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A NEW PRECONDITIONED NONLINEAR CONJUGATE
GRADIENT METHOD IN REAL ARITHMETIC FOR COMPUTING
THE GROUND STATES OF ROTATIONAL BOSE-EINSTEIN
CONDENSATE*
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Abstract. We propose a new nonlinear preconditioned conjugate gradient (PCG) method in real
arithmetic for computing the ground states of rotational Bose-Einstein condensate, modeled by the
Gross—Pitaevskii equation. Our algorithm presents a few improvements of the PCG method in com-
plex arithmetic studied by Antoine, Levitt, and Tang [J. Comput. Phys., 343 (2017), pp. 92-109]. We
show that the special structure of the energy functional E(¢) and its gradient with respect to ¢ can be
fully exploited in real arithmetic to evaluate them more efficiently. We propose a simple approach for
fast evaluation of the energy functional, which enables exact line search. Most importantly, we derive
the discrete Hessian operator of the energy functional and propose a shifted Hessian preconditioner
for PCG, with which the ideal preconditioned Hessian has favorable eigenvalue distributions inde-
pendent of the mesh size. This suggests that PCG with our ideal Hessian preconditioner is expected
to exhibit mesh size-independent asymptomatic convergence behavior. In practice, our precondi-
tioner is constructed by incomplete Cholesky factorization of the shifted discrete Hessian operator
based on high-order finite difference discretizations. Numerical experiments in two-dimensional (2D)
and three-dimensional (3D) domains show the efficiency of fast energy evaluation, the robustness of
exact line search, and the improved convergence of PCG with our new preconditioner in iteration
counts and runtime, notably for more challenging rotational BEC problems with high nonlinearity
and rotational speed.
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1. Introduction. The Bose-Einstein condensate (BEC) is referred to as the
fifth state of matter, which was first predicted theoretically by Bose and Einstein,
before being realized experimentally in 1995 [4, 16, 21, 24]. The literature on BECs
has grown rapidly over the last two decades in atomic, molecular, optics, condensed
matter physics, and quantum computing; see, e.g., [17, 29, 30, 31, 36] and references
therein. In this rapidly growing research area, numerical simulation has been playing
an important role in understanding the theories and the experiments. At temperatures
T which are much lower than the critical temperature T, the macroscopic behavior
of a BEC can be well described by a condensate wave function ¢ which is the solu-
tion to a Gross—Pitaevskii equation (GPE) [8]. It is very useful to obtain numerical
solutions of such a class of equations efficiently. Calculations of stationary states, i.e.,
ground /excited states, and of the real-time dynamics are the most crucial problems
[5, 7, 11, 28, 35]. Numerical methods for approximating the ground states are fun-
damental to explore the nucleation of vortices, the properties of dipolar gases, bright
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beams of coherent matter waves, by studying rotational, dipolar, multicomponent,
and spinor BECs.

In this paper, we consider a BEC that can be modeled by the rotational (dimen-
sionless) GPE. In this setting, the computation of a ground state of a d-dimensional
BEC takes the form of a constrained minimization problem:

(1.1) Find e L?*RY)  st. ¢ €argminE(¢)
lgll=1

where ¢ € C", |¢]| = (fRd\d)P)% is the standard L?norm and E(¢) is the associated
energy functional defined as

_ 1 Nd o
(12) B0)= [, [51V6F +VeoloP + ot - 067 L.o).

Here, V' is an external potential, 7 is the nonlinearity strength, {2 is the rotational
speed, and L, =i(y0, — x0y) is the angular momentum operator.

In the literature of numerical solutions to partial differential equations (PDEs),
a family of classical methods for computing the ground states of BECs, or simi-
larly the steady-state solution to the Allen—Cahn equation, is based on gradient flows
up = f%(E(u)) that define a steepest descent curve w(t) of the energy F(u). For
example, (1.1) can be solved by the gradient flow with discrete normalization (GFDN;
also called ‘imaginary time’ methods in physics) method [2, 6, 7, 11, 12, 15, 19, 20, 49].
These algorithms have been extensively studied, most well-known and widely used
for years across disciplines, with mature theoretical support. However, they require
solution to a large system of linear equations at each time step, which is usually
time-consuming, particularly in three-dimensional (3D) domains with a small mesh
size. In addition, these gradient flow-based methods tend to converge slowly with the
progress of time steps, since they belong to the class of steepest descent methods that
are notably not efficient for numerical optimization. Other methods have been devel-
oped, based on numerical solution of the nonlinear eigenvalue problem [25, 47] or on
optimization techniques under constraints [14, 18, 22, 23]. In the past few years, new
methods have emerged, such as preconditioned conjugate gradient methods [8, 9, 46],
the regularized Newton-type method [48] and the regularized density function and
accelerated projected gradient (rDF-APG) method [13], which seem successful but
falls short of real arithmetic computation and problem-dependent preconditioning.

In [8], the state-of-the-art variant of the preconditioned conjugate gradient (PCG)
method was proposed to solve the constrained minimization problem (1.1). However,
there are several remaining issues to address, and improvements can be proposed.
For example, the complex arithmetic naturally used with Fourier pseudo- spectral
methods does not fully exploit the special structure of rotational BEC to speed up
certain basic linear algebra computations and to guarantee that the computed energy
E(¢) is real. More importantly, as a most significant component of PCG methods,
the preconditioners proposed therein did not take the rotational speed € into account,
and the convergence rate seems to deteriorate considerably for high-speed rotational
problems. In fact, the condition number of the preconditioned Hessian is shown to
increase with the domain sizes L and h~2 where h is the mesh size. In addition, direct
energy evaluation of E(¢) defined in (1.2) seems costly for each step size along the
search direction, which entails the use of approximate line search based on quadratic
approximations of F(¢) or backtracking algorithms.

In this paper, we propose an improved PCG method for computing the ground
state of rotational BEC (1.1). Our new method makes exclusive use of real arithmetic
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to fully exploit the special structure of the problem and realizes fast numerical linear
algebra computations. We discuss a simple approach to achieve fast energy evaluations
for many different step sizes along the search direction at little additional cost, which
enables exact line search. We derive the explicit expression of the discrete Hessian
operator of the energy F(¢) in real arithmetic and propose an approximate shifted
Hessian preconditioner that is quite efficient for tackling high nonlinearity strength
n and high rotational speed 2. We show that the preconditioned Hessian with our
ideal preconditioner has favorable eigenvalue distributions independent of the mesh
size h. Therefore, given a rotational BEC problem in a specified domain, the PCG
method with our ideal preconditioner is expected to exhibit mesh size-independent
asymptotic convergence behavior. In addition, we construct a scaling-invariant CG
method under the BEC problem setting and provide its global convergence towards
a critical point of E(¢).

