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Abstract—WiFi signals have been demonstrated to facilitate
non-intrusive detection of a range of activities and behaviors
in the physical environments they permeate. Different activities
affect both phase and magnitude of channel state information
(CSI) in WiFi networks in a complex yet predictable way, and
machine learning models can be trained to classify activities from
such information. While constructing such WiFi-sensing systems
is generally convenient and cost-effective, acquiring labeled data
for a particular task can be time and labor-intensive. In this
paper, we seek to remedy this issue in the context of human
motion detection using deep unsupervised learning. Our proposed
method uses a deep clustering model trained on appropriately-
preprocessed CSI magnitude-only data to detect human motion
with over 99% accuracy in the absence of any ground labels.
Removing the need for labeled samples significantly reduces the
training overhead, making it a promising alternative to existing
methods for motion detection.

Index Terms—RF sensing, WiFi sensing, channel state infor-
mation, deep unsupervised learning, human activity recognition

I. INTRODUCTION

WiFi-sensing re-purposes existing communication networks
for detection, recognition, and estimation [1]. In doing so, it
does away with the need for specialized embedded or vision
sensors often relied upon in conventional sensing methods
and instead uses ambient WiFi signals [2]. The advantages
of a WiFi-sensing system are manifold. Not only are WiFi
signals ubiquitous, but they also are privacy-preserving and
more resilient than conventional sensors to changes in physical
conditions such as temperature and lighting. Furthermore,
the fine-grained nature of channel state information (CSI) in
modern WiFi systems enables such systems to capture subtle
changes in the physical environment. Together, these features
facilitate low-cost, passive, accurate and real-time monitoring
of various phenomena using WiFi sensing [3], [4].

Recent advances in WiFi sensing are generally rooted in
data-driven approaches with neural networks or other machine
learning models to learn specific patterns embedded in CSI
variations resulting from a phenomenon under study [5], [6].
Such approaches require large amounts of quality data used to
train neural networks. While modern WiFi systems generate
large amounts of data, labeling that data for a deep supervised
model is often a significantly time-consuming and error-prone
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task. For example, cameras or other sensing modalities are
often required to assist data segmentation and labeling [7], [8].
Alternatively, continuous human motion has to be introduced
for training data collection [9]-[11]. This presents a significant
barrier to the deployment of any WiFi or RF (radio frequency)
sensing systems for real-world applications.

A deep semi-supervised model could mitigate this labeling
requirement but might be prone to overfitting in the presence of
the noise that accompanies CSI samples or their corresponding
labels. Given that CSI can register subtle changes in the
environment, any labeling scheme will be affected by noisy
labels. This effect is visible in human motion detection tasks
where CSI data for still humans resembles that for human-free
samples [12]. A motion classifier trained on such data usually
has a high false-positive rate.

We propose a purely unsupervised deep clustering model
to detect human motion from CSI magnitude-only data.
This completely removes the need for any labeled samples,
making it a promising alternative for motion detection in
many practical applications. Using a compressive, digital sig-
nal processing-based pre-processing scheme, we process un-
labeled motion-containing data collected in various human-
free and human-present settings and use it to train a neural
network model comprising an autoencoder and a clustering
module. The model is then evaluated on held-out data with
carefully curated motion and no-motion labels. We report both
overall and class-wise accuracy, along with other evaluation
metrics. To our knowledge, this is the first WiFi-sensing study
on human motion detection with deep unsupervised learning.
The code and data needed to reproduce our results are open-
source and freely available.!

II. RELATED WORK

Early work on radio frequency (RF) sensing relied on hand-
crafted features, such as those derived from the received
signal strength (RSS) [13] measurement, or more fine-grained
signatures extracted from CSI [14]. For example, RSS can be
used to detect various events in the environment [15] includ-
ing human gestures [16] and other activities [17]; whereas
CSI has been used to detect and localize walking within
an apartment [14] and even identify specific signs used in
sign language [18]. Recent approaches combine preprocessed
CSI input data with data-driven deep learning techniques to
improve performance in various detection and classification
tasks [12], [19]. However, the data-driven approach in RF

