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INEXACT RATIONAL KRYLOV SUBSPACE METHODS FOR APPROXIMATING

THE ACTION OF FUNCTIONS OF MATRICES∗

SHENGJIE XU† AND FEI XUE†

Abstract. This paper concerns the theory and development of inexact rational Krylov subspace methods for
approximating the action of a function of a matrix f(A) to a column vector b. At each step of the rational Krylov
subspace methods, a shifted linear system of equations needs to be solved to enlarge the subspace. For large-scale
problems, such a linear system is usually solved approximately by an iterative method. The main question is how
to relax the accuracy of these linear solves without negatively affecting the convergence of the approximation of
f(A)b. Our insight into this issue is obtained by exploring the residual bounds for the rational Krylov subspace
approximations of f(A)b, based on the decaying behavior of the entries in the first column of certain matrices of A
restricted to the rational Krylov subspaces. The decay bounds for these entries for both analytic functions and Markov
functions can be efficiently and accurately evaluated by appropriate quadrature rules. A heuristic based on these
bounds is proposed to relax the tolerances of the linear solves arising in each step of the rational Krylov subspace
methods. As the algorithm progresses toward convergence, the linear solves can be performed with increasingly lower
accuracy and computational cost. Numerical experiments for large nonsymmetric matrices show the effectiveness of
the tolerance relaxation strategy for the inexact linear solves of rational Krylov subspace methods.
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1. Introduction. Consider a matrix A ∈ R
n×n and a function f that is analytic in a

neighborhood of the numerical range of A. This paper studies efficient iterative methods
for approximating a matrix function f(A) multiplied by a vector b ∈ R

n. For large-scale
problems, we approximate f(A)b by restricting A to a subspace of dimension m (m � n)
and obtain

f(A)b ≈ Vmf(Am)V ∗
mb,

where Vm ∈ R
n×m contains orthonormal basis vectors of the subspace and Am = V ∗

mAVm is
the restriction of A to this subspace. Matrix function problems arise in the numerical solution
of differential equations [14, 37, 47], matrix functional integrators [44, 45], model order
reduction [2, 31], optimization problems [9, 64], and others.

One of the classical methods of subspace projection for matrix function approximations
is the standard Krylov subspace method that generates the subspaces

Km(A, b) = span
{
b, Ab, . . . , Am−1b

}
;

see, e.g., [42, 55]. A few restarted variants were proposed in [1, 26, 27, 32, 33]. Methods based
on rational approximations have also been studied, such as the extended Krylov subspace
method (EKSM) [22, 46] and the adaptive rational Krylov subspace method (RKSM) [23, 24,
38, 39, 50]. In this paper, we consider a generic RKSM that generates subspaces of the form

Qm (A, b) = qm−1 (A)
−1 Km (A, b) ,

where qm−1 (A) is a polynomial of degree not larger than m− 1 with respect to A.
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The error norm of the approximation, which is the quantity to determine convergence in
an ideal stopping criterion, is defined as

‖Rm‖ = ‖f(A)b− Vmf(Am)V ∗
mb‖ .

However, it is impossible to compute the residual norm directly because f(A)b is unknown. A
practical stopping criterion is to monitor the difference between the approximations obtained
in two successive iterations. The RKSM can be terminated if such a difference becomes
sufficiently small, but this criterion may lead to premature termination if the approximation
stagnates without actual convergence to f(A)b. A more reliable alternative stopping criterion
is to evaluate upper bounds for the residual norm [21, 43, 63], especially for exponential-type
functions. There are also some results on a posteriori error bounds [35]. In addition, we may
compute |e∗mf(Am)e1| to evaluate the accuracy of the approximation; see, e.g., [11, 21, 46, 59].
In this paper, our stopping criterion is based on the norm of (AVm − VmAm)f(Am)V ∗

mb,
which can be interpreted as the residual norm of an associated differential equation; see,
e.g., [11, 21, 56].

Given a square band matrix B and a sufficiently regular function f , the magnitude of
the entries of f(B) below the main diagonal can be characterized by a decaying behavior
that depends on the row index relative to the diagonal [4, 6, 7, 52]. A priori estimates of the
decay rate have been discussed in [5, 15, 18, 34]. For RKSMs, the restricted matrix Am is
not banded, but upper bounds for the entries of f(Am) have been derived, which also exhibit
a decaying behavior below the main diagonal [57]. In this paper, we further show a similar
decaying behavior for the entries of K−1

m f(Am) below the diagonal, where Km is an upper
Hessenberg matrix generated by the RKSM. The matrix K−1

m f(Am) is directly related to the
residual of the RKSM, and it can be used to determine an a priori tolerance relaxation for the
linear solve at each RKSM step to enable an inexact RKSM for approximating f(A)b.

Specifically, at each step of the RKSM, we compute a shift-invert matrix-vector product
of the form (A− sI)−1(A− σI)u, which is equivalent to the solution of the linear system
(A− sI)x = (A− σI)u. For large-scale problems, these linear systems are solved approxi-
mately by iterative methods. Earlier studies on the inexact Krylov methods based on inexact
matrix vector products can be found in [13, 61]. Errors are introduced at each RKSM step,
and they accumulate in the rational Krylov subspace. The motivation of this paper is to find
a strategy to relax the accuracy of the linear solves without negatively impacting the conver-
gence of the RKSM to f(A)b. This motivation is the same as that for the study of inexact
standard [20, 56] and rational [8, 40] Krylov methods for approximating f(A)b for Hermitian
matrices. In particular, in [40] a strategy of relaxing the inner tolerance of the shift-invert
Lanczos method or the EKSM is proposed that applies only one fixed pole repeatedly; in [8] an
effective preconditioner construction for the iterative solution of linear systems with different
shifts in the RKSM are considered, but a relaxation of the tolerance of the inner linear solves
is not discussed. Inexact RKSMs has also been used in evolution equations [41], Lyapunov
equations [48], eigenvalue problems [49, 66], and model reductions [65]. In this study, we
consider RKSMs for matrices regardless of their symmetry and focus on how the tolerances of
the inner linear systems with different shifts can be relaxed without delaying the convergence
of the RKSM.

The inexact RKSM in our problem setting relies on the association between the upper
bounds for the residual norm for approximating f(A)b and the decay bounds for the entries
below the main diagonal ofK−1

m f(Am). Such associations can be established for both analytic
functions and Markov functions. These results are largely consistent with the relationships
between the poles and the convergence of the RKSM for approximating the actions of the
exponential function [53] and Markov functions [3]. A tolerance relaxation strategy for the
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iterative linear solve at each step of the inexact RKSM is derived based on the decay bounds for
the entries of K−1

m f(Am). Compared with the decay bounds for the entries of f(Am) in [57],
our bounds for the entries of K−1

m f(Am) are sharper as they keep the original integrals, which
can be evaluated efficiently by appropriate quadrature rules; more importantly, they directly
inform and enable an inexact RKSM in our problem setting.

The rest of the paper is organized as follows. In Section 2, we review the RKSM for
approximating f(A)b and derive a sparsity pattern of certain rational functions of matrices
restricted to the RKSM subspaces. In Section 3, we introduce the theorems for the decay
bounds for the entries of K−1

m f(Am) below the diagonal. A tolerance relaxation strategy
is derived for the inexact RKSM in Section 4 to ensure that the difference between the true
and the derived residuals of the inexact method is bounded by a given tolerance. A heuristic
tolerance relaxation strategy is proposed for the inexact linear solves arising at each RKSM
step. In Section 5, we show numerical results to support the theorems of the decay bounds for
the RKSM residual norms and also show the advantage of the inexact method with a heuristic
tolerance relaxation strategy over the exact method. In Section 6, our main theorems are
proved using the Faber-Dzhrbashyan rational approximations. Conclusions of this paper are
given in Section 7.

2. Preliminaries. In this section, we give some preliminary results to facilitate our later
discussion of the inexact RKSM for approximating f(A)b.

2.1. A brief review of the RKSM. The RKSM starts with a vector b ∈ R
n \ {0} to

construct rational Krylov subspaces Qm(A, v1), where A ∈ R
n×n and v1 = b/ ‖b‖2. At step

k, the RKSM chooses a pole sk 6= 0 and a zero σk 6= sk, and applies the linear operator
(I −A/sk)

−1(A− σkI) to the vector vk, which is the last vector of the orthonormal basis
vectors {v1, v2, . . . , vk} that span the current subspace Qk(A, v1). To build an orthonormal
basis of the enlarged subspace Qk+1(A, v1), we adopt the modified Gram-Schmidt orthogo-
nalization and obtain

(2.1) (I −A/sk)
−1(A− σkI)vk =

k+1∑

i=1

hikvi.

Repeat the above operation for each index value k = 1, 2, . . . ,m, assuming that there is no
breakdown. It is not difficult to get the rational Arnoldi relation:

AVm(HmDm + I) +
1

sm
hm+1,mAvm+1e

∗
m = Vm(Hm + Pm) + hm+1,mvm+1e

∗
m,

or equivalently,

(2.2) AVm+1Km = Vm+1Gm,

where Hm ∈ R
m×m is upper Hessenberg, Vm+1 = [v1, v2, . . . , vm+1] contains the orthonor-

mal basis vectors of the rational Krylov subspace

(2.3) Qm+1 (A, v1) =

(
m∏

k=1

(A− skI)
−1

)
span

{
v1, Av1, A

2v1, . . . , A
mv1

}
,

Dm = diag(1/s1, . . . , 1/sm) and Pm = diag(σ1, . . . , σm), and Km, Gm ∈ R
(m+1)×m are

both upper Hessenberg matrices:

Km =

[
Km

k(m+1)me
∗
m

]
=

[
HmDm + I
1
sm
h(m+1)me

∗
m

]
,

Gm =

[
Gm

g(m+1)me
∗
m

]
=

[
Hm + Pm
h(m+1)me

∗
m

]
.

(2.4)
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From (2.2), it follows that

(2.5) Am = V ∗
mAVm =

(
Gm − hm+1,m

sm
V ∗
mAvm+1e

∗
m

)
K−1
m .

An alternative approach to enlarge the rational Krylov subspace is to apply the operator
(I −A/sk)

−1 to the vector vk; see, e.g., [24, 57]. It generates exactly the same subspace as
in (2.3) if all poles sk (1 ≤ k ≤ m) remain the same for both approaches. In this paper, we
follow (2.1) to enlarge the subspace because our numerical experience suggests that applying
the operator (I −A/sk)

−1(A− σkI) tends to achieve a smaller final residual norm. This
can probably be attributed to an improvement in floating-point accuracy, though we have no
additional insight here. The choice of σk 6= sk does not impact the generated rational Krylov
subspace, and we follow [38] to set σk = σ = 1 for all 1 ≤ k < m.

2.2. Residual of the RKSM approximation for f(A)b. We use the RKSM to approx-
imate y = f(A)b, where A ∈ R

n×n, b ∈ R
n, and f is analytic in a neighborhood of the

numerical range of A. Since the initial basis vector is v1 = b/β, where β = ||b||2, the RKSM
approximation at step k is defined as

ym = Vmf(Am)V ∗
mb = Vmf(Am)βe1,

where Am = V ∗
mAVm is the restriction of A to the subspace Qm(A, v1).

The residual norm of the approximation is ‖f(A)b− Vmf(Am)βe1‖, but it is impossible
to compute it directly since f(A)b is unknown. For certain functions f , we may instead define
an alternative residual, associated with an ordinary differential equation that depends on f ;
see, e.g., [11, 56]. For the exact solution y = f(A)b, this alternative residual is zero. By the
argument of continuity, if an approximate solution ym is sufficiently close to y, the alternative
residual should be sufficiently small in norm. We give one example to demonstrate this point.