The remainder of this paper is organized as follows. We provide an introduction
to the mathematical problem and the PDE discretization scheme in section 2. In
section 3, we present a detailed description of our method. In section 4, we derive the
discrete Hessian operator of energy functional E(¢) and provide the preconditioning
strategy in practice. Section 5 provides an accurate and efficient method to enable fast
energy evaluation and exact line search. A proof of the global convergence of a scaling-
invariant conjugate gradient (CG) method for BEC is provided in section 6. We study
the eigenvalue distribution of the preconditioned Hessian with our ideal preconditioner
in section 7. Section 8 provides numerical results in 2D and 3D domains to validate
our new developments. We conclude this paper in section 9.

2. Problem description and discretization. The function ¢ € L?(R?) must
be discretized in order to find a numerical solution of the minimization problem (1.1).
Also, the discretization must be accurate enough to resolve fine details of vortexes in
the solution. Several discretization schemes have been used to compute the solution to
the GPE, including high-order finite difference schemes, finite element schemes with
adaptive meshing strategies [22, 23|, the standard pseudo-spectral schemes based on
Fast Fourier Transforms (FFTs) [6, 7, 8, 12]. In the literature on numerical methods
for BEC computations, the Fourier pseudo-spectral method [11] is the most widely
adopted discretization.

The constrained minimization problem (1.1) can be written in the discrete form.
Generation of an appropriate mesh on a finite domain U C R? and application of
a corresponding discretization to the continuous GPE, the ground state of BEC in
discrete form is the global minimizer of the energy functional

1
(21)  Epa=|-50"Lyo +¢"diag(V)é + 6" ding(|6]")6 — 106" Luo | h*,

with ||¢|% = h%¢*¢ =1, which is a discretized version of (1.2). Here, —L, (symmetric
positive definite) is the negative discrete Laplacian operator, diag(V) and diag(|¢|?)
are diagonal matrices with the values of the external trapping potential V(x) and
|¢(x)|? at the mesh nodes on the diagonal, L, (skew symmetric) is the discrete version
of the operator y0, — x0y, 7 > 0 denotes the repulsive particle interaction, and 2 is
the angular momentum rotating speed. A direct evaluation of the gradient of the
energy being zero leads to the algebraic nonlinear eigenvalue problem

(2.2) —%qub + diag(V)¢ + ndiag(|$|?)¢ — iQLud = \y0b, withhip*p=1,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/31/24 to 130.127.238.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

REAL-ARITHMETIC PCG FOR GROUND STATE OF BEC A1767

where the eigenvalue ), o is defined as

1
(2.3) Ana = —§¢>*Lp¢+¢*diag(V)¢+mb*diag(|¢|2)¢—iQ¢*Lw¢ he.

Our aim is to find the global minimizer of (2.1) numerically. Note that the minimizer
of E, o is not necessarily the eigenvector associated with the lowest eigenvalue of
(2.2); see [11].

In this paper, we adopt the Fourier pseudo-spectral discretization scheme, which
is described in two dimensions, and its extension to other dimensions is straightfor-
ward. The wave function ¢ is truncated to a rectangular domain [— L, L] X [—Ly, L]
with periodic boundary conditions, and discretized with even number of grid points
Ng, Ny in the z- and y- directions, respectively. A uniformly sampled grid is in-
troduced: DN N, = {Xk1 ky = (xk17yk2)}klyk2€INm,Ny7 with INm,Ny = {07 ey Ng —

1} x {0,.. — 1}, Tky41 — Thy = Ykot1 — Yky = h, and with mesh size h =
2L,/N, = 2Ly/N Define the discrete Fourier frequencies (&, ptq), with &, = pr/L,,
—N;/2<p<N,/2-1,and pg=qr/L,, —Ny;/2<q<N,/2—1. The pseudo-spectral
approximation ¢ of the function ¢ in the x- and y-directions are such that

Ng/2—1 Ny, /2-1
é(x, Z & ()e'sr @t g(a, Z Gq ()eimalvhy),
—N./2 —N,/2

where g;*(y) and gbq (z) are the Fourier coefficients in the z- and y-directions, re-
spectively; that is,

N,—1 Ny—1
= —1 L, L
- Z ¢($k1,y)€ ng(xk1+ )7 Z ¢ 7yk Tt yk2+ )
k1=0 ka=0

In order to evaluate the action of the discrete Laplacian and the angular rotation
operators on vectors in (2.1), we also need to apply the following operators to the
approximation ¢ of ¢, for (ki,k2) € In, n,:
N, /2—1
8£¢(Xk1,k2) ~O2A(Thy, Yky) = 3 Z §§¢;(yk2)625p(zkl +Lo)
¥ p=—N,/2
Ny, /2-1
aj(b(xkl,lw) ~ 3§¢(xk1,yk2) = Z ug¢;(xkl)ewq(yk2 JrLy)’
Y q=—Ny/2
1 Ny, /2—1
xay(b(xkl,]@) ~ xay(b(xk’lVka) = N Z ixkluq(b:;(xkl)ez”qwh +Ly)7
Y g=—N,/2
N, /2—1
yaw¢<xk1,k2) yaw(b(xklvy/w) N Z Zykzgp(b (yk ) “;:p(xkl—i_L )
—N./2
Meanwhile, we also introduce the finite difference discretization scheme [34, 44],
which is useful in constructing an approxiamtion to the Hessian preconditioner we
propose in section 4. With the same uniform mesh grids in Fourier pseudo-spectral
discretization scheme, the matrices for the operators are

Ly=Ds,®I+1® Dy,
w :diag(yo, .. .,yNy_l) ®D$ — Dy ®diag(m0, .. 'a-er—l)7
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where D,, D, and D5, D, , are sparse matrices containing the coefficients of the
central finite difference approximations of the first partial derivative and the second
partial derivative with respect to = and y, respectively, [19, 34, 44]. Note that, re-
gardless of the discretization scheme, the discrete negative Laplacian operator —L,
and the discrete angular rotation operator L, are real symmetric positive definite and
real skew-symmetric, respectively.

