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A NEW PRECONDITIONED NONLINEAR CONJUGATE
GRADIENT METHOD IN REAL ARITHMETIC FOR COMPUTING

THE GROUND STATES OF ROTATIONAL BOSE--EINSTEIN
CONDENSATE\ast 
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Abstract. We propose a new nonlinear preconditioned conjugate gradient (PCG) method in real
arithmetic for computing the ground states of rotational Bose--Einstein condensate, modeled by the
Gross--Pitaevskii equation. Our algorithm presents a few improvements of the PCG method in com-
plex arithmetic studied by Antoine, Levitt, and Tang [J. Comput. Phys., 343 (2017), pp. 92--109]. We
show that the special structure of the energy functional E(\phi ) and its gradient with respect to \phi can be
fully exploited in real arithmetic to evaluate them more efficiently. We propose a simple approach for
fast evaluation of the energy functional, which enables exact line search. Most importantly, we derive
the discrete Hessian operator of the energy functional and propose a shifted Hessian preconditioner
for PCG, with which the ideal preconditioned Hessian has favorable eigenvalue distributions inde-
pendent of the mesh size. This suggests that PCG with our ideal Hessian preconditioner is expected
to exhibit mesh size-independent asymptomatic convergence behavior. In practice, our precondi-
tioner is constructed by incomplete Cholesky factorization of the shifted discrete Hessian operator
based on high-order finite difference discretizations. Numerical experiments in two-dimensional (2D)
and three-dimensional (3D) domains show the efficiency of fast energy evaluation, the robustness of
exact line search, and the improved convergence of PCG with our new preconditioner in iteration
counts and runtime, notably for more challenging rotational BEC problems with high nonlinearity
and rotational speed.

Key words. PCG, Bose--Einstein condensation, ground states, Hessian preconditioner, exact
line search, real arithmetic
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1. Introduction. The Bose--Einstein condensate (BEC) is referred to as the
fifth state of matter, which was first predicted theoretically by Bose and Einstein,
before being realized experimentally in 1995 [4, 16, 21, 24]. The literature on BECs
has grown rapidly over the last two decades in atomic, molecular, optics, condensed
matter physics, and quantum computing; see, e.g., [17, 29, 30, 31, 36] and references
therein. In this rapidly growing research area, numerical simulation has been playing
an important role in understanding the theories and the experiments. At temperatures
T which are much lower than the critical temperature Tc, the macroscopic behavior
of a BEC can be well described by a condensate wave function \phi which is the solu-
tion to a Gross--Pitaevskii equation (GPE) [8]. It is very useful to obtain numerical
solutions of such a class of equations efficiently. Calculations of stationary states, i.e.,
ground/excited states, and of the real-time dynamics are the most crucial problems
[5, 7, 11, 28, 35]. Numerical methods for approximating the ground states are fun-
damental to explore the nucleation of vortices, the properties of dipolar gases, bright
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1765

beams of coherent matter waves, by studying rotational, dipolar, multicomponent,
and spinor BECs.

In this paper, we consider a BEC that can be modeled by the rotational (dimen-
sionless) GPE. In this setting, the computation of a ground state of a d-dimensional
BEC takes the form of a constrained minimization problem:

Find \phi \in L2(\BbbR d) s.t. \phi \in argmin
\| \phi \| =1

E(\phi )(1.1)

where \phi \in \BbbC n, \| \phi \| = (
\int 
\BbbR d | \phi | 2)

1
2 is the standard L2-norm and E(\phi ) is the associated

energy functional defined as

E(\phi ) =

\int 
\BbbR d

\biggl[ 
1

2
| \nabla \phi | 2 + V (x)| \phi | 2 + \eta 

2
| \phi | 4  - \Omega \phi \ast Lz\phi 

\biggr] 
.(1.2)

Here, V is an external potential, \eta is the nonlinearity strength, \Omega is the rotational
speed, and Lz = i(y\partial x  - x\partial y) is the angular momentum operator.

In the literature of numerical solutions to partial differential equations (PDEs),
a family of classical methods for computing the ground states of BECs, or simi-
larly the steady-state solution to the Allen--Cahn equation, is based on gradient flows
ut =  - \partial 

\partial u (E(u)) that define a steepest descent curve u(t) of the energy E(u). For
example, (1.1) can be solved by the gradient flow with discrete normalization (GFDN,
also called `imaginary time' methods in physics) method [2, 6, 7, 11, 12, 15, 19, 20, 49].
These algorithms have been extensively studied, most well-known and widely used
for years across disciplines, with mature theoretical support. However, they require
solution to a large system of linear equations at each time step, which is usually
time-consuming, particularly in three-dimensional (3D) domains with a small mesh
size. In addition, these gradient flow-based methods tend to converge slowly with the
progress of time steps, since they belong to the class of steepest descent methods that
are notably not efficient for numerical optimization. Other methods have been devel-
oped, based on numerical solution of the nonlinear eigenvalue problem [25, 47] or on
optimization techniques under constraints [14, 18, 22, 23]. In the past few years, new
methods have emerged, such as preconditioned conjugate gradient methods [8, 9, 46],
the regularized Newton-type method [48] and the regularized density function and
accelerated projected gradient (rDF-APG) method [13], which seem successful but
falls short of real arithmetic computation and problem-dependent preconditioning.

In [8], the state-of-the-art variant of the preconditioned conjugate gradient (PCG)
method was proposed to solve the constrained minimization problem (1.1). However,
there are several remaining issues to address, and improvements can be proposed.
For example, the complex arithmetic naturally used with Fourier pseudo- spectral
methods does not fully exploit the special structure of rotational BEC to speed up
certain basic linear algebra computations and to guarantee that the computed energy
E(\phi ) is real. More importantly, as a most significant component of PCG methods,
the preconditioners proposed therein did not take the rotational speed \Omega into account,
and the convergence rate seems to deteriorate considerably for high-speed rotational
problems. In fact, the condition number of the preconditioned Hessian is shown to
increase with the domain sizes L and h - 2 where h is the mesh size. In addition, direct
energy evaluation of E(\phi ) defined in (1.2) seems costly for each step size along the
search direction, which entails the use of approximate line search based on quadratic
approximations of E(\phi ) or backtracking algorithms.

In this paper, we propose an improved PCG method for computing the ground
state of rotational BEC (1.1). Our new method makes exclusive use of real arithmetic
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A1766 TIANQI ZHANG AND FEI XUE

to fully exploit the special structure of the problem and realizes fast numerical linear
algebra computations. We discuss a simple approach to achieve fast energy evaluations
for many different step sizes along the search direction at little additional cost, which
enables exact line search. We derive the explicit expression of the discrete Hessian
operator of the energy E(\phi ) in real arithmetic and propose an approximate shifted
Hessian preconditioner that is quite efficient for tackling high nonlinearity strength
\eta and high rotational speed \Omega . We show that the preconditioned Hessian with our
ideal preconditioner has favorable eigenvalue distributions independent of the mesh
size h. Therefore, given a rotational BEC problem in a specified domain, the PCG
method with our ideal preconditioner is expected to exhibit mesh size-independent
asymptotic convergence behavior. In addition, we construct a scaling-invariant CG
method under the BEC problem setting and provide its global convergence towards
a critical point of E(\phi ).

The remainder of this paper is organized as follows. We provide an introduction
to the mathematical problem and the PDE discretization scheme in section 2. In
section 3, we present a detailed description of our method. In section 4, we derive the
discrete Hessian operator of energy functional E(\phi ) and provide the preconditioning
strategy in practice. Section 5 provides an accurate and efficient method to enable fast
energy evaluation and exact line search. A proof of the global convergence of a scaling-
invariant conjugate gradient (CG) method for BEC is provided in section 6. We study
the eigenvalue distribution of the preconditioned Hessian with our ideal preconditioner
in section 7. Section 8 provides numerical results in 2D and 3D domains to validate
our new developments. We conclude this paper in section 9.

2. Problem description and discretization. The function \phi \in L2(\BbbR d) must
be discretized in order to find a numerical solution of the minimization problem (1.1).
Also, the discretization must be accurate enough to resolve fine details of vortexes in
the solution. Several discretization schemes have been used to compute the solution to
the GPE, including high-order finite difference schemes, finite element schemes with
adaptive meshing strategies [22, 23], the standard pseudo-spectral schemes based on
Fast Fourier Transforms (FFTs) [6, 7, 8, 12]. In the literature on numerical methods
for BEC computations, the Fourier pseudo-spectral method [11] is the most widely
adopted discretization.

The constrained minimization problem (1.1) can be written in the discrete form.
Generation of an appropriate mesh on a finite domain U \subseteq \BbbR d and application of
a corresponding discretization to the continuous GPE, the ground state of BEC in
discrete form is the global minimizer of the energy functional

E\eta ,\Omega =

\biggl[ 
 - 1

2
\phi \ast Lp\phi + \phi \ast diag(V )\phi +

\eta 

2
\phi \ast diag(| \phi | 2)\phi  - i\Omega \phi \ast L\omega \phi 

\biggr] 
hd,(2.1)

with \| \phi \| 2\ell 2 = hd\phi \ast \phi = 1, which is a discretized version of (1.2). Here,  - Lp (symmetric
positive definite) is the negative discrete Laplacian operator, diag(V ) and diag(| \phi | 2)
are diagonal matrices with the values of the external trapping potential V (x) and
| \phi (x)| 2 at the mesh nodes on the diagonal, L\omega (skew symmetric) is the discrete version
of the operator y\partial x  - x\partial y, \eta > 0 denotes the repulsive particle interaction, and \Omega is
the angular momentum rotating speed. A direct evaluation of the gradient of the
energy being zero leads to the algebraic nonlinear eigenvalue problem

 - 1

2
Lp\phi +diag(V )\phi + \eta diag(| \phi | 2)\phi  - i\Omega L\omega \phi = \lambda \eta ,\Omega \phi , with hd\phi \ast \phi = 1,(2.2)
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1767

where the eigenvalue \lambda \eta ,\Omega is defined as

\lambda \eta ,\Omega =

\biggl[ 
 - 1

2
\phi \ast Lp\phi + \phi \ast diag(V )\phi + \eta \phi \ast diag(| \phi | 2)\phi  - i\Omega \phi \ast L\omega \phi 

\biggr] 
hd.(2.3)

Our aim is to find the global minimizer of (2.1) numerically. Note that the minimizer
of E\eta ,\Omega is not necessarily the eigenvector associated with the lowest eigenvalue of
(2.2); see [11].

In this paper, we adopt the Fourier pseudo-spectral discretization scheme, which
is described in two dimensions, and its extension to other dimensions is straightfor-
ward. The wave function \phi is truncated to a rectangular domain [ - Lx,Lx]\times [ - Ly,Ly]
with periodic boundary conditions, and discretized with even number of grid points
Nx, Ny in the x- and y- directions, respectively. A uniformly sampled grid is in-
troduced: \scrD Nx,Ny

:= \{ xk1,k2
= (xk1

, yk2
)\} k1,k2\in \scrI Nx,Ny

, with \scrI Nx,Ny
:= \{ 0, . . . ,Nx  - 

1\} \times \{ 0, . . . ,Ny  - 1\} , xk1+1  - xk1 = yk2+1  - yk2 = h, and with mesh size h =
2Lx/Nx = 2Ly/Ny. Define the discrete Fourier frequencies (\xi p, \mu q), with \xi p = p\pi /Lx,
 - Nx/2\leq p\leq Nx/2 - 1, and \mu q = q\pi /Ly,  - Ny/2\leq q\leq Ny/2 - 1. The pseudo-spectral

approximation \widetilde \phi of the function \phi in the x- and y-directions are such that

\widetilde \phi (x, y) = 1

Nx

Nx/2 - 1\sum 
p= - Nx/2

\widetilde \phi p

\ast 
(y)ei\xi p(x+Lx), \widetilde \phi (x, y) = 1

Ny

Ny/2 - 1\sum 
q= - Ny/2

\widetilde \phi q

\ast 
(x)ei\mu q(y+Ly),

where \widetilde \phi p

\ast 
(y) and \widetilde \phi q

\ast 
(x) are the Fourier coefficients in the x- and y-directions, re-

spectively; that is,

\widetilde \phi p

\ast 
(y) =

Nx - 1\sum 
k1=0

\widetilde \phi (xk1
, y)e - i\xi p(xk1

+Lx), \widetilde \phi q

\ast 
(x) =

Ny - 1\sum 
k2=0

\widetilde \phi (x, yk2
)e - i\mu q(yk2

+Ly).

In order to evaluate the action of the discrete Laplacian and the angular rotation
operators on vectors in (2.1), we also need to apply the following operators to the
approximation \widetilde \phi of \phi , for (k1, k2)\in \scrI Nx,Ny :

\partial 2
x\phi (xk1,k2)\approx \partial 2

x
\widetilde \phi (xk1 , yk2) = - 1

Nx

Nx/2 - 1\sum 
p= - Nx/2

\xi 2p
\widetilde \phi \ast 
p(yk2

)ei\xi p(xk1
+Lx),

\partial 2
y\phi (xk1,k2)\approx \partial 2

y
\widetilde \phi (xk1 , yk2) = - 1

Ny

Ny/2 - 1\sum 
q= - Ny/2

\mu 2
q
\widetilde \phi \ast 
q(xk1)e

i\mu q(yk2
+Ly),

x\partial y\phi (xk1,k2
)\approx x\partial y \widetilde \phi (xk1

, yk2
) =

1

Ny

Ny/2 - 1\sum 
q= - Ny/2

ixk1
\mu q

\widetilde \phi \ast 
q(xk1

)ei\mu q(yk2
+Ly),

y\partial x\phi (xk1,k2
)\approx y\partial x\widetilde \phi (xk1

, yk2
) =

1

Nx

Nx/2 - 1\sum 
p= - Nx/2

iyk2
\xi p\widetilde \phi \ast 

p(yk2
)ei\xi p(xk1

+Lx).

Meanwhile, we also introduce the finite difference discretization scheme [34, 44],
which is useful in constructing an approxiamtion to the Hessian preconditioner we
propose in section 4. With the same uniform mesh grids in Fourier pseudo-spectral
discretization scheme, the matrices for the operators are

Lp =D2,x \otimes I + I \otimes D2,y,

L\omega =diag(y0, . . . , yNy - 1)\otimes Dx  - Dy \otimes diag(x0, . . . , xNx - 1),
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A1768 TIANQI ZHANG AND FEI XUE

where Dx, Dy and D2,x, D2,y are sparse matrices containing the coefficients of the
central finite difference approximations of the first partial derivative and the second
partial derivative with respect to x and y, respectively, [19, 34, 44]. Note that, re-
gardless of the discretization scheme, the discrete negative Laplacian operator  - Lp

and the discrete angular rotation operator L\omega are real symmetric positive definite and
real skew-symmetric, respectively.

3. The preconditioned conjugate gradient method in real arithmetic.
To develop an efficient solver for problems involving complex numbers, an important
strategy in numerical linear algebra is to fully use real arithmetic whenever appro-
priate. Since E\eta ,\Omega in (2.1) is real even though \phi is complex, computation in real
arithmetic is desired, especially for optimization algorithms where E\eta ,\Omega needs to be
evaluated many times. To the best of our knowledge, nearly all existing algorithms
for computing BEC ground states use complex arithmetic, with an exception in [34]
that requires solutions of a long sequence of large linear systems that arise in a special
nonlinear inverse iteration to solve the nonlinear eigenvalue problem (2.2).

First, we will reformulate the BEC problem in real arithmetic. To develop new
methods in real arithmetic, let \phi = \phi r + i\phi g \in \BbbC n, where \phi r and \phi g are the real and
imaginary parts of \phi , with \| \phi \| 2\ell 2 = \| \phi r\| 2\ell 2 + \| \phi g\| 2\ell 2 = 1. Define Ls = - 1

2Lp +diag(V )
(symmetric positive definite). The energy (2.1) in real arithmetic has the form

E\eta ,\Omega =
\Bigl[ 
\phi T
r Ls\phi r + \phi T

g Ls\phi g +
\eta 

2
(\phi 2

r + \phi 2
g)

T (\phi 2
r + \phi 2

g) + 2\Omega \phi T
r L\omega \phi g

\Bigr] 
hd,(3.1)

with \| \phi \| \ell 2 = hd/2\| \phi \| 2 = 1. Note that \phi 2
r is the column vector whose entries are the

squares of those of \phi r, and \phi 2
g is defined similarly. The evaluation of (3.1) takes only

half of the arithmetic cost needed to evaluate (2.1) in complex arithmetic. Note that
the evaluation of (2.1) in complex arithmetic [8] did not take advantage of the special
structure of  - Lp and L\omega , which might involve more round-off errors, give a complex
energy value with a small imaginary part, and could make the final converged energy
E\eta ,\Omega (\phi ) less accurate in high accuracy demand. To be more specific, given that Lw

is skew-symmetric, we have

 - (\phi r + i\phi g)
\ast iL\omega (\phi r + i\phi g) = - i

\left(  \phi T
r L\omega \phi r\underbrace{}  \underbrace{}  

0

+\phi T
g L\omega \phi g\underbrace{}  \underbrace{}  

0

\right)  + 2\phi T
r L\omega \phi g.

Similar results can be derived for Ls. The evaluation of the energy functional (2.1) in
complex arithmetic and real arithmetic give identical results in exact arithmetic, with-
out changing any essence of BEC. However, the evaluation of the energy functional
for BEC can be done more efficiently in real arithmetic, because certain quantities
equal to zero as shown above do not need to be evaluated, but such savings cannot
be exploited in complex arithmetic. Furthermore, the real arithmetic form allows us
to derive the Hessian easily and enable exact line search.

In order to employ the PCG method, it is necessary to obtain the gradient of
E\eta ,\Omega (3.1). Note that the energy expression of E\eta ,\Omega (2.1) or (3.1) is valid under the
normalization constraint \| \phi \| \ell 2 = 1. But we may disregard it and derive its gradient
formally. The gradient of E\eta ,\Omega (3.1) with respect to \phi = (\phi T

r \phi T
g )

T is

\partial E\eta ,\Omega 

\partial \phi 
= 2

\biggl( 
Ls\phi r + \eta diag(\phi 2

r + \phi 2
g)\phi r +\Omega L\omega \phi g

Ls\phi g + \eta diag(\phi 2
r + \phi 2

g)\phi g  - \Omega L\omega \phi r

\biggr) 
hd.(3.2)
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1769

We can disregard the factor hd and keep the direction
\partial E\eta ,\Omega 

\partial \phi . Since \phi is restricted on
the sphere \| \phi \| \ell 2 = 1, the effective gradient is the component of (3.2) that is orthogonal
to \phi :

r\eta ,\Omega =

\biggl( 
Ls\phi r + \eta diag(\phi 2

r + \phi 2
g)\phi r +\Omega L\omega \phi g

Ls\phi g + \eta diag(\phi 2
r + \phi 2

g)\phi g  - \Omega L\omega \phi r

\biggr) 
 - \lambda \eta ,\Omega 

\biggl( 
\phi r

\phi g

\biggr) 
,(3.3)

where

\lambda \eta ,\Omega =
\bigl[ 
\phi T
r Ls\phi r + \phi T

g Ls\phi g + \eta (\phi 2
r + \phi 2

g)
T (\phi 2

r + \phi 2
g) + 2\Omega \phi T

r L\omega \phi g

\bigr] 
hd(3.4)

such that \phi T r\eta ,\Omega = 0. Note that (3.3), up to a scaling factor, can also be derived by
differentiating the scaling-invariant energy E(\phi ) as performed in section 4. We call
\lambda \eta ,\Omega the nonlinear Rayleigh functional of \phi , which approximates the desired eigenvalue
in (2.2). Also, \lambda \eta ,\Omega represents the chemical potential [11] and

\lambda \eta ,\Omega =E\eta ,\Omega +
\eta 

2
(\phi 2

r + \phi 2
g)

T (\phi 2
r + \phi 2

g)h
d =E\eta ,\Omega +Eint,(3.5)

where Eint =
\eta 
2 (\phi 

2
r +\phi 2

g)
T (\phi 2

r +\phi 2
g)h

d is the interaction energy. Therefore, r\eta ,\Omega is the
eigenresidual associated with \phi of the nonlinear eigenvalue problem (2.2).

Now, a nonlinear preconditioned conjugate gradient (PCG) method in real arith-
metic could be employed in an effort to find the global minimizer of the energy func-
tional (3.1). Suppose we work with a generic preconditioner M . The standard search
direction in nonlinear PCG is

d(k) = - M - 1r(k) + \beta (k)d(k - 1),(3.6)

with the Fletcher--Reeves update [32]

\beta (k) =
\langle r(k),M - 1r(k)\rangle 

\langle r(k - 1),M - 1r(k - 1)\rangle 
.

At iteration k, a regular update formula for \phi (k+1) in PCG could be

\phi (k+1) = \phi (k) cos(\theta (k)) + p(k) sin(\theta (k)).(3.7)

Here, p(k) is the modified search direction, which is orthogonal to \phi (k) in complex
arithmetic and normalized in the standard \ell 2-space.

Given two complex vectors \widehat d(k) = d(k)r+ id(k)g and \widehat \phi (k) = \phi (k)r+ i\phi (k)g \in \BbbC n, the

real representation of \widehat d(k) and \widehat \phi (k) are d(k) = (dT(k)r dT(k)g)
T and \phi (k) = (\phi T

(k)r \phi T
(k)g)

T ,

respectively. Then, the orthogonalization of \widehat d(k) against \widehat \phi (k) in complex arithmetic,
which gives the resulted complex vector \widehat p(k) = p(k)r+ ip(k)g, can be done by their real
representations as follows:

p(k) = d(k)  - W (WTW ) - 1WT d(k),(3.8)

where p(k) = (
p(k)r
p(k)g

) and W = (
\phi (k)r  - \phi (k)g

\phi (k)g \phi (k)r
). Moreover, the normalization condition

\| p(k)\| \ell 2 = 1 can be easily done by

p(k) = p(k)/(h
d
2 \| p(k)\| 2).(3.9)

Note that (3.8) and (3.9) ensure that \phi (k+1) obtained from (3.7) satisfies the normal-
ization constraint such that \| \phi (k+1)\| \ell 2 = 1 for any \theta (k).

An outline of the nonlinear PCG is given in Algorithm 3.1.
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A1770 TIANQI ZHANG AND FEI XUE

Algorithm 3.1. The PCG method.

1: Start with an initial approximation \phi (0) with \| \phi (0)\| \ell 2 = 1.
2: while not converged do
3: \lambda (k) = \lambda \eta ,\Omega (\phi (k)) (see (3.4)).
4: r(k) = r\eta ,\Omega (\phi (k)) (see (3.3)).

5: \beta (k) =
\langle r(k),M

 - 1r(k)\rangle 
\langle r(k - 1),M - 1r(k - 1)\rangle 

6: d(k) = - M - 1r(k) + \beta (k)d(k - 1)

7: p(k) = d(k)  - W (WTW ) - 1WT d(k)
8: p(k) = p(k)/(h

d
2 \| p(k)\| 2)

9: \theta (k) = argmin\theta E(\phi (k) cos(\theta ) + p(k) sin(\theta ))
10: \phi (k+1) = \phi (k) cos(\theta (k)) + p(k) sin(\theta (k))
11: k= k+ 1
12: end while

4. Problem-dependent Hessian preconditioner. One critical problem in
the nonlinear PCG is to design a good preconditioner, which can significantly re-
duce the iteration counts and runtime. In general, the preconditioner for PCG near
convergence should be an approximation to the Hessian of the objective function.

4.1. Derivation of the discrete Hessian operator. In this section, we will
derive the explicit expression of the discrete Hessian operator for the energy functional
E\eta ,\Omega (3.1) based on the real arithmetic and introduce the preconditioning strategy in
practice. It is crucial to point out the discrete Hessian operator of a real-valued scalar
function of n complex variables must be a linear operator that operates on a vector
of 2n degrees of freedom [39]. In particular, this means that such a Hessian operator
may not be represented correctly as a complex matrix of order n. In [39], three
definitions of the Hessian are given for such a function based on the real arithmetic
or complex arithmetic, and all these Hessian matrices are of order 2n. For the BEC
problems, with our use of real arithmetic, it is also natural to derive the discrete
Hessian operator of the energy functional (2.1) as a real symmetric matrix of order
2n. In order to derive the full expression of discrete Hessian operator of E\eta ,\Omega , we will
follow the scheme in [34] to absorb the normalization constraint to rewrite (3.1) in a
form that is invariant with respect to the scaling of the wave function \phi .

Assume that \phi = (\phi T
r \phi T

g )T , which leads to the equivalent expression of (3.1)

E(\phi ) =
\phi TA\phi 

\phi T\phi 
+

\eta 

2

\phi TB(\phi )\phi 

hd(\phi T\phi )2
,(4.1)

where

A=

\biggl( 
Ls \Omega L\omega 

 - \Omega L\omega Ls

\biggr) 
and B(\phi ) =

\biggl( 
diag(\phi 2

r + \phi 2
g) 0

0 diag(\phi 2
r + \phi 2

g)

\biggr) 
.

Here, A is real symmetric and E(\phi ) satisfies the scaling-invariant property, i.e.,
E(\alpha \phi ) = E(\phi ) for any \alpha \in \BbbR \setminus \{ 0\} . In this way, the energy functional E(\phi ) only
depends on the relative strength of \phi in different locations in \Omega , or the direction of
the vector \phi . This would eliminate potential issues how the normalization condition
\| \phi \| \ell 2 = 1 would impact the gradient and the Hessian of E(\phi ). Theorem 4.1 provides
the complete expression of the gradient and the Hessian for E(\phi ) in (4.1).
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1771

Theorem 4.1. The gradient and Hessian for E(\phi ) (4.1) are given by

\partial E(\phi )

\partial \phi 
=

2

\phi T\phi 
(A(\phi )\phi  - \lambda (\phi )\phi )(4.2)

and

\partial 2E(\phi )

\partial \phi 2
=

2

\phi T\phi 

\biggl\{ 
A+

\eta 

hd\phi T\phi 

\biggl( 
diag(3\phi 2

r + \phi 2
g) 2diag(\phi r\phi g)

2diag(\phi r\phi g) diag(\phi 2
r + 3\phi 2

g)

\biggr) 
 - \lambda (\phi )I(4.3)

 - 2A
\phi \phi T

\phi T\phi 
 - 2

\phi \phi T

\phi T\phi 
A - 4\eta 

B(\phi )

hd\phi T\phi 

\phi \phi T

\phi T\phi 
 - 4\eta 

\phi \phi T

\phi T\phi 

B(\phi )

hd\phi T\phi 

+4
\phi TA\phi 

\phi T\phi 

\phi \phi T

\phi T\phi 
+ 6\eta 

\phi \phi T

\phi T\phi 

\phi TB(\phi )\phi 

hd(\phi T\phi )2

\biggr\} 
,

where

A(\phi ) =A+ \eta 
B(\phi )

hd\phi T\phi 
and \lambda (\phi ) =

\phi TA\phi 

\phi T\phi 
+ \eta 

\phi TB(\phi )\phi 

hd(\phi T\phi )2
.

Also, if \phi = ( \phi r

\phi g
) is a stationary point of E(\phi ) such that

\partial E(\phi )

\partial \phi 
=

2

\phi T\phi 
(A(\phi )\phi  - \lambda (\phi )\phi ) = 0,

we have

\partial 2E(\phi )

\partial \phi 2
\phi = 0 and

\partial 2E(\phi )

\partial \phi 2
\widehat \phi = 0,

where \widehat \phi = ( - \phi g

\phi r
); that is, \phi and \widehat \phi are the eigenvectors of \partial 2E(\phi )

\partial \phi 2 associated with the
zero eigenvalue.

Proof. The proof is given in the appendix.

Note that the gradient from Theorem 4.1 is consistent with (3.3) up to a scaling
factor. Also, we can see that the discrete Hessian operator of the energy E\eta ,\Omega (\phi )
should be of order 2n. Now, we are ready to introduce a shifted Hessian preconditioner
for the nonlinear PCG method.

4.2. Preconditioning strategy. For the nonlinear PCG, it is crucial to apply
the preconditioner efficiently. For the ground state solution, i.e., the global minimizer
of E\eta ,\Omega , the first-order optimality condition is r\eta ,\Omega = 0, and the second-order opti-
mality condition is H\eta ,\Omega \succeq 0 (positive semidefinite) with the null space spanned by

the ground state solution \phi = (\phi T
r \phi T

g )
T and \widehat \phi = ( - \phi T

g \phi T
r )

T . Suppose that P is the
orthogonal projector with null space spanned by the ground state \phi = (\phi T

r \phi T
g )

T and\widehat \phi = ( - \phi T
g \phi T

r )
T , i.e., P = I  - W (WTW ) - 1WT , where W = (

\phi r  - \phi g

\phi g \phi r
).

With the normalization constraint \phi T\phi hd = 1, we obtain WTW = 1
hd I, so that

P = I  - hdWWT . Since that P\phi = \phi TP = 0, the low-rank updates in (4.3) can be

cancelled out by multiplying \partial 2E(\phi )
\partial \phi 2 on both sides by P . That is,

P
\partial 2E(\phi )

\partial \phi 2
P =

2

\phi T\phi 
P

\biggl\{ 
A+

\eta 

hd\phi T\phi 

\biggl( 
diag(3\phi 2

r + \phi 2
g) 2diag(\phi r\phi g)

2diag(\phi r\phi g) diag(\phi 2
r + 3\phi 2

g)

\biggr) 
 - \lambda (\phi )I

\biggr\} 
P.
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A1772 TIANQI ZHANG AND FEI XUE

Therefore, we can define the effective Hessian of E\eta ,\Omega (3.1), i.e.,

H\eta ,\Omega := PHpP = P

\biggl\{ \biggl( 
Ls + \eta diag(3\phi 2

r + \phi 2
g) \Omega L\omega + 2\eta diag(\phi r\phi g)

 - \Omega L\omega + 2\eta diag(\phi r\phi g) Ls + \eta diag(\phi 2
r + 3\phi 2

g)

\biggr) 
 - \lambda I2n

\biggr\} 
P,

(4.4)

where \phi r\phi g is the column vector whose entries are the product of those of \phi r and
\phi g. Moreover, the projector P adopted can avoid the potential stagnation of the
``correction direction'' that occurred in Davidson-type eigensolvers [43].

To speed up the convergence of our optimization methods, we define the shifted
Hessian preconditioner based on (4.4) as

M\eta ,\Omega := PMpP(4.5)

= P

\biggl\{ \biggl( 
Ls + \eta diag(3\phi 2

r + \phi 2
g) \Omega L\omega + 2\eta diag(\phi r\phi g)

 - \Omega L\omega + 2\eta diag(\phi r\phi g) Ls + \eta diag(\phi 2
r + 3\phi 2

g)

\biggr) 
 - (\lambda  - \sigma )I2n

\biggr\} 
P.

The shift \sigma > 0 is chosen such that Mp \succ 0 (positive definite) near the ground state
and ensures that incomplete Cholesky factorization of Mp can be done successfully.
A smaller \sigma lead to Mp closer to the effective Hessian H\eta ,\Omega (more effective precondi-
tioning), whereas a larger \sigma makes Mp less close to H\eta ,\Omega (less effective). In practice,
\sigma should be chosen to strike a balance between the chance of success of incomplete
Cholesky factorization and the effectiveness of preconditioning. In our numerical ex-
periments, we let \sigma = (E\eta ,\Omega + \lambda \eta ,\Omega )/2 for the current iterate \phi (k) by default, though
this choice can be easily changed if necessary.

Remark. Given the real formulation of our proposed preconditioner M\eta ,\Omega (4.5),

one might wonder if we could find a complex Hermitian \widehat M\eta ,\Omega of order n, and form the
vector u in complex arithmetic \widehat u= ur + iug, such that M - 1

\eta ,\Omega u=M - 1
\eta ,\Omega (u

T
r uT

g )
T and\widehat M - 1

\eta ,\Omega \widehat u represent the same vector in real and complex arithmetic, respectively. This is

equivalent to finding a complex Hermitian \widehat Mp of order n such that M - 1
p u and \widehat M - 1

p \widehat u
represent the same vector in real and complex arithmetic, respectively. It can be shown
this is impossible. Suppose M - 1

p u = v and \widehat M - 1
p \widehat u = \widehat v such that \widehat v = vr + ivg, then

Mpv and \widehat Mp\widehat v represent the same vector in real and complex arithmetic, respectively.

Let \widehat Mp = re(\widehat Mp) + i im(\widehat Mp), then we have Mpv = (
re(\widehat Mp)  - im(\widehat Mp)

im(\widehat Mp) re(\widehat Mp)
)v, which leads

to a contradiction, since the (1,2) and (2,1) blocks of Mp are not opposite of each
other unless \eta = 0. Real arithmetic computation is essential to enable a wide range
of options to approximate the action of the Hessian Hp for both Newton-like and
preconditioner conjugate gradient-like methods for the minimization of E\eta ,\Omega .

The difficulty of applying the Hessian preconditioner depends on the discretiza-
tion scheme used. Under the Fourier pseudo-spectral discretization scheme we adopt,
the discrete Hessian operator (4.5) is fully dense, and geometric multigrid (GMG)
is a reasonable method to approximate the action of M - 1

\eta ,\Omega on vectors. A more effi-
cient alternative, however, is to construct the shifted Hessian operator (4.5) in finite
difference discretization based on the same uniform mesh; this leads to a sparse ap-
proximation to the true discrete Hessian operator (4.3) in Fourier pseudo-spectral
scheme, to which incomplete Cholesky factorization can be applied efficiently. This
preconditioning strategy is reasonable in this setting, since the action of precondition-
ing usually does not need to be computed to high accuracy. In practice, we apply the
eighth-order finite difference approximations to form M\eta ,\Omega (4.5), which seems accu-
rate enough to approximate the true discrete Hessian operator (4.3) given that the
wave function \phi has a complex pattern of vortexes. In this way, the shifted Hessian
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1773

preconditioner actually used is sparse and can be applied efficiently. For large prob-
lems, as exact matrix factorizations are prohibitive, we apply incomplete Cholesky
factorization with fill-reducing permutations such as approximate minimal degree or-
dering [3] and an appropriate drop tolerance. To further lower the computational cost,
we keep the same preconditioner for a certain number of PCG steps before performing
a new factorization. Generally, the Combined preconditioner is effective to help PCG
proceed closer to the final minimized energy, but it tends to struggle or even stagnate
near the convergence, whereas our Hessian preconditioner can help PCG converge to
the final energy more rapidly in a robust manner. We propose using the combined
preconditioner initially and switch to our Hessian preconditioner later. Note that
the timing for switching the preconditioners should depend on the nonlinearity \eta and
rotational speed \Omega . Higher value of \eta or \Omega makes the problem more challenging, thus
we suggest switching the preconditioners in an early stage (e.g., the relative change
in energy drops below 10 - 7) to speed up convergence.

5. Fast energy functional evaluation and exact line search. For gradient-
based optimization methods, it is a common practice to perform an approximate line
search following the Armijo--Goldstein or Wolfe conditions [40], since exact line search
is prohibitive for large problems. There are a few well-known counterexamples, such as
PCG for solving a symmetric positive definite (SPD) linear system and computing the
lowest eigenvalue(s) of an SPD matrix, as exact line search can be done efficiently with
explicit formula for the optimal step size [33] or by the Rayleigh--Ritz projection [37].
The state-of-the-art variant of PCG for rotational BEC [8] performs line search by
approximating E\eta ,\Omega by a quadratic function and some complex methodologies based
on different conditions and certain default values not explicitly specified. Fortunately,
we find that fast exact line search can be enabled, without repeated evaluations of the
energy functional at different step sizes in the original problem dimension n.

Specifically, let \phi (k) be the current ground state approximation with \| \phi (k)\| \ell 2 = 1,
and let d(k) be a search direction. We orthogonalize d(k) against \phi (k) then normalize
it in \| \cdot \| \ell 2 norm into p(k) following the process introduced in section 3. Then, the
new iterate is \phi (k+1) = \phi (k) cos(\theta (k)) + p(k) sin(\theta (k)), where \theta (k) is the minimizer
E(\phi (k) cos(\theta ) + p(k) sin(\theta )). By construction, we know \| \phi (k+1)\| \ell 2 = 1. Consider the

objective function E\eta ,\Omega (3.1), substitute \phi = (\phi T
r \phi T

g )
T with (\phi T

(k)r \phi T
(k)g)

T
cos\theta +

(pT(k)r pT(k)g)
T sin\theta into E\eta ,\Omega . Then, by direct algebraic evaluation, we get

E\eta ,\Omega (\phi (k) cos\theta + p(k) sin\theta ) =
\bigl[ 
w(\theta )TLs(k)w(\theta ) + 2\Omega w(\theta )TL\omega (k)w(\theta )

(5.1)

+
\eta 

2

\bigl( 
c1 cos

4 \theta + c2 cos
3 \theta sin\theta + c3 cos

2 \theta sin2 \theta + c4 cos\theta sin
3 \theta + c5 sin

4 \theta 
\bigr) \Bigr] 

hd,

where

w(\theta ) =
\bigl( 
cos\theta sin\theta 

\bigr) T
, L\omega (k) =

\bigl( 
\phi (k)r p(k)r

\bigr) T
L\omega 

\bigl( 
\phi (k)g p(k)g

\bigr) 
\in \BbbR 2\times 2,

Ls(k) =
\bigl( 
\phi (k)r p(k)r

\bigr) T
Ls

\bigl( 
\phi (k)r p(k)r

\bigr) 
+
\bigl( 
\phi (k)g p(k)g

\bigr) T
Ls

\bigl( 
\phi (k)g p(k)g

\bigr) 
\in \BbbR 2\times 2,

and

c1 = (\phi 2
(k)r + \phi 2

(k)g)
T (\phi 2

(k)r + \phi 2
(k)g), c2 = 4(\phi 2

(k)r + \phi 2
(k)g)

T (\phi (k)rp(k)r + \phi (k)gp(k)g),

c3 = 4(\phi (k)rp(k)r+\phi (k)gp(k)g)
T (\phi (k)rp(k)r+\phi (k)gp(k)g)+2(\phi 2

(k)r+\phi 2
(k)g)

T (p2(k)r+p2(k)g),

c4 = 4(\phi (k)rp(k)r + \phi (k)gp(k)g)
T (p2(k)r + p2(k)g), c5 = (p2(k)r + p2(k)g)

T (p2(k)r + p2(k)g).
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A1774 TIANQI ZHANG AND FEI XUE

Here, \phi (k)r and \phi (k)g stand for the real part and imaginary part of \phi (k), respectively;
p(k)r and p(k)g are defined similarly, and \phi (k)rp(k)r stands for the column vector whose
entries are the product of those of \phi (k)r and p(k)r; \phi 

2
(k)r, \phi 

2
(k)g, p

2
(k)r and p2(k)g can be

defined similarly.
The key observation is that it only takes six matrix vector multiplications of order

n, 18 vector inner product of order n, 6 elementwise vector multiplications of order n
and, three vector additions of order n to obtain Ls(k), L\omega (k) \in \BbbR 2\times 2, and the scalars
ci (1 \leq i \leq 5), no more computation in the original problem dimension n is needed.
Now E\eta ,\Omega (\phi (k) cos\theta + p(k) sin\theta ) : \BbbR \rightarrow \BbbR can be evaluated for any and as many val-
ues of \theta as needed at little arithmetic cost. We can afford to perform a numerical
exact line search to minimize E\eta ,\Omega (\phi (k) cos\theta + p(k) sin\theta ), or find the minimizer by
forming d

d\theta E\eta ,\Omega (\phi (k) cos\theta + p(k) sin\theta ) = 0 in closed form and solving it for \theta . In
our implementation, we use MATLAB's fminsearch function to find the optimal
\theta , which can be done rapidly without additional work on dimension n. Note that this
procedure is equivalent to the Rayleigh--Ritz procedure in many iterative methods to
solve linear or linearized symmetric eigenproblems for the lowest eigenvalues.

Similarly, the fast exact search can be applied to the locally optimal precondi-
tioned conjugate gradient method (LOPCG) [38], which is very successful in nonlin-
ear eigenproblems. Assume that we have determined two search directions p(k), f(k)
such that \| p(k)\| 2\ell 2 = \| f(k)\| 2\ell 2 = 1, and \phi (k), p(k), f(k) are pairwise orthogonal. To
determine the new iterate \phi (k+1) for which the energy functional is minimized, de-
fine \phi (k+1) = \phi (k) cos\theta + p(k) sin\theta cos\gamma + f(k) sin\theta sin\gamma . The simplified expression
E\eta ,\Omega (\phi (k+1)) can be derived and one only needs to compute Ls(k),L\Omega (k) \in \BbbR 3\times 3 and
15 scalar coefficients once to evaluate E\eta ,\Omega for all values of (\theta , \gamma ) efficiently. However,
we found that adding more directions in the search subspace does not yield significant
gain in runtime consistently.

In [8, 9], a quadratic approximation line search is provided. Without the details
of the specified parameters, we find that it is not easy to achieve the fast convergence
of the nonlinear PCG. Here, we provide a modified quadratic approximation line
search. Assuming \epsilon (k) is the eigenresidual at the step k, we can approximate E\eta ,\Omega 

by a quadratic function, which is evaluated at \theta (k) = 0, \epsilon (k)/2, and \epsilon (k), respectively.

Then, we can use the minimizer \theta opt(k) of the corresponding quadratic function as a trial

step size. If the energy E\eta ,\Omega (\theta 
opt
(k) ) is decreased, we accept this step. Otherwise, we

reject this step, decrease the interpolation step sizes by a factor of 2 (e.g., 0, \epsilon (k)/4 and
\epsilon (k)/2), and try again, until the energy is decreased, which ensures that \theta (k) is small
enough. However, the performance of the nonlinear PCG can still be affected by the
choice of the three interpolation points. Furthermore, a backtracking line search with
Armijo--Goldstein condition [10] can also be employed here. Compared with these
line search methods, our exact line search can avoid tuning parameters and help the
nonlinear PCG converge more robustly.

6. Global convergence of CG. In this section, we explore the convergence of
the CG method for computing the ground state of BEC. Under the BEC problem
setting, we follow [45] to provide a proof of the global convergence of a special variant
of CG based on the equivalent expression of the energy functional E(\phi ) (4.1). Here,
we need to consider a variant of CG that can normalize \phi in any manner at each step
without changing its behavior, so that the widely adopted proof of global convergence
of CG can be extended to our problem setting. For the simplicity of notation, we
denote \partial E(\phi )

\partial \phi as \nabla E(\phi ) for the remainder of this section. Given the scaling-invariant
E(\phi ) (4.1), i.e., E(\alpha \phi ) = E(\phi ) for any nonzero scalars \alpha and vectors \phi , we can
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1775

show that 1
\alpha \nabla E(\phi ) = \nabla E(\alpha \phi ). Therefore, the traditional stopping criterion of CG

in the general setting of optimization \| \nabla E(\alpha \phi )\| \leq \delta for some small \delta > 0 cannot
guarantee that \phi approximates the desired solution in direction. Actually, due to the
dependence on scaling, \nabla E(\phi ) does not satisfy the Lipschitz condition \| \nabla (E(\phi 1)) - 
\nabla (E(\phi 2))\| \leq L\| \phi 1  - \phi 2\| for all \phi 1, \phi 2 \in \BbbR 2n \setminus \{ 0\} . In [26], the CG method on
Grassman manifolds is developed to address this issue in a similar problem setting.
However, the understanding of theoretical properties of these CG methods, especially
their convergence, remains far from complete.

Instead, we propose a special Fletcher--Reeves variant of CG with exact line search
(Algorithm 6.1), which works independently of the scaling of any iterate \phi k. To be
more specific, at step 5, we are free to scale each new iterate \phi k+1 by any nonzero
factor, which allows us to avoid great effort to tune CG to proceed in a manner con-
sistent with the geometry of the unit sphere for BEC. At step 4, both \beta k and pk in
Algorithm 6.1 are scaling-invariant of the CG iterates by construction, i.e., they de-
pend on the directions, instead of the scalings, of \phi 0, \phi 1 . . .. Therefore, one can nor-
malize \phi k in any convenient manner after each CG step without being concerned about
the geometric constraints for BEC. In this way, the CG method under BEC setting
is consistent with that in [45] for the nonlinear Hermitian eigenproblems T (\lambda )v = 0
with a variational characterization, such that the global convergence can be estab-
lished. Note that, if \{ \phi k\} in Algorithm 6.1 satisfies the normalization constraint, i.e.,
\| \phi k\| \ell 2 = 1, then it is equivalent to Algorithm 3.1 given the identity preconditioner.

Our main interest is to prove the global convergence of Algorithm 6.1 towards a
critical point of E(\phi ). Note that a critical point of E(\phi ) indicates that\nabla E(\phi ) = 0, i.e.,
(A(\phi ) - \lambda (\phi )I)\phi = 0. At such a point, the matrix (A(\phi ) - \lambda (\phi )I) must be singular,
since \phi is a nonzero vector. A complete proof will be long and technical, so we only
provide the major steps of it. More details of the analysis can be found in [45]. Several
intermediate results are necessary to be established.

Definition 6.1. The gradient \nabla E(\phi ) as given in (4.2) is called Lipschitz continu-
ous in direction if there is a constant L> 0 such that

\bigm\| \bigm\| \| \phi 1\| \nabla E(\phi 1) - \| \phi 2\| \nabla E(\phi 2)
\bigm\| \bigm\| \leq 

L\alpha for all \phi 1, \phi 2 \in \BbbR 2n \setminus \{ 0\} that satisfy \alpha =\angle (\phi 1, \phi 2)\leq \pi 
2 .

For \nabla E(\phi ) that is Lipschitz continuous in direction, the following inequality [45]
can be derived: \bigm\| \bigm\| \| \phi 1\| \nabla E(\phi 1) - \| \phi 2\| \nabla E(\phi 2)

\bigm\| \bigm\| \leq \pi L\| \phi 1  - \phi 2\| 
2max(\| \phi 1\| ,\| \phi 2\| )

.(6.1)

Given the above inequality, and the fact that exact line search also satisfies the strong
Wolfe conditions, we have the following inequality from [45, Theorem 3.4]:

Algorithm 6.1. A scaling-invariant CG method.

1: Start with an initial approximation \phi 0.
2: for k= 0, 1, . . ., until convergence, i.e., \| \phi k\| \| \nabla E(\phi k)\| \leq \delta do
3: Ek =E(\phi k) (see (4.1)).
4: If k=0, p0= - \| \phi 0\| \nabla E(\phi 0) (see (4.2)); otherwise, pk= - \| \phi k\| \nabla E(\phi k)+\beta kpk - 1,

where \beta k =
\nabla E(\phi k)

T\nabla E(\phi k)\| \phi k\| 2

\nabla E(\phi k - 1)T\nabla E(\phi k - 1)\| \phi k - 1\| 2 .

5: \phi k+1 = \phi k + \tau kpk through exact line search, and normalize \phi k+1 if necessary.
6: k= k+ 1
7: end for
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A1776 TIANQI ZHANG AND FEI XUE

\infty \sum 
k=0

\| \nabla E(\phi k)\| 2\| \phi k\| 2 cos2 \theta k <\infty ,(6.2)

where \theta k = \angle ( - \nabla E(\phi k), pk), such that cos\theta k =
 - \nabla E(\phi (k))

T pk

\| \nabla E(\phi (k))\| \| pk\| > 0. Moreover, since

exact line search is used in Algorithm 6.1, some preliminary results can be immediately
obtained in Proposition 6.2.

Proposition 6.2. Algorithm 6.1 generates \{ pk\} and \nabla E(\phi k) satisfying
(i) pTk\nabla E(\phi k+1) = 0,
(ii) pTk\nabla E(\phi k) = - \| \phi k\| \| \nabla E(\phi k)\| 2,
(iii) \| pk\| 2 = \| \phi k\| 2\| \nabla E(\phi k)\| 2 + \beta 2

k\| pk - 1\| 2,
(iv) \| \phi k\| \| \nabla E(\phi k)\| \leq \| pk\| .
Proof. The proof is omitted and can be found in [45, Proposition 3.8].

With the above preliminary results, we are ready to establish the global conver-
gence of Algorithm 6.1. In Theorem 6.3, Emin and Emax are the lowest and highest
value of E(\phi ), respectively. These two values are finite as a result of the extreme value
theorem [41] of a continuous multivariate function on a closed finite set (unit sphere
of \phi ). Moreover, \{ Ei\} refer to the discrete energy levels of a given BEC problem, each
of which is a critical value of E(\phi ), and \lambda \ell is the corresponding chemical potential of
E\ell ; see (2.1) and (2.3). Note that Theorem 6.3 cannot guarantee the CG method con-
verges to the ground state, i.e., global minimizer of BEC; however, if E(\phi 0) is lower
than the second lowest critical value of E(\phi ), then Algorithm 6.1 indeed converges to
the ground state of BEC.

Theorem 6.3. Let J = (a, b) be finite, such that [Emin,Emax] \subset J . Let \phi 0 \not = 0
be the initial iterate of Algorithm 6.1. Assume that \nabla E(\phi ) is Lipschitz continuous
in direction in a neighborhood of S = \{ \phi 

\| \phi \| | E(\phi ) \leq E(\phi 0)\} . Then, there exists

E\ell \in \{ Ei\} such that limk\rightarrow \infty E(\phi k) = E\ell and there is a subsequence \{ \phi kj
\} such that

limj\rightarrow \infty \angle 
\bigl( 
\phi kj

,null(A(\phi kj
) - \lambda \ell I)

\bigr) 
= 0. That is, \{ \phi kj

\} converges to the eigenvector
corresponding to the eigenvalue \lambda \ell as defined in (2.3).

Proof. The outline of our proof is as follows. First, we show that there exists a
subsequence \{ \phi kj

\} of the CG iterates such that limj\rightarrow \infty \| \phi kj
\| \| \nabla E(\phi kj

)\| = 0. Then,
we show that limk\rightarrow \infty E(\phi k) must be a critical value of E(\phi ), and that the subsequence
\{ \phi kj

\} satisfying limj\rightarrow \infty \| \phi kj
\| \| \nabla E(\phi kj

)\| = 0 converges to the critical points of energy
functional E(\phi ) (4.1).

Note that, at each step, Algorithm 6.1 generates a new iterate \phi k satisfying
E(\phi k) < E(\phi k - 1), such that all iterates \phi k belong to the level set S. Consider a
continuous function (\lambda ,\phi ) \rightarrow \| A(\phi )  - \lambda I\| defined on the finite and closed domain
[\lambda min, \lambda max]\times S, then there exists an M > 0 such that \| A(\phi ) - \lambda I\| \leq M for all \phi \in S.
Note that \lambda min, \lambda max are not necessarily the corresponding chemical potential of Emin,
Emax. Then, we have \| \phi \| \| \nabla E\| \phi \in S = 2\| (A(\phi ) - \lambda (\phi ))\phi \| 

\| \phi \| \leq 2\| A(\phi ) - \lambda (\phi )I\| \leq 2M <\infty .

Also, for \theta k = \angle ( - \nabla E(\phi k), pk), we have cos\theta k =  - \nabla E(\phi k)
T pk

\| \nabla E(\phi k)\| \| pk\| =
\| \nabla E(\phi (k))\| \| \phi (k)\| 

\| pk\| 
(Proposition 6.2(ii)). Then, we have

\infty \sum 
k=0

\| \nabla E(\phi k)\| 2\| \phi k\| 2 cos2 \theta k =
\infty \sum 
k=0

\| \nabla E(\phi k)\| 4\| \phi k\| 4

\| pk\| 2
<\infty .(6.3)

Assume by contradiction that there exists a \gamma > 0, such that \| \phi k\| \| \nabla E(\phi k)\| \geq \gamma 

for all k. Also, we know \beta 2
k\beta 

2
k - 1 . . . \beta 

2
k - i =

\| \nabla E(\phi k)\| 4\| \phi k\| 4

\| \nabla E(\phi k - i - 1)\| 4\| \phi k - i - 1\| 4 by the definition of

\beta k at step 4 in Algorithm 6.1. It follows from Proposition 6.2(iii) that
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1777

\| pk\| 2 = \| \phi k\| 2\| \nabla E(\phi k)\| 2 +
\| \nabla E(\phi k)\| 4\| \phi k\| 4

\| \nabla E(\phi k - 1)\| 2\| \phi k - 1\| 2
+ \cdot \cdot \cdot + \| \nabla E(\phi k)\| 4\| \phi k\| 4

\| \nabla E(\phi 0)\| 2\| \phi 0\| 2

= \| \phi k\| 4\| \nabla E(\phi k)\| 4
k\sum 

i=0

1

\| \nabla E(\phi i)\| 2\| \phi i\| 2
\leq \gamma 4

k

k+ 1

\gamma 2
,

where \gamma k = \| \phi k\| \| \nabla E(\phi k)\| satisfies 0<\gamma \leq \gamma k \leq 2M <\infty . It follows that

m\sum 
k=0

1

\| pk\| 2
\geq \gamma 2

m\sum 
k=0

1

\gamma 4
k(k+ 1)

\geq \gamma 2

(2M)4

m\sum 
k=0

1

k+ 1

and thus

\infty \sum 
k=0

1

\| pk\| 2
\geq \gamma 2

(2M)4

\infty \sum 
k=0

1

k+ 1
=\infty .(6.4)

However, since
\sum \infty 

k=0
\| \nabla E(\phi k)\| 4\| \phi k\| 4

\| pk\| 2 < \infty and \| \nabla E(\phi k)\| \| \phi k\| \geq \gamma > 0 for all k by

assumption, we have
\sum \infty 

k=0
1

\| pk\| 2 < \infty , which leads to a contradiction. Therefore,

such \gamma > 0 does not exist, and we have limk\rightarrow \infty inf \| \phi k\| \| \nabla E(\phi k)\| = 0, which suggests
that there exists a subsequence \{ \phi k\} , denoted as \{ \phi kj\} , such that

lim
j\rightarrow \infty 

\| \phi kj
\| \| \nabla E(\phi kj

)\| = 0.

Meanwhile, since E(\phi ) \in [Emin,Emax] \subset J and \{ E(\phi k)\} is monotonically decreas-
ing, there exists E\ast \in [Emin,Emax] such that limk\rightarrow \infty E(\phi k) = E\ast . Then, we have
limj\rightarrow \infty E(\phi kj

) = E\ast . Next, we show E\ast is a critical value by contradiction. Define
\lambda \ast = limj\rightarrow \infty \lambda (\phi kj

), where \lambda (\phi ) is described in (2.3), corresponding to E\ast . As-
sume that E\ast is not a critical value, i.e., \nabla E(\phi ) \not = 0 at E\ast , then limj\rightarrow \infty 

\bigl( 
A(\phi kj ) - 

\lambda \ast I
\bigr) 
is nonsingular from (4.2). Let \sigma \ast 

min > 0 be the smallest singular value of
limj\rightarrow \infty 

\bigl( 
A(\phi kj

) - \lambda \ast I
\bigr) 
such that \| limj\rightarrow \infty 

\bigl( 
A(\phi kj

)\phi  - \lambda \ast \phi 
\bigr) 
\| \geq \sigma \ast 

min\| \phi \| for all \phi \not = 0.
Then,

0 = lim
j\rightarrow \infty 

\| \phi kj\| \| \nabla E(\phi kj )\| = lim
j\rightarrow \infty 

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigl( A(\phi kj ) - \lambda (\phi kj )
\bigr) \phi kj

\| \phi kj
\| 

\bigm\| \bigm\| \bigm\| \bigm\| \geq 2\sigma \ast 
min > 0,

which leads to a contradiction. Therefore, E\ast = limk\rightarrow \infty E(\phi k) is a critical value,
denoted as E\ell , which may be the energy of the ground state or an excited state.

Finally, let \{ \phi kj
\} be a subsequence such that limj\rightarrow \infty \| \phi kj

\| \| \nabla E(\phi kj
)\| = 0. As-

sume that there is a \delta > 0 independent of the iteration count, such that for any M > 0,
there exists an m>M such that \angle (\phi km ,null(A(\phi km) - \lambda \ell I))\geq \delta . Then

lim
j\rightarrow \infty 

\| \phi kj
\| \| \nabla E(\phi kj

)\| = lim
j\rightarrow \infty 

2\| 
\bigl( 
A(\phi kj ) - \lambda \ell I

\bigr) 
\phi kj\| 

\| \phi kj
\| 

\not = 0,

contradicting the assumption about \{ \phi kj
\} . Thus, there exists a subsequence \{ \phi kj

\} of
the CG iterates in Algorithm 6.1, such that limj\rightarrow \infty \angle (\phi kj ,null(A(\phi kj )  - 
\lambda \ell I)) = 0.

7. Expected behavior of PCG near convergence. Given the well-known
results about the convergence properties of the CG method for preconditioned linear
systems [42] and the steepest descent methods for nonlinear constrained minimization
[1], the convergence of the nonlinear PCG relies on the properties of the precondi-
tioned Hessian operator. In this section, we show the pattern of the spectrum for the
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A1778 TIANQI ZHANG AND FEI XUE

preconditioned Hessian with our shifted Hessian preconditioner (4.5), such that the
nonlinear PCG is expected to converge quickly when approaching convergence.

The preconditioned Hessian operator with the shifted Hessian preconditioner is
defined as, in the way suggested in [8],

PM - 1
\eta ,\Omega 

\partial 2E(\phi )

\partial \phi 2
P.(7.1)

Suppose that M\eta ,\Omega = P (Hp + \sigma I)P = PLLTP , where the exact symmetric matrix
factor L can be obtained by the exact Cholesky factorization with or without fill-
reducing permutation. Then, a symmetric version of the preconditioned Hessian with
the shifted Hessian preconditioner can be defined as

Hc = PL - 1P
\partial 2E(\phi )

\partial \phi 2
PL - TP.(7.2)

Note that the preconditioned Hessian (7.2) is defined ideally, since we cannot afford the
exact Cholesky decomposition for large problems in practice. Nevertheless, this ideal
preconditioned Hessian helps us develop insight into the expected favorable behavior
of the nonlinear PCG with our practical preconditioner near convergence.

Theorem 7.1. The preconditioned Hessian operator with the ideal shifted Hessian
preconditioner (4.5) given in (7.2) can be written in the following form:

L - 1HpL
 - T +WWT

1 +L - 1WWT
2 +L - 1HpWWT

3  - hdL - 1HpL
 - TWWT(7.3)

for \sigma > 0 and

I +W (W1  - hdW )T +L - 1WWT
2 +L - 1HpWWT

3(7.4)

for \sigma = 0. Here, W1, W2, W3 \in \BbbR 2n\times 2. In other words, the ideal preconditioned
Hessian is a rank-6 update of the identity matrix for \sigma = 0, and a rank-8 update of
L - 1HpL

 - T that is close to the identity matrix for a small \sigma > 0.

Proof. The proof is given in the appendix.

Theorem 7.1 implies that almost all eigenvalues of the ideal preconditioned Hes-
sian (7.2) are exactly or nearly 1, and there are only six or eight eigenvalues that could
be significantly different from 1. Among these six or eight eigenvalues, there are two
zero eigenvalues associated with the orthogonal projector P and have no impact on
the convergence of the nonlinear PCG. Most importantly, such an observation of the
spectrum is independent of the mesh size. Specifically, suppose \sigma > 0 and define the
rank-8 matrix

R8 =WWT
1 +L - 1WWT

2 +L - 1HpWWT
3  - hdL - 1HpL

 - TWWT .

Then, by Theorem 7.1, we have

Hc = I +R8  - \sigma L - 1L - T .(7.5)

Suppose \alpha i, \rho i for 1 \leq i \leq 2n (satisfying \alpha i \leq \alpha i+1, \rho i \leq \rho i+1) are the eigenvalues of
I+R8 and I+R8 - \sigma L - 1L - T , respectively. Then, 2n - 8 eigenvalues among \alpha i's are
1 and at most eight eigenvalues are not 1. Moreover, by the Bauer--Fike theorem [27],
we have | \alpha i  - \rho i| \leq | \sigma | \| L - 1L - T \| 2.
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1779

Also, we know that L - 1L - T and (Hp + \sigma I) - 1 have the same eigenvalues, since
Hp + \sigma I =LLT . Assume that the lowest positive eigenvalue of Hp (positive semidef-
inite) has an infimum s\ast > 0 that is independent of the mesh size h, as h \rightarrow 0. It
follows that the spectrum of L - 1L - T falls within (0, 1

s\ast +\sigma ], i.e., \| L
 - 1L - T \| 2 \leq 1

s\ast +\sigma .
Then, we have

| \alpha i  - \rho i| \leq 
| \sigma | 

s\ast + \sigma 
,(7.6)

which is guaranteed to be small if \sigma is small compared to s\ast . In other words, for any
\sigma \ll s\ast , the eigenvalues of I + R8  - \sigma L - 1L - T are not much different from those of
I +R8. This ensures that the preconditioned Hessian has a favorable eigenvalue dis-
tribution such that the nonlinear PCG with our ideal shifted Hessian preconditioner
(where \sigma is sufficiently small) is expected to converge fairly quickly when approach-
ing convergence. With the incomplete Cholesky preconditioner obtained by a fixed
drop tolerance, the condition number of L - 1HpL

 - T deteriorates as the mesh size h
decreases, so that nonlinear PCG needs more iterations to converge on a finer mesh.

8. Numerical experiments. In this section, we perform extensive experiments
in 2D and 3D domains to validate our method. We compare our Hessian precondi-
tioner with the combined preconditioner proposed in [8]. In the following experiments,
we consider the trapping potential: the harmonic plus quartic potential for d= 2,3,

V (x) = (1 - \alpha )(\gamma 2
xx

2 + \gamma 2
yy

2) +
\kappa (x2 + y2)2

4
+

\Biggl\{ 
0, d= 2,

\gamma 2
zz

2, d= 3.
(8.1)

Moreover, we take the initial wave function \phi (0) as the Thomas--Fermi approximation
[8, 11]

\phi (0) =
\phi TF

\| \phi TF \| \ell 2
with \phi TF (x) =

\Biggl\{ \sqrt{} 
(\mu TF  - V (x))/\eta , V (x)<\mu TF

0 otherwise,
(8.2)

where

\mu TF =
1

2

\Biggl\{ 
(4\eta \gamma x\gamma y)

1/2, d= 2,

(15\eta \gamma x\gamma y\gamma z)
2/5, d= 3.

(8.3)

The stopping criterion we adopt is

| E(\phi (k+1)) - E(\phi (k)) | 
| E(\phi (k)) | 

\leq \epsilon = 10 - 14.(8.4)

Other stopping criterion and comparison between them can be found in [11]. In order
to apply our Hessian preconditioner, we perform an inexact Cholesky factorization
with the approximate minimal degree ordering, and the drop tolerance is chosen to
be 10 - 3 and 10 - 2.5 for experiments in 2D and 3D domains, respectively. We use
the two stage preconditioning strategy. The combined preconditioner is used at the
first stage and our Hessian preconditioner is used at the second stage. We switch the

preconditioner when
| E(\phi (k+1)) - E(\phi (k))| 

| E(\phi (k))| 
\leq 10 - 7 for the first time. After switching to

the Hessian preconditioner, we update the Hessian preconditioner every 100 iterations
and 300 iterations for experiments in 2D domains and in 3D domains, respectively.
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A1780 TIANQI ZHANG AND FEI XUE

Table 8.1
Comparison of line search for quadratic approximation and exact line search for case I.

Exact Quadratic Backtracking

\eta = 100, \Omega = 0.9 Fast Fast Slow Fast Slow

PCG iteration 141 142 133 205 205

time (sec) 24.45 25.53 43.1 35.67 60.37

Table 8.2
Comparison of line search for quadratic approximation and exact line search for case II.

exact quadratic backtracking

\eta = 1000, \Omega = 2 fast fast slow fast slow

PCG iteration 302 310 309 579 579

time (sec) 53.91 54.30 86.82 100.65 230.62

8.1. Fast energy evaluation and line search methods. In this section, we
perform several experiments to compare the performances of the nonlinear PCG with
different line search methods (with or without fast evaluation of the energy) that we
introduce in section 5. Note that we cannot afford to implement the exact line search
without the fast evaluation of the energy. Therefore, there are five schemes: (a) exact
line search with fast evaluation; (b) quadratic line search with fast evaluation; (c)
quadratic line search without fast evaluation; (d) backtracking line search with fast
evaluation; (e) backtracking line search without fast evaluation. Note that the exact
line search performed by MATLAB's built-in function fminsearch is parameter-free,
and the quadratic and backtracking line search use a small number of parameters
whose values are predetermined, independent of the test problems. Here, we test two
cases: (I) \eta = 100, \Omega = 0.9, and V (x) is chosen with \gamma x = \gamma y = 1, \alpha = 0.5, and
\kappa = 0; (II) \eta = 1000, \Omega = 2, and V (x) is chosen with \gamma x = \gamma y = 1, \alpha = 1.2, and
\kappa = 0.3. The computational domain and mesh size are \scrD = [ - 10,10]2 and h = 1

32 ,
respectively. To make fair comparison, all the experiments are performed with the
combined preconditioner only. The results are summarized in Tables 8.1 and 8.2,
respectively. We can see that the exact line search and quadratic line search are
more competitive than the backtracking line search. Also, the exact line search could
marginally improve the number of iterations compared with the quadratic line search.
More importantly, the fast evaluation of the energy is always preferred.

8.2. Partial spectrum of preconditioned Hessian. In this section, we pro-
vide numerical examples to illustrate the partial spectrum of preconditioned Hessian
with our Hessian preconditioner (7.2) at the converged ground state solution \phi c. Here,
we have two cases: (I) \eta = 500,\Omega = 0.8, and V (x) is chosen with \gamma x = \gamma y = 1, \alpha = 0.5,
and \kappa = 0; (II) \eta = 5000 and \Omega = 1, and V (x) is chosen with \gamma x = \gamma y = 1, \alpha = 1.2,
and \kappa = 0.3. We use the MATLAB built-in function eigs to compute the partial
spectrum for the preconditioned Hessian operators.

8.2.1. Partial spectrum with different shift \bfitsigma . In this example, we apply
the eighth order finite difference scheme to form (7.2), i.e, finite difference method for
both the effective Hessian itself (4.4) and the Hessian preconditioner (4.5). Also, we
perform an exact Cholesky factorization of the Hessian preconditioner for illustration,
which is too expensive for large realistic problems. Here, we fix h = 1

8 and the shift
\sigma varies. The computational domain is \scrD = [ - 10,10]2. Tables 8.3 and 8.4 list the 10
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1781

Table 8.3
Partial spectrum of preconditioned Hessian with different shift \sigma for case I.

\lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x}

-6.49e-16 1.25 -4.96e-17 1.24 -4.49e-16 1.22

-1.66e-19 1.00 4.84e-17 1.00 -1.90e-16 1.00
2.33e-08 1.00 8.65e-08 1.00 1.62e-07 1.00

2.87e-05 1.00 3.00e-05 1.00 3.86e-05 1.00

5.18e-02 1.00 5.44e-03 1.00 5.53e-04 1.00
1.82e-01 1.00 2.18e-02 1.00 2.22e-03 1.00

5.05e-01 1.00 9.28e-02 1.00 1.01e-02 1.00

5.43e-01 1.00 1.06e-01 1.00 1.17e-02 1.00
8.24e-01 1.00 3.20e-01 1.00 4.49e-02 1.00

8.49e-01 1.00 3.61e-01 1.00 5.35e-02 1.00

(a) \sigma = 10 - 3 (b) \sigma = 10 - 2 (c) \sigma = 10 - 1

Table 8.4
Partial spectrum of preconditioned Hessian with different shift \sigma for case II.

\lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x}

-3.69e-16 1.77 -2.96e-16 1.17 -6.90e-17 1.16

2.92e-16 1.17 -8.12e-17 1.02 -4.16e-17 1.00

3.11e-06 1.00 4.33e-07 1.00 9.30e-06 1.00
4.55e-05 1.00 4.71e-05 1.00 4.65e-05 1.00

9.60e-01 1.00 6.97e-01 1.00 1.93e-01 1.00

9.60e-01 1.00 7.11e-01 1.00 1.94e-01 1.00
9.83e-01 1.00 8.53e-01 1.00 3.75e-01 1.00

9.85e-01 1.00 8.66e-01 1.00 4.03e-01 1.00
9.86e-01 1.00 8.90e-01 1.00 4.04e-01 1.00

9.89e-01 1.00 9.12e-01 1.00 4.90e-01 1.00

(a) \sigma = 10 - 3 (b) \sigma = 10 - 2 (c) \sigma = 10 - 1

smallest eigenvalues and 10 largest eigenvalues of the preconditioned Hessian operator
for our Hessian preconditioner with different shifts \sigma . We can see that most of the
eigenvalues of the precondition Hessian with Hessian preconditioner are approximately
1. These observations are consistent with Theorem 7.1.

8.2.2. Partial spectrum with different preconditioners. In this example,
we compare the partial spectrum of preconditioned Hessian with the state-of-the-art
combined preconditioner [8] and our Hessian preconditioner. To be consistent with
[8], we compute the partial spectrum based on the expression of the nonsymmetric
preconditioned Hessian (7.1). The Hessian operator (4.4) is discretized in Fourier
pseudo-spectral scheme for both cases. Moreover, we apply the combined precon-
ditioner in Fourier pseudo-spectral scheme and the Hessian preconditioner in eighth
order finite difference scheme, which is consistent with the preconditioning strategy
proposed in section 4. To make fair comparison, we scale the computed eigenvalues
so that the largest eigenvalue of both preconditioned Hessian is of the same value
for each experiment. Also, we perform an inexact Cholesky factorization with drop
tolerance 10 - 3 of the shifted Hessian preconditioner (4.5) with shift \sigma = 10 - 3, per-
mutated by the approximate minimal degree ordering. For case I, we fix h= 1

16 and
vary the domain length L from 4 to 12. For case II, we fix L = 10 and vary h from
1
4 to 1

16 . Tables 8.5 and 8.6 list the 10 smallest scaled eigenvalues and 10 largest
scaled eigenvalues of the preconditioned Hessian operator (7.1) for the combined
preconditioner and the Hessian preconditioner with different domain \scrD , respectively.
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A1782 TIANQI ZHANG AND FEI XUE

Table 8.5
Partial spectrum of preconditioned Hessian with combined preconditioner for case I.

\lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x}

-1.02e-16 1.00 7.38e-16 1.00 -1.23e-16 1.00

5.09e-17 1.00 3.77e-16 1.00 1.68e-16 1.00
1.25e-03 1.00 1.31e-09 0.98 2.56e-11 0.98

2.18e-03 1.00 3.71e-05 0.98 3.71e-05 0.98

2.70e-03 1.00 3.71e-05 0.98 3.71e-05 0.98
3.48e-03 1.00 2.26e-04 0.98 2.26e-04 0.98

5.18e-03 1.00 3.40e-04 0.98 2.26e-04 0.98

7.27e-03 1.00 4.62e-04 0.98 3.39e-04 0.98
8.22e-03 0.98 7.11e-04 0.98 3.39e-04 0.98

1.06e-02 0.98 7.28e-04 0.98 4.62e-04 0.98

(a) \scrD = [ - 4,4]2 (b) \scrD = [ - 8,8]2 (c) \scrD = [ - 12,12]2

Table 8.6
Partial spectrum of preconditioned Hessian with incomplete Cholesky Hessian preconditioner

for case I.

\lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x}

-2.91e-16 1.00 -1.96e-15 1.00 -1.26e-16 1.00
1.07e-16 1.00 1.40e-16 1.00 1.34e-15 1.00

6.85e-03 1.00 7.02e-09 1.00 1.30e-10 1.00

1.13e-02 1.00 2.05e-04 1.00 1.97e-04 1.00
1.26e-02 1.00 2.23e-04 1.00 2.02e-04 1.00

1.69e-02 1.00 1.33e-03 1.00 1.23e-03 1.00
2.78e-02 1.00 1.38e-03 1.00 1.31e-03 1.00

3.62e-02 1.00 1.80e-03 1.00 1.69e-03 1.00

3.96e-02 1.00 1.92e-03 1.00 1.77e-03 1.00
5.81e-02 1.00 2.77e-03 1.00 2.58e-03 1.00

(a) \scrD = [ - 4,4]2 (b) \scrD = [ - 8,8]2 (c) \scrD = [ - 12,12]2

Furthermore, Tables 8.7 and 8.8 list the 10 smallest scaled eigenvalues and 10 largest
scaled eigenvalues of the preconditioned Hessian operator for the combined precondi-
tioner and Hessian preconditioner with different mesh size h, respectively. From these
results, we can see that the conditioning deteriorates for both preconditioners as both
the spatial resolution and the size of the domain increase, which is consistent with the
observation in [8]. However, the preconditioned Hessian with Hessian preconditioner
has a more favorable eigenvalue distribution and smaller condition number compared
with the combined preconditioner. More importantly, the nonlinear PCG with the
Hessian preconditioner is expected to converge fairly quickly when approaching con-
vergence.

8.3. Numerical experiments in two dimensions. In this section, we apply
our method to compute the ground state for some 2D BEC problems with strong
repulsive interaction and rotational speed, which are more relevant for real physical
problems. We compare our Hessian preconditioner with the state-of-the-art combined
preconditioner. The maximum iteration number is set to be 100000. All the exper-
iments are performed on a Ubuntu 22.04 LTS (64 bit) PC-Intel Core i7-4700 CPU
2.40 GHz, 32 GB of DDR3 1600MHz RAM running MATLAB R2022b. Note that the
fast energy evaluation and exact line search are used for all experiments in sections 8.3
and 8.4. Our numerical results show that the Hessian preconditioner is more efficient
than the combined preconditioner especially for the fast rotating BEC problems.
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1783

Table 8.7
Partial spectrum of preconditioned Hessian with combined preconditioner for case II.

\lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x}

-2.66e-17 1.00 -1.38e-17 1.00 -5.37e-17 1

-1.40e-17 1.00 1.99e-17 1.00 -1.55e-17 1
3.58e-04 1.00 1.76e-04 0.99 5.82e-08 0.99

3.58e-04 1.00 1.76e-04 0.99 3.56e-07 0.99

9.42e-04 1.00 4.63e-04 0.98 1.88e-05 0.98
9.75e-04 1.00 5.02e-04 0.98 1.99e-05 0.98

1.40e-03 1.00 5.77e-04 0.98 7.17e-05 0.98

1.78e-03 1.00 8.26e-04 0.98 7.93e-05 0.98
1.78e-03 0.98 8.26e-04 0.98 7.95e-05 0.98

2.75e-03 0.98 9.92e-04 0.98 7.96e-05 0.98

(a) h= 1
4

(b) h= 1
8

(c) h= 1
16

Table 8.8
Partial spectrum of preconditioned Hessian with incomplete Cholesky Hessian preconditioner

for case II.

\lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x}

1.29e-17 1.00 -3.45e-17 1.00 -1.79e-16 1.00
2.76e-17 0.98 2.32e-16 1.00 2.00e-16 1.00

1.21e-01 0.96 1.43e-02 1.00 1.23e-06 1.00

1.30e-01 0.96 1.48e-02 1.00 7.51e-06 1.00
2.28e-01 0.96 3.87e-02 1.00 3.58e-04 1.00

2.28e-01 0.96 4.04e-02 1.00 3.79e-04 1.00

2.31e-01 0.96 6.10e-02 1.00 1.55e-03 1.00
2.31e-01 0.96 6.95e-02 1.00 1.58e-03 1.00

2.31e-01 0.96 7.05e-02 0.98 1.59e-03 1.00

2.31e-01 0.96 8.66e-02 0.98 1.71e-03 1.00

(a) h= 1
4

(b) h= 1
8

(c) h= 1
16

8.3.1. Example. In this example, V (x) is chosen with \gamma x = \gamma y = 1, \alpha = 1.2,
and \kappa = 0.3 [8]. The computational domain and mesh sizes are \scrD = [ - 20,20]2 and
h = 1

32 . We compute the ground states \phi g of rotating BECs with large values of \eta 
and \Omega . In Table 8.9, \eta is fixed to be 10000 and \Omega is chosen from 1 to 5. In Table
8.10, \Omega is fixed to be 5 and \eta is chosen from 1000 to 20000. Tables 8.9 and 8.10
list the iterations, runtime, and final energy functional our method attain with the
combined preconditioner and the Hessian preconditioner, respectively. Also, we un-
derline the lower final energy value obtained by the two preconditioners when there
is a significant difference. The contour plots of the density function | \phi g(x)| 2 obtained
with the Hessian preconditioner are shown in Figure 8.1. For example, in Table 8.9,
when \eta = 10000,\Omega = 5, the nonlinear PCG with the combined preconditioner takes
26522 iterations to attain -485.0282069197 in 21126.00 seconds, whereas only 4488
iterations are needed to attain -485.0305526536 in 4681.19 seconds with the Hessian
preconditioner. Tables 8.9 and 8.10 show the advantage of our Hessian preconditioner
involving \Omega over the combined preconditioner that disregards \Omega . We can see that
with larger values of nonlinearity \eta and rotating speed \Omega , our Hessian preconditioner
gains more advantage in runtime. Note that as we mentioned in section 6, the PCG
method (local minimization method) cannot guarantee the convergence to the global
minimizer of BEC. The choice of the preconditioner also affects the final converged
stationary states. From Tables 8.9 and 8.10, we can see that the combined precondi-
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A1784 TIANQI ZHANG AND FEI XUE

Fig. 8.1. Corresponding contour plots of the density function obtained with the Hessian pre-
conditioner | \phi g(x)| 2 in Tables 8.9 and 8.10.

Table 8.9
Performance comparison of PCG with two preconditioners for \eta = 10000 and different \Omega values.

PCG iteration Time (sec) Final E\eta ,\Omega 

\Omega Combined Hessian Combined Hessian Combined Hessian

1 724 2088 576.51 2052.01 63.02007542539 62.96553732649

1.5 749 697 593.38 583.06 53.26795985753 53.26795985751
2 4929 2443 3885.88 2399.98 37.59961999660 37.59961999657

2.5 5770 3287 4589.90 3137.76 13.63739471900 13.63739471896

3 16435 6226 12885.70 6347.01  - 23.48312229660  - 23.48295831441
3.5 8653 3612 6895.37 3733.51  - 82.54564206625  - 82.54564207131

4 25890 6047 20546.26 6430.85  - 172.7171085876  - 172.7188268092
4.5 18115 3701 14125.19 3868.01  - 303.3183033037  - 303.3185838060
5 26522 4488 21126.00 4681.19  - 485.0282069197  - 485.0305526536

tioner achieve lower energies for \eta = 10000, \Omega = 3, and \eta = 20000, \Omega = 5. However, the
nonlinear PCG with our Hessian preconditioner tends to achieve a lower final energy
for most problems.

8.3.2. Example. In this example, we compare the performance of our Hessian
preconditioner with the combined preconditioner to solve some more difficult prob-
lems. Here, V (x) is chosen with \gamma x = 10, \gamma y = 1, \alpha = 2, and \kappa = 3. We fix \eta = 25000
and vary \Omega from 4 to 16. We take Lx = Ly = 13, h = 1/64. The results are shown
in Table 8.11. Figure 8.2 shows the contour plots of the density function | \phi g(x)| 2
obtained with the Hessian preconditioner. Note that the nonlinear PCG with the
combined preconditioner does not terminate after 100000 iterations, thus we report
the energy and the runtime it attains after the 100000 iterations. More importantly,
Table 8.11 shows that our Hessian preconditioner gains significant advantage over the
combined preconditioner.
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1785

Table 8.10
Performance comparison of PCG with two preconditioners for \Omega = 5 and different \eta values.

PCG iteration Time (sec) Final E\eta ,\Omega 

\eta Combined Hessian Combined Hessian Combined Hessian

1000 12922 2426 10322.28 2446.36  - 522.1631296805  - 522.1631296901

2000 10846 2164 8727.81 2192.61  - 516.1164313740  - 516.1164313839
5000 17673 5349 14009.90 5710.81  - 502.4144226059  - 502.4145222867

10000 26522 4488 21126.00 4681.19  - 485.0282069197  - 485.0305526536

20000 60757 6401 47431.78 6956.86  - 457.6996232199  - 457.6981668537

Table 8.11
Performance comparison of PCG with two preconditioners for \eta = 25000 and different \Omega values.

PCG iteration Time (sec) Final E\eta ,\Omega 

\Omega Combined Hessian Combined Hessian Combined Hessian

4 51864 17454 74290.97 33295.91 141.3951364011 141.3951364033

8 100000+ 39510 143848.1+ 83809.49  - 294.0500897923  - 294.0521455922
12 98901 9616 170704.1 20936.99  - 1871.149053296  - 1871.148855358
16 100000+ 30003 168655.4+ 68113.02  - 5913.255005955  - 5913.256644684

Fig. 8.2. Corresponding contour plots of the density function obtained with the Hessian pre-
conditioner | \phi g(x)| 2 in Table 8.11.

8.4. Numerical experiments in three dimensions. In this section, we apply
our method to compute some 3D problems. We perform the 3D experiments on a
single node with 16 cores on Clemson Palmetto Cluster running MATLAB R2022a.

In this example, we test four cases: (i) \eta = 15000, \Omega = 4; (ii) \eta = 15000, \Omega = 5;
(iii) \eta = 25000, \Omega = 4; (iv) \eta = 25000, \Omega = 6. The mesh size is h = 1

16 for all
cases. For (i) and (ii), V (x) is chosen with \gamma x = \gamma y = 1, \gamma z = 1, \alpha = 0.3, and \kappa = 1.4.
The computational domain is \scrD = [ - 15,15]2 \times [ - 8,8]. For (iii) and (iv), V (x) is
chosen with \gamma x = \gamma y = 1, \gamma z = 3, \alpha = 0.3, and \kappa = 1.4. The computational domain
is \scrD = [ - 10,10]2 \times [ - 5,5]. We summarize the results in Tables 8.12 and 8.13. Fig-
ure 8.3 shows the isosurfaces | \phi g(x)| 2 = 10 - 3 and surface plots of | \phi g(x, y, z = 0)| 2
obtained with the Hessian preconditioner for all the cases. From these results, we can
see that our method works efficiently tackling challenging problems and our Hessian
preconditioner is still competitive compared with the combined preconditioner.

9. Conclusions. In this paper, we propose a preconditioned nonlinear CG
method in real arithmetic to compute the ground states of the GPE with fast rotation
and large nonlinearities that arise in the modeling of BECs. We develop a problem-
dependent Hessian preconditioner involving the rotational speed \Omega , which is very ef-
ficient especially for solving BECs with high nonlinearity and high rotational speeds.
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A1786 TIANQI ZHANG AND FEI XUE

Table 8.12
Performance comparison of PCG with two preconditioners for cases I and II.

PCG iteration Time (sec) Final E\eta ,\Omega 

(\eta , \Omega ) Combined Hessian Combined Hessian Combined Hessian

(15000, 4) 14568 3864 378007.4 156913.9  - 210.8746065833  - 210.8746066226

(15000, 5) 28023 10866 691078.8 448749.6  - 529.2941298728  - 529.2943293465

Table 8.13
Performance comparison of PCG with two preconditioners for cases III and IV.

PCG iteration time (sec) final E\eta ,\Omega 

(\eta , \Omega ) Combined Hessian Combined Hessian Combined Hessian

(25000, 4) 3509 2325 29258.16 23823.73 75.88162274531 75.88162274514
(25000, 6) 16929 7611 140570.9 74431.28 1.258275896279 1.258275895894

Fig. 8.3. Corresponding isosurface | \phi g(x)| 2 = 10 - 3 and surface plot of | \phi g(x, y, z = 0)| 2 in
Table 8.12 obtained with the Hessian preconditioner.

Also, we provide an efficient method to perform fast energy functional evaluation
without repeated computation in the original problem dimension. Exact line search
can be enabled by fast energy evaluation at many different step sizes at little extra
cost, which tends to result in more rapid and robust convergence compared to inexact
line search. Furthermore, our methodologies can be extended to solve other different
types of BEC in the future.

Appendix A. Proof of Theorem 4.1.

Proof. The derivation follows from several applications of the product rule and
quotient rule. More specifically, we have

\partial E(\phi )

\partial \phi 
=

\partial \phi TA\phi 
\phi T\phi 

\partial \phi 
+

\eta 

2hd

\partial \phi TB(\phi )\phi 
(\phi T\phi )2

\partial \phi 
.

It is easy to obtain

\partial \phi TA\phi 
\phi T\phi 

\partial \phi 
=

2

\phi T\phi 

\biggl( 
A\phi  - \phi TA\phi 

\phi T\phi 
\phi 

\biggr) 
(A.1)
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REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1787

and

\partial \phi TB(\phi )\phi 
(\phi T\phi )2

\partial \phi 
=

1

(\phi T\phi )2

\biggl( 
\partial \phi TB(\phi )\phi 

\partial \phi 

\biggr) 
 - 4

\phi TB(\phi )\phi 

(\phi T\phi )3
\phi .(A.2)

From [34, Theorem 5.1], we have

\partial B(\phi )\phi 

\partial \phi 
=B(\phi ) + 2diag(\phi )2 + 2

\biggl( 
0 I
I 0

\biggr) 
diag(\phi )

\biggl( 
0 I
I 0

\biggr) 
diag(\phi )

\biggl( 
0 I
I 0

\biggr) 
=B(\phi ) + 2

\biggl( 
diag(\phi 2

r) diag(\phi r\phi g)
diag(\phi r\phi g) diag(\phi 2

g)

\biggr) 
.

Then, it follows that

\partial \phi TB(\phi )\phi 

\partial \phi 
=B(\phi )\phi +

\biggl( 
\partial B(\phi )\phi 

\partial \phi 

\biggr) T

\phi (A.3)

=B(\phi )\phi +

\biggl( 
B(\phi ) + 2

\biggl( 
diag(\phi 2

r) diag(\phi r\phi g)
diag(\phi r\phi g) diag(\phi 2

g)

\biggr) \biggr) T

\phi = 4B(\phi )\phi .

It follows from (A.2),

\eta 

2hd

\partial \phi TB(\phi )\phi 
(\phi T\phi )2

\partial \phi 
=

2\eta 

hd

\biggl( 
B(\phi )\phi 

(\phi T\phi )2
 - \phi TB(\phi )\phi 

(\phi T\phi )3
\phi 

\biggr) 
.(A.4)

Combining (A.1) and (A.4), we get

\partial E(\phi )

\partial \phi 
=

2

\phi T\phi 

\biggl( 
A\phi  - \phi TA\phi 

\phi T\phi 
\phi 

\biggr) 
+

2\eta 

hd

\biggl( 
B(\phi )\phi 

(\phi T\phi )2
 - \phi TB(\phi )\phi 

(\phi T\phi )3
\phi 

\biggr) (A.5)

=
2

\phi T\phi 

\biggl( 
A\phi + \eta 

B(\phi )\phi 

hd\phi T\phi 
 - \phi TA\phi 

\phi T\phi 
\phi  - \eta 

\phi TB(\phi )\phi 

hd(\phi T\phi )2
\phi 

\biggr) 
=

2

\phi T\phi 
(A(\phi )\phi  - \lambda (\phi )\phi ).

Next, we know that

\partial 2E(\phi )

\partial \phi 2
=

2

(\phi T\phi )2

\biggl( 
\phi T\phi 

\partial (A(\phi )\phi  - \lambda (\phi )\phi )

\partial \phi 
 - 2(A(\phi )\phi  - \lambda (\phi )\phi )\phi T

\biggr) 
(A.6)

=
2

\phi T\phi 

\biggl( 
\partial (A(\phi )\phi  - \lambda (\phi )\phi )

\partial \phi 
 - 2(A(\phi )\phi  - \lambda (\phi )\phi )\phi T

\phi T\phi 

\biggr) 
Again, from [34, Theorem 5.1], we have

\partial A(\phi )\phi 

\partial \phi 
=A+

\eta 

hd\phi T\phi 

\biggl[ \biggl( 
diag(3\phi 2

r + \phi 2
g) 2diag(\phi r\phi g)

2diag(\phi r\phi g) diag(\phi 2
r + 3\phi 2

g)

\biggr) 
 - 2

\phi T\phi 
B(\phi )\phi \phi T

\biggr] 
.

(A.7)

Also, we have

\partial \lambda (\phi )\phi 

\partial \phi 
= \phi 

\biggl( 
\partial \lambda (\phi )

\partial \phi 

\biggr) T

+ \lambda (\phi )I(A.8)

=
2

\phi T\phi 
\phi 

\biggl( 
\phi TA+ 2\eta 

\phi TB(\phi )

hd\phi T\phi 
 - \phi T \phi TA\phi 

\phi T\phi 
 - 2\eta \phi T \phi TB(\phi )\phi 

hd(\phi T\phi )2

\biggr) 
+ \lambda (\phi )I.
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Combine (A.7) and (A.8), we get

\partial (A(\phi )\phi  - \lambda (\phi )\phi )

\partial \phi 

(A.9)

=A+
\eta 

hd\phi T\phi 

\biggl[ \biggl( 
diag(3\phi 2

r + \phi 2
g) 2diag(\phi r\phi g)

2diag(\phi r\phi g) diag(\phi 2
r + 3\phi 2

g)

\biggr) 
 - 2

\phi T\phi 
B(\phi )\phi \phi T

\biggr] 
 - 2

\phi T\phi 
\phi 

\biggl( 
\phi TA+ 2\eta 

\phi TB(\phi )

hd\phi T\phi 
 - \phi T \phi TA\phi 

\phi T\phi 
 - 2\eta \phi T \phi TB(\phi )\phi 

hd(\phi T\phi )2

\biggr) 
 - \lambda (\phi )I

=A+
\eta 

hd\phi T\phi 

\biggl( 
diag(3\phi 2

r + \phi 2
g) 2diag(\phi r\phi g)

2diag(\phi r\phi g) diag(\phi 2
r + 3\phi 2

g)

\biggr) 
 - \lambda (\phi )I

 - 2\eta 
B(\phi )

hd\phi T\phi 

\phi \phi T

\phi T\phi 
 - 2

\phi \phi T

\phi T\phi 
A - 4\eta 

\phi \phi T

\phi T\phi 

B(\phi )

hd\phi T\phi 
+ 2

\phi TA\phi 

\phi T\phi 

\phi \phi T

\phi T\phi 
+ 4\eta 

\phi \phi T

\phi T\phi 

\phi TB(\phi )\phi 

hd(\phi T\phi )2
.

Also, we have

2(A(\phi )\phi  - \lambda (\phi )\phi )\phi T

\phi T\phi 
(A.10)

=
2
\Bigl( 
(A+ \eta 

hd

B(\phi )
\phi T\phi 

)\phi  - (\phi 
TA\phi 
\phi T\phi 

+ \eta 
hd

\phi TB(\phi )\phi 
(\phi T\phi )2

)\phi 
\Bigr) 
\phi T

\phi T\phi 

= 2A
\phi \phi T

\phi T\phi 
+ 2\eta 

B(\phi )

hd\phi T\phi 

\phi \phi T

\phi T\phi 
 - 2

\phi TA\phi 

\phi T\phi 

\phi \phi T

\phi T\phi 
 - 2\eta 

\phi TB(\phi )\phi 

hd(\phi T\phi )2
\phi \phi T

\phi T\phi 
.

Combining (A.9) and (A.10), it follows from (A.6) that

\partial 2E(\phi )

\partial \phi 2
=

2

\phi T\phi 

\biggl\{ 
A+

\eta 

hd\phi T\phi 

\biggl( 
diag(3\phi 2

r + \phi 2
g) 2diag(\phi r\phi g)

2diag(\phi r\phi g) diag(\phi 2
r + 3\phi 2

g)

\biggr) 
 - \lambda (\phi )I

 - 2A
\phi \phi T

\phi T\phi 
 - 2

\phi \phi T

\phi T\phi 
A - 4\eta 

B(\phi )

hd\phi T\phi 

\phi \phi T

\phi T\phi 
 - 4\eta 

\phi \phi T

\phi T\phi 

B(\phi )

hd\phi T\phi 

+4
\phi TA\phi 

\phi T\phi 

\phi \phi T

\phi T\phi 
+ 6\eta 

\phi \phi T

\phi T\phi 

\phi TB(\phi )\phi 

hd(\phi T\phi )2

\biggr\} 
.

Next we will show that \phi and \widehat \phi are the eigenvectors of \partial 2E(\phi )
\partial \phi 2 associated with

the zero eigenvalue. Note that B(\phi )\phi = (
\phi 3
r+\phi r\phi 

2
g

\phi 2
r\phi g+\phi 3

g

)\in \BbbR 2n. Then, we have

\partial 2E(\phi )

\partial \phi 2
\phi =

2

\phi T\phi 

\biggl\{ 
A\phi 

\eta 

hd\phi T\phi 

\biggl( 
3\phi 3

r + 3\phi r\phi 
2
g

3\phi 2
r\phi g + 3\phi 3

g

\biggr) 
 - \lambda (\phi )\phi  - 2A\phi  - 2

\phi TA\phi 

\phi T\phi 
\phi 

 - 4\eta 

hd\phi T\phi 

\biggl( 
\phi 3
r + \phi r\phi 

2
g

\phi 2
r\phi g + \phi 3

g

\biggr) 
 - 4\eta 

hd\phi T\phi 

\phi TB(\phi )\phi 

\phi T\phi 
\phi 

+4
\phi TA\phi 

\phi T\phi 
\phi +

6\eta 

hd\phi T\phi 

\phi TB(\phi )\phi 

\phi T\phi 
\phi 

\biggr\} 
=

2

\phi T\phi 

\biggl\{ 
 - A\phi  - \eta 

hd\phi T\phi 

\biggl( 
\phi 3
r + \phi r\phi 

2
g

\phi 2
r\phi g + \phi 3

g

\biggr) 
+ 2

\phi TA\phi 

\phi T\phi 
\phi 

+
2\eta 

hd\phi T\phi 

\phi TB(\phi )\phi 

\phi T\phi 
\phi  - \lambda (\phi )\phi 

\biggr\} 
=

2

\phi T\phi 

\biggl\{ 
 - A\phi  - \eta 

hd\phi T\phi 
B(\phi )\phi + \lambda (\phi )\phi 

\biggr\} 
=

2

\phi T\phi 
\{  - (A(\phi )\phi  - \lambda (\phi )\phi )\} ,
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which is zero since \partial E(\phi )
\partial \phi = 2

\phi T\phi 
(A(\phi )\phi  - \lambda (\phi )\phi ) = 0, i.e., \phi is a stationary point of

E(\phi ) (local or global minimum, or saddle point). On the other hand, it is easy to see
that \phi T \widehat \phi = 0, then we have

\phi TA\widehat \phi = - \phi T
r Ls\phi g +\Omega \phi T

r L\omega \phi r +\Omega \phi T
g L\omega \phi g + \phi T

g Ls\phi r = 0,(A.11)

since Ls is symmetric and L\omega is skew-symmetric such that uTL\omega u= 0 for any u\in \BbbR n.
Also, we have

\phi TB(\phi )\widehat \phi = - (\phi 3
r)

T\phi g  - \phi T
r \phi 

3
g + \phi T

g \phi 
3
r + (\phi 3

g)
T\phi r = 0.(A.12)

Combining (A.11) and (A.12), we can easily obtain

\partial 2E

\partial \phi 2
\widehat \phi =

2

\phi T\phi 

\biggl\{ 
A\widehat \phi +

\eta 

hd\phi T\phi 

\biggl( 
 - \phi 2

r\phi g  - \phi 3
g

\phi r\phi 
2
g + \phi 3

r

\biggr) 
 - \lambda (\phi )\widehat \phi \biggr\} 

=
2

\phi T\phi 

\biggl\{ \biggl( 
 - Ls\phi g +\Omega L\omega \phi r

Ls\phi r +\Omega L\omega \phi g

\biggr) 
+

\eta 

hd\phi T\phi 

\biggl( 
 - \phi 2

r\phi g  - \phi 3
g

\phi r\phi 
2
g + \phi 3

r

\biggr) 
 - \lambda (\phi )

\biggl( 
 - \phi g

\phi r

\biggr) \biggr\} 
=

2

\phi T\phi 

\biggl( 
0  - I
I 0

\biggr) \biggl\{ \biggl( 
Ls\phi r +\Omega L\omega \phi g

Ls\phi g  - \Omega L\omega \phi r

\biggr) 
+

\eta 

hd\phi T\phi 

\biggl( 
\phi 3
r + \phi r\phi 

2
g

\phi 2
r\phi g + \phi 3

g

\biggr) 
 - \lambda (\phi )

\biggl( 
\phi r

\phi g

\biggr) \biggr\} 
=

\biggl( 
0  - I
I 0

\biggr) 
(A(\phi )\phi  - \lambda (\phi )\phi ) =

\biggl( 
0 I
 - I 0

\biggr) 
\partial 2E(\phi )

\partial \phi 2
\phi .

Therefore, if \phi is a stationary point of E(\phi ) such that \partial 2E
\partial \phi 2 \phi =A(\phi )\phi  - \lambda (\phi )\phi = 0, we

also have \partial 2E
\partial \phi 2

\widehat \phi = 0.

Proof of Theorem 7.1.

Proof. First, it is easy to obtain that P\phi = \phi TP = 0. Then we have

PL - 1P
\partial 2E(\phi )

\partial \phi 2
PL - TP = 2hdPL - 1PHpPL - TP.(A.13)

Since P = I  - hdWWT , we have

PL - 1PHpPL - T(A.14)

=L - 1HpL
 - T  - hdL - 1HpWWTL - T  - hdL - 1WWTHpL

 - T

+ h2dL - 1WWTHpWWTL - T  - hdWWTL - 1HpL
 - T

+ h2dWWTL - 1HpWWTL - T + h2dWWTL - 1WWTHpL
 - T

 - h3dWWTL - 1WWTHpWWTL - T

and

PL - 1PHpPL - ThdWWT

(A.15)

= hdL - 1HpL
 - TWWT  - h2dL - 1HpWWTL - TWWT

 - h2dL - 1WWTHpL
 - TWWT + h3dL - 1WWTHpWWTL - TWWT

 - h2dWWTL - 1HpL
 - TWWT + h3dWWTL - 1HpWWTL - TWWT

+ h3dWWTL - 1WWTHpL
 - TWWT  - h4dWWTL - 1WWTHpWWTL - TWWT .
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Then, we obtain

PL - 1PHpPL - TP

=L - 1HpL
 - T +W

\bigl( 
h2dWTL - 1HpWWTL - T  - hdWTL - 1HpL

 - T

+h2dWTL - 1WWTHpL
 - T  - h3dWTL - 1WWTHpWWTL - T

+h2dWTL - 1HpL
 - TWWT  - h3dWTL - 1HpWWTL - TWWT

 - h3dWTL - 1WWTHpL
 - TWWT + h4dWTL - 1WWTHpWWTL - TWWT

\bigr) 
+ L - 1W

\bigl( 
h2dWTHpWWTL - T  - hdWTHpL

 - T + h2dWTHpL
 - TWWT

 - h3dWTHpWWTL - TWWT
\bigr) 
+L - 1HpW

\bigl( 
h2dWTL - TWWT  - hdWTL - T

\bigr) 
 - hdL - 1HpL

 - TWWT .

Therefore, PL - 1PHpPL - TP is a rank-8 update of L - 1HpL
 - T . Also, W1, W2, and

W3 \in \BbbR 2n\times 2 can be obtained based on the above expression, respectively.
On the other hand, we have L - 1HpL

 - T =L - 1(Hp+\sigma I - \sigma I)L - T = I - \sigma L - 1L - T .
Then, hdL - 1HpL

 - TWWT = hd(I  - \sigma L - 1L - T )WWT . If \sigma = 0, then L - 1HpL
 - T = I

and we have

PL - 1PHpPL - TP

= I +W
\bigl( 
h2dWTLTWWTL - T  - hdWTLTL - T + h2dWTL - 1WWTL

 - h3dWTL - 1WWTHpWWTL - T + h2dWT  - h3dWTL - 1HpWWTL - TWWT

 - h3dWTL - 1WWTLWWT + h4dWTL - 1WWTHpWWTL - TWWT  - hdWT
\bigr) 

+ L - 1W
\bigl( 
h2dWTHpWWTL - T  - hdWTL+ h2dWTLWWT

 - h3dWTHpWWTL - TWWT
\bigr) 
+L - 1HpW

\bigl( 
h2dWTL - TWWT  - hdWTL - T

\bigr) 
.

Therefore, PL - 1PHpPL - TP is a rank-6 update of I.
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