Uhttps://github.com/vanishinggrad/unsupmotiondetection
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Fig. 1. CSI feature extraction for motion detection. Consecutive CSI frames are stacked together and magnitude data is extracted from them. Next, 2D DFT
is applied to the frequency (subcarrier) and temporal (CSI frame index) dimensions of the resulting array. The transformed array is then log-transformed and
a rectangular crop is taken around zero frequency. Finally, the central crop is flattened into a feature vector.

sensing has been primarily limited to supervised learning, for
which labeling can be expensive and error-prone. The result
is highly noisy datasets in which some labels are missing
or incorrect, leading to degradation in learning performance.
Some recent works have employed a semi-supervised approach
but the learning models still need to be fine-tuned extensively
with labeled samples to exhibit competitive performance on
activity recognition tasks [20], [21]. It is arguably desirable to
explore learning paradigms and models that are either robust
to noisy labels or require only unlabeled training samples.

Outside of RF sensing, there is a vast body of machine learn-
ing research on learning with missing labels (semi-supervised
learning), e.g., [22]-[25], as well as noisy labels (e.g., [26],
[27]). These methods reduce the reliance on completely or
cleanly labeled data but still assume that a portion of labels are
available and correct. In contrast, purely unsupervised methods
can uncover regularities in completely unlabeled data and
have the potential to identify distinct clusters that correspond
directly to distinct classes. Recently, deep learning has been
incorporated into more traditional unsupervised learning tech-
niques such as K-Means clustering [28] and Gaussian Mixture
Models [29]. For example, deep autoencoders trained with
reconstruction loss do not require labels and can produce non-
linearly transformed latent representations more amenable to
clustering than the raw input data. However, deep unsupervised
methods have mainly been tested using synthetic or carefully
curated and cleaned datasets such as MNIST [30].

Our contribution is to adapt deep unsupervised learning
approaches to the RF sensing domain, where comparatively
sparse and noisy data require specialized preprocessing to
enable effective deep clustering. To our knowledge, ours is the
first approach capable of purely unsupervised motion detection
using RF data.

IITI. SIGNAL PRE-PROCESSING AND FEATURE EXTRACTION

CSI obtained from a WiFi system must be carefully pre-
processed with due consideration for expected variations in
its spatial, temporal, and frequency dimensions before being
input into a learning model. We consider a WiFi system using
multiple-input-multiple-output orthogonal frequency-division
multiplexing (MIMO-OFDM) with N; transmit antennas, N,

receiver antennas, and IN,. subcarriers. The CSI for the -
th dataframe at the receiver is a complex-valued 3D array
given by H[i] € CNee*NeXNe  Consecutive CSI frames are
needed to capture temporal variation in the propagation of
wireless signals due to the movement of humans or other
objects in the environment. If a motion is to be detected using
I consecutive frames, a 4D array H € CI/XNsexNrxNi g
obtained by stacking consecutive frames along the temporal
dimension. Given that typical carrier spacing in WiFi signals
(312.5 kHz) is much smaller than the coherent bandwidth of
typical indoor environments, we can reduce data dimensions
by downsampling subcarriers with little to no effects on motion
detection performance. Down-selecting N subcarriers in this
way reduces data dimensions by a factor of JX;;, with the
new array being H € C/XNsxNexNt Both CSI phase and
magnitude information can then be extracted from H.

Our feature extraction scheme (Fig. 1) preprocesses CSI
magnitude data® to reduce its dependence on environment-
specific effects. Suppose X?P® is the array of CSI magnitude-
only data with the spatial (antenna) dimensions combined as
I x Ny x (N, N;). We normalize it to remove its dependence
on absolute power level as follows:

Xi = X0 /XE, ()
Next, we apply 2D Discrete Fourier Transform (DFT) to the

first two dimensions of X?bs,
Xeb ot F (X0h) @)

557 V)

Finally, we take a 2D crop of size T'x D from each Xab‘f“

centered around zero frequency, with T' < I and D < Ny:

o abs-fft-crop _ ~7abs-fft
Xk = Xitthtd, @)

where i = 0,...,T—1,k=0,...,D — 1, and ¢ and d are
the index offsets to the corner of the crop.

2It is conceivable that the performance can be further improved if CSI phase
is incorporated. However, the performance of the trained model for motion
detection is near perfect, suggesting the benefit of including CSI phase for
this particular task is marginal at best.