EXAMPLE 2.1. Assume that the matrix A has no negative real eigenvalues. Consider the
elliptic Dirichlet problem:





Ay − y′′(t) = 0, t > 0,

y(0) = b,

y(+∞) = 0.

The exact solution is y(t) = exp(−t
√
A)b. If we denote the RKSM approximation as

ym(t) = Vm exp(−t
√
Am)βe1, then the residual of this approximation with respect to the

differential equation is Rm(t) = Aym(t)− y′′m(t). Since y′′m(t) = VmAm exp(−t
√
Am)βe1,

it follows that

Rm(t) = AVm exp(−t
√
Am)βe1 − VmAm exp(−t

√
Am)βe1

= (AVm − VmAm) exp(−t
√
Am)βe1.

Since the residual of the exact solution is R(t) = Ay(t)− y′′(t) = 0 for all t ≥ 0, the residual
Rm(t) = Aym(t)− y′′m(t) should have a small norm if ym(t) ≈ y(t). In particular, at t = 1,
the residual of ym(t) is

(2.6) Rm := Rm(1) = (AVm − VmAm)f(Am)βe1,

where f(z) = exp(−√
z). If ym(1) = Vm exp(−

√
Am)βe1 ≈ y(1) = exp(−

√
A)b, then

‖Rm‖ is expected to be small.
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There are more examples based on differential equations showing that the residual
‖Rm‖ = ‖(AVm − VmAm)f(Am)βe1‖ can be used to determine the accuracy of the RKSM
approximation ym ≈ f(A)b for other functions; see, e.g., [10, 11, 12, 21].

From the Arnoldi relation in (2.2) and (2.5), we get

Rm = hm+1,m (I −A/sm + VmV
∗
mA/sm) vm+1e

∗
mK

−1
m f(Am)βe1.(2.7)

Following the implementation by Güttel in [38], at step k (k ≤ m), we can first temporarily
choose the infinite pole sk = +∞, so that the Arnoldi relation in (2.2) becomes

AVk(HkDk + I) = Vk(Hk + Pk) + hk+1,kvk+1e
∗
k, or

AVkKk = VkGk + hk+1,kvk+1e
∗
k.(2.8)

We can easily obtain the restricted matrix Ak = V ∗
k AVk = GkK

−1
k with the tempo-

rary Gk and Kk and compute the residual of yk = Vkf(Ak)βe1. If the residual norm
‖(AVk − VkAk)f(Ak)βe1‖ is not sufficiently small, then we choose a finalized pole sk 6= 0
and form the finalized Gk, Kk by updating the last column of the temporary Gk and Kk and
then proceed to the next RKSM step. The description of this method is shown in Algorithm 1.

Algorithm 1 RKSM for approximating f(A)b.

Input: A ∈ R
n×n, b ∈ R

n \ {0}, function f , maximum step m, tolerance tol > 0.
Output: an approximate solution ym ≈ f(A)b.

1: Compute the initial vector v1 = b/β, where β = ‖b‖2.
2: for k = 1, 2, . . . ,m do

3: Let wk+1 = (A− σkI)vk, orthogonalize against v1, v2, . . . , vk, and normalize into
(a temporary) vk+1.

4: Compute the restricted matrix Ak = V ∗
k AVk = GkK

−1
k .

5: Compute the approximate solution yk = Vkf(Ak)βe1.
6: if ‖Rk‖ = ‖(AVk − VkAk)f(Ak)βe1‖ ≤ tol then

7: Return yk as the approximation to f(A)b.
8: end if

9: Determine the finalized pole sk 6= σk.
10: Recompute wk+1 = (I − A/sk)

−1(A − σkI)vk, orthogonalize wk+1 against
v1, v2, . . . , vk, and normalize into (the finalized) vk+1.

11: Update the last columns of Gk and Kk.
12: end for

Based on the Arnoldi relation in (2.8), for k = m and sm = ∞, we get

Rm = hm+1,mvm+1e
∗
mK

−1
m f(Am)βe1, and

‖Rm‖2 = |βhm+1,m| |e∗mK−1
m f(Am)e1|.(2.9)

Note that, since we usually have hm+1,m = O(1), the residual norm is directly associated
with the (m, 1)-entry of the matrix K−1

m f(Am).

2.3. A sparsity pattern of functions of restricted matrices for the RKSM. In this
section, we show that the entries of certain rational functions of restricted matrices constructed
by the RKSM have a sparsity pattern. This observation will be used to prove two main
theorems in Section 3 on the decay bounds for the entries of K−1

m f(Am) below the diagonal
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for analytic functions and Markov functions. To this end, we first propose a lemma that states
several properties of Am = V ∗

mAVm, the restriction of A to the rational Krylov subspace (2.3).
LEMMA 2.2. Let Vm ∈ R

n×m contain an orthonormal basis of Qm (A, v1) in (2.3).
Define q̃ = qm−1(A)

−1v1, where qm−1(z) =
∏m−1
j=1 (1− z/sj). Define Pm as the set of all

polynomials of degree less than or equal to m. The following statements hold:

(i) For any matrix X ∈ R
m×m and 0 ≤ j ≤ m,

(2.10) VmXV
∗
mA

j q̃ = VmXA
j
mV

∗
mq̃.

(ii) For any matrix X ∈ R
m×m and rm ∈ Pm/qm−1,

VmXV
∗
mrm(A)v1 = VmXrm(Am)V ∗

mv1.

Proof. (i) For j = 0, the conclusion is trivial. For 1 ≤ j ≤ m, we have

VmXV
∗
mA

j q̃ = VmXV
∗
mA

(
Aj−1q̃

)
= VmXV

∗
mAVmV

∗
mA

j−1q̃

= VmXV
∗
mAVmA

j−1
m V ∗

mq̃ = VmXA
j
mV

∗
mq̃,

where the second and the third equalities hold by [38, Lemma 3.1].
(ii) Let X = I in (i). By left multiplying V ∗

m on both sides of (2.10), we get

V ∗
mA

j q̃ = AjmV
∗
mq̃,

for 0 ≤ j ≤ m. It follows that

V ∗
mqm−1(A)q̃ = qm−1(Am)V ∗

mq̃ =⇒ V ∗
mq̃ = qm−1(Am)−1V ∗

mv1.

Substitute q̃ and V ∗
mq̃ with qm−1(A)

−1v1 and qm−1(Am)−1V ∗
mv1 in (2.10), respectively, and

we eventually get

VmXV
∗
mA

jqm−1(A)
−1v1 = VmXA

j
mqm−1(Am)−1V ∗

mv1 (0 ≤ j ≤ m),

which is sufficient to complete the proof.
LEMMA 2.3. Suppose that m− 1 steps of the RKSM are performed without breakdown

as in (2.1), with si 6= 0, si 6= σi, for 1 ≤ i < m, which leads to the Arnoldi relation in (2.2).
Assume that Km is nonsingular. Define two new vector spaces

Q̃m(A, v1) = qm−1(A)
−1span{v1, Av1, . . . , Am−2v1}, and(2.11)

Q̂m(A, v1) = span
{
(I −A/s1)

−1v1, . . . , (I −A/sm−1)
−1vm−1

}
.

It holds that Q̃m(A, v1) = Q̂m(A, v1).
The quality of a candidate approximation to f(A)b from the RK subspace

Q̂m(A, v1) = span
{
(I −A/s1)

−1v1, . . . , (I −A/sm−1)
−1v1

}

follows the quality of a corresponding rational function r(z) =
∑m−1
j=1

cj
z−sj of degree

(m − 2,m − 1) for approximating f(z). The property Q̃m(A, v1) = Q̂m(A, v1) is used in
most RKSM implementations, where the continuation vector is chosen as the last vector of the
basis that has been generated.
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LEMMA 2.4. With the definitions above, consider the rational functions

(2.12) r
(t)
j (z) =

pj−1(z)∏t+j−1
i=t (z − si)

,

where t ≥ 1 and pj−1(z) ∈ Pj−1. For any indices k, ` (1 ≤ ` < k ≤ m) such that

j + t ≤ k ≤ m and ` ≤ t, it holds that

e∗kK
−1
m r

(t)
j (Am)e` = 0, 1 ≤ j ≤ k − t.

Proof. The `-th orthonormal basis vector v` of Qm(A, v1) can be written as r`−1(A)v1,

where r`−1(z) ∈ P`−1/q`−1, such that r(t)j (A)v` = r
(t)
j (A)r`−1(A)v1. Since ` ≤ t, it holds

that

r
(t)
j (z)r`−1(z) ∈ Pt+j−2/qt+j−1 ⊆ Pm/qm−1,

which ensures that r(t)j (A)v` ∈ Q̃t+j(A, v1). We set X = K−1
m in (ii), and hence

VmK
−1
m r

(t)
j (Am)r`−1(Am)V ∗

mv1 = VmK
−1
m V ∗

mr
(t)
j (A)r`−1(A)v1

= VmK
−1
m V ∗

mr
(t)
j (A)v`.(2.13)

Left multiplying V ∗
m on both sides of (ii) and letting X = I , we obtain the relation

V ∗
mrm(A)v1 = rm(Am)V ∗

mv1 for rm ∈ Pm/qm−1. Note from (ii) that this equality also
holds if rm is replaced with r`−1 because r`−1 ∈ Pm/qm−1. Therefore,

(2.14) r`−1(Am)V ∗
mv1 = V ∗

mr`−1(A)v1 = V ∗
mv` = e`.

Combining (2.13) and (2.14), we get

VmK
−1
m r

(t)
j (Am)e` = VmK

−1
m r

(t)
j (Am) (r`−1(Am)V ∗

mv1) = VmK
−1
m V ∗

mr
(t)
j (A)v`.

Left multiplying v∗k on both sides, we have

(2.15) e∗kK
−1
m r

(t)
j (Am)e` = e∗kK

−1
m V ∗

mr
(t)
j (A)v`.

By Lemma 2.3 and the fact that r(t)j (A)v` ∈ Q̃t+j(A, v1), there exist scalars αi, with

1 ≤ i ≤ j + t − 1, such that r(t)j (A)v` =
∑j+t−1
i=1 αi(I − A/si)

−1vi. By (2.15), we
obtain

(2.16) e∗kK
−1
m r

(t)
j (Am)e` =

j+t−1∑

i=1

αie
∗
kK

−1
m V ∗

m(I −A/si)
−1vi.

By (2.1), we have (I − A/si)
−1(A − σiI)vi = VmHmei, for 1 ≤ i < m. Given the

identity (I −A/si)
−1(A− σiI) = si

(
si−σi

si
(I −A/si)

−1 − I
)

, it follows that

si

(
si − σi
si

(I −A/si)
−1 − I

)
vi = VmHmei

=⇒ si − σi
si

(I −A/si)
−1vi = Vm(HmDm + I)ei = VmKmei.(2.17)
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Left multiplying K−1
m V ∗

m on both sides of (2.17), we get

(2.18)
si − σi
si

K−1
m V ∗

m(I −A/si)
−1vi = ei.

Combining (2.16) and (2.18), we have

e∗kK
−1
m r

(t)
j (Am)e` =

j+t−1∑

i=1

si
si − σi

αie
∗
kei = 0,

for all k ≥ j + t. Note that since ` ≤ t and t ≤ k − j, we have ` ≤ k − j with j ≥ 1 and
hence ` < k. This means that the above sparsity pattern holds in the strictly lower triangular
portion of K−1

m r
(t)
j (Am).

