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Abstract—Low-rank matrix completion concerns the problem
of estimating unobserved entries in a matrix using a sparse
set of observed entries. We consider the non-uniform setting
where the observed entries are sampled with highly varying
probabilities, potentially with different asymptotic scalings. We
show that under structured sampling probabilities, it is often
better and sometimes optimal to run estimation algorithms on a
smaller submatrix rather than the entire matrix. In particular,
we prove error upper bounds customized to each entry, which
match the minimax lower bounds under certain conditions. Our
bounds characterize the hardness of estimating each entry as
a function of the localized sampling probabilities. We provide
numerical experiments that confirm our theoretical findings.

I. INTRODUCTION

Matrix completion concerns estimating a low-rank matrix

given partial and potentially noisy observations of its en-

tries [10], [12]. This problem has applications such as in col-

laborative filtering [23], system identification [21] and sensor

localization [4]. Many algorithms with provable guarantees

have been developed, including convex relaxation [7], [8], al-

ternating minimization [16], [19] and spectral algorithms [17].

The early literature in matrix completion primarily focused

on settings in which observations are uniformly distributed

across the matrix, and the goal was to either derive conditions

for exact recovery in the noiseless setting (e.g. [8], [17]) or

characterize the mean squared error averaged across entries

under observation noise (e.g. [18]). In recent years, there

has been a growing interest towards relaxing the unrealistic

uniform sampling requirements as well as obtaining more

fine-grained, entrywise error bounds, especially as downstream

decisions may be made by comparing estimates of individual

entries. While these two goals have been pursued separately,

few results address both simultaneously. In particular, when

sampling is non-uniform, one expects that some entries can

be better estimated than the others. Existing work falls short

of capturing this phenomenon.

In this paper, we tackle the above two goals jointly to

answer the following research questions. Can we obtain refined

entry-specific error bounds under highly non-uniform sampling

that correctly identifies the hardness of estimating each entry?

Can we develop a computationally simple algorithm that is

statistically efficient for estimating individual entries? When

the sampling probabilities in different regions of the matrix

have asymptotically different orders of magnitude, one would

hope that we can retain high performance for entries in regions

of the matrix with high sampling probabilities, while still

providing optimal estimates for entries in regions with low

sampling probabilities. Our results provide entry-specific error

guarantees as a function of the localized sampling probabil-

ities. We further show that our bounds are minimax optimal

for structured sampling probabilities.

We design a meta algorithm that can be combined with any

matrix estimation method; for concreteness, we use Singular

Value Thresholding (SVT) [5]. For each target entry (i, j),
our method chooses a submatrix to input into SVT (or any

matrix estimation algorithm), with the goal of obtaining a

better estimate of (i, j) than applying SVT to the entire matrix.

This algorithm allows us to obtain a more refined estimation

error bound that has varying rates across entries. We perform

numerical experiments on synthetic datasets that confirm our

theoretical findings.

A. Related Work

Several recent works consider matrix completion with the

non-uniform observation pattern. Using graph limit theory, [9]

shows that a sequence of matrices is asymptotically recov-

erable in mean squared error if the deterministic sampling

patterns converge to a graphon1 that is nonzero almost ev-

erywhere. This requirement implies the sampling cannot be

too non-uniform or sparse. Meanwhile, [13] considers non-

uniform deterministic sampling patterns and proposes a sim-

ple algorithm with a weighted mean-squared error guarantee

dependent on a dissimilarity function between the weights and

the sampling pattern. The work [6] studies max-norm relax-

ation method and shows that it achieves minimax Frobenius

norm error under moderately non-uniform sampling.

A related line of work uses structured graphs to construct

the sampling pattern or the weight matrix. For example, [3]

uses a bipartite graph with a large spectral gap as the sampling

pattern, whereas [15] uses expander graph and other graph

sparsifiers. Complementarily, [20] considers the setting where

the sampling pattern is fixed and aims to choose a weight

matrix that yields weighted mean-squared error bounds.