As DFT can result in a high dynamic range, an element-wise
logarithmic transform is further applied:

_ 10g10 (Xabs—ffl-crop + 1) (4)

< abs-fft-crop-log
X ,k,J

,k,J

We then aggregate over all transceiver pairs:

S 1 & abs-fft-crop-1
agg abs-fft-crop-log
Xi,k - NtN'I" Z Xi,k,j (5)

To assess the generality of our method, two different datasets
(discussed further below) from different environments were
used for training and assessing the proposed learning model
and with slightly different pre-processing: Specifically, one
dataset used median rather than average for this aggregation
step. Finally, X2 is flattened and input to the learning model.

IV. DETECTION MODEL

We employ deep unsupervised learning for motion detection
from CSI magnitude data. Deep unsupervised learning is
a machine learning paradigm that extends backpropagation-
based learning methods to problems where ground labels are
not available for supervised learning. It is also a promising
workaround for the problem of noisy labels. For instance,
using a carefully designed training loss, a neural network can
be forced to learn the underlying structure of inputs that is
useful for separating one sample class from another. This is in
contrast with supervised learning where the learning of input-
output mapping is guided using class labels or true outputs.

For this paper, we sought to understand whether motion-
containing samples were distinct from all other types of
samples in the data and if an unsupervised neural network
model could be trained to uncover the discriminating features
of motion samples from other data. While unsupervised neural
architectures such as autoencoders can learn powerful non-
linear low-dimensional mappings, the optimization objectives
generally do not explicitly focus on clustering [31]. As a result,
representations learned by a neural network are not guaranteed
to be clustering-friendly and may not reveal grouping struc-
tures underlying data. Motivated by these issues, many recent
works on unsupervised learning explore joint dimensionality
reduction and clustering.

Our motion detection model was a deep clustering network
(DCN) comprising an autoencoder with an embedded clus-
tering module based on [28] (Fig. 2). The autoencoder has
a feedforward “encoder” block with multiple hidden layers
that compute low-dimensional encodings of input data. A
mirror “decoder” block then reconstructs input data from these
encodings. The encoder block is further attached to a K-
Means clustering block which calculates cluster assignments
for encoded samples. Learnable weights for the three blocks
are optimized jointly using a composite of reconstruction loss
and clustering loss.
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Deep clustering model used for CSI-based motion detection. A

Fig. 2.
feedforward autoencoder neural network is embedded with a clustering
module that outputs clusters or classes for given samples. The network is
trained on feature vectors extracted from CSI magnitude data with a joint
clustering and reconstruction loss.

Formally, training loss for the network was calculated as
follows:
N

) A 2
E ) ) - N — Ms.:
W,ZI,HMHT{SJ i=1 <£ (9 (f (@), @) + 2 I (@) SZHQ)
S.t. S € {O, 1}7 1T5i =1 V’L,j (6)

where f (x;) and g (h;) are simplified equivalents for
f(x;; W), the encoder representation, and g (h;;Z), the
decoder reconstruction, respectively (with VW and Z being
encoder and decoder weights respectively). Similarly, M is
the centroid matrix with cluster centroids as its columns, s; is
the (cluster) assignment vector for x; with only one s;; =1,
and / is taken to be the squared-error loss. The parameter A
controls the weight of the clustering objective relative to the
reconstruction objective and is determined empirically.

Similar to the alternating construction of the K-Means algo-
rithm, the network was trained using an alternating variation
of stochastic gradient descent (SGD) where (W, Z), M, and
s; were updated alternately while keeping others constant. To
be more precise, for a constant M and s;, the training loss
given in Eq. (6) for input x; was decomposed as:

. A
min ¢ (g (f (@), 2:) + 5 I1f (z:) = Msill; (D)
which was optimized for autoencoder parameters (W, Z2)
using gradient descent methods. Similarly, for fixed centroids
and autoencoder parameters, the assignment vector s; was
updated in an online manner as follows:

I, ifj= argmin £ (2:)—mul,
h={1,...K}

0, otherwise.

Sji <

Finally, each centroid in M was updated by using a gradient
descent-like rule as follows:

1
my < my — (cl> (my, — f (x:)) Sk, )
k
where ¢! counts the number of samples assigned to cluster &

before handling the i-th input.
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Fig. 3. Floor plan of the lab where data was collected.