3. The preconditioned conjugate gradient method in real arithmetic.
To develop an efficient solver for problems involving complex numbers, an important
strategy in numerical linear algebra is to fully use real arithmetic whenever appro-
priate. Since E, o in (2.1) is real even though ¢ is complex, computation in real
arithmetic is desired, especially for optimization algorithms where F, o needs to be
evaluated many times. To the best of our knowledge, nearly all existing algorithms
for computing BEC ground states use complex arithmetic, with an exception in [34]
that requires solutions of a long sequence of large linear systems that arise in a special
nonlinear inverse iteration to solve the nonlinear eigenvalue problem (2.2).

First, we will reformulate the BEC problem in real arithmetic. To develop new
methods in real arithmetic, let ¢ = ¢, 4+ i¢, € C", where ¢, and ¢, are the real and
imaginary parts of ¢, with [|¢[17. = l|¢-[13. + | ¢glI7. = 1. Define Ly = —3 L, 4 diag(V')
(symmetric positive definite). The energy (2.1) in real arithmetic has the form

(1) Bua= |67 Lu, + 0] Ly + 2(62 +62)7 (62 + 63) + 2067 Ludy | 1",

with ||¢]|2 = h%2||¢||2 = 1. Note that ¢2 is the column vector whose entries are the
squares of those of ¢y, and ¢ is defined similarly. The evaluation of (3.1) takes only
half of the arithmetic cost needed to evaluate (2.1) in complex arithmetic. Note that
the evaluation of (2.1) in complex arithmetic [8] did not take advantage of the special
structure of —L,, and L,,, which might involve more round-off errors, give a complex
energy value with a small imaginary part, and could make the final converged energy
E, a(¢) less accurate in high accuracy demand. To be more specific, given that L,,
is skew-symmetric, we have

—(pr +ihg) i L (Pr + idg) = —i | br Ly + bf Ludy | +20] Ludy.
0 0

Similar results can be derived for Ls. The evaluation of the energy functional (2.1) in
complex arithmetic and real arithmetic give identical results in exact arithmetic, with-
out changing any essence of BEC. However, the evaluation of the energy functional
for BEC can be done more efficiently in real arithmetic, because certain quantities
equal to zero as shown above do not need to be evaluated, but such savings cannot
be exploited in complex arithmetic. Furthermore, the real arithmetic form allows us
to derive the Hessian easily and enable exact line search.

In order to employ the PCG method, it is necessary to obtain the gradient of
E, o (3.1). Note that the energy expression of E, o (2.1) or (3.1) is valid under the
normalization constraint ||¢| 2 = 1. But we may disregard it and derive its gradient
formally. The gradient of E, o (3.1) with respect to ¢ = (¢ ¢5)T is

aE’I’Q —9 <L5¢T + Udiag(qﬁ + ¢2)¢r + QLw¢g> B

(3:2) 96 Lod, +ndiag(e? + 62), — UL,
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We can disregard the factor h¢ and keep the direction agg“ . Since ¢ is restricted on
the sphere ||@||¢2 = 1, the effective gradient is the component of (3.2) that is orthogonal

to ¢:

(L, +ndiag(¢? + ¢2) ¢y + QL Oy
(33) rne = ( Ly +ndiag(é? + 62)6, QLm‘i) ~Ana (%) :

where

(3.4) An = [0r Lsbr + & Latrg +0(07 + ¢2)" (07 + ¢2) + 2Q¢] Lo,dg] b

such that ¢T7",,79 =0. Note that (3.3), up to a scaling factor, can also be derived by
differentiating the scaling-invariant energy E(¢) as performed in section 4. We call
A, the nonlinear Rayleigh functional of ¢, which approximates the desired eigenvalue
n (2.2). Also, A\, o represents the chemical potential [11] and

(35) )\77752_ 1,92 + 3 (¢2 +¢2) (¢2+¢2) nQ +Ezntv

where Eine = 3(¢7 + ¢2)7 (42 + ¢2)h? is the interaction energy. Therefore, 1, o is the
eigenresidual associated with ¢ of the nonlinear eigenvalue problem (2.2).

Now, a nonlinear preconditioned conjugate gradient (PCG) method in real arith-
metic could be employed in an effort to find the global minimizer of the energy func-
tional (3.1). Suppose we work with a generic preconditioner M. The standard search
direction in nonlinear PCG is

(3.6) d(k) = —M_lr(k) + ﬁ(k)d(k,1)7
with the Fletcher-Reeves update [32]

(raeys M~ ra)
(T(k—1), M~ 7rg_1))

Bk =
At iteration k, a regular update formula for ¢(;41) in PCG could be

(3.7) Bkt1) = P(k) co8(0(x)) + (k) SN (O ) )-

Here, p(x) is the modified search direction, which is orthogonal to ¢) in complex
arithmetic and normalized in thgitandard £2 -space.

Given two complex vectors d =d(p)r +id(ryy and ¢ = Q(k)r T 1Pk)g € C", the
real representation ofd y and gb(k) are d ) (jl\(k)r d(k)g) and by = (gba)r qﬁa)g)T,
respectively. Then, the orthogonahzatlon of dx) against (i)(k) in complex arithmetic,
which gives the resulted complex vector p/(k\) = P(k)r T P(k)g> can be done by their real
representations as follows:

(3.8) Py =dy — WWTW)'Wd,,

where pry = (p'5)7) and W = (i;g: _;f::ig ). Moreover, the normalization condition

[pk)lle2 =1 can be easily done by

d
(3.9) Pk =Pk / (P2 Iy l[2)-

Note that (3.8) and (3.9) ensure that ¢(;11) obtained from (3.7) satisfies the normal-
ization constraint such that ||¢(41)l[2 =1 for any 6y.
An outline of the nonlinear PCG is given in Algorithm 3.1.
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Algorithm 3.1. The PCG method.