Going beyond (weighted) mean-squared error, several recent

works consider entrywise `1 error, that is, the worst-case

estimation error across all entries. The work [1] provides entry-

wise error bounds for SVT using `1 eigenspace perturbation

1A graphon is a symmetric measurable function, which serves as the limit
of a sequence of dense graphs. Interested readers can consult [22].
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analysis. Under uniform sampling, [11] provides entrywise

guarantees for convex relaxation and non-convex approach.

The paper [2] considers deterministic sampling, and their

algorithm searches for an almost fully observed submatrix

containing the entry to be estimated. While their approach

bears some similarities with ours, we note that our results

consider random sampling and allow for significantly sparser

observations.

II. PROBLEM SETUP

Notation: We use c, C etc. to denote positive absolute

constants, which might change from line to line. Let [n] :=
{1, 2, . . . , n}. For non-negative sequences {an} and {bn}, we

write an . bn when an ÿ Cbn, 8n, and write an ã bn or

an = Θ(bn) when both an . bn and an & bn hold. Let MU,V

denote the submatrix of M 2 R
nåm indexed by U 7 [n] and

V 7 [m], and kMk1 = maxi,j |Mij | the entrywise `1 norm.

A. Latent Variable Model

Our goal is to estimate the entries of a low-rank signal

matrix Må 2 R
nåm given noisy partial observations. We

consider a latent variable model, where Må is generated via

Må
ij = haåi , båj i, (1)

and the row latent variables aåi 2 R
r, i 2 [n] are sampled

i.i.d. from some distribution; similarly for the column latent

variables båj 2 R
r, j 2 [m]. If the distributions of {ai}

and {bj} are sufficiently regular (e.g., sub-exponential with a

non-degenerate covariance matrix), then with high probability

the matrix Må is rank-r and has a bounded incoherence

parameters [25]. For concreteness, we consider Gaussian latent

factors: aåi
i.i.d.á N(0, Ir) and båj

i.i.d.á N(0, Ir). We are given a

noisy and partially observed matrix

Y = Ω � (Må + E), (2)

where E 2 R
nåm is additive noise with Eij

i.i.d.á N(0,�2),
and Ω 2 {0, 1}nåm is the sampling/mask matrix generated as

Ωij á Bernoulli(Pij), independently across entries. Given Y ,

the goal is to estimate the entries of Må. We assume m ã n
and the rank r ' n is known.

B. Monotone Sampling Probabilities

In the above model, the observations are non-uniform as

determined by the sampling probability matrix P = (Pij) 2
[0, 1]nåm. We assume that P is known, which is a reasonable

assumption in settings where the learner has (partial) control

over the sampling process or can estimate P from data. With-

out restriction on P , this setting includes arbitrary determinis-

tic sampling pattern as a special case—just let Pij be binary—

under which matrix completion is NP-hard [14]. Therefore,

we further assume P has a monotone structure: there exist

permutations án : [n] ! [n] and ám : [m] ! [m] such that

Pán(i)ám(j) � Pán(i0)ám(j0) whenever án(i) ÿ án(i
0) and

ám(j) ÿ ám(j0). Without loss of generality, we may assume

both án and ám are the identity:2

2If πn and πm exist, they can be found by sorting the rows of P and then
the columns.

Assumption 1 (Monotonicity): The probability matrix P
satisfies Pij � Pi0j0 if i ÿ i0 and j ÿ j0.

Assumption 1 is satisfied, e.g., in a movie rating setting,

where the probability of user i rating movie j is determined

by the activeness of the user and the popularity of the

movie. In fact, this example corresponds to a special case of

Assumption 1 where P has rank one, as stated below. We

sometimes consider this stronger assumption.

Assumption 2 (Rank-one P ): There exist vectors µ =
(µ1, . . . ,µn) and � = (�1, . . . ,�m) such that

Pij = µi�j , 8(i, j) 2 [n]å [m],

where 1 � µ1 � · · · � µn � 0 and 1 � �1 � · · · � �m � 0.

III. ALGORITHM: SUBMATRIX COMPLETION

Let MC(·) be a black-box matrix completion subroutine, e.g.,

SVT. If MC(·) were applied on the entire observed matrix Y ,

it outputs an estimate M̂ = MC(Y ) 2 R
nåm of the true signal

matrix. Our algorithm, submatrix completion, instead applies

MC(·) to carefully chosen submatrices of Y . In particular, for

each target entry (i, j) to be estimated, we compute an index

kå ; kå(i, j) = argmax
kÿmin{n,m}

k·min{Pmax{i,k},k, Pk,max{j,k}}.

(3)

We then apply MC(·) on the submatrix indexed by [kå] [ {i}
and [kå][ {j}, and use the corresponding entry of the output

MC(Y[kå][{i},[kå][{j}) as an estimate of the target entry Må
ij . In

the optimization problem (3), the variable k corresponds to the

size of the submatrix used to estimate (i, j), Pmax{i,k},k is the

smallest probability on the last row of the submatrix excluding

entry (i, j), and Pk,max{j,k} is the smallest probability on

the last column. As will become clear in Section IV-A, kå

is chosen to minimize an upper bound on the entrywise

estimation error of the submatrix.

For illustration and ease of analysis, we adopt SVT as

the matrix completion subroutine MC(·). Given the observa-

tion Y , SVT forms the rescaled observation matrix Ȳ =
(Yij/Pij)i2[n],j2[m] (which is an unbiased estimator of Må),

and then computes the best rank-r approximation M̂ of Ȳ .

Explicitly, if Ȳ has singular value decomposition (SVD) Ȳ =
Ū Σ̄V̄ >, where Σ̄ is a diagonal matrix containing the singular

values of Ȳ in descending order, then M̂ = Ū·[r]Σ̄[r],[r]V̄
>
·[r].

A. Illustrating example

We illustrate how our algorithm works with a concrete ex-

ample. To this end, let us first derive a useful characterization

of the solution kå(i, j) to (3). Define

iå := argmax
i

iPii. (4)

We call the submatrix indexed by [iå]å[iå] the core submatrix.

Under the monotone Assumption 1, for all entries (i, j) in the

core submatrix, the solution kå(i, j) coincides with iå:

Lemma 1: Under Assumption 1, if i ÿ iå and j ÿ iå, then

kå(i, j) = iå.
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Proof: Note that iåPiåiå � kPkk for all k by definition.

Additionally, we have iåPiåiå � kPkk � kPik for all k < i.
For all k < j, we also have iåPiåiå � kPkk � kPkj .

For our example, suppose the probability matrix P can be

divided into four equal-size blocks, where the probabilities

inside each block are the same up to constants, having the

following structure:

Pij =

8

>

<

>

:

Θ(1) i ÿ n/2, j ÿ n/2

Θ(n�2) i > n/2, j > n/2

Θ(n�1+") otherwise,

for some 0 < " < 1. See Fig. 1(a) for an illustration of P .

(a) Sturcture of P . (b) Submatrix completion.

Fig. 1. An example of using submatrix completion with monotone P .

Since the smallest probability (red block) scales as pmin ã
n�2, existing entrywise error bound [1] gives kM̂�Måk1 =
O(1/

p
pminn), which is vacuous as pmin is so small.3 In

contrast, our submatrix completion algorithm achieves much

better guarantees. In particular, it can be verified that the

yellow block is the core submatrix. By Lemma 1, to estimate

entries inside the yellow block, our algorithm will apply SVT

on this block itself and achieve an entrywise error bound of

O(1/
p
n). For each entry (i, j) in the red block, our algorithm

will use the submatrix Y[n/2][{i},[n/2][{j} (see Fig. 1(b)) and

achieve an O(1/
p
n") error. Note that our error bounds are

independent of pmin.
This example provides intuition for why it can be beneficial

to only use a subset of the observations for estimation. SVT

applied to the entire matrix would try too hard to fit the (noisy)

observations in the blue and red blocks with low sampling

probabilities (and hence high variances). As a result, the

estimation error for the high probability yellow block would

be worse than using observations only from this block.

IV. THEORETICAL GUARANTEES

In this section, we present entry-specific error upper bounds

for our submatrix completion algorithm coupled with SVT. We

also derive entry-specific minimax lower bounds, which match

the upper bound for structured P .

A. Upper bound for our algorithm

We derive an error bound for estimating a specific entry

(i, j). Set på(i, j) = min{Pmax{i,kå},kå , Pkå,max{j,kå}} with

3We ignore logarithmic factors and dependence on the rank r.

kå ; kå(i, j) being the solution to (3). Let M̂ij be the estimate

of Må
ij given by our submatrix completion algorithm.

Theorem 1: Under Assumption 1, with probability at least

1� �, for each (i, j) satisfying på(i, j) � c log(n/�)
kå(i,j) , we have

�

�

�
M̂ij �Må

ij

�

�

�
ÿ Cr(r + �)

s

log5(n/�)

kå(i, j)på(i, j)
. (5)

In the above upper bound, the denominator inside the square

root is a function of the index (i, j), where kå(i, j) is chosen

precisely to maximize this denominator and hence optimize

the error bound. As the denominator is increasing in the size

of the submatrix but decreasing as the minimum probability

decreases, our bound highlights the tension in the choice

of the submatrix. A large submatrix may have a large size

but a small minimum probability; a small submatrix has a

small size but could have a larger minimum probability. This

flexibility of choosing an appropriate submatrix enables us

to obtain fine-grained error bounds that are specific to each

entry. Compared with the uniform worst-case entrywise bound

stated in Theorem 3, our bound is valid even when pmin does

not meet the condition therein. Furthermore, our bound is

able to capture the potential order-wise difference between

the estimation quality of different entries, as demonstrated in

the example from Section III.

B. Minimax lower bound

We present an entry-specific minimax lower bound on

the estimation error. The following theorem is valid for any

sampling probability matrix P .

Theorem 2: Fix i 2 [n] and j 2 [m]. There exists an absolute

constant C > 0 such that

inf
M̂ij

sup
Må

E

h
�

�

�
M̂ij �Må

ij

�

�

�

i

� C�

s

r

min{
P

i0 Pi0j ,
P

j0 Pij0}
,

(6)

with probability at least 1
2 . Here, the infimum is over all

estimators of Må
i,j , the supremum is over all rank-r Må, the

expectation is w.r.t. the additive noise E, and the probability

is w.r.t. the sampling mask Ω.

We prove Theorem 2 by reduction from noisy linear re-

gression. Consider estimating the entry Må
ij = haåi , båj i. If the

row latent factors {aåi }i2[n] were known, then estimating Må
ij

is the same as the linear regression problem of estimating

the j-th column latent factor båj given noisy observations

Yi0j = haåi0 , båj i + Ei0j for i0 2 [m] : Ωi0j = 1; note that we

have
P

i0 Pi0j such observations in expectation. As the original

problem is at least as hard as the regression problem, we can

use standard minimax lower bounds for linear regression to

derive a lower bound for our problem. A similar lower bound

can be derived by assuming the column factors were known.

Taking the larger of these two bounds proves Theorem 2.

Perhaps surprisingly, for quite general settings of monotone

P , the simple lower bound above matches the upper bound

in Theorem 1 (up to logarithmic factors), in which case our

algorithm is information-theoretically optimal for estimating

each entry. We discuss such a setting below.
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C. Example: block-structured P

We discuss a generalization of the example from Sec-

tion III-A. Suppose P can be partitioned into 4 blocks: 4 P =
7

Q11 Q12

Q21 Q22

ç

, where Q11 2 R
n1ån1 , Q12 2 R

n1ån2 , Q21 2
R

n2ån1 , Q22 2 R
n2ån2 , and n1 +n2 = n. Inside each block,

the probabilities are of the same order but can be otherwise

different. Let the minimum probabilities of the 4 blocks be

q11, q12, q21, q22. Assume the probabilities satisfy n1q11 &

nq12, n1q11 & nq21, n1q12 & nq22, and n1q21 & nq22. (This

assumption is satisfied when, for example, P is monotone and

n1 & n2.) One may verify that for estimating entry (i, j), our

algorithm will pick the submatrix Y[n1][{i},[n1][{j}. Applying

Theorems 1 and 2 to each block, we obtain the following

matching upper and lower bounds (omitting log factors):5

1) When i ÿ n1, j ÿ n1, the upper bound is 1/
p
n1q11,

and the lower bound is 1/
p
n1q11 + n2q12.

2) When i ÿ n1, j > n1, the upper bound is 1/
p
n1q12,

and the lower bound is 1/
p
n1q12 + n2q22.

3) When i > n1, j ÿ n1, the upper bound is 1/
p
n1q21,

and the lower bound is 1/
p
n1q21 + n2q22.

4) When i > n1, j > n2, the upper bound

is 1/
p

n1 min{q12, q21}, and the lower bound is

1/
p

n1 min{q12, q21}+ n2q22.

V. KEY IDEAS OF PROOF

In this section, we present the tools for proving the upper

bound in Theorem 1. The high-level idea is to apply the

entrywise error bound for SVT from [1] to the submatrix

chosen by our algorithm. To do so, their result needs to be

adapted to the setting where the submatrix may have non-

uniform sampling probabilities and one entry (the target entry

to be estimated) may have an arbitrarily small probability.

We consider estimating a deterministic rank-r matrix Aå 2
R

nåm given noisy observations Y = Ω� (Aå+E), where the

mask Ω and noise E are the same as before. Here, Aå can be

either the whole matrix Må introduced earlier or a submatrix

of Må. Let the rank-r SVD of Aå be Aå = UåΣåV å>.

Define ÿ =
�
å

1

�å

r
and ; = (kUåk2!1 _ kV åk2!1). Recall that

the SVT algorithm forms the rescaled matrix Aij = (Yij/Pij)
and computes the rank-r truncated SVD UΣV > of A.

A. Guarantee for SVT with non-uniform observations

Leveraging the results from [1], we establish the following

entrywise error bound for SVT under non-uniform sampling

probabilities P . Let pmin := mini,j Pij .

Theorem 3: Suppose pmin � c log(n/�)
n+m and

ÿ
(kAåk

1
+�)

�å

r

q

(n+m) log(n/�)
pmin

ÿ 1 for some � > 0.

With probability at least 1� �, we have

�

�UΣV >�Aå
�

�

1
ÿ C;2ÿ4(kAåk1+�)

s

(n+m) log(n/�)

pmin
.

(7)

4This example can be generalized to P with O(1) blocks.
5We impose the mild assumption min{q11, q12, q21} & 1

n1
, so that the

problem is non-trivial with at least one observation in each row/column.

The bound (7) depends on the smallest sampling probability

pmin. This bound becomes vacuous when just a single entry

(i, j) has a very small sampling probability Pij . We next

present an improved bound, which is unaffected by a few

entries with small probabilities. This improvement plays a

crucial role in proving our main Theorem 1.

B. Improved bound under a few small probabilities

Let s be a non-negative integer. Let p(1) � p(2) � · · · �
p(nm) denote the probabilities {Pij} sorted in descending or-

der. Note that p(nm�s) is the (s+1)-th smallest value in {Pij}
and in particular p(nm) = pmin. The following theorem gives

an error bound that only depends on p(nm�s). In order for

the argument to hold, we need to slightly modify the way we

rescale the observation matrix Y . Suppose (inm�s0 , jnm�s0)
indicates the position of the probability p(nm�s0) for 0 ÿ s0 ÿ
s�1. Let Ainm�s0 ,jnm�s0

= 2Yinm�s0 ,jnm�s0
, where we replace

the probability pnm�s0 in the denominator with 1
2 , enabling

us to ignore probabilities smaller than p(nm�s).

Theorem 4: Suppose p(nm�s) � c log(n/�)
n+m and

ÿ
(kAåk

1
+�)

�å

r

q

(n+m) log(n/�)
p(nm�s)

ÿ 1 for some � > 0.

With probability at least 1� �, we have

�

�UΣV >�Aå
�

�

1
ÿ C;2ÿ4(kAåk1+�)

s

(n+m)(s+log(n/�))

p(nm�s)
.

(8)

Compared with the bound (7), the denominator on the

right hand side of (8) improves from p(nm) to p(nm�s),

at the cost of the numerator increasing by s. This cost is

negligible whenever s = O(log(n/�)). To see the benefit,

consider applying Theorem 4 with s = 1 to the submatrix

in Fig. 1(b), for which we obtain an error bound that depends

on p(nm�1) = Θ(n�1+/) instead of pmin = Θ(n�2).

VI. NUMERICAL EXPERIMENTS

In this section, we numerically evaluate our algorithm. We

compare two algorithms: (i) our algorithm SVT-sub, which

applies SVT to submatrices, and (ii) SVT-whole, which applies

SVT to the entire matrix. We consider two monotone proba-

bility matrices P . For each case, we randomly generate a 100-

by-100 signal matrix Må of rank r = 2 according to the latent

variable model in Section II-A with noise standard deviation

� = 0.1. This is repeated for 100 trials. We record the error

esub
ij and ewhole

ij for estimating each entry (i, j) using SVT-sub

and SVT-whole, respectively, averaged over 100 trials.

A. Block-constant P matrix

We first consider a block-constant P 2 [0, 1]100å100 with

Pij =

(

0.3 i ÿ 50 or j ÿ 50,

0.05 i > 50 and j > 50,

which is visualized in Fig. 2(a). In this case, our algorithm

SVT-sub uses the submatrix M[50][{i},[50][{j} to estimate each

entry (i, j). We plot the heatmaps of the errors esub
ij and ewhole

ij

in Fig. 2(b) and (c), respectively. We observe that SVT-sub
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achieves a smaller error, especially in the three 0.3 blocks. We

further compute the relative improvement for estimating each

entry (i, j), defined as (ewhole
ij � esub

ij )/ewhole
ij , which represents

the percentage of improvement of SVT-sub over SVT-whole.

We plot the relative improvements in Fig. 2(d), which shows

that the most substantial improvement happens in the two off-

diagonal blocks. In particular, SVT-sub improves upon SVT-

whole by 12.7% on average over the top-left block, by 21.3%
over the two off-diagonal blocks, and by 14.5% over the

bottom-right block. We also plot the histogram of the relative

improvements in Fig. 4(a), showing a strong trend of positive

improvement.

B. Rank-one P matrix

We consider a rank-one P = ab>, where a and b are

sampled randomly from the same distribution. In particular,

for i ÿ 80, we have ai á 0.5 · Beta(5, 2) + 0.5; for i > 80,

we have ai á 0.5 · Beta(5, 2). We sort the entries of a and b
in descending order for better visualization. One realization

of P is shown in Fig 3(a), in which we observe a clear

drop in the probabilities near the 80th row/column. In this

realization, the largest and smallest values of Pij are 0.989 and

0.025, respectively, hence the sampling probabilities are highly

non-uniform. The core matrix (see Section III-A) obtained by

solving (4) is a 74-by-74 submatrix. We plot the heatmaps

of the entrywise error esub
ij and ewhole

ij in Fig. 3(b) and (c),

respectively, as well as the relative improvements in Fig. 3(d)

and Fig. 4(b). We observe that the majority of the entries

benefit from using our SVT-sub algorithm. On average, the

relative improvement is 17.7%.

(a) 2-by-2 block-constant P . (b) Error by SVT-whole.

(c) Error by SVT-sub. (d) Relative improvement.

Fig. 2. Heatmaps for Subsection VI-A.

VII. DISCUSSION

We propose a submatrix completion algorithm, which hand-

picks a submatrix for estimating a specific entry based on the

sampling probabilities and then applies the matrix estimation

(a) Rank-1 P . (b) Error by SVT-whole.

(c) Error by SVT-sub. (d) Relative improvement.

Fig. 3. Heatmaps for Subsection VI-B.

(a) For Subsection VI-A. (b) For Subsection VI-B.

Fig. 4. Histograms of relative improvement.

subroutine to the selected submatrix. Using SVT as the sub-

routine, we establish entry-specific upper bound and minimax

lower bound on the estimation error. Under certain sampling

probability patterns, the upper and lower bounds match up

to log factors. We also present numerical experiments that

demonstrate the benefit of our algorithm. Future directions

include combining our algorithm with other matrix estimation

algorithms, as well as extending the results to more general

probability patterns, such as those that are not monotone

globally but may satisfy local monotonicity.
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