Unsupervised models such as the one above can be eval-
vated using various intrinsic and extrinsic metrics. While
normalized mutual information (NMI) [32] and adjusted Rand
index (ARI) [33] are common choices, a more direct compari-
son with a supervised learning method can be facilitated using
clustering accuracy (ACC) [32].

V. EXPERIMENTS

For experiments, we used two datasets collected over a
period of 18 months. The first data was collected in a typical
lab inside a university building. Motions, when present, come
exclusively from occupant(s) in the lab. The second dataset
was collected in a residential house. In addition to residents,
their pet dogs also contributed to the motion data.

A. Setup

The WiFi data collection system consisted of a laptop
(Thinkpad T410) as the transmitter and a desktop (Dell Op-
tiPlex 7010) as the receiver. Both had Atheros 802.11n WiFi
chipset AR9580 installed, and Atheros-CSI-Tool [34] was used
to extract CSI frames at the receiver. The WiFi system had
a 3 x 3 MIMO architecture and was operating in a 20MHz
channel at channel 6 in the 2.45GHz band. With N; = 3
transmit antennas, /N, = 3 receiver antennas, and N,. = 56
subcarriers, a single CSI frame was a complex-valued array
of size H[i] € C56*3*3, Down-sampling the number of sub-
carriers to 14 evenly-spaced subcarriers resulted in smaller
dimensions of 14 x 3 x 3 instead. The duration of each WiFi
packet is roughly 10ms, which is also the time interval between
two CSI measurements. For motion detection, a key feature is
the temporal variation of the CSI induced by the movement of
humans/objects. For this reason, we stacked 128 consecutive
CSI frames together which resulted in a detection window of
size ~ 1.28s. A typical CSI sample in our experiments was
therefore given by the array H € C!28%14x3x3,

B. Data Collection

For the lab dataset, CSI data were collected on 10 days
spaced over a period of 1.5 months in a lab for engineering
graduate students. Training data were collected on days 9 and
10 and were broadly classified as “human-free” or “human-
presence” data. No one was present inside the lab when data
was collected in a “human-free” session. On the other hand,
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Fig. 4. Average Fourier-transformed CSI frame for Human-free (left) and
Human-presence (right) data from the lab dataset. The sparsity of the plots
indicates that a central crop might be useful for further dimensionality
reduction.

there was at least one person present in the lab and going
about their usual activities when data was collected for a
“human-presence” session. The lab layout is visualized in
Fig. 3. The arrangement of workstations and other objects
shown is illustrative only and varied over time. Human-free
data was collected for about 40 minutes each day whereas
human-free data was recorded for about 1 hour each day.
Together, the two days yielded N(®) = 5000 “no-motion” and
N® = 10000 “motion” samples for training on this data. It
is worth noting that with “human-presence” data, a majority
of those CSI samples contain little or no movements as the
occupant(s) were largely still. Those CSI samples resemble
that of a “human-free” environment and, if used directly with
a supervised learning approach, can lead to an excessive false-
positive rate.

The rest of the data, from days 1 through 8, were used to
evaluate the motion detection model. These data include both
“human-free” data when the lab was completely empty and
“human-motion” data when occupant(s) engaged in deliberate
and continuous motion throughout the entire measurement
period. Those data provide correctly labeled samples used only
for evaluating the performance of the unsupervised learning
model trained on data from days 9 and 10, and were not
involved in the training process itself.

Within the “human-motion” test data, on days 4-8, subjects
were asked to perform large-scale motions including walking,
sitting down, and standing up; whereas on days 1-3, only
small-scale motion (e.g., turning in chairs, arm waving, etc.)
was present. Each of these days yielded about 4500 samples
for each label from 35-minute data collection sessions. Fig. 4
visualizes 2D DFT for two random CSI frames sampled from
both human-free and human-presence data.

For the house dataset, CSI data were collected for 7 different
days over a period of 2 weeks in a typical four-bedroom
colonial-style house accommodating two human participants
and their three pet dogs. The WiFi transceiver pair were both
placed on the first floor, one in the kitchen and the other in
the living room, with no line-of-sight between the transmitter
and the receiver. Given the mercurial nature of the pets, data
collection during the 19 sessions lasted from 5 to 30 minutes
and varied in the count of samples obtained. Since we focused
only on motion detection, we combined human motion and



pet/mixed motion samples under the same label. Doing so,
we obtained N(© = 1746 and N = 873 samples from
a training set spanning 4 days. Similarly, the other 3 days
generated a test set of 10869 samples with a 45:55% split
between motion and no-motion samples.

C. Model Training

For unsupervised motion detection from CSI data, both
datasets were pre-processed using the scheme described in
Section III, and 1D feature vectors were obtained, except that
median instead of averaging was used for the lab data in
the aggregation step (Eq. (5)). Next, we trained an instance
of the deep clustering network (DCN) described in Section
IV on each dataset. Since we were interested in finding a
bi-clustering that separated motion samples from no-motion
samples, the number of clusters was set to be 2 for the K-
Means clustering block. The encoder network was a feed-
forward network comprising three hidden layers with 100,
500, and 10 units respectively. Layer sizes were the same
for both datasets and were determined to be performing well
empirically. The decoder network was a “mirror” version of
the encoder and had the same layers but in reverse order. Each
hidden layer consisted of a learnable linear transformation
followed by rectified linear unit (ReLLU) activation.

The network was trained to minimize the composite loss
of Eq. (6) using the Adam optimizer [35] with default hyper-
parameters and a batch size of 30. Before training the DCN
with this loss, it was pre-trained for 100 epochs using a
reconstruction-only loss. For training with joint loss, the
number of epochs was set to be 50, and clustering loss weight
to A = 0.1. These hyper-parameters were chosen by hand and
found to work well empirically, although performance could
potentially be further improved with more systematic hyper-
parameter search and cross-validation. Finally, the model was
evaluated on test data, and the performance was reported for
multiple metrics, including overall accuracy (ACC), accuracy
on class 1 motion samples (ACC'), accuracy on class 0
no-motion samples (ACC”), normalized mutual information
(NMI), and adjusted Rand index (ARI).

D. Results

For the lab dataset, our model detected motion with very
high accuracy even with its unsupervised design. When trained
on data from days 9 and 10, the accuracy of the model on
held-out data from days 1-8 was 99.09% when averaged over
10 trials where the model weights were randomly initialized.
Class-wise performance was similarly good with the average
accuracy for motion and no-motion classes being 98.60%
and 99.53% respectively. For the house dataset, we trained a
separate model with the same architecture for which the overall
accuracy was 98.84%, also averaged over 10 random model
initializations. Table I reports performance on both datasets
across all metrics.

Per-day evaluation for the lab dataset is visualized in Fig. 5.
Notice that we did not make any assumptions on the relative
distribution of motion samples within the dataset (or within

TABLE I
RESULTS (AVERAGE = STANDARD DEVIATION) FOR MODEL EVALUATION
ON BOTH DATASETS, AVERAGED OVER 10 RANDOMLY INITIALIZED RUNS.
ALL METRICS ARE ON A 0-100% SCALE.

Lab House

ACC [ 99.09£0.37 | 98.84 £0.07

ACC! | 98.60 +0.77 | 98.96 + 0.25

ACC® | 99.53 +0.23 | 98.74 + 0.09

NMI | 92.81 £2.27 | 90.82 £ 0.49

ARI | 96.38 £ 1.44 | 95.40 £ 0.27
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Fig. 5. Class-wise accuracy for the lab dataset on test days. Human-motion
data from these test days contains deliberately-induced small (days 1-3) and
large-scale (days 4-8) motion.

human-presence data). Such assumptions, while helpful in
tuning clustering algorithms in general, were not needed for
the model to detect motion on all test days with high accuracy.
Moreover, the model performs well for instances of both small
and large-scale motions. As discussed in Section V-B, days 1-
3 and days 4-8 differ in the range of motion induced in their
samples. The model shows only slightly lower accuracy for
days 1-3, which is intuitive if we consider that a small number
of samples with small-scale, subtle motion (e.g., turning in
chairs, arm waving, etc.) may not get classified correctly by a
completely unsupervised model. The model also showed good
robustness to environmental changes in that the performance
on different test days was consistently high even though some
days were weeks apart when data was collected.