1: Start with an initial approximation ¢y with [|¢()/l¢> = 1.
2: while not converged do

3: )\(k) = AU’Q(¢(]€)) (see (34))

T(k) = 7"777Q(¢(]€)) (see (33))

_ {ra M)
6 k) — T
(B) = rie—1), M~ Tr(s_1))

diky = =M1y + Byd 1)
Py = diy = WIVTW) T W d
Pky =Py / (B2 |y ll2)
9: Oy = argming E(d(x) cos(0) + px) sin(0))
10: Gpr1) = by €o8(0y) + Py sin(Bx) )
11: k=k+1
12: end while

4. Problem-dependent Hessian preconditioner. One critical problem in
the nonlinear PCG is to design a good preconditioner, which can significantly re-
duce the iteration counts and runtime. In general, the preconditioner for PCG near
convergence should be an approximation to the Hessian of the objective function.

4.1. Derivation of the discrete Hessian operator. In this section, we will
derive the explicit expression of the discrete Hessian operator for the energy functional
E, o (3.1) based on the real arithmetic and introduce the preconditioning strategy in
practice. It is crucial to point out the discrete Hessian operator of a real-valued scalar
function of n complex variables must be a linear operator that operates on a vector
of 2n degrees of freedom [39]. In particular, this means that such a Hessian operator
may not be represented correctly as a complex matrix of order n. In [39], three
definitions of the Hessian are given for such a function based on the real arithmetic
or complex arithmetic, and all these Hessian matrices are of order 2n. For the BEC
problems, with our use of real arithmetic, it is also natural to derive the discrete
Hessian operator of the energy functional (2.1) as a real symmetric matrix of order
2n. In order to derive the full expression of discrete Hessian operator of F, o, we will
follow the scheme in [34] to absorb the normalization constraint to rewrite (3.1) in a
form that is invariant with respect to the scaling of the wave function ¢.

Assume that ¢ = (7 #7 )T, which leads to the equivalent expression of (3.1)

_0TA 1 dTB(9)o

(4.1) E(¢) o +§hd(¢T¢)2’
where
[ L. QL _ (diag(¢7 + ) 0
A‘(—QLw L8> and B(¢)—< 0o diag(¢2+¢§)>'

Here, A is real symmetric and E(¢) satisfies the scaling-invariant property, i.e.,
E(a¢) = E(¢) for any o € R\{0}. In this way, the energy functional E(¢) only
depends on the relative strength of ¢ in different locations in §2, or the direction of
the vector ¢. This would eliminate potential issues how the normalization condition
llolle, =1 would impact the gradient and the Hessian of E(¢). Theorem 4.1 provides
the complete expression of the gradient and the Hessian for F(¢) in (4.1).
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THEOREM 4.1. The gradient and Hessian for E(¢) (4.1) are given by

(42) ) = (A0 A@)9)

and

OE(¢) 2 N (diag(3¢2 +¢2)  2diag(p,d,)
w8 T = g {4 s (“sdetinor) ansteh < sep) ~XO!
66T ppT B() 667 o7 B(9)
—2A - — 21 _A—4 —4
T “¢Te" TThigTHTe T oT higTe
A 90" o 60" ¢TB(¢>¢}
6To 676 " GTHhi(pTe) J’

+4

where

B TA B
A(¢)_A+77hd;?)¢ and )\(¢)—¢¢T¢¢+n2d(¢§q;))ﬁ.

Also, if = (Z;) is a stationary point of E(¢) such that

OE(¢) 2 - _
we have
0*E(¢ 2E(¢) ~
5(,‘15(2 )¢:0 and 3(;5(2 )¢:0,

-~ o~ 2
where ¢ = (_fg ); that is, ¢ and ¢ are the eigenvectors of aab;(f) associated with the

zero eigenvalue.

Proof. The proof is given in the appendix. 0

Note that the gradient from Theorem 4.1 is consistent with (3.3) up to a scaling
factor. Also, we can see that the discrete Hessian operator of the energy E, (¢)
should be of order 2n. Now, we are ready to introduce a shifted Hessian preconditioner
for the nonlinear PCG method.

4.2. Preconditioning strategy. For the nonlinear PCG, it is crucial to apply
the preconditioner efficiently. For the ground state solution, i.e., the global minimizer
of I, q, the first-order optimality condition is 7, o = 0, and the second-order opti-
mality condition is H,, o > 0 (positive semidefinite) with the null space spanned by
the ground state solution ¢ = (¢X ngT)T and 5: (fd)gT #T)T. Suppose that P is the
orthogonal projector with null space spanned by the ground state ¢ = (¢ QSZ;)T and

o= (=07 ¢I)7, ie, P=T—WWTW)"'WT, where W = ({7 ")
With the normalization constraint ¢”¢h? = 1, we obtain WTW = %I , so that

P=1-h'WWT. Since that P¢ = ¢” P = 0, the low-rank updates in (4.3) can be
2
cancelled out by multiplying 9 (f;f) on both sides by P. That is,

OPE(¢) , 2 7 diag(3¢2 4+ ¢2)  2diag(¢rdy)
P D2 P= ¢T¢P{A+ higT ¢ < 2diag(¢r¢g)g diag(¢; +3fb§)> A((W} P
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Therefore, we can define the effective Hessian of E, o (3.1), i.e.,
(4.4)

- _ L +ndiag(3¢2 + ¢72) QL + 2ndiag(¢,dg)

= PP =P (LG r L) L et o)) Mo P

where ¢,¢, is the column vector whose entries are the product of those of ¢, and
¢g4. Moreover, the projector P adopted can avoid the potential stagnation of the
“correction direction” that occurred in Davidson-type eigensolvers [43].

To speed up the convergence of our optimization methods, we define the shifted
Hessian preconditioner based on (4.4) as

(4.5) M, o := PM,P

[ Lot ndiag(3¢2 + 62) QL + 2ndiag(6,0,)
=P { (—QLW 1 2ndiag(¢rdy) Ly 4 ndiag(é2 + 3¢%)> — - ””2”} F.

The shift ¢ > 0 is chosen such that M, > 0 (positive definite) near the ground state
and ensures that incomplete Cholesky factorization of M, can be done successfully.
A smaller ¢ lead to M), closer to the effective Hessian H, o (more effective precondi-
tioning), whereas a larger o makes M, less close to H, o (less effective). In practice,
o should be chosen to strike a balance between the chance of success of incomplete
Cholesky factorization and the effectiveness of preconditioning. In our numerical ex-
periments, we let o = (E; o 4+ \;,q)/2 for the current iterate ¢z by default, though
this choice can be easily changed if necessary.

Remark. Given the real formulation of our proposed preconditioner M, o (4.5),
one might wonder if we could find a complex Hermitian M Q of order n, and form the

vector u in complex arithmetic @ = u, + u,, such that M Qu =M, Q(uT ul)T and

M Qu represent the same vector in real and complex arlthmetlc respectlvely This is

equlvalent to finding a complex Hermitian M of order n such that M, Ly and M o
represent the same vector in real and complex ar arlthmetlc respectively. It can be shown
this is unposmble Suppose M, Ly = v and M 1% = v such that ¥ = v, + ivg, then

M,v and M v represent the same vector in real and complex arithmetic, respectively.

Let Mp = re(M )+ znn(M ), then we have Mpyv = (lr;((jlé)) _r;T;?M)))v, which leads

to a contradiction, since the (1,2) and (2,1) blocks of M, are not opposite of each
other unless 7 = 0. Real arithmetic computation is essential to enable a wide range
of options to approximate the action of the Hessian H,, for both Newton-like and
preconditioner conjugate gradient-like methods for the minimization of E, o

The difficulty of applying the Hessian preconditioner depends on the discretiza-
tion scheme used. Under the Fourier pseudo-spectral discretization scheme we adopt,
the discrete Hessian operator (4.5) is fully dense, and geometric multigrid (GMG)
is a reasonable method to approximate the action of M77 o on vectors. A more effi-
cient alternative, however, is to construct the shifted Hessian operator (4.5) in finite
difference discretization based on the same uniform mesh; this leads to a sparse ap-
proximation to the true discrete Hessian operator (4.3) in Fourier pseudo-spectral
scheme, to which incomplete Cholesky factorization can be applied efficiently. This
preconditioning strategy is reasonable in this setting, since the action of precondition-
ing usually does not need to be computed to high accuracy. In practice, we apply the
eighth-order finite difference approximations to form M, o (4.5), which seems accu-
rate enough to approximate the true discrete Hessian operator (4.3) given that the
wave function ¢ has a complex pattern of vortexes. In this way, the shifted Hessian
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preconditioner actually used is sparse and can be applied efficiently. For large prob-
lems, as exact matrix factorizations are prohibitive, we apply incomplete Cholesky
factorization with fill-reducing permutations such as approximate minimal degree or-
dering [3] and an appropriate drop tolerance. To further lower the computational cost,
we keep the same preconditioner for a certain number of PCG steps before performing
a new factorization. Generally, the Combined preconditioner is effective to help PCG
proceed closer to the final minimized energy, but it tends to struggle or even stagnate
near the convergence, whereas our Hessian preconditioner can help PCG converge to
the final energy more rapidly in a robust manner. We propose using the combined
preconditioner initially and switch to our Hessian preconditioner later. Note that
the timing for switching the preconditioners should depend on the nonlinearity 7 and
rotational speed 2. Higher value of i or 2 makes the problem more challenging, thus
we suggest switching the preconditioners in an early stage (e.g., the relative change
in energy drops below 10~7) to speed up convergence.

5. Fast energy functional evaluation and exact line search. For gradient-
based optimization methods, it is a common practice to perform an approximate line
search following the Armijo—Goldstein or Wolfe conditions [40], since exact line search
is prohibitive for large problems. There are a few well-known counterexamples, such as
PCG for solving a symmetric positive definite (SPD) linear system and computing the
lowest eigenvalue(s) of an SPD matrix, as exact line search can be done efficiently with
explicit formula for the optimal step size [33] or by the Rayleigh—-Ritz projection [37].
The state-of-the-art variant of PCG for rotational BEC [8] performs line search by
approximating F, o by a quadratic function and some complex methodologies based
on different conditions and certain default values not explicitly specified. Fortunately,
we find that fast exact line search can be enabled, without repeated evaluations of the
energy functional at different step sizes in the original problem dimension n.

Specifically, let ¢y be the current ground state approximation with [[¢) [l =1,
and let d(;) be a search direction. We orthogonalize d(1) against ¢;) then normalize
it in || - ||z norm into p( following the process introduced in section 3. Then, the
new iterate is dut1) = k) cos(0x)) + Pr)sin(fy), where 0y is the minimizer
E(é) cos(f) + p)sin(f)). By construction, we know [[¢(x1)[l¢z = 1. Consider the
objective function Ey o (3.1), substitute ¢ = (¢ ¢72)" with ( %;C)T %;c)g)T cosf +
(pa)r pa) g)T sind into E, o. Then, by direct algebraic evaluation, we get

(5.1)
Ey.a(¢k) cosl + pry sinf) = [w(G)TLs(k)w(G) + QQw(ﬂ)TLw(k)w(O)

+g (01 cos* 0 + co cos® Osin § + c3 cos? 0sin? 0 + ¢4 cos O sin® 0 + cs sin? 9)] hd,
where

w(@) = (COSH Sil’l@)T7 Lw(k) = (¢(k))r p(k)T)TLw (¢(k)g p(k)g) S R2X2,
T T
Loty = ($t0r Pyr)” Ls (b Puyr) + (dmg Pryg)” Ls (Sryg Pyg) € R,

and

1= (k) + Diryg) T (Dayr + Drrg)s €2 =4 Dyr + Pliyg) " (SkyrPliyr + P(h)gP()g)s
AP yrPyr TP k)gPk)g) " (SyrP(yr+ D) gP(k)g)+2(Fkyr +Dlrrg) T (k) +P(h)g)s
(

C3 =
ca = 4HbryPryr + D)gPk)g)” Dlkyr +Plnyg)s €5 = Dayr + Dliyg) T Ofkyr + Plryg)-
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Here, ¢(r), and ¢1), stand for the real part and imaginary part of ¢, respectively;
Pkyr and p(x)4 are defined similarly, and ¢),p(r),» stands for the column vector whose
entries are t.he product of those of @), and px),; (b?k)r, d)?k)g, pfk)r and p%k)g can be
defined similarly.

The key observation is that it only takes six matrix vector multiplications of order
n, 18 vector inner product of order n, 6 elementwise vector multiplications of order n
and, three vector additions of order n to obtain L), Ly k) € R2%2 and the scalars
¢i (1 <14 <5), no more computation in the original problem dimension n is needed.
Now E, o(¢k)cost + pysind) : R — R can be evaluated for any and as many val-
ues of 0 as needed at little arithmetic cost. We can afford to perform a numerical
exact line search to minimize E, (@) cos@ + p(yysind), or find the minimizer by
forming %En752(¢(k) cost) + pysinf) = 0 in closed form and solving it for 6. In
our implementation, we use MATLAB’s fminsearch function to find the optimal
0, which can be done rapidly without additional work on dimension n. Note that this
procedure is equivalent to the Rayleigh—Ritz procedure in many iterative methods to
solve linear or linearized symmetric eigenproblems for the lowest eigenvalues.

Similarly, the fast exact search can be applied to the locally optimal precondi-
tioned conjugate gradient method (LOPCG) [38], which is very successful in nonlin-
ear eigenproblems. Assume that we have determined two search directions p), f(x)
such that ||p(k)||§2 = ||f(k)||%2 =1, and @), Pk), f(x) are pairwise orthogonal. To
determine the new iterate ¢ 11y for which the energy functional is minimized, de-
fine py1) = Gycost + puysinfcosy + f)sinfsiny. The simplified expression
Ey o(ék+1)) can be derived and one only needs to compute L), Loy € R3*3 and
15 scalar coefficients once to evaluate E, q for all values of (,7) efficiently. However,
we found that adding more directions in the search subspace does not yield significant
gain in runtime consistently.

In [8, 9], a quadratic approximation line search is provided. Without the details
of the specified parameters, we find that it is not easy to achieve the fast convergence
of the nonlinear PCG. Here, we provide a modified quadratic approximation line
search. Assuming € is the eigenresidual at the step k, we can approximate E, o
by a quadratic function, which is evaluated at 0y =0, €)/2, and (), respectively.
Then, we can use the minimizer Gf]f)t of the corresponding quadratic function as a trial
step size. If the energy En79(0?,f)t ) is decreased, we accept this step. Otherwise, we
reject this step, decrease the interpolation step sizes by a factor of 2 (e.g., 0, €(;)/4 and
€(k)/2), and try again, until the energy is decreased, which ensures that 6 is small
enough. However, the performance of the nonlinear PCG can still be affected by the
choice of the three interpolation points. Furthermore, a backtracking line search with
Armijo—Goldstein condition [10] can also be employed here. Compared with these
line search methods, our exact line search can avoid tuning parameters and help the
nonlinear PCG converge more robustly.

6. Global convergence of CG. In this section, we explore the convergence of
the CG method for computing the ground state of BEC. Under the BEC problem
setting, we follow [45] to provide a proof of the global convergence of a special variant
of CG based on the equivalent expression of the energy functional E(¢) (4.1). Here,
we need to consider a variant of CG that can normalize ¢ in any manner at each step
without changing its behavior, so that the widely adopted proof of global convergence
of CG can be extended to our problem setting. For the simplicity of notation, we
denote ag—f) as VE(¢) for the remainder of this section. Given the scaling-invariant

E(¢) (4.1), i.e., E(a¢) = E(¢) for any nonzero scalars o and vectors ¢, we can
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show that LV E(¢) = VE(a¢). Therefore, the traditional stopping criterion of CG
in the general setting of optimization |VE(a¢)|| < ¢ for some small § > 0 cannot
guarantee that ¢ approximates the desired solution in direction. Actually, due to the
dependence on scaling, VE(¢) does not satisfy the Lipschitz condition ||V (E(¢;)) —
V(E(¢2))|| < L||¢p1 — ¢2|| for all ¢1,¢2 € R*™\ {0}. In [26], the CG method on
Grassman manifolds is developed to address this issue in a similar problem setting.
However, the understanding of theoretical properties of these CG methods, especially
their convergence, remains far from complete.

Instead, we propose a special Fletcher-Reeves variant of CG with exact line search
(Algorithm 6.1), which works independently of the scaling of any iterate ¢r. To be
more specific, at step 5, we are free to scale each new iterate ¢r41 by any nonzero
factor, which allows us to avoid great effort to tune CG to proceed in a manner con-
sistent with the geometry of the unit sphere for BEC. At step 4, both £ and pg in
Algorithm 6.1 are scaling-invariant of the CG iterates by construction, i.e., they de-
pend on the directions, instead of the scalings, of ¢, ¢;.... Therefore, one can nor-
malize ¢j, in any convenient manner after each CG step without being concerned about
the geometric constraints for BEC. In this way, the CG method under BEC setting
is consistent with that in [45] for the nonlinear Hermitian eigenproblems T'(A)v = 0
with a variational characterization, such that the global convergence can be estab-
lished. Note that, if {¢x} in Algorithm 6.1 satisfies the normalization constraint, i.e.,
ll¢k]lez =1, then it is equivalent to Algorithm 3.1 given the identity preconditioner.

Our main interest is to prove the global convergence of Algorithm 6.1 towards a
critical point of E(¢). Note that a critical point of E(¢) indicates that VE(¢) =0, i.e.,
(A(é) — AM(@)I) ¢ =0. At such a point, the matrix (A(¢) — A(¢)I) must be singular,
since ¢ is a nonzero vector. A complete proof will be long and technical, so we only
provide the major steps of it. More details of the analysis can be found in [45]. Several
intermediate results are necessary to be established.

DEFINITION 6.1. The gradient VE(¢) as given in (4.2) is called Lipschitz continu-
ous in direction if there is a constant L >0 such that || o1 ||IVE(d1) — ||d2]| VE(p2) H <
Lo for all ¢1,¢o € R?™\ {0} that satisfy o= Z(¢1,d2) < 5

For VE(¢) that is Lipschitz continuous in direction, the following inequality [45]
can be derived:

wL||p1 — d2] .
max(|[¢1]], [[¢2]])

Given the above inequality, and the fact that exact line search also satisfies the strong
Wolfe conditions, we have the following inequality from [45, Theorem 3.4]:

(6.1) [é1IVE(é1) = 162 VE(2)]| < 5

Algorithm 6.1. A scaling-invariant CG method.

1: Start with an initial approximation ¢q.

2: for k=0, 1, ..., until convergence, i.e., ||¢x||||VE(¢r)|| <6 do

3:  Ep=FE(¢r) (see (4.1)).

4: It k=0, po=—|90l[VE(¢o) (see (4.2)); otherwise, pr,=—|¢x||VE(¢r)+Brpr-1,

_ VE(¢r)"VE(ér)lldwll®
where Bk = Gg, - TV EG, e

5:  ¢r+1 = ¢k + Tkpr through exact line search, and normalize ¢ if necessary.
6: k=k+1
7: end for
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(6.2) D IVE@K)[*|6x]|* cos® by < oo,
k=0
-VE T .
where 0, = Z(—VE(¢r), pr), such that cosfy = % > 0. Moreover, since

exact line search is used in Algorithm 6.1, some preliminary results can be immediately
obtained in Proposition 6.2.

PROPOSITION 6.2. Algorithm 6.1 generates {pi} and VE(¢r) satisfying
(i) pj VE(¢r41) =0,

(i) pi VE(¢r) = —llokllIVE(or),

(iii) [|pell® = llowll*IVE (o)1 + B2 lIpa—1I?,

(iv) [1oxlllIVE(or) I < llpkll-

Proof. The proof is omitted and can be found in [45, Proposition 3.8]. ]

With the above preliminary results, we are ready to establish the global conver-
gence of Algorithm 6.1. In Theorem 6.3, Enin and F.x are the lowest and highest
value of E(¢), respectively. These two values are finite as a result of the extreme value
theorem [41] of a continuous multivariate function on a closed finite set (unit sphere
of ¢). Moreover, {F;} refer to the discrete energy levels of a given BEC problem, each
of which is a critical value of E(¢), and A, is the corresponding chemical potential of
Ey; see (2.1) and (2.3). Note that Theorem 6.3 cannot guarantee the CG method con-
verges to the ground state, i.e., global minimizer of BEC; however, if F(¢g) is lower
than the second lowest critical value of E(¢), then Algorithm 6.1 indeed converges to
the ground state of BEC.

THEOREM 6.3. Let J = (a,b) be finite, such that [Emin, Fmax] C J. Let ¢g # 0
be the initial iterate of Algorithm 6.1. Assume that VE(¢) is Lipschitz continuous
in direction in a neighborhood of S = {”%:;” | E(¢) < E(¢o)}. Then, there exists
Ey € {E;} such that limg o E(¢x) = E¢ and there is a subsequence {¢y,} such that
lim; o0 Z (¢r,, null(A(¢r,) — Ael)) = 0. That is, {¢x,} converges to the eigenvector
corresponding to the eigenvalue Ay as defined in (2.3).

Proof. The outline of our proof is as follows. First, we show that there exists a
subsequence {¢y; } of the CG iterates such that lim; . (|9, |||V E(éx; )| = 0. Then,
we show that limy_, o, E(¢x) must be a critical value of E(¢), and that the subsequence
{¢r, } satistying lim; o || @, ||| VE(¢r,)|| = 0 converges to the critical points of energy
functional E(¢) (4.1).

Note that, at each step, Algorithm 6.1 generates a new iterate ¢y satisfying
E(¢r) < E(¢r-1), such that all iterates ¢y, belong to the level set S. Consider a
continuous function (A, ¢) — ||A(¢) — AI|| defined on the finite and closed domain
[Amin, Amax] X S, then there exists an M > 0 such that || A(¢) — AI|| < M for all g € S.
Note that Apin, Amax are not necessarily the corresponding chemical potential of F iy,
Emax. Then, we have ||¢[|[|VE||ges = DAL <o) 4(¢) — M) ]| < 2M < o0.

ol
— T VE(¢ ¢
Also, for 0 = £(=VE(gr).pr), we have cos0h = popriipty = B!
(Proposition 6.2(ii)). Then, we have
03 S IVE@PIon ot = Y TR IO <o
k=0 k=0

Assume by contradiction that there exists a v > 0, such that ||¢g||[|VE(ér)|| >~

for all k. Also, we know 8287 ,...0%_, = HVEl(‘deEf?;HiHiﬂilH4 by the definition of

Bk at step 4 in Algorithm 6.1. It follows from Proposition 6.2(iii) that
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E 4 4 E 4 4

IVE(ér—1)lI? [ #x-1[? IVE(¢o) |12l ¢oll®

k
_ 4 4 1 Jk+1
=l IVEGII' Y. g

GOlENaE = e 2

where i, = || k||| VE(ér )| satisfies 0 <y <y, <2M < co. It follows that

i 1 Qi 1 - 72 z’": 1
z=7 F+1) = M) =k +1

= llpx| = i
and thus
=1 o= 1
(4 2 o > @ 2R i1

However, since Y -, W < oo and |VE(¢r)||ékll = v > 0 for all k by
assumption, we have z,?;o W < o0, which leads to a contradiction. Therefore,
such v > 0 does not exist, and we have limy_, o inf ||k ||| VE(¢r ) || = 0, which suggests

that there exists a subsequence {¢}, denoted as {¢x, }, such that
lim |[¢g, [[[VE(¢r, )|l = 0.
j—o0

Meanwhile, since E(¢) € [Emin, Pmax] C J and {E(¢x)} is monotonically decreas-
ing, there exists E* € [Emin, Emax] such that limy_, o F(¢r) = E*. Then, we have
limj o0 B(pr;) = E*. Next, we show E* is a critical value by contradiction. Define
A = lim; 00 A(¢r,), where A\(¢) is described in (2.3), corresponding to E*. As-
sume that E* is not a critical value, i.e., VE(¢) # 0 at E*, then lim;_, (A(gbkj) —
A*I) is nonsingular from (4.2). Let o7, > 0 be the smallest singular value of
lim;y oo (A(¢r;) — A*I) such that || im;_o0 (A(dr, )b — A @) || > o7 ll@|| for all ¢ 0.
Then,

Pr;

which leads to a contradiction. Therefore, E* = limy_, o, E(¢y) is a critical value,
denoted as E;, which may be the energy of the ground state or an excited state.

Finally, let {¢x; } be a subsequence such that lim; . ||¢x, [|[|VE(¢r,)|| = 0. As-
sume that there is a 6 > 0 independent of the iteration count, such that for any M > 0,
there exists an m > M such that Z (¢, ,null(A(¢g, ) — Ael)) > 0. Then

2|| (A(gr,) = A\ed) o, |
[l &%, |
contradicting the assumption about {¢x, }. Thus, there exists a subsequence {¢, } of

the CG iterates in Algorithm 6.1, such that lim; . Z(dx,,null(A(¢r,) —
Ael))=0. a

min

0= Jim o, LIV E (G, )= tim 2 (A(61,) - A,)

’220* >0,

Lim {|gg; [[[|V E(¢r;)|| = lim #0,
j—o0 j—o0

7. Expected behavior of PCG near convergence. Given the well-known
results about the convergence properties of the CG method for preconditioned linear
systems [42] and the steepest descent methods for nonlinear constrained minimization
[1], the convergence of the nonlinear PCG relies on the properties of the precondi-
tioned Hessian operator. In this section, we show the pattern of the spectrum for the
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preconditioned Hessian with our shifted Hessian preconditioner (4.5), such that the
nonlinear PCG is expected to converge quickly when approaching convergence.

The preconditioned Hessian operator with the shifted Hessian preconditioner is
defined as, in the way suggested in [8],

(7.1) PM_} O E(¢)

w0 gg

Suppose that M, o = P(H, + oI)P = PLLT P, where the exact symmetric matrix
factor L can be obtained by the exact Cholesky factorization with or without fill-
reducing permutation. Then, a symmetric version of the preconditioned Hessian with
the shifted Hessian preconditioner can be defined as

0%E(¢)

552 PL™TP.

(7.2) H,=PL7'P

Note that the preconditioned Hessian (7.2) is defined ideally, since we cannot afford the
exact Cholesky decomposition for large problems in practice. Nevertheless, this ideal
preconditioned Hessian helps us develop insight into the expected favorable behavior
of the nonlinear PCG with our practical preconditioner near convergence.

THEOREM 7.1. The preconditioned Hessian operator with the ideal shifted Hessian
preconditioner (4.5) given in (7.2) can be written in the following form:
(7.3)  L'H, LT +wwi + L' wwi + Lt H,ww] - pi e, LT ww T
for o >0 and
(7.4) I+ WWy —rW)T + L' WWl + L' H,Www

for ¢ = 0. Here, Wy, Wy, W3 € R?¥2, In other words, the ideal preconditioned
Hessian is a rank-6 update of the identity matrix for 0 =0, and a rank-8 update of
L’alL*T that is close to the identity matrixz for a small o > 0.

Proof. The proof is given in the appendix. 0

Theorem 7.1 implies that almost all eigenvalues of the ideal preconditioned Hes-
sian (7.2) are exactly or nearly 1, and there are only six or eight eigenvalues that could
be significantly different from 1. Among these six or eight eigenvalues, there are two
zero eigenvalues associated with the orthogonal projector P and have no impact on
the convergence of the nonlinear PCG. Most importantly, such an observation of the
spectrum is independent of the mesh size. Specifically, suppose o > 0 and define the
rank-8 matrix

Ry =WW{I + L 'WwW] + L H,WW.] —piL H,L-TWWT.
Then, by Theorem 7.1, we have
(7.5) H,=I+Rg—oL 'L°T.
Suppose «;, p; for 1 <i<2n (satisfying a; < a;41, pi < pi+1) are the eigenvalues of
I+ Rgand I+ Rg—oL~'L~7, respectively. Then, 2n — 8 eigenvalues among ;s are

1 and at most eight eigenvalues are not 1. Moreover, by the Bauer—Fike theorem [27],
we have |a; — p;| < |o||L7ELT 5.
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Also, we know that L='L~7 and (H, + oI)~! have the same eigenvalues, since
H,+o0l= LL"T. Assume that the lowest positive eigenvalue of H, (positive semidef-
inite) has an infimum s* > 0 that is independent of the mesh size h, as h — 0 It
follows that the spectrum of L=*L~7 falls within (0 ie, || L™ 1L T <
Then, we have

— s*+a

) S*+g]

o]

7.6 i =Pl S 5/
(7.6) o =il < 20

which is guaranteed to be small if o is small compared to s*. In other words, for any
o < s*, the eigenvalues of I + Rg — oL 'L~ are not much different from those of
I + Rg. This ensures that the preconditioned Hessian has a favorable eigenvalue dis-
tribution such that the nonlinear PCG with our ideal shifted Hessian preconditioner
(where o is sufficiently small) is expected to converge fairly quickly when approach-
ing convergence. With the incomplete Cholesky preconditioner obtained by a fixed
drop tolerance, the condition number of L_alL_T deteriorates as the mesh size h
decreases, so that nonlinear PCG needs more iterations to converge on a finer mesh.

8. Numerical experiments. In this section, we perform extensive experiments
in 2D and 3D domains to validate our method. We compare our Hessian precondi-
tioner with the combined preconditioner proposed in [8]. In the following experiments,
we consider the trapping potential: the harmonic plus quartic potential for d =2, 3,

(8.1) V(X):(l,a)@gmuﬁy?HM {O’ Z:

Moreover, we take the initial wave function ¢y as the Thomas—Fermi approximation
8, 11]

(8.2) qﬁ(o)—ﬂ with  ¢7F (x) = {V prr=Vx)/m, Vix

~IOTE |2 otherw1se

where

L | ()2 d=2
8.3 TF _ Z vroo ’
(83) : {

(1577,772)*/°, d=3.
The stopping criterion we adopt is

| E(k+1)) — E(d)) |

<e=10"14.
| E(o) |

(8.4)

Other stopping criterion and comparison between them can be found in [11]. In order
to apply our Hessian preconditioner, we perform an inexact Cholesky factorization
with the approximate minimal degree ordering, and the drop tolerance is chosen to
be 1072 and 1072 for experiments in 2D and 3D domains, respectively. We use
the two stage preconditioning strategy. The combined preconditioner is used at the
first stage and our Hessian preconditioner is used at the second stage. We switch the
preconditioner when ‘E(d)(’”‘gl();(k))l(é(k))l < 1077 for the first time. After switching to
the Hessian preconditioner, we update the Hessian preconditioner every 100 iterations
and 300 iterations for experiments in 2D domains and in 3D domains, respectively.
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TABLE 8.1
Comparison of line search for quadratic approzimation and exact line search for case 1.

Exact Quadratic Backtracking
n=100, 2=0.9 Fast Fast Slow Fast Slow
PCG iteration 141 142 133 205 205
time (sec) 24.45 25.53 43.1 35.67 60.37

TABLE 8.2

Comparison of line search for quadratic approzimation and exact line search for case II.

exact quadratic backtracking
n=1000, Q=2 fast fast slow fast slow
PCG iteration 302 310 309 579 579
time (sec) 53.91 54.30 86.82 100.65 230.62

8.1. Fast energy evaluation and line search methods. In this section, we
perform several experiments to compare the performances of the nonlinear PCