x(s) := p1(s) ∈
[0, 1], p2(s) = 1− x(s), y(s) := Φ1(s)− Φ2(s), h =

√
ω12 > 0, H(a) := H12(a), and

θ(x) := θ12(p). Note ∂
∂p1

θ12(p) − ∂
∂p2

θ12(p) = d
dxθ(x) = θ′(x). Thus, we rewrite

equation (55) below:
dxs
ds

− hθ(xs)H
′(hys) = 0,

dys
ds

+H(hys)θ
′(xs) + F1(xs)− F2(xs) = 0,

xt = x, yT = G1(xT )−G2(xT ).

(82)

5.2. Closed formula solutions. From now on, we solve the mean field game ODE
system (82) in detail. Equation (82) can also be recast as a Hamiltonian system:

dxs
ds

=
∂

∂y
H(xs, ys),

dys
ds

= − ∂

∂x
H(xs, ys), t ≤ s ≤ T, (83)

where the Hamiltonian function for (83) is given by

H(x, y) = H(hy)θ(x) + F̄ (x), with F̄ ′(x) := F1(x)− F2(x).

Hence H(xs, ys) ≡ H0 for some constant H0. We solve an implicit function y(x),
such that

H(x, y(x)) = H0.

Therefore, y is a function of x satisfying

H(hy) =
1

θ(x)

(
H0 − F̄ (x)

)
.

Based on the above formula, we reduce equation (82) into a first-order ODE for
xs, t ≤ s ≤ T and H0,

dxs
ds

= f(xs;H0),

f(x;H0) :=
∂

∂y
H(x, y(x;H0)) with y(x;H0) =

1

h
H−1

(
H0 − F̄ (x)

θ(x)

)
,

xt = x, y(xT ) = G1(xT )−G2(xT ).

(84)

Hence one can reduce this ODE as algebraic equations for xT and H0

T − t =

∫ xT

x

1

f(x;H0)
dx, θ(xT )H(h(G1(xT )−G2(xT ))) + F̄ (x) = H0.
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One can use numerical schemes, such as a shooting method, to find a constant H0

and xT .
In the following examples, we first consider a special case that the ending state

xT is given, i.e., the optimal transport and the mean field planing problems. Then
one only needs to solve T − t =

∫ xT

x
1

f(x;H0)
dx. After that, we solve two potential

mean field game problems.

Example 5.1 (Discrete Wasserstein distances [48]). Maas provides closed form

solutions when L(a) = a2

2 , H(a) = a2

2 , F1 = F2 = 0, with initial-terminal time
boundary conditions

xt = p01, xT = p11, t = 0, T = 1,

where p01, p
1
1 are constants in [0, 1]. Note that H−1(a) =

√
2a, H ′(a) = a. Hence

f(x;H0) = h
√
2H0θ(x).

In this case, we have

1 =

∫ p1
1

p0
1

1

f(x;H0)
dx =

1

h
√
2H0

∫ p1
1

p0
1

1√
θ(x)

dx. (85)

From the definition of the discrete Wasserstein distance in Definition 3.9, we have

W (p01, p
1
1) =

√
2H0 =

1

h

∫ p1
1

p0
1

1√
θ(x)

dx.

Example 5.2 (Generalized Wasserstein distances). Consider a general function
H(a), F1 = F2 = 0, with initial-terminal time boundary conditions

xt = p01, xT = p11, t = 0, T = 1,

where p01, p
1
1 are constants in [0, 1]. Hence

f(x;H0) = hH ′(H−1(
H0

θ(x)
))θ(x).

Thus

1 =

∫ p1
1

p0
1

1

f(x;H0)
dx =

1

h

∫ p1
1

p0
1

1

H ′(H−1( H0

θ(x) ))θ(x)
dx.

Particularly, take H(a) = |a|β
β , β > 1 and L(a) = |a|α

α with 1
α + 1

β = 1. Then

H ′(a) = a|a|β−2, H−1(a) = (βa)
1
β . Hence

1 =

∫ p1
1

p0
1

1

f(x;H0)
dx =

1

hβ
β−1
β H

β−1
β

0

∫ p1
1

p0
1

1

θ(x)
1
β

dx.

Based on the discrete version of Corollary 2.6, we have
Wα

α

α = (β − 1)H0 = β
αH0.

Thus

Wα(p
0, p1) = β

1
αH

1
α
0 =

1

h

∫ p1
1

p0
1

1

θ(x)
1
β

dx.

If β = α = 2, it recovers the formula (85) and the discrete Wasserstein-2 distance
in Example 5.1.
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Example 5.3 (Mean field planning problems). We study a mean field planning
problem [56], which is a mean field game problem with fixed initial and terminal

densities. Consider H(a) = |a|2
2 with

F1(x) = (W11 −W12)x+W12, F2(x) = (W21 −W22)x+W22,

and boundary conditions

xt = p01, xT = p11.

In this case,

H(x, y) =
y2

2
θ(x)+ F̄ (x), F̄ (x) =

1

2
(W11−W12−W21+W22)x

2+(W12−W22)x.

Hence

f(x;H0) = h
√
2(H0 − F̄ (x))θ(x).

Hence

1 =

∫ p1
1

p0
1

1

f(x;H0)
dx =

1

h

∫ p1
1

p0
1

1√
2(H0 − F̄ (x))θ(x)

dx.

We need to solve for a constant H0. This can be computed by Newton’s iteration
method.

Example 5.4 (Potential mean field games I). We consider a simple potential mean
field game dynamics with a zero potential energy F1 = F2 = 0. And the terminal

time boundary condition is G = G1 − G2. Consider H(a) = a2

2 . We also choose

t = 0, T = 1 and initial state xt=0 = p01, where p
0
1, p = p11 are constants in [0, 1].

Note that H−1(a) =
√
2a, H ′(a) = a. Hence

f(x;H0) = h
√
2H0θ(x).

Similarly, we need to solve for two constants p ∈ [0, 1], H0, such that

1 =
1

h
√
2H0

∫ p

p0
1

1√
θ(x)

dx,

1

h

√
2H0 =

√
θ(p)G(p).

This reduces to an equation for p, such that

h2
√
θ(p)G(p) =

∫ p

p0
1

1√
θ(x)

dx.

This p can be solved by Newton’s iteration method. Then one can further solve H0.

Example 5.5 (Potential mean field games II). We study a general potential mean

field game with given potential and terminal energies. Consider H(a) = |a|2
2 ,

F1(x) = (W11 −W12)x+W12, F2(x) = (W21 −W22)x+W22,

and G = G1 −G2. We also choose t = 0, T = 1 and initial state xt=0 = p01, where
p01, p = p11 are constants in [0, 1]. Hence

f(x;H0) = h
√

2(H0 − F̄ (x))θ(x).
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Hence we solve for constants p ∈ [0, 1], H0, such that

1 =

∫ p

p0
1

1

f(x;H0)
dx =

1

h

∫ p

p0
1

1√
2(H0 − F̄ (x))θ(x)

dx,

1

h

√
2(H0 − F̄ (p)) =

√
θ(p)G(p).

Again Newton’s iteration method can be used.

6. Discussion. We consider various mean field games including potential games,
non-potential games and mixed games for both continuous and discrete state space.
The associated value functions (the optimal payoff function achieved by the optimal
strategy) are in the framework of Lasry and Lions’s original idea that the opti-
mal strategy for individual players are always given by feedback controls and thus
the search for the Nash equilibrium can be reduced to finding solutions to MFG
system. In potential games, those trajectories of MFG system are indeed the bi-
characteristics of a functional HJE for both continuous and finite state space. The
solution to a master equation for the value function describing the optimal payoff for
both individual players and the population contains comprehensive information and
can be used to construct an approximated solution to the N -player Nash system.
We also give some variational derivations for master equations in various games.

We highlight the choice of the controlled dynamics for finite state games is given
by a continuity equation on graph with a nonlinear activation function. It is mo-
tivated by gradient flow reformulations for the forward equation of a reversible
Markov chain in both Onsager’s strong form and a generalized gradient flow form.
After introducing the finite state payoff function, all the functional HJE, MFG sys-
tems and master equations are derived with a variational principle that resembles
the continuous case. Concrete examples, including Wasserstein-α distances, mean
field planning problems, and potential mean field games for two-point state space
are given for various games with closed formula solutions. The mean field game
system and master equations on finite state spaces now have a comprehensive vari-
ational structure resembling the continuous version and thus can be directly used
in modeling and computations with vast applications.
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[56] C. Orrieri, A. Porretta and G. Savaré, A variational approach to the mean field planning

problem, Journal of Functional Analysis, 277 (2019), 1868-1957.

[57] M. A. Peletier, R. Rossi, G. Savare and O. Tse, Jump processes as generalized gradient flows,

Calculus of Variations and Partial Differential Equations, 61 (2022), 1-85.
[58] D. Slepcev and A. Warren, Nonlocal wasserstein distance: Metric and asymptotic properties,

Calc. Var. Partial Differential Equations , 62 (2023), Paper No. 238, 66 pp.
[59] C. Villani, Optimal Transport: Old and New , Number 338 in Grundlehren Der Mathematis-

chen Wissenschaften. Springer, Berlin, 2009.

[60] B. Zhang and M. Katsoulakis, A mean-field games laboratory for generative modeling,

arXiv:2304.13534, 2023.

Appendix A. Some proofs for continuous state MFGs in Section 2. In the
appendix, we provide pedagogical proofs for lemmas and propositions in Section 2.

Proof of Proposition 2.1. Denote the value function given by the right-hand-side
(RHS) of (1) as J(x, t). First, we prove the value function J(x, t) for any C1 curve is
always smaller than the solution Φ(x, t) to (5). For any C1 curve xs with the velocity
ẋs for t ≤ s ≤ T and for any ps, by definition of the Legendre transformation, we
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have∫ T

t

(L(xs, ẋs)− F (xs, ρs)) ds ≥
∫ T

t

(ẋs · ps −H(xs, ps)− F (xs, ρs)) ds. (86)

Using the solution Φ(x, t) to (5), we take the feedback control as ps = ∇Φ(xs, s).
By the fundamental theorem for integrals and (5),∫ T

t

(ẋs · ps −H(xs, ps)− F (xs, ρs)) ds

=Φ(xT , T )− Φ(xt, t) = G(xT , ρT )− Φ(x, t).

(87)

Rearranging terms and taking supremum, this implies the solution Φ(x, t) to (5)
always satisfies

Φ(x, t) ≥ sup
vs,xs

(
G(xT , ρT )−

∫ T

t

(L(xs, vs)− F (xs, ρs)) ds

)
= J(x, t). (88)

Second, we prove the optimal curve in (1) is given by

ẋs = ∂pH(xs,∇Φ(xs, s)), t ≤ s ≤ T ; xt = x, (89)

where Φ(x, t) is the solution to (5). In other words, the optimal curve is given by
a Lagrangian graph where the velocity vs = ∂pH(xs,∇Φ(xs, s)) is a function of xs.
Meanwhile, the associated maximum value equals Φ(x, t). Indeed, along ODE (6),
the optimality for the Legendre transformation is achieved for ps = ∂vL(xs, vs) =
∇Φ(xs, s), so

L(xs, ẋs) = ∂pH(xs,∇Φ(xs, s)) · ∇Φ(xs, s)−H(xs,∇Φ(xs, s)). (90)

Thus the equality in (86) is achieved and same argument as (87) gives that maximum
value equals Φ(x, t).

Proof of Proposition 2.4. Denote the right-hand side of (9) as J(ρ, t). First, we
prove that for any C1 curve ρs in P(Td), J(ρ, t) is always smaller than the solution
U(ρ, t) to (17). Consider any C1 curve ρs, s ∈ [t, T ] satisfying

∂sρs +∇ · (ρsvs) = 0

with some velocity field vs(x) for t ≤ s ≤ T . Then for any function ps(x), the
running cost satisfies∫ T

t

(∫
Td

L(x, vs(x))ρs(x) dx−F(ρs)

)
ds

≥
∫ T

t

(∫
Td

(vs(x) · ps(x)−H(x, ps(x))) ρs(x) dx−F(ρs)

)
ds. (91)

Taking the feedback control as ps(x) = ∇x
δU
δρ (ρs, x, s), we have∫ T

t

(∫
Td

(
vs(x) · ∇x

δU
δρ

(ρs, x, s) − H(x, ps(x))

)
ρs(x) dx − F(ρs)

)
ds

=

∫ T

t

(∫
Td

(
−∇ · (vs(x)ρs(x))

δU
δρ

(ρs, x, s) − H(x, ps)ρs(x)

)
dx − F(ρs)

)
ds

=

∫ T

t

(∫
Td

(
δU
δρ

(ρs, x, s)∂sρs(x) − H(ps, x)ρs(x)

)
dx − ∂sU(ρs, s) + ∂sU(ρs, s) − F(ρs)

)
ds.

(92)
Notice

d

ds
U(ρs, s) = ∂sU(ρs, s) +

∫
Rn

δU
δρ

(ρs, x, s)∂sρs(x) dx. (93)



38 YUAN GAO, JIAN-GUO LIU AND WUCHEN LI

Thus by the fundamental theorem for integral and (17), we have∫ T

t

(∫
Td

δU
δρ

(ρs, x, s)∂sρs(x) dx+ ∂sU(ρs, s)
)

ds

+

∫ T

t

(
−∂sU(ρs, s)−

∫
Td

H(x, ps(x))ρs(x) dx−F(ρs)

)
ds

=U(ρT , T )− U(ρt, t) = G(ρT )− U(ρ, t).

(94)

Rearranging terms and taking supremum, this implies the solution U(ρ, t) to (17)
always satisfies

U(ρ, t) ≥ J(ρ, t). (95)

Second, we prove that the optimal curve ρs which achieves the value function is
given by the solution to the following equation

∂sρs(x) =
δH
δΦ

(ρs,
δU
δρ

(ρs, ·, s), x), ρt = ρ. (96)

Here U(ρ, t) is the solution to (17). By the first equation in (18), the associ-
ated optimal velocity is vs(x) = ∂pH(ρs(x), ps(x)) with ps(x) = ∇ δU

δρ (ρs, x, s).

Meanwhile, the associated maximal value equals U(ρ, t). Indeed, along (96) with
vs(x) = ∂pH(ρs(x),∇ δU

δρ (ρs, x, s)), we have∫
Td

L(x, vs(x))ρs(x) dx

=

∫
Td

(
vs(x) · ∇x

δU
δρ

(ρs, x, s)−H(x,∇x
δU
δρ

(ρs, x, s))

)
ρs(x) dx. (97)

Thus the equality in (91) is achieved and the same argument as (94) yields that
maximum profit equals U(ρ, t).

Proof of Corollary 2.5. From the second step in the proof of Proposition 2.4, we
know ρs solved by (96) and Φs(x) =

δU
δρ (ρs, x, s) achieves the optimal value function

and thus is a solution to MFG system (13).

Proof of Corollary 2.6. By the definition of Legendre transformation, we have∫ T

t

(∫
Td

L(x, vs(x))ρs(x) dx

)
ds

=

∫ T

t

(∫
Td

(∂pH(x, ps(x)) · ps(x)−H(x, ps(x))) ρs(x) dx

)
ds

=

∫ T

t

∫
Td

(β − 1)H(x, ps(x))ρs(x) dx ds,

(98)

where we used the fact p∂pH(x, p) = βH(x, p) due to homogeneous degree β. Then
the running cost can be represented as∫ T

t

(∫
Td

L(x, vs(x))ρs(x) dx−F(ρs)

)
ds

=

∫ T

t

(β − 1)

(∫
Td

H(x, ps(x))ρs(x) dx+ F(ρs)

)
ds− β

∫ T

t

F(ρs) ds.
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Taking ps(x) = Φs(x), since H is a constant along trajectory, denoted as H0, then
we have

U(ρ, t) = G(ρT )− (β − 1)H0 + β

∫ T

t

F(ρs) ds. (99)

Proof of Lemma 2.7. We directly verify (35) by taking the first variation w.r.t. ρ
in HJE (17).

First, for any test function h with
∫
h(x) dx = 0,

∂t
d

dε

∣∣∣
ε=0

U(ρ+ εh) =

∫
∂t
δU
δρ

(ρ, x, t)h(x) dx =

∫
[∂tu(x, ρ, t)− ∂tβ(ρ, t)]h(x) dx,

(100)

d

dε

∣∣∣
ε=0

F(ρ+ εh) =

∫
δF
δρ

(ρ, x)h(x) dx. (101)

Second, it remains to derive the first variation of K(ρ) =
∫
H(x,∇xu(x, ρ, t))ρ(x) dx

w.r.t. ρ. For any test function h with
∫
h(x) dx = 0,

K(ρ+ ϵh) =

∫
H(x,∇xu(x, ρ+ ϵh, t))(ρ(x) + ϵh(x)) dx

=

∫
H(x,∇xu(x, ρ, t))ρ(x) dx+ ϵ

∫
H(x,∇xu(x, ρ, t))h(x)dx

+ ϵ

∫∫
DpH(x,∇xu(x, ρ, t))∇x[

δu

δρ
(x, ρ, y, t)]h(y)ρ(x) dx dy + o(ϵ)

=

∫
H(x,∇xu(x, ρ, t))ρ(x) dx+ ϵ

∫
H(x,∇xu(x, ρ, t))h(x)dx

+ ϵ

∫ [ ∫
DpH(y,∇yu(y, ρ, t))∇y[

δu

δρ
(y, ρ, x, t)]ρ(y) dy

]
h(x) dx+ o(ϵ),

where the last equality holds by switch variables x, y. This is because u(x, ρ, t)
is the first variation of U(ρ, t). Hence δu

δρ (y, ρ, x, t) = δu
δρ (x, ρ, y, t). Therefore, we

obtain
d

dε

∣∣∣
ε=0

K(ρ+ ϵh)

=

∫ (
H(x,∇xu(x, ρ, t)) +

∫
DpH(y,∇yu(y, ρ, t))∇y[

δu

δρ
(y, ρ, x, t)]ρ(y) dy

)
h(x)dx

(102)
Combining (102) and (100), from the mean zero constraint for the test function
h(x), one obtain that

∂tu(x, ρ, t)− ∂tβ(ρ, t) +H(x,∇xu(x, ρ, t)) +
δ

δρ
F(ρ, x)

+

∫
DpH(y,∇yu(y, ρ, t))∇y[

δu

δρ
(y, ρ, x, t)]ρ(y) dy = C(ρ, t).

(103)

Then one can choose β such that ∂tβ(ρ, t) = −C(ρ, t) [22, page 69]. It finishes the
proof.

Proof of Lemma 2.8. Let (ρs(·),Φs(·)), s ∈ [t, T ] be a classical solution solving the
mean field game system (13) and let u(x, ρ, t) be a classical solution to master

equation (26). Denote Φ̃(x, s) := u(x, ρs, s). To compare Φ̃(x, s) and Φs(x), we
denote Φ(x, s) := Φs(x).
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Taking the time derivative w.r.t. s, we have

∂sΦ̃(x, s)− ∂sΦ(x, s) =
d

ds
u(x, ρs, s)− ∂sΦ(x, s)

= ∂su(x, ρs, s) +

∫
δu

δρ
(x, ρs, y, s)∂sρs(y)dy − ∂sΦ(x, s)

= ∂su(x, ρs, s) +

∫
δu

δρ
(x, ρs, y, s)

(
−∇y · (ρs(y)DpH(y,∇yΦ(y, s))

)
dy − ∂sΦ(x, s)

= ∂su(x, ρs, s) +

∫
∇y

δu

δρ
(x, ρs, y, s) ·DpH(y,∇yΦ(y, s))ρs(y)dy − ∂sΦ(x, s)

=

∫
∇y

δu

δρ
(x, ρs, y, s) · [DpH(y,∇yΦ(y, s))−DpH(y,∇yΦ̃(y, s))]ρs(y)dy

+H(x,∇xΦ(x, s))−H(x,∇xΦ̃(x, s)) + F (x, ρs)− F (x, ρs),

(104)

Where we used the master equation (26) and (13). Then we obtain

∂sΦ(x, s) +

∫
∇y

δu

δρ
(x, ρs, y, s) ·DpH(y,∇yΦ(y, s))ρs(y)dy +H(x,∇xΦ(x, s))

=∂sΦ̃(x, s) +

∫
∇y

δu

δρ
(x, ρs, y, s) ·DpH(y,∇yΦ̃(y, s))ρs(y)dy +H(x,∇xΦ̃(x, s))

= : R(x, s)

(105)
First, since all terms on the right hand side of (105) are given, (105) can be regarded
as a nonlocal HJE in terms of Φ(x, s) with a given forcing term R(x, s). Second,

one can directly verify that Φ(x, s) = Φ̃(x, s) solves above equation with terminal
condition

ΦT (x) = G(x, ρT ) = u(x, ρT , T ) = Φ̃T (x).

Then from the uniqueness of this nonlocal HJE (105), we obtain Φ̃(x, s) = Φ(x, s).

Proof of Proposition 2.9. Denote the right-hand-side of (29) as J(x, ρ, t). First, for
any open-loop velocity vs for t ≤ s ≤ T and the associated trajectory xs satisfying
ẋs = vs, t ≤ s ≤ T, xt = x, we prove the value function J(x, ρ, t) is always
smaller then the solution u(x, ρ, t) to the Master equation (26).

Indeed, for any ps, we have∫ T

t

(L(xs, ẋs)− F (xs, ρs)) ds ≥
∫ T

t

(ẋs · ps −H(xs, ps)− F (xs, ρs)) ds. (106)

Using the solution u(x, ρ, t) to (26), we take the feedback control as ps = ∇u(xs, ρs, s),

t ≤ s ≤ T . Then by the fundamental theorem for integrals,∫ T

t

(ẋs · ps − H(xs, ps) − F (xs, ρs)) ds

=

∫ T

t

(
ẋs · ∇u(xs, ρs, s) + ∂su(xs, ρs, s) +

∫
δu

δρ
(xs, ρs, y, s)∂sρs(y) dy

)
ds

+

∫ T

t

(
−∂su(xs, ρs, s) −

∫
δu

δρ
(xs, ρs, y, s)∂sρs(y) dy − H(xs,∇u(xs, ρs, s)) − F (xs, ρs)

)
ds

=u(xT , ρT , T ) − u(x, ρ, t)

+

∫ T

t

(
−∂su(xs, ρs, s) −

∫
δu

δρ
(xs, ρs, y, s)∂sρs(y) dy − H(xs,∇u(xs, ρs, s)) − F (xs, ρs)

)
ds.

(107)
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Notice ρs also follows the continuity equation

∂sρs(x) +∇ · (ρs(x)∂pH(x,∇Φs(x))) = 0, t ≤ s ≤ T, ρt = ρ, (108)

where Φs is solved in (13). Then we have∫
δu

δρ
(xs, ρs, y, s)∂sρs(y) dy =

∫
∇y

δu

δρ
(xs, ρs, y, s) · ∂pH(y,∇Φs(x))ρs(y) dy.

(109)
Notice from Lemma 2.8, we have Φs(x) = u(x, ρs, s), t ≤ s ≤ T and thus∫

δu

δρ
(xs, ρs, y, s)∂sρs(y) dy =

∫
∇y

δu

δρ
(xs, ρs, y, s) · ∂pH(y,∇xu(x, ρs, s))ρs(y) dy.

(110)
Then using the master equation (26), the RHS in (107) becomes u(xT , ρT , T ) −
u(x, ρ, t). Rearranging terms and taking supremum, this implies the solution u(x, ρ, t)
to the master equation (26) always larger than the value function J(x, ρ, t).

Second, for the special individual trajectory

ẋs = ∂pH(xs,∇xu(xs, ρs, s)), t ≤ s ≤ T, (111)

the equality in (106) achieves and then same argument as (107) gives that the master
equation solution u(x, ρ, t) achieves the optimal value function J(x, ρ, t) with the
optimal trajectory (111).

Proof of Lemma 2.10. We directly verify U(q, ρ, t) satisfies (26). Notice ∂tU(q, ρ, t) =∫
∂tu(x, ρ, t)q(x) dx,∫

H(x,∇x
δU

δq
(q, x, ρ, t))q(x) dx =

∫
H(x,∇xu(x, ρ, t))q(x) dx,

and ∫
∇y

δU

δρ
(q, ρ, y, t) · ∂pH(y,∇y

δU

δq
(q, y, ρ, t))ρ(y) dy

=

∫ (∫
∇y

δu

δρ
(x, ρ, y, t) · ∂pH(y,∇yu(y, ρ, t))ρ(y) dy

)
q(x) dx.

Then using (26), we obtain that U(q, ρ, t) solves (30). The terminal condition is
directly given by

U(q, ρ, T ) =

∫
u(x, ρ, T )q(x) dx =

∫
G(x, ρ)q(x) dx.

In other words, U(q, ρ, t) is consistent with u(x, ρ, t) when q = δx.
Moreover, from Lemma 2.8, we know along the trajectory (ρs,Φs), t ≤ s ≤ T of

MFG system (13),

δU

δq
(q, x, ρs, s) = u(x, ρs, s) = Φs(x), t ≤ s ≤ T. (112)

Proof of Proposition 2.11. First, let (ρs(·),Φs(·)), t ≤ s ≤ T solve MFG system
(13) and denote the RHS of (33) as J(q, ρ, t). For any the velocity field vs(x) for
t ≤ s ≤ T and the associated qs satisfying

∂sqs +∇ · (qsvs) = 0, t ≤ s ≤ T, qt = q,



42 YUAN GAO, JIAN-GUO LIU AND WUCHEN LI

we now prove the value function J(q, ρ, t) is always smaller then the solution to the
master equation (30). Indeed, for any ps(x), we have∫ T

t

∫
(L(x, vs(x))qs(x)− F (x, ρs)qs(x)) dx ds

≥
∫ T

t

∫
(vs(x) · ps(x)−H(x, ps(x))− F (x, ρs)) qs(x) dx ds.

(113)

Using the solution U(q, ρ, t) to (5), we take the feedback control as ps(x) = ∇x
δU
δq (qs, x, ρs, s).

By the fundamental theorem for integrals,∫ T

t

∫
(vs(x) · ps(x) − H(x, ps(x)) − F (x, ρs)) qs(x) dx ds

=

∫ T

t

(∫
vs(x) · ∇x

δU

δq
(qs, x, ρs, s)qs(x) dx + ∂sU(qs, ρs, s) +

∫
δU

δρ
(qs, ρs, y, s)∂sρs(y) dy

)
ds

+

∫ T

t

(
−∂sU(qs, ρs, s)−

∫
δU

δρ
(qs, ρs, y, s)∂sρs(y) dy−

∫
[H(x,∇x

δU

δq
(qs, x, ρs, s)) + F (x, ρs)]qs(x) dx

)
ds

=

∫ T

t

∫
−∇ · (qs(x)vs(x))

δU

δq
(qs, x, ρs, s) dx +

(
∂sU(qs, ρs, s) +

∫
δU

δρ
(qs, ρs, y, s)∂sρs(y) dy

)
ds

+

∫ T

t

(
−∂sU(qs, ρs, s)−

∫
δU

δρ
(qs, ρs, y, s)∂sρs(y) dy −

∫
[H(x,∇x

δU

δq
(qs, x, ρs, s)) + F (x, ρs)]qs(x) dx

)
ds

=U(qT , ρT , T ) − U(q, ρ, t)

+

∫ T

t

(
−∂sU(qs, ρs, s)−

∫
δU

δρ
(qs, ρs, y, s)∂sρs(y) dy −

∫
[H(x,∇x

δU

δq
(qs, x, ρs, s)) + F (x, ρs)]qs(x) dx

)
ds.

(114)
Notice ρs also follows the continuity equation

∂sρs(x) +∇ · (ρs(x)∂pH(x,∇Φs(x))) = 0, t ≤ s ≤ T, ρt = ρ, (115)

where Φs is coupled solved in (13). Then we have∫
δU

δρ
(qs, ρs, y, s)∂sρs(y) dy

=

∫
∇y

δU

δρ
(qs, ρs, y, s) · ∂pH(y,∇yΦs(y))ρs(y) dy

=

∫
∇y

δU

δρ
(qs, ρs, y, s) · ∂pH(y,∇y

δU

δq
(qs, y, ρs, s))ρs(y) dy,

(116)

where we used (32) in the last equality. Then using the master equation (30),
the RHS in (114) becomes U(qT , ρT , T )− U(q, ρ, t). Rearranging terms and taking
supremum, this implies the solution U(q, ρ, t) to the master equation (30) always
larger than the value function J(q, ρ, t).

Second, for the special velocity field for the distribution of the individual player

vs(x) = ∂pH

(
x,∇x

δU

δq
(qs, x, ρs, s)

)
, t ≤ s ≤ T, (117)

the equality in (114) achieves and then same argument gives that the solution
U(q, ρ, t) to the mixed game master equation (30) achieves the maximal value func-
tion J(q, ρ, t) along the trajectory (117). The last statement directly comes from
Lemma 2.10.
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