We also conducted a small cross-data experiment to explore
whether the model could generalize and detect motion in an
environment different from the one for which it was trained. In
other words, we were interested in understanding if learning
could be transferred between two environments with different
motion characteristics. To test for such transferability, we
trained an instance of the proposed motion detection model
on the house dataset and then evaluated it using the lab
dataset. The model could still generalize very well to this new
data with 87.54% overall accuracy and 99.95% motion class
accuracy, indicating that it had largely retained its motion-
detecting properties. By re-training the (unsupervised) model
on the lab dataset for 10 epochs, we could boost class-wise
accuracy for the no-motion class from 75.14% to 97.70%, with



the overall accuracy also improving to 98.70%. The results
have been visualized in Fig. 6.
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Fig. 6. Transfer learning for motion detection across environments. Dotted
stacked bars in the no-motion class correspond to the accuracy level restored
by fine-tuning the transferred model trained on house data with re-training on
unseen lab data for 10 epochs.

As baselines for comparison, we also tested standard K-
Means clustering (without deep autoencoding) and Gaussian
Mixture Models (GMMs), as implemented in Scikit-learn [36].
We combined GMMs with random projection (RP) into lower-
dimensional sub-spaces, following [37], which can improve
performance when clusters have high eccentricity.

TABLE II
TEST ACCURACY FOR BASELINE METHODS, IN FORMAT: AVERAGE £
STANDARD DEVIATION (BASE-10 LOGARITHM OF P-VALUE).

Lab House
K-Means 95.56 £0.04 (—12) | 97.44 £ 0.00 (—12)
GMM 94.45 +0.03 (—13) | 98.34 +0.00 (—7)
GMM+RP | 94.48 + 3.34 (—4) 97.94 £2.78 (—3)

House
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Fig. 7. Test performance of Gaussian mixture models after random projection
of the feature vectors, for varying projection dimension. The average (solid
black line) and standard deviation (gray envelope) are aggregated over 30
independent repetitions (black dots). For reference, the horizontal dashed black
line shows average test accuracy for DCN.

Compared to the DCN, the baselines also performed quite
well, indicating the suitability of the proposed feature extrac-
tion scheme, but there was a statistically significant reduction
in test accuracy (“ACC”), as shown in Table II (cf. Table I,

first row). We measured statistical significance with Welch’s
t-test as implemented in SciPy [38], with the null hypothesis
that a given baseline has the same average accuracy as the
DCN on a respective dataset, and report the rounded, base-
10 logarithms of the resulting p-values. The statistics in this
table are aggregated over 30 independent repetitions of each
baseline. For the random-projection baselines, we tested every
possible sub-space dimension ranging from 2 to 23 (one less
than the preprocessed feature vector dimension), resulting in
the data shown in Fig. 7. The statistics in Table II (bottom row)
are only for the projection dimensions where test accuracy was
highest (6 for lab and 5 for house).

VI. CONCLUSION

We have presented a machine-learning model for motion
detection using WiFi CSI data. Even without comprehensive
hyper-parameter tuning, the performance of our model is
comparable to existing approaches to this problem. How-
ever, unlike previous approaches, our method is completely
unsupervised. This work represents a major departure from
existing approaches in WiFi sensing reported in the literature
that invariably rely on the availability of labeled samples in
the training process. By removing the need for expensive and
labor-intensive labeling of training data, the proposed learning
model constitutes a significant step towards effective WiFi
sensing deployable in the real world.

The work involves two separate datasets for validation. One
important open research question is whether a model trained
on one environment (e.g., the house data) can transfer to an-
other environment (e.g., the lab data). Our initial experiments
suggest this is possible, although our current model incurs
a modest accuracy reduction in direct transfer without any
additional fine-tuning.

Another important open question is to understand the po-
tential and limitations of an unsupervised learning approach
for WiFi sensing. By nesting the K-Means clustering with an
autoencoder, the learning model is capable of extracting latent
features that are useful to separate motion samples from static
samples. Extending the current approach to classify different
motion types can make such an unsupervised approach even
more appealing. For example, there is a clear incentive to
distinguish motion induced by humans and pets, or detect
human falls within the human motion data. This is conceivably
straightforward in a supervised learning framework involving
carefully curated samples. Whether an unsupervised model
such as the one used in this paper can extract subtle differences
in WiFi CSI remains an open question.
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