Lemma 2.4 shows that for the RKSM, there exists a sparsity pattern for the entries of
K−1
m r

(t)
j (Am) involving the class of rational functions (2.12) and the restricted matrices Am

obtained by the RKSM, and Figure 2.1 illustrates two examples of the sparsity patterns for
certain t- and j-values. In [57], a corresponding result has been derived for the entries of
r
(t)
j (Am), but our result involving K−1

m is directly associated with the residual of the RKSM
approximations for f(A)b as given in (2.9). We will show that this sparsity property helps
to establish the two main theorems in Section 3, derive the convergence of the RKSM, and
develop the tolerance relaxation for the iterative linear solve at each step of the inexact RKSM.
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j=3,t=4
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15

j=3,t=6

FIG. 2.1. Sparsity pattern of K−1
15 r

(t)
j (A15) in Lemma 2.4.

3. Decay bounds for functions of matrices. In this section, we investigate the upper
bounds for the entries in the first column of K−1

m f(Am), namely
∣∣e∗kK−1

m f(Am)βe1
∣∣ in (2.9),

for 1 ≤ k ≤ m. The core point is to show how quickly these entries decay with the row index
k. In Section 4, we shall explore the connections between the decay bounds and the residual
of the RKSM for approximating f(A)b.

3.1. Decay bounds for
∣∣e∗

k
K−1

m
f(Am)βe1

∣∣ for analytic functions and Markov

functions. Several estimates for decay bounds for the entries of functions of matrices have
been proposed; see, e.g., [4, Theorem 10], [6, Theorem 3.7], [52, Theorem 2.6], and [56,
Theorem 2.3]. In this paper, we use the Faber-Dzhrbashyan (FD) rational functions [62, Ch.
XIII, Section 3] and [51] to find upper bounds for

∣∣e∗kK−1
m f(Am)βe1

∣∣.
We begin with some definitions. For any matrix A ∈ R

n×n, we let

W (A) = {x∗Ax | x ∈ C
n, ‖x‖2 = 1}
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be the numerical range of A. Let E ⊂ C be a connected compact metric space such that
W (A) ⊂ E. Also denote the extended complex plane as C = C ∪ {∞}, and the unit disk as
D = {|w| ≤ 1}. Define φ as the Riemann mapping that maps C \E conformally onto C \D
such that φ(∞) = ∞ and limz→∞

φ(z)
z > 0. Let ψ = φ−1 be the inverse mapping of φ.

The matrix function f(A) can be defined by Cauchy’s integral formula as follows [42]:
DEFINITION 3.1. If f is analytic in a region E ⊆ C and W (A) ⊂ E, we have

f(A) =
1

2πi

∫

ΓE

f(z)(zI −A)−1dz,

where ΓE is a closed contour in E that encloses the spectrum of A.

In [57, Theorem 4.2], decay bounds for the entries of f(Am) are derived. Since Km

in (2.4) is an upper Hessenberg matrix,K−1
m is the inverse function of a band matrix, and decay

bounds for the entries of K−1
m can be derived [19]. One can combine the results of the decay

bounds for both f(Am) and K−1
m to get those for K−1

m f(Am). However, the decay bounds
for K−1

m require spectral information of Km defined in (2.4), which has no straightforward
connections to W (A). In this paper, we follow the work in [57] to directly derive decay
bounds for K−1

m f(Am) by using the Faber-Dzhrbashyan (FD) rational functions. Our first
main theorem reads as follows.

THEOREM 3.2. Assume that Km defined in (2.4) is nonsingular and Am = V ∗
mAVm

is the restriction of A to the rational Krylov subspace Qm (A, v1) defined in (2.3), with

orthonormal basis vectors [v1, . . . , vm]. Suppose that all poles s1, . . . , sm of the RKSM are

located in the exterior of the set E, where E ⊂ C is a connected compact metric space

such that W (A) ⊂ E. For k, ` ∈ N
+ and ` < k ≤ m, define αj =

[
φ(sj+`−1)

]−1

for

1 ≤ j ≤ k − `, where φ is the Riemann mapping. Let ψ = φ−1 be the inverse Riemann

mapping. Let τ > 1 be such that f is analytic in Eτ = E ∪ {z ∈ C \ E | |φ(z)| ≤ τ}. It

holds that

(3.1)
∣∣e∗kK−1

m f(Am)e`
∣∣ ≤ 3‖e∗kK−1

m ‖
∞∑

j=k−`
|cj |,

where

(3.2) cj =
1

2π

∫ 2π

0

f
(
ψ(τeiθ)

)(
−1

τ

)j−(k−`)
e−iθ[j−(k−`)]

k−∏̀

i=1

τeiθαi − 1

τeiθ − αi

|αi|
αi

dθ

and cj is independent of the value of τ . Moreover, a simplified bound holds in the form

(3.3)
∣∣e∗kK−1

m f(Am)e`
∣∣ ≤ 3

2π
‖e∗kK−1

m ‖ τ

τ − 1

∫ 2π

0

∣∣∣∣∣f
(
ψ(τeiθ)

) k−∏̀

i=1

τeiθαi − 1

τeiθ − αi

∣∣∣∣∣ dθ.

The proof of Theorem 3.2 is given in Section 6.
Next, we study the bounds for the entries of K−1

m f(Am) for an important class of non-
analytic functions, namely, Markov (Cauchy-Stieltjes) functions, defined as [3]

(3.4) f(z) =

∫ 0

−∞

dµ(ζ)

z − ζ
, z ∈ C \ (−∞, 0],

where µ is a positive measure with supp(µ) ⊂ (−∞, 0]. Markov functions are not analytic
in the entire set Eτ for any τ > 1 that is not sufficiently small. Below are two examples of
Markov functions.
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EXAMPLE 3.3. For f(z) = z−1/2, we can write

f(z) = z−1/2 =

∫ 0

−∞

dµ(ζ)

z − ζ
, where µ′(ζ) =

1

π
√
−ζ .

EXAMPLE 3.4. for f(z) = e−
√
z , we can write

(3.5) f(z) = e−
√
z =

∫ 0

−∞

dµ(ζ)

z − ζ
, where µ′(ζ) =

sin(
√
−ζ)

π
.

The two Markov functions above are not analytic in (−∞, 0]. If we use Theorem 3.2 to
determine an upper bound, we should choose τ such that 1 < τ < |φ(0)|. Such a bound is
usually a significant overestimate of the actual rate of decay. Instead, we present a similar
theorem for Markov functions with decay bounds that are much sharper. Note that [7, 34]
have established decay bounds for Markov functions of matrices with banded or Kronecker
structure, whereas our results hold without assumptions on the matrix structure.

THEOREM 3.5. With the same setting as Theorem 3.2, except that f is a Markov function

defined in (3.4), and assuming that E lies strictly in the right half complex plane, it holds that

(3.6)
∣∣e∗kK−1

m f(Am)e`
∣∣ ≤ 3‖e∗kK−1

m ‖
∞∑

j=k−`
|cj |,

where

cj =

∫ φ(0)

−∞

(
− 1

w

)j+1−(k−`) k−∏̀

i=1

wαi − 1

w − αi

|αi|
αi

dµ(ψ(w))

ψ′(w)
.

Moreover, a simplified bound holds in the form

(3.7)
∣∣e∗kK−1

m f(Am)e`
∣∣ ≤ 3‖e∗kK−1

m ‖
∫ φ(0)

−∞

∣∣∣∣
1

ψ′(w)

∣∣∣∣
1

|w + 1|

∣∣∣∣∣

k−∏̀

i=1

wαi − 1

w − αi

∣∣∣∣∣ |dµ(ψ(w))|.

The proof of Theorem 3.5 is also given in Section 6.
Similar to the upper bounds for |e∗kf(Am)e`| and |e∗kAme`| in [57], we may further relax

the bounds for
∣∣e∗kK−1

m f(Am)e`
∣∣ in Theorem 3.2 and Theorem 3.5 by replacing the integrals

in the formulas with rough bounds in terms of elementary functions. However, we point out
that keeping the integrals and efficiently approximating them by customized quadrature rules
can achieve significantly sharper bounds at a cost not much higher than that needed to evaluate
the rough bounds without integrals. In fact, based on the numerical tests in [57], theoretical
bounds roughly give overestimates that are four orders of magnitude larger than the actual
values. We shall present customized numerical quadrature rules to efficiently approximate our
bounds with integrals. This will be discussed in detail in Section 5.1.

3.2. Poles and the rate of convergence of the RKSM. Though the main goal of this
paper is to study the mechanism to enable the inexact RKSM for approximating f(A)b, in this
section we give a brief discussion about the implications of the bounds (3.1) and (3.6) to explore
numerical or theoretical relationships between the poles and the asymptotic convergence
factor of the RKSM in this problem setting. These relationships seem consistent with those
established in [53] and [3] for the exponential function and Markov functions, respectively.
For the exponential function f(z) = e−hz , which is analytical in the entire complex plane, the
Restricted Denominator (RD) rational approximation is a competitive method; see, e.g., [53].
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RD rational approximations can be regarded as a special variant of the RKSM with a fixed
repeated pole. It is shown in [53] that if W (A) is a sector in the right half complex plane with
vertex at the origin and is symmetric with respect to the real axis, then the optimal pole of RD
is s0 = −m/h, where m is the maximum number of RD steps. From the definition of the
residual norm in (2.9) and the upper bound (3.3) for analytical functions we get

‖Rm‖2 = |βhm+1,m|
∣∣e∗mK−1

m f(Am)e1
∣∣

≤ 3

2π
|βhm+1,m|‖e∗mK−1

m ‖ τ

τ − 1

∫ 2π

0

∣∣∣∣∣f
(
ψ(τeiθ)

)m−1∏

i=1

τeiθαi − 1

τeiθ − αi

∣∣∣∣∣ dθ.

Assume that there exists a uniform upper bound for both |hm+1,m| and ‖e∗mK−1
m ‖ independent

ofm. Then for the RKSM with a fixed repeated pole s ∈ R, αi =
[
φ(si)

]−1

(1 ≤ i ≤ m−1),

and therefore,

‖Rm‖2 ≤ C1
τ

τ − 1

∫ 2π

0

∣∣∣∣∣f
(
ψ(τeiθ)

)( τeiθ − φ(s)

τeiθφ(s)− 1

)m−1
∣∣∣∣∣ dθ.

The optimal single repeated pole s = s∗ ≤ 0 is defined as

(3.8) s∗ = argmin
s≤0

min
τ>1

τ

τ − 1

∫ 2π

0

∣∣∣∣∣f
(
ψ(τeiθ)

)( τeiθ − φ(s)

τeiθφ(s)− 1

)m−1
∣∣∣∣∣ dθ.

We use a composite trapezoidal rule to approximate the integral and use MATLAB’s fminbnd
(a function which aims to find the minimum of a continuous single-variable function on a
finite interval) to approximate the optimal single repeated pole s∗.

Assume that A is a real nonsymmetric matrix such that W (A) can be covered by an
ellipse with semi-major axis of length a parallel to the real axis and semi-minor axis of length
b parallel to the imaginary axis (a > b ≥ 0), centered at c ∈ C. The conformal map φ(z) is
then defined by

φ(z) =





z−c+
√

(z−c)2−ρ2
ρκ , <(z − c) > 0,

z−c−
√

(z−c)2−ρ2
ρκ , <(z − c) < 0,

and its inverse is defined by

ψ(w) =
ρ

2

(
κw +

1

κw

)
+ c,

where ρ =
√
a2 − b2 and κ = (a+ b)/ρ; see, e.g., [57]. For a = b, W (A) can be covered by

a circle, so that

φ(z) =





z−c+
√

(z−c)2
a+b , <(z − c) > 0,

z−c−
√

(z−c)2
a+b , <(z − c) < 0,

ψ(w) =
a+ b

2
w + c.

For a < b, W (A) can be covered by an ellipse with semi-major axis parallel to the imaginary
axis, and we can derive the similar expressions for both φ(z) and ψ(w).

For example, assume that a matrix A is such that its numerical range W (A) can be
covered by an ellipse centered at c = 101, with semi-major axis of length a = 100 lying on the
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real axis and semi-minor axis of length b = 10. Table 3.1 shows the comparison of the optimal
single pole s∗ computed numerically in (3.8) and s0 = −m

h in [53] for approximating e−hAb.
One can see from the table that the two poles are relatively close. The difference between
these two poles might be attributed to the different shape of W (A), which is assumed to be
an infinite sector in [53] but is a finite ellipse in our experiments. The result in [53] is more
suitable for some problems arising from discretizing PDEs with different mesh sizes, because
all of them can be fitted into identical sector with infinite radius. In this paper, following the
assumptions in the literature on the convergence of the RKSM based on Riemann mappings
φ(z) and the inverses ψ(w), we focus on matrices with a finite numerical range.

TABLE 3.1
Comparison of the optimal single pole s∗ (3.8) and s0 = −

m
h

[53] for approximating e−hAb, where W (A)
can be covered by an ellipse centered at c = 101, with semi-major axis of length a = 100 lying on the real axis and

semi-minor axis of length b = 10.

h = 0.1 h = 1 h = 10
m s∗ s0 s∗/s0 s∗ s0 s∗/s0 s∗ s0 s∗/s0
20 −174.35 −200 0.8717 −16.60 −20 0.8298 −0.92 −2 0.4578
40 −298.70 −400 0.7468 −38.08 −40 0.9521 −2.70 −4 0.6749
60 −437.64 −600 0.7294 −64.02 −60 1.0669 −4.45 −6 0.7418
80 −585.49 −800 0.7319 −93.91 −80 1.1739 −6.20 −8 0.7755
100 −738.70 −1000 0.7387 −126.80 −100 1.2680 −7.97 −10 0.7975

For Markov functions, from the definition of the residual norm (2.9) and (3.7) in Theo-
rem 3.5, we get

‖Rm‖2 = |βhm+1,m|
∣∣e∗mK−1

m f(Am)e1
∣∣

≤ 3|βhm+1,m|‖e∗mK−1
m ‖

∫ φ(0)

−∞

|µ′(ψ(w))|
|w + 1|

∣∣∣∣∣

m−1∏

i=1

wαi − 1

w − αi

∣∣∣∣∣ dw

≤ 3|βhm+1,m|‖e∗mK−1
m ‖

∫ φ(0)

−∞

|µ′(ψ(w))|
|w + 1| dw max

w∈(−∞,φ(0)]

∣∣∣∣∣

m−1∏

i=1

w − φ(si)

φ(si)w − 1

∣∣∣∣∣ .

Assume that there exists a uniform upper bound for |βhm+1,m|‖e∗mK−1
m ‖

∫ φ(0)
−∞

|µ′(ψ(w))|
|w+1| dw

independent of m. Then the optimal poles si (1 ≤ i ≤ m) can be found by minimizing

max
w∈(−∞,φ(0)]

∣∣∣∣∣

m−1∏

i=1

w − φ(si)

φ(si)w − 1

∣∣∣∣∣ ,

which is consistent with the findings in [3]. In particular, for a fixed repeated pole si = s < 0,
there exists C2 ∈ R

+ such that

‖Rm‖2 ≤ C2 max
w∈(−∞,φ(0)]

∣∣∣∣
w − φ(s)

φ(s)w − 1

∣∣∣∣
m−1

= C2 max

{∣∣∣∣
φ(0)− φ(s)

φ(s)φ(0)− 1

∣∣∣∣ ,
∣∣∣∣

1

φ(s)

∣∣∣∣
}m−1

,

where the last equality holds since w−φ(s)
φ(s)w−1 is monotonic in w on (−∞, φ(0)]. Essentially

the same result for the residual defined by ‖f(A)b− Vmf(Am)βe1‖ can be found in [3,
Corollary 6.4 (a)]. A similar residual bound obtained with two cyclic poles can also be derived,
corresponding to the result in [3, Corollary 6.4 (b)]. The above discussion gives an alternative
proof of the residual bounds for approximating the action of a Markov function f(A)b by the
RKSM with a few cyclic poles.
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4. An inexact RKSM for approximating f(A)b. Inexact Arnoldi algorithms have
been widely used in solving numerical linear algebra problems, including approximating
f(A)b. In general, these algorithms include inexact standard (polynomial) Krylov methods
and inexact rational Krylov methods. They can be applied to symmetric and nonsymmetric
matrices, while f can be an analytic function or a Markov function. Preliminary test results
were given in [8] for the inexact standard Krylov method to approximate f(A)b, where A is
symmetric and positive definite and f is analytic. Inexact standard Krylov subspace methods
have also been studied in [20] and [56] for approximating f(A)b, where A is nonsymmetric
and f is analytic. Several inexact rational Krylov methods, including the shift-and-invert
Lanczos method and the EKSM (which rely on only one fixed pole), have been investigated
in [40] for approximating the action of Markov functions of Hermitian matrices to vectors.
To the best of our knowledge, no studies have been carried out to explore the inexact rational
Krylov method with variable poles for approximating f(A)b involving nonsymmetric matrices
for either analytic functions or Markov functions. Our goal of study is to fill this research gap.

For large-scale problems, the approximate computation of the shift-invert matrix vector
product wk+1 = (I −A/sk)

−1(A− σI)vk in (2.1) at step k of the RKSM is done by an
iterative linear solver. Errors are introduced in the approximate solution and hence into the
basis vectors of the rational Krylov subspaces. Let ŵk+1 be an approximate solution such that
the residual of this linear solve is ξk = (A− σI)vk − (I −A/sk)ŵk+1. Then (2.1) turns into

ŵk+1 = (I −A/sk)
−1 ((A− σI)vk − ξk) =

k+1∑

i=1

hikvi.

If we choose the pole sm = ∞, then the inexact Arnoldi relation of RKSM after step m is

(4.1) AVm(HmDm + I) = Vm(Hm + Pm) + hm+1,mvm+1e
∗
m + Ξm,

where Ξm = [ξ1, ξ2, . . . , ξm] contains the residual vectors of the approximate linear solves
in the first m steps of the RKSM. The true residual of the inexact method for approximating
f(A)b is defined as

R̃m = (AVm − VmAm)f(Am)βe1

= [hm+1,mvm+1e
∗
m + (I − VmV

∗
m)Ξm]K−1

m f(Am)βe1.(4.2)

We are interested in exploring strategies to make the difference between the derived

residual in (2.9) and the true residual in (4.2) sufficiently small, so that the error term Ξm
has little impact on the convergence of the inexact RKSM. The difference between the two
residuals is

∆m = Rm − R̃m = (VmV
∗
m − I)ΞmK

−1
m f(Am)βe1.

From the definition of ∆m, we have

‖∆m‖2 =
∥∥(VmV ∗

m − I) ΞmK
−1
m f(Am)βe1

∥∥
2
≤ ‖VmV ∗

m − I‖2
∥∥ΞmK−1

m f(Am)βe1
∥∥
2

=

∥∥∥∥∥

m∑

k=1

ξke
∗
kK

−1
m f(Am)βe1

∥∥∥∥∥
2

≤
m∑

k=1

‖ξk‖2 |e∗kK−1
m f(Am)βe1|,(4.3)

where the second equality holds since I − VmV
∗
m is an orthogonal projector.

In order to make ‖∆m‖ sufficiently small, either ‖ξk‖ or |e∗kK−1
m f(Am)βe1| should be

sufficiently small for each index value 1 ≤ k ≤ m. An a priori evaluation of the upper bound
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for |e∗kK−1
m f(Am)βe1| can be used to determine how large ‖ξk‖ could be at each step. We

have already derived the decay bounds for |e∗kK−1
m f(Am)βe1| in Theorem 3.2 and Theo-

rem 3.5 for analytic functions and Markov functions, respectively. Our next step is to investi-
gate a relaxation strategy for the accuracy of the linear solve (I −A/sk)wk+1 = (A− σkI)vk
at each RKSM step.

The inexact Arnoldi relation for a matrix A in (4.1) is equivalent to an exact Arnoldi
relation for the perturbed matrix Ã = A− ΞmK

−1
m V ∗

m. It follows that the restricted matrix
Ãm equals to V ∗

m

(
A− ΞmK

−1
m V ∗

m

)
Vm, and

W (Ãm) ⊂W
(
A− ΞmK

−1
m V ∗

m

)

⊂
{
z | z = z1 − z2, z1 ∈W (A), z2 ∈W

(
ΞmK

−1
m V ∗

m

)}
.

Suppose that cm is an upper bound for
∥∥K−1

m

∥∥. For any vector w with unit 2-norm, we have

(4.4)
∣∣w∗ΞmK

−1
m V ∗

mw
∣∣ ≤ ‖Ξm‖

∥∥K−1
m

∥∥ ≤ cm ‖Ξm‖ ≤ cm

√√√√
m∑

k=1

‖ξk‖2.

Define ε = cm

√∑m
k=1 ‖ξk‖

2 such that
∣∣w∗ΞmK−1

m V ∗
mw
∣∣ ≤ ε. Assume that W (A) is a

subset of an ellipse centered at c = c1 + c2i ∈ C, with semi-major axis of length a parallel
to the real axis and semi-minor axis of length b (a ≥ b ≥ 0), where c1 > a. For any point
on the boundary of the ellipse that covers W (A), denoted as p = (c1 + a cos θ, c2 + b sin θ),
consider a corresponding point p∗ = (c1 + a cos θ + ε cosα, c2 + b sin θ + ε sinα). Since
the sum of the distances from p to the two foci of the ellipse is 2a, it is easy to show that the
sum of the distances from p∗ to the two foci is less than or equal to 2a+ 2ε by applying the
triangle inequality involving the three triangles with vertices p, p∗, and the two foci. Therefore,
W (A− ΞmK

−1
m V ∗

m) can be covered by a larger ellipse centered at c = c1 + c2i with semi-
major axis of length at = a+ε and semi-minor axis of length bt =

√
(a+ ε)2 − a2 + b2 ≥ 0,

which also has the same foci and focal distance
√
a2 − b2 as the original ellipse.

The following theorem provides a tolerance relaxation strategy for the inexact linear solve
at each step of the RKSM.

THEOREM 4.1. Let R̃m and Rm be the true residual (4.2) and the derived residual (2.7)
afterm steps of the inexact RKSM for approximating f(A)b, where f is analytic in a connected

compact metric space E ⊂ C.

Let tol > 0, and let ε > 0 be small and arbitrary. Define χk as the upper bound,

either (3.1) and (3.3) for
∣∣e∗kK−1

m f(Am)βe1
∣∣ (1 ≤ k ≤ m) for analytic functions in Theo-

rem 3.2, or (3.6) and (3.7) for Markov functions in Theorem 3.5. Let cm be a uniform upper

bound for
∥∥K−1

k

∥∥ for 1 ≤ k ≤ m.

Assume thatW (A) is a subset of an ellipse centered at c = c1+c2i ∈ C, with semi-major

axis of length a parallel to the real axis and semi-minor axis of length b (a ≥ b ≥ 0) and

that E covers an elliptic boundary centered at c = c1 + c2i, with semi-major axis of length

at = a+ ε and semi-minor axis of length bt =
√
(a+ ε)2 − a2 + b2, (at ≥ bt).

Suppose that for every 1 ≤ k ≤ m, ‖ξk‖ ≤ εk, where

(4.5) εk = min





tol

mχk
,

1

m− k + 1

√√√√ ε2

c2m
−
k−1∑

i=1

ε2i



 .

Then ‖∆m‖ =
∥∥∥R̃m −Rm

∥∥∥ ≤ tol , and
∑m
i=1 ε

2
i ≤ ε2/c2m.
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Proof. From (4.5), we conclude that εk ≤ 1
m−k+1

√
ε2/c2m −∑k−1

i=1 ε
2
i for all 1 ≤ k ≤ m.

Therefore, we have
∑k
i=1 ε

2
i ≤ ∑k−1

i=1 ε
2
i + (m − k + 1)2ε2k ≤ ε2/c2m. Specifically, when

k = m we conclude that
∑m
i=1 ε

2
i ≤ ε2/c2m.

From (4.4), we have
∣∣w∗ΞkK

−1
k V ∗

k w
∣∣ ≤ cm

√∑k
i=1 ‖ξi‖

2 ≤ cm

√∑m
i=1 ‖ξi‖

2 ≤ ε for

all 1 ≤ k ≤ m. It follows that W (A−ΞkK
−1
k V ∗

k ) ⊂ E, so that f is analytic in the numerical
range of all the perturbed matrices Ãk = A− ΞkK

−1
k V ∗

k (1 ≤ k ≤ m).
From (4.5), we also conclude that εk ≤ tol

mχk
for all 1 ≤ k ≤ m. By the expression for

‖∆m‖ in (4.3), it follows that

(4.6) ‖∆m‖ ≤
m∑

k=1

‖ξk‖2 |e∗kK−1
m f(Am)βe1| ≤

m∑

k=1

εkχk ≤
m∑

k=1

tol

mχk
χk = tol .

In Theorems 3.2 and 3.5 we derived a decaying behavior of the entries in the first column of
K−1
m f(Am). Since these entries decrease in modulus with the row index, it follows from (4.6)

that the tolerance of the inexact linear solves can be relaxed with the RKSM progress. In
practice, the upper bounds for

∣∣e∗kK−1
m f(Am)βe1

∣∣ suggested by Theorem 3.2 or Theorem 3.5
involve integrals, which may take some time to be approximated to a reasonable accuracy.
Also, these bounds could give significant overestimates of the actual entries at certain RKSM
steps, which may lead to an excessively conservative relaxation estimate.

Instead, we consider a heuristic estimate of
∣∣e∗kK−1

m f(Am)βe1
∣∣ based on ‖Rk‖, which

usually gives a less conservative tolerance relaxation for the approximate linear solve at each
RKSM step and works well in practice. To derive this heuristic, we define the actual entry
of interest χk =

∣∣e∗kK−1
m f(Am)βe1

∣∣, where Km, Am ∈ R
m×m are obtained after applying

the temporary pole sm = ∞ at step m of the RKSM. From the expression of ‖Rm‖ in (2.9),

we have ‖Rk‖ = |hk+1,k|
∣∣∣e∗kK

−1

k f(Ak)βe1

∣∣∣, where the scalar hk+1,k and the restricted

matrices Kk, Ak ∈ R
k×k are obtained after applying the finalized finite pole sk at step k.

From (3.1) in Theorem 3.2 or (3.6) in Theorem 3.5, we have

χk =
∣∣e∗kK−1

m f(Am)βe1
∣∣ ≤ 3‖e∗kK−1

m ‖
∞∑

j=k−1

|cj |, and(4.7)

‖Rk‖ /|hk+1,k| =
∣∣∣e∗kK

−1

k f(Ak)βe1

∣∣∣ ≤ 3‖e∗kK
−1

k ‖
∞∑

j=k−1

|cj |.(4.8)

Since W (Am) ,W
(
Ak
)
⊆ W (A) ⊂ E and the first k − 1 poles remain the same for

generating Kk, Ak, hk+1,k, and Kk, Ak, hk+1,k, the definitions of cj in (4.7) and (4.8)
have identical expressions, for both analytic functions and Markov functions. Suppose that

‖e∗kK−1
m ‖ and ‖e∗kK

−1

k ‖ are close and that the bounds in (4.7) and (4.8) are comparably sharp.

Then χk can be approximated by ‖Rk‖
|hk+1,k| .

Based on Algorithm 1, it is possible to get both ‖Rk‖ and
∣∣hk+1,k

∣∣ with the temporary

infinite pole at step k, before we need to use χk ≈ ‖Rk‖
|hk+1,k| to set the tolerance for the iterative

linear solve (I −A/sk)wk+1 = (A− σkI)vk with the finalized finite pole sk. Since this is a
heuristic estimate of χk, we may have a lower risk of applying excessive relaxation by slightly
increasing this estimate so that the tolerance of the inexact linear solve can be tightened
moderately, and the inexact RKSM may follow the behavior of the exact algorithm more
reliably. In practice, we set χk = 10‖Rk‖

|hk+1,k| in our numerical tests.
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5. Numerical experiments. In this section, we first provide numerical evidence to show
the sharpness of our upper bounds for the entries of K−1

m f(Am) for both analytic functions
and Markov functions and discuss efficient quadrature rules to approximate these bounds.
Then we numerically show the advantage of the inexact RKSM over the exact method for
approximating f(A)b. All experiments were carried out in MATLAB R2021b on a laptop
running in Windows 10 with 16GB DDR4 2400 MHz memory and a 2.81 GHz Intel Dual
Core CPU.

5.1. Upper bounds for the entries of K−1

m
f(Am). To study the decaying pattern for

the residual norm ‖Rm‖2 in (2.9), we are mostly interested in approximating the upper bound
for
∣∣e∗kK−1

m f(Am)e1
∣∣, for k ≤ m, accurately and efficiently.

For analytical functions, Theorem 3.2 provides upper bounds in both (3.1) and (3.3),
referred to as the original bound and the simplified bound, respectively. Although |cj | defined
in (3.2) is independent of the values of τ , numerical tests show that it is unstable to approximate
|cj | in (3.2) for a wide range of values of τ . A better approach is to use fminbnd in MATLAB
to find the optimal τ > 1 that minimizes the partial sum of the infinite series of the |cj |’s. To
compute |cj | in (3.2) with a fixed value of τ , we use a composite trapezoid rule to approximate
the integral in (3.2) and then employ the fast Fourier transform (FFT) to evaluate a partial
sum of the infinite series in (3.1). In a neighborhood of the optimal value of τ , numerical
experiments show the efficiency of the composite trapezoid rule evaluated by the FFT.

Specifically, we evaluate the expression for cj in (3.2) by the composite trapezoid rule

cj ≈
N−1∑

p=0

wpQp

(
1

τ

)j−(k−`)
e−iθp[j−(k−`)],

where N is the number of quadrature points, θp =
2πp
N (0 ≤ p ≤ N − 1) are the quadrature

nodes, wp = 2π
N−1 are the quadrature weights for all 0 ≤ p ≤ N − 1, and

Qp =
1

2π
f
(
ψ(τeiθp)

) k−∏̀

i=1

τeiθpαi − 1

τeiθp − αi
.

To approximate the infinite series for |cj |, we compute the first N = 214 = 16384 terms of cj .
It follows that

∞∑

j=k−`
|cj | ≈

k−`+N−1∑

j=k−`

∣∣∣∣∣

N−1∑

p=0

wpQp

(
1

τ

)j−(k−`)
e−iθp[j−(k−`)]

∣∣∣∣∣

=

k−`+N−1∑

j=k−`

(
1

τ

)j−(k−`)
∣∣∣∣∣

N−1∑

p=0

wpQpe
−i 2πp

N
[j−(k−`)]

∣∣∣∣∣

=

N−1∑

j=0

(
1

τ

)j ∣∣∣∣∣

N−1∑

p=0

wpQpe
−i 2πp

N
j

∣∣∣∣∣ =
N−1∑

j=0

(
1

τ

)j
|Pj | ,

where we use MATLAB’s fft to compute all Pj =
∑N−1
p=0 wpQpe

−i 2πp

N
j (0 ≤ j ≤ N − 1).

Similarly, for the simplified bound in (3.3), we also use the composite trapezoid rule to
approximate the integral and then call fminbnd in MATLAB to find the optimal τ > 1 .

For Markov functions, Theorem 3.5 provides the original bound in (3.6) and also the sim-
plified bound in (3.7). Since the original bound in (3.6) involves an infinite series, we approxi-
mate it by computing the first N = 212 = 4096 terms. For the test function f2(z) = e−

√
z ,
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since µ′(ζ) defined in (3.5) is oscillatory, we apply integration by substitution and divide the
interval of integration into several subintervals. We apply Gauss-Legendre quadrature on the
first few subintervals where the quadrature values are relatively large. The remaining subinter-
vals are approximated by a trigonometric integral. For the test function f3(z) = z−1/2, we
divide the interval of integration into several subintervals and apply integration by substitution
and Gauss-Jacobi quadrature on appropriate subintervals. We omit these technical details
but point out that the quadrature can be evaluated accurately with efficiency. Compared with
MATLAB’s integral with default setting, numerical experiments show that our quadrature
for approximating cj is more accurate and faster.

EXAMPLE 5.1. Consider a diagonal (symmetric) matrix A ∈ R
100001×100001 with

diagonal entries akk = − cos
(

πk
100000

)
103−10−3

2 + 103+10−3

2 , for 0 ≤ k ≤ 100000. We
compute several iterations of the RKSM for approximating f(A)b with 4 different functions.

We test an analytic hyperbolic sine function f0(z) = sin(hz) = ehz−e−hz

2 for h = 0.01,
and we use one repeated single pole s = −m/h = −4000 for 40 steps of the RKSM.
We also test the analytic exponential function f1(z) = e−z and use the repeated single pole
s = m = −40 suggested in [53]. Comparisons between the actual values of

∣∣e∗kK−1
m f(Am)e1

∣∣
and the two upper bounds in Theorem 3.2 are reported in the upper left and upper right plots
in Figure 5.1 for f0(z) and f1(z), respectively. Both upper bounds give accurate estimates
of the actual values. Compared to the bounds for |e∗kAme`| and |e∗kf(Am)e`| investigated
for analytic functions in [57], our approach with composite trapezoid quadrature and FFT
evaluates the upper bounds efficiently with higher accuracy.

For the Markov functions f2(z) = e−
√
z and f3(z) = z−1/2, we apply the upper bounds

from Theorem 3.5, with different expressions for µ′(ψ(w)), to Example 3.3 and Example 3.4,
respectively. The lower left and lower right plots in Figure 5.1 display the results. We
can see that for f3(z) = z−1/2, both upper bounds give accurate estimates of the actual
values, while for f2(z) = e−

√
z , both upper bounds give overestimates, and the simplified

bound is even further away from the actual value. This might be related to the fact that

µ′(ψ(w)) =
sin

(√
−ψ(w)

)

π for f2(z) = e−
√
z does not decrease in absolute value but keeps

oscillating infinitely many times on the interval of integration (−∞, φ(0)].
EXAMPLE 5.2. Consider a block diagonal non-Hermitian matrix A ∈ R

200002×200002

with 2× 2 blocks Bk =

[
ck dk
−dk ck

]
(0 ≤ k ≤ 100000) along its diagonal, where

ck = − cos

(
πk

100000

)
103 − 10−3

2
+

103 + 10−3

2
and

dk = 10

√√√√1− (ck − 103+10−3

2 )2

( 10
3−10−3

2 )2
.

The eigenvalues of A are located in an ellipse centered at 103+10−3

2 = 500.0005, with semi-

major axis of length 103−10−3

2 = 499.9995 lying on the real axis and semi-minor axis of length
10. Similar to Example 5.1, we compute several iterations of the RKSM for approximating
f(A)b with 4 functions. From the results shown in Figure 5.2, we can see for this non-
Hermitian matrix whose eigenvalues are located in an ellipse that the upper bounds we derived
have similar behavior as those for the Hermitian matrix given in Example 5.1.

5.2. Comparison between the exact and inexact RKSM for approximating f(A)b.

We first give an example showing that the inexact RKSM can track the behavior of the exact
method if the error introduced at each RKSM step satisfies the bound given in Theorem 4.1.
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FIG. 5.1. Comparison between the values of

∣

∣

∣
e∗kK

−1
m f(Am)e1

∣

∣

∣
and their upper bounds. Upper left: f0(z) =

sinh(0.01z). Upper right: f1(z) = e−z . Lower left: f2(z) = e−
√
z . Lower right: f3(z) = z−1/2.

Then we consider a few practical problems for which the exact method is simulated by an
inexact RKSM, where the linear solve at each RKSM step is performed to a fixed high level
of accuracy, to compare with the inexact RKSM with the relaxation strategy discussed in
Section 4.

EXAMPLE 5.3. We consider a non-Hermitian matrix A ∈ R
23560×23560 from the Mar-

trixMarket problem af23560 , whose eigenvalues are located on the right half complex plane.
We test the analytic function f1(z) = e−z and the Markov function f2(z) = e−

√
z with the

adaptive RKSM in [38, Section 4] to approximate f(A)b, where b ∈ R
23560×1 is a vector with

standard normally distributed random entries. We apply both the exact RKSM and inexact
RKSM to approximate f(A)b. For the exact method, the linear solves are performed by
MATLAB’s backslash operation, while for the inexact method, the linear systems are solved
by a right-preconditioned GMRES(100) method with the relaxation strategy discussed in
Theorem 4.1, where tol = 10−9, ξj = tol

mχj
, and χk = 10‖Rk‖

|hk+1,k|
. The preconditioner is the

incomplete LU factorization preconditioner with threshold and pivoting (ILUTP) [60, Sec-
tion 10.4.4, p. 327], using a drop tolerance 0.01. Figure 5.3 illustrates that if we properly
set the relaxed accuracy of the approximate linear solve at each RKSM step, we can get the
desired residual norm for the inexact method, and the norm of the difference between the
residuals of the exact method and the inexact method remains small through the entire process
of the RKSM iterations.

EXAMPLE 5.4. We test 11 nonsymmetric real matrices, all of which have the entire
spectrum strictly in the right half complex plane. Two of these matrices are of the form
A = M−1K, where both M and K are sparse, but A is not formed explicitly. Specifically,
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FIG. 5.2. Comparison between the values of

∣

∣

∣
e∗kK

−1
m f(Am)e1

∣

∣

∣
and their upper bounds. Upper left: f0(z) =

sinh(0.01z). Upper right: f1(z) = e−z . Lower left: f2(z) = e−
√
z . Lower right: f3(z) = z−1/2.

the problems obstacle and plate, which involve matrices of saddle-point structure arising
from modeling incompressible fluid flows in 2D domains, are generated by the IFISS pack-
age version 3.6 [30]. The obstacle problem is generated with grid parameter 6, using the
biquadratic-bilinear (Q2-Q1) element on a stretched rectangular grid, with viscosity param-
eter ν = 1

175 corresponding to a Reynolds number Re = 2
ν = 350. The plate problem is

constructed with grid parameter 7, using the biquadratic-bilinear element on a non-stretched
rectangular grid, with viscosity parameter ν = 1

500 that corresponds to a Reynolds number
Re = 2

ν = 1000. Both problems give a matrix pair (K,M), where

K =

[
F BT

B 0

]
and M =

[
G ηBT

ηB 0

]
,

with F being the discrete convection-diffusion operator, BT the gradient operator for the
pressure, B the divergence operator for the velocity, G the velocity mass matrix, and η = 0.01
so that the np (the degree of freedom of the pressure space) infinite eigenvalues of

[
F BT

B 0

] [
u
p

]
= λ

[
G 0
0 0

] [
u
p

]

are mapped to 1
η = 100 without changing the finite eigenvalues [16]. These mapped finite

eigenvalues are in the deep interior of the spectrum and should have essentially no impact on
the convergence of the RKSM for approximating f(A)b with A = M−1K. Such a matrix
pair (K,M) has been used to study the linear stability of the steady-state solution of the
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FIG. 5.3. Comparison of the exact and inexact RKSM for approximating f(A)b, where A is the MatrixMarket

af23560 matrix. Left: f1(z) = e−z . Right: f2(z) = e−
√
z .

Navier-Stokes equation by matrix exponentials [58]. For these two problems, where M is not
the identity, we in addition let ξk = tol

mχk(1+‖M‖2)
to accommodate the corresponding residual

norm ‖(KVm −MVmAm)f(Am)βe1‖.
The two larger problems LinDir2D and LinDir3D are generated from finite difference

discretizations of the second-order linear PDE

−4u+ v · ∇u+ wu = f

on a 2D domain Ω2D = [0, 1] × [0, e] and a 3D domain Ω3D = [0, 1] × [0, e] × [0,
√
2π],

respectively. The artificial “wind” v and w are defined as

v2D =

[
e−2xy(y2 + 2 sin(x))
cos(4x+ y)(x3 + 3e−y)

]
, w2D =

erf(x− y2)2 + 2−8

arctan(x2 cos(y)) + π/2
,

and

v3D =



e−2xyz(y2 + 2z sin(x))
cos(4x+ y + 2z)(x3 + 3e−y − z)

ln(1 + x+ 2y + 3z)
(
x+ 3 cos(z) + 1

z+
√
2π+0.01

)


 ,

w3D =
erf(x+ z − y2)2 + 2−8

arctan(x2 cos(y)z) + π/2
.

We use a standard second-order centered finite difference to approximate the first and second
derivatives based on a uniform 29 × 210 mesh grid of Ω2D and a 26 × 27 × 28 mesh grid of
Ω3D. Both problems are based on Dirichlet boundary condition but with the boundary nodes
included in the matrix. This leads to matrices of order (29 + 1) × (210 + 1) = 525825 for
LinDir2D and (26 + 1)× (27 + 1)× (28 + 1) = 2154945 for LinDir3D, respectively. The
original matrices corresponding to the linear differential operator of this PDE were scaled by
max{hx, hy}2 and max{hx, hy, hz}2, respectively, where hx, hy, and hz are the mesh size
in the x, y, and z directions, so that the scaled matrices have bounded norms independent
of the mesh size (consistent with the assumption that W (A) ⊂ E and E ⊂ C is compact).
An application of MATLAB’s backslash to solve a shifted linear system involving the scaled
matrices of LinDir2D is still faster than our iterative method, whereas for LinDir3D it used up
to 16 GB memory on our machine in a few minutes and led MATLAB to crash (in fact, 32 GB
memory was still not sufficient to solve the linear systems involving LinDir3D by backslash).
Other matrices are selected from the SuiteSparse Matrix Collection [17].
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To compare the behavior of the inexact RKSM with and without the relaxation strategy
for the inner linear solves, we use the RKSM to approximate f(A)b for f1(z) = e−z ,
f2(z) = e−

√
z , f3(z) = z−1/2 and a random vector b whose entries follow a standard

normal distribution. For the inexact method, we use the same strategy as in Example 5.3, and
for the exact method, we let ξ̃k = min1≤i≤k ξk to simulate the behavior of the ideal exact
RKSM that performs an exact linear solve at each step. The adaptive poles of the RKSM are
chosen following the strategy adopted in [38, Section 4]. We use the right-preconditioned
GMRES(70) method as the inner linear solver for the RKSM. The maximum number of
GMRES restart cycles is set to be J = 20. We use the ideal least-squares commutator (LSC)
preconditioners [28, 29] for the problems obstacle and plate from IFISS. For LinDir2D and
LinDir3D, the preconditioner is one W-cycle of the geometric multigrid (GMG) mtehod with
two applications of the Gauss-Seidel method as pre- and post-smoothers. For all other matrices
(from SuiteSparse), we use the incomplete LU preconditioner with threshold dropping and
pivoting (ILUTP) preconditioners [60, Section 10.4.4]; also see MATLAB’s documentation
for ilu with the option for the ilutp.

The results of the performance of the exact and inexact RKSM for f1(z) = e−z ,
f2(z) = e−

√
z , and f3(z) = z−1/2 are summarized in Tables 5.1, 5.2, and 5.3, respectively.

We show the size of the matrices n, the residual tolerance tol , the type of preconditioners
(including the drop tolerance for ILUTP), the max number of RKSM steps m, the total number
of GMRES iterations, the runtime for both the exact and the inexact methods, and the number
of RKSM steps to converge. We chose the smallest tolerance tol (a negative integer power of
10) for each test matrix across all test functions such that the inexact RKSM can successfully
converge to this tolerance for all functions of interest here. Such a problem-dependent toler-
ance is preferred to a uniform tolerance because an absolute tolerance for the residual (2.6)
depends on the norm (and probably the condition number) of the matrixA. A uniform absolute
tolerance similarly does not indicate the quality of approximation for different problems, nor
does it show whether the computed approximation is close to the most accurate approximation
achievable in double precision. Note that the total runtime includes the time for constructing
the preconditioners, applying GMRES, the orthogonalization of the basis vectors of the RKSM,
evaluating f(Am) for the small restricted matrices, and estimating the level of relaxation for
the inner linear solves.

TABLE 5.1
Performance of the exact and inexact RKSM for f1(z) = e−z .

precond- # GMRES iter. time (secs.) RKSM
problem size n tol itioner m exact inexact exact inexact steps

af23560 23560 10−10 ILUTP, 0.01 300 14353 3943 130.44 72.34 224
chipcool1 20082 10−11 ILUTP, 0.01 100 4578 1891 24.48 12.62 58

obstacle 37168 10−11 LSC 300 37666 20723 691.54 427.87 281
plate 37507 10−10 LSC 400 35324 20556 702.77 460.10 264

venkat 62424 10−11 ILUTP, 0.1 200 8754 4424 125.56 85.19 101
poli3 16955 10−13 ILUTP, 0.1 100 1457 440 4.86 1.28 21
epb1 14734 10−12 ILUTP, 0.01 100 3159 1135 10.63 4.11 42

goodwin030 10142 10−12 ILUTP, 0.01 100 3598 1362 19.52 12.00 47
pesa 11738 10−10 ILUTP, 0.01 100 5515 2643 18.89 9.21 66

LinDir2D 525825 10−10 GMG 100 3672 897 988.45 205.40 61
LinDir3D 2154945 10−10 GMG 100 1442 589 1080.83 385.53 49

Overall, from the results in Tables 5.1–Table 5.3, the inexact methods need fewer GMRES
iterations to solve the inner linear systems, so that they need less time to converge than the
“exact” RKSM. However, the level of advantage of the inexact RKSM over the exact method
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TABLE 5.2
Performance of the exact and inexact RKSM for f2(z) = e−

√
z .

precond- # GMRES iter. time (secs.) RKSM
problem size n tol itioner m exact inexact exact inexact steps

af23560 23560 10−10 ILUTP, 0.01 100 1999 794 23.63 15.26 50
chipcool1 20082 10−11 ILUTP, 0.01 100 4109 1577 22.60 11.38 54

obstacle 37168 10−11 LSC 100 7575 4090 140.23 84.13 62
plate 37507 10−10 LSC 100 6344 3480 126.76 77.61 52

venkat 62424 10−11 ILUTP, 0.1 100 5804 2880 83.11 55.73 69
poli3 16955 10−13 ILUTP, 0.1 100 1231 304 3.97 0.81 18
epb1 14734 10−12 ILUTP, 0.01 100 2902 1050 9.60 3.81 39

goodwin030 10142 10−12 ILUTP, 0.01 100 3017 1098 16.26 9.83 40
pesa 11738 10−10 ILUTP, 0.01 100 4329 2049 14.15 7.14 46

LinDir2D 525825 10−10 GMG 100 2811 664 755.41 151.98 44
LinDir3D 2154945 10−10 GMG 100 1898 476 1631.24 336.33 30

TABLE 5.3
Performance of the exact and inexact RKSM for f3(z) = z−1/2.

precond- # GMRES iter. time (secs.) RKSM
problem size n tol itioner m exact inexact exact inexact steps

af23560 23560 10−10 ILUTP, 0.01 100 3874 1002 35.01 18.10 54
chipcool1 20082 10−11 ILUTP, 0.01 100 4491 1777 24.19 12.62 57

obstacle 37168 10−11 LSC 100 8835 4875 163.53 99.49 72
plate 37507 10−10 LSC 100 7636 4110 154.99 92.60 63

venkat 62424 10−11 ILUTP, 0.1 100 6461 3104 91.49 59.16 74
poli3 16955 10−13 ILUTP, 0.1 100 1238 402 4.05 1.19 18
epb1 14734 10−12 ILUTP, 0.01 100 2944 1151 9.71 4.06 39

goodwin030 10142 10−12 ILUTP, 0.01 100 3199 1242 16.95 10.66 42
pesa 11738 10−10 ILUTP, 0.01 100 4820 2722 15.84 9.36 49

LinDir2D 525825 10−10 GMG 100 3314 875 894.54 211.29 49
LinDir3D 2154945 10−10 GMG 100 2582 545 2233.17 388.70 38

varies for different matrices and preconditioners. In general, if the proportion of time used
to construct preconditioners is small, then the relative advantage of the inexact RKSM is
significant.

To demonstrate this point, we choose f2(z) = e−
√
z as an example and show the com-

putation time used for constructing the preconditioners and applying GMRES in Table 5.4.
For the problem af23560, the exact RKSM needs 47% of the total runtime to construct the
preconditioners, and the inexact RKSM requires 35% less runtime than the exact method; by
comparison, for the problem LinDir3D, the exact RKSM takes only 1% of the total runtime to
construct the preconditioners, and the inexact RKSM takes 79% less runtime than the exact
method. In general, excluding the cost for constructing the preconditioners, the inexact RKSM
can save about 35–81% of the runtime needed for the exact method.

6. Proofs. In this section, we prove Theorems 3.2 and 3.5 in Section 3. We use a rational
approximation approach called the Faber-Dzhrbashyan (FD) rational functions introduced
in [25]; see also [62, Ch. XIII, Section 3] and the references therein. Our proofs of Lemma A.1
and Theorem 3.2 largely follow the ideas of those in [57], especially the introduction to FD
rational functions before the proofs of Theorems 3.2 and 3.5. To make our paper self-contained,
the background details are presented in Appendix A. There are two minor differences between
the materials in the appendix and in [57, Section 7]. First, a more complete description of the
conditions for the expansions of the FD rational functions is presented in the appendix based
on the original reference [62]. Second, a sharper upper bound is constructed in Lemma A.1 by
using the least number of inequalities. In the proofs of Theorems 3.2 and 3.5, with Lemma 2.4,
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TABLE 5.4
Itemized runtime (sec.) of the exact and inexact RKSM for f2(z) = e−

√
z .

exact RKSM inexact RKSM
constructing applying constructing applying

problem preconditioners GMRES total time preconditioners GMRES total time

af23560 11.16 11.00 23.63 11.04 3.37 15.26
chipcool1 4.79 17.06 22.60 4.79 5.83 11.38

obstacle 19.79 117.61 140.23 19.49 61.91 84.13
plate 19.44 153.41 175.31 20.15 98.13 120.94

venkat 27.82 52.14 83.11 28.53 24.04 55.73
poli3 0.04 3.85 3.97 0.04 0.69 0.81
epb1 1.00 8.34 9.60 1.00 2.55 3.81

goodwin030 5.86 10.02 16.26 6.16 3.28 9.83
pesa 2.25 10.78 14.15 2.18 4.53 7.14

LinDir2D 6.33 737.34 755.41 6.29 134.75 151.98
LinDir3D 16.97 1591.79 1631.24 16.51 298.58 336.33

our derivation is developed for the entries of K−1
m f(Am) instead of Am or f(Am), and

we keep the integrals of the upper bounds to provide sharper bounds and propose efficient
quadrature rules to evaluate them accurately. In addition, to the best of our knowledge,
Theorem 3.5 for Markov functions and its proof in this paper are new.

6.1. Proof of Theorem 3.2. In the description of Theorem 3.2, for k, ` ∈ N
+ and

` < k ≤ m, we define αj =
[
φ(sj+`−1)

]−1

, for 1 ≤ j ≤ k − `, and in addition we set

αj = 0 for j > k − `. Since sj+`−1 ∈ C \ E, we get |φ(sj+`−1)| > 1, so that |αj | < 1. The
FD rational function becomes

M
(k,`)
j (z) =

pj(z)∏`+j
i=` (z − si)

, 0 ≤ j ≤ k − `− 1.

Define the boundary of Eτ = E ∪ {z | z ∈ C \ E, |φ(z)| ≤ τ} as Γτ . If f is analytic in
Eτ , since W (A) ⊂ E ⊂ Eτ by Definition 3.1 and (A.3), it holds that

f(A) =
1

2πi

∫

Γτ

f(z)(zI −A)−1dz =
1

2πi

∫

|w|=τ
f (ψ(w)) (ψ(w)I −A)

−1
ψ′(w)dw

=
1

2πi

∞∑

j=0

Mj(A)

∫

|w|=τ

f (ψ(w))

w
ϕj+1

(
1

w

)
dw,

yielding the following expansion:

(6.1) f(A) =
∞∑

j=0

cjMj(A), where cj =
1

2πi

∫

|w|=τ

f (ψ(w))

w
ϕj+1

(
1

w

)
dw.

By Lemma 2.4, we have

(6.2) e∗kK
−1
m f(Am)e` = e∗kK

−1
m

∞∑

j=0

cjM
(k,`)
j (Am)e` = e∗kK

−1
m

∞∑

j=k−`
cjM

(k,`)
j (Am)e`.

Note that since we set αj = 0, for j > k − `, from (A.1) with j ≥ k − `, we have

ϕj+1

(
1

w

)
=

√
1− |αj+1|2
1− αj+1

1
w

j∏

i=1

αi − 1
w

1− αi
1
w

|αi|
αi

=
w
√
1− |αj+1|2
w − αj+1

j∏

i=1

wαi − 1

w − αi

|αi|
αi

=

(
− 1

w

)j−(k−`) k−∏̀

i=1

wαi − 1

w − αi

|αi|
αi

.(6.3)
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Combining cj in (6.1) and (6.3), for j ≥ k − `, it holds that

cj =
1

2πi

∫

|w|=τ

f (ψ(w))

w
ϕj+1

(
1

w

)
dw

=
1

2πi

∫

|w|=τ

f (ψ(w))

w

(
− 1

w

)j−(k−`) k−∏̀

i=1

wαi − 1

w − αi

|αi|
αi

dw

=
1

2π

∫ 2π

0

f
(
ψ(τeiθ)

)(
−1

τ

)j−(k−`)
e−iθ[j−(k−`)]

k−∏̀

i=1

τeiθαi − 1

τeiθ − αi

|αi|
αi

dθ.(6.4)

Since we set αj = 0, for j > k − `, (A.11) implies

(6.5) ‖Mj(Am)‖ ≤ 2

√
1 + |αj+1|√
1− |αj+1|

+
√
1− |αj+1|2 = 3 (j ≥ k − `).

Note that similar to (A.11), the bound in (6.5) is valid for both analytic functions and Markov
functions. Combining (6.2), (6.4), and (6.5), we get

∣∣e∗kK−1
m f(Am)e`

∣∣ =

∣∣∣∣∣∣
e∗kK

−1
m

∞∑

j=0

cjM
(k,`)
j (Am)e`

∣∣∣∣∣∣

≤ ‖e∗kK−1
m ‖

∞∑

j=k−`
|cj |‖M (k,`)

j (Am)‖‖e`‖ ≤ 3‖e∗kK−1
m ‖

∞∑

j=k−`
|cj |.

The simplified bound in (3.3) can be derived as follows:

∞∑

j=k−`
|cj | ≤

1

2π

∞∑

j=k−`

∫ 2π

0

∣∣∣∣∣f
(
ψ(τeiθ)

)(1

τ

)j−(k−`)
e−iθ[j−(k−`)]

k−∏̀

i=1

τeiθαi − 1

τeiθ − αi

∣∣∣∣∣ dθ

=
1

2π

∫ 2π

0

∣∣∣∣∣f
(
ψ(τeiθ)

) k−∏̀

i=1

τeiθαi − 1

τeiθ − αi

∣∣∣∣∣ dθ
∞∑

j=k−`

(
1

τ

)j−(k−`)

=
1

2π

τ

τ − 1

∫ 2π

0

∣∣∣∣∣f
(
ψ(τeiθ)

) k−∏̀

i=1

τeiθαi − 1

τeiθ − αi

∣∣∣∣∣ dθ.

We emphasize that cj is independent of τ > 1. In fact, from (6.4), if we define

g(w) =
f (ψ(w))

w

(
− 1

w

)j−(k−`) k−∏̀

i=1

wαi − 1

w − αi

|αi|
αi

,

the residue theorem shows that

cj =
1

2πi

∫

|w|=τ
g(w)dw =

r∑

i=1

Res(g, wi),

where wi (1 ≤ i ≤ r) denote all the poles of g in the set {w : |w| ≤ τ}. Since τ > 1 and
|αi| < 1, these poles are 0, α1, . . . , αk−`, which means that Res(g, wi) is independent of the
value of τ for 1 ≤ i ≤ r. Therefore, the coefficients cj are also independent of the value of τ .
This independence of τ is important for us to develop reliable FFT-based composite trapezoid
quadrature rule to evaluate these coefficients for analytic functions.
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6.2. Proof of Theorem 3.5. From (3.4) and (A.3), we have

f(A) =

∫ 0

−∞
(A− ζI)−1dµ(ζ) =

∫ φ(0)

−∞
(A− ψ(w)I)−1dµ(ψ(w))

= −
∫ φ(0)

−∞

1

w

∞∑

j=0

ϕj+1

(
1

w

)
Mj(A)

1

ψ′(w)
dµ(ψ(w))

= −
∞∑

j=0

Mj(A)

∫ φ(0)

−∞

1

w
ϕj+1

(
1

w

)
dµ(ψ(w))

ψ′(w)
.

It is possible to represent f(A) in an expression similar to (6.1) with a slightly different
definition of cj :

(6.6) f(A) =

∞∑

j=0

cjMj(A), where cj = −
∫ φ(0)

−∞
ϕj+1

(
1

w

)
1

w

dµ(ψ(w))

ψ′(w)
.

From the definition of ϕj+1

(
1
w

)
in (6.3) and cj in (6.6), we have

(6.7) cj =

∫ φ(0)

−∞

(
− 1

w

)j+1−(k−`) k−∏̀

i=1

wαi − 1

w − αi

|αi|
αi

dµ(ψ(w))

ψ′(w)
.

Combining the upper bounds for ‖Mj(A)‖ in (6.5) and |cj | in (6.7) with (6.2), it holds that

∣∣e∗kK−1
m f(Am)e`

∣∣ ≤ ‖e∗kK−1
m ‖

∞∑

j=k−`
|cj |‖M (k,`)

j (A)‖‖e`‖ ≤ 3‖e∗kK−1
m ‖

∞∑

j=k−`
|cj |.

To establish the simplified bound, we have

∣∣e∗kK−1
m f(Am)e`

∣∣ ≤ 3‖e∗kK−1
m ‖

∞∑

j=k−`

∣∣∣∣∣

∫ φ(0)

−∞

(
1

|w|

)j+1−(k−`) k−∏̀

i=1

wαi − 1

w − αi

dµ(ψ(w))

ψ′(w)

∣∣∣∣∣

≤ 3‖e∗kK−1
m ‖

∞∑

j=k−`

∫ φ(0)

−∞

∣∣∣∣
1

ψ′(w)

∣∣∣∣
1

|w|

(
1

|w|

)j−(k−`)
∣∣∣∣∣

k−∏̀

i=1

wαi − 1

w − αi

∣∣∣∣∣ |dµ(ψ(w))|

≤ 3‖e∗kK−1
m ‖

∫ φ(0)

−∞

∣∣∣∣
1

ψ′(w)

∣∣∣∣
1

|w|
|w|

|w| − 1

∣∣∣∣∣

k−∏̀

i=1

wαi − 1

w − αi

∣∣∣∣∣ |dµ(ψ(w))|

≤ 3‖e∗kK−1
m ‖

∫ φ(0)

−∞

∣∣∣∣
1

ψ′(w)

∣∣∣∣
1

|w + 1|

∣∣∣∣∣

k−∏̀

i=1

wαi − 1

w − αi

∣∣∣∣∣ |dµ(ψ(w))|.

7. Conclusion. In this paper, we studied the residual of the RKSM for approximating
the action of a function of a matrix f(A) to a vector b. We explored the decay bounds for the
off-diagonal entries of a restricted matrix that arise in the RKSM approximation of f(A)b
for analytic functions and Markov functions. For the inexact RKSM, upper bounds for the
allowable errors for the inner linear solves are derived, and a heuristic tolerance relaxation
strategy is proposed to enable that the inexact RKSM keeps track of the convergence of the
exact RKSM. Numerical experiments show that the inexact RKSM can exhibit a convergence
behavior similar to that of the exact method, but it entails lower computational cost thanks to
the relaxed accuracy for the inner linear systems.
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Appendix A. This appendix provides an introduction to the Faber-Dzhrbashyan (FD)
rational functions for Theorems 3.2 and 3.5. To this end, we first review the definition of the
Takenaka-Malmquist (TM) system of rational functions:

ϕ1(w) =

√
1− |α1|2
1− α1w

,

ϕj(w) =

√
1− |αj |2
1− αjw

j−1∏

k=1

αk − w

1− αkw

|αk|
αk

, j ≥ 2,(A.1)

where αk =
[
φ(zk)

]−1

∈ D = {w : |w| ≤ 1} (k ≥ 1) and {zk}∞k=1 is a sequence of

points that all lie in the exterior of E. Here |αk|
αk

is defined as 1 if αk = 0. Since φ(zk) is

in the exterior of D, it implies that

∣∣∣∣
[
φ(zk)

]−1
∣∣∣∣ < 1. The Takenaka-Malmquist systems

{ϕn(w)}∞n=0 form an orthonormal basis on the subspace T = {w ∈ C : |w| = 1}, i.e.,

〈ϕm(w), ϕn(w)〉 :=
1

2π

∫ 2π

0

ϕm(eit)ϕn(eit)dt = δmn, m, n ∈ N,

where δmn is the Kronecker delta; see, e.g., [54].
The FD rational function Mj(z) is defined as the sum of the principal part and the

constant in the Laurent decomposition of ϕj(φ(z)) in the neighborhoods of the points {zk}j+1
k=1.

Therefore, Mj(z) can be represented in the form

Mj(z) =
pj(z)∏j+1

k=1(z − zk)
, j ≥ 0,

where pj(z) is a polynomial with degree no higher than j. If we define ΓD as the preimage of
the unit disk under the map w = φ(z) and GD denotes the interior of the boundary ΓD, then
the FD rational functions can also be represented in the form (see [62, Section 13, equation
(4)]):

(A.2) Mj(z) =
1

2πi

∫

ΓD

ϕj+1 [φ(ζ)]

ζ − z
dζ, z ∈ GD.

If the conditions

∞∑

k=1

(1− |αk|) = +∞, and lim
r→1+

∫ 2π

0

∣∣ψ′(reiθ)
∣∣2 dθ <∞

hold, then we have the following expansions:

ψ′(w)

ψ(w)− z
=

1

w

∞∑

j=0

ϕj+1

(
1

w

)
Mj(z), z ∈ G, |w| > 1,

where G is the interior of E ⊃W (A); see, e.g., [62, p. 259]. If W (A) ⊂ G, it follows that

(A.3) ψ′(w) (ψ(w)I −A)
−1

=
1

w

∞∑

j=0

ϕj+1

(
1

w

)
Mj(A), |w| > 1.
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Our next step is to derive the upper bounds for both
∣∣∣ϕj
(
1
w

)∣∣∣ and ‖Mj(A)‖.

LEMMA A.1. From the definition of the Takenaka-Malmquist system of functions in (A.1),
for τ > 1 and |αj | < 1, for all j ≥ 1, it holds that

max
|w|=τ

∣∣∣∣∣ϕj
(
1

w

)∣∣∣∣∣ ≤
τ
√
1− |αj |2
τ − |αj |

j−1∏

k=1

τ |αk|+ 1

τ + |αk|
.

Proof. First, if j = 1, we have from (A.1) that
∣∣∣∣∣ϕ1

(
1

w

)∣∣∣∣∣ =
∣∣∣∣∣

√
1− |α1|2
1− α1

1
w

∣∣∣∣∣ ≤
τ
√
1− |α1|2
τ − |α1|

.

For j > 1 and |w| = τ , it holds that

(A.4)

∣∣∣∣∣ϕj
(
1

w

)∣∣∣∣∣ =
∣∣∣∣∣

√
1− |αj |2
1− αj

1
w

j−1∏

k=1

αk − 1
w

1− αk
1
w

|αk|
αk

∣∣∣∣∣ =
τ
√

1− |αj |2
|w − αj |

j−1∏

k=1

∣∣∣∣
wαk − 1

w − αk

∣∣∣∣ .

Let w = τeθ0i and αj = ρje
θji for some ρj = |αj | ∈ [0, 1). We define

gj(θ0) := |w − αj | =
∣∣τe−θ0i − ρje

−θji
∣∣ =

∣∣∣τe(θj−θ0)i − ρj

∣∣∣

=
√
τ2 + ρ2j − 2τρj cos (θj − θ0) ≥ τ − ρj .(A.5)

We also define

hk(θ0) :=

∣∣∣∣
wαk − 1

w − αk

∣∣∣∣
2

=

∣∣∣∣
τρke

(θk−θ0)i − 1

τe−θ0i − ρke−θki

∣∣∣∣
2

=
τ2ρ2k + 1− 2τρk cos (θk − θ0)

τ2 + ρ2k − 2τρk cos (θk − θ0)
.

Since

(τ2 − 1)(ρ2k − 1) = τ2ρ2k − τ2 − ρ2k + 1 < 0 =⇒ τ2ρ2k + 1 < τ2 + ρ2k and

τ2 + ρ2k − 2τρk cos (θk − θ0) ≥ (τ − ρk)
2 > 0,

it is easy to show that hk(θ0) achieves its maximum when θk − θ0 = π. Therefore,

(A.6) maxhk(θ0) = hk(θk − π) =
(τρk + 1)

2

(τ + ρk)
2 .

Combining (A.5) and (A.6) into (A.4), we get

max
|w|=τ

∣∣∣∣∣ϕj
(
1

w

)∣∣∣∣∣ ≤
τ
√
1− |αj |2
τ − |αj |

j−1∏

k=1

τ |αk|+ 1

τ + |αk|
.

For j = 1, it is easy to verify that the above inequality also holds.
We can write the FD rational functionsMj(z) with the Faber transformation of a Takenaka-

Malmquist system. For every function f continuous on the boundary of D and analytic in the
interior of D, the Faber transformation is defined as

F(f)(z) =
1

2πi

∫

|w|=1

f(w)
ψ′(w)

ψ(w)− z
dw, z ∈ G;
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see, e.g., [36]. By letting ζ = ψ(w) in (A.2) with w on the unit circle, we get

Mj(z) = F(ϕj+1)(z), z ∈ G, j ≥ 0.

Define the modified Faber operator F+(f)(z) := F(f)(z) + f(0). It has been proved
in [3] that for any matrix A such that W (A) ⊂ E,

‖F+(f)(A)‖ = ‖F(f)(A) + f(0)I‖ ≤ 2 sup
w∈D

|f(w)|,

where f is analytic in the interior of D and continuous on D. Then,

‖Mj(A)‖ = ‖F(ϕj+1)(A)‖ = ‖F+(ϕj+1)(A)− ϕj+1(0)I‖
≤ 2 sup

w∈D
|ϕj+1(w)|+ |ϕj+1(0)| .(A.7)

As in Lemma A.1, if |αj | < 1, it can be concluded analogously that

(A.8) max
|w|=1/τ

|ϕj+1 (w)| ≤
τ
√
1− |αj+1|2
τ − |αj+1|

j∏

k=1

τ |αk|+ 1

τ + |αk|
.

It is easy to show that the right-hand side of (A.8) decreases when τ increases, so

(A.9) sup
w∈D

|ϕj+1(w)| ≤
√
1− |αj+1|2
1− |αj+1|

j∏

k=1

|αk|+ 1

1 + |αk|
=

√
1 + |αj+1|
1− |αj+1|

.

We also know from (A.1) that

(A.10) |ϕj+1(0)| =
√
1− |αj+1|2

j∏

k=1

|αk| ≤
√

1− |αj+1|2.

Combining (A.9) and (A.10) into (A.7), we obtain

(A.11) ‖Mj(A)‖ ≤ 2

√
1 + |αj+1|
1− |αj+1|

+
√
1− |αj+1|2.

Both upper bounds for max|w|=τ

∣∣∣ϕj
(
1
w

)∣∣∣ in Lemma A.1 and ‖Mj(A)‖ in (A.11) are funda-

mentals for the proofs of Theorems 3.2 and 3.5 in Section 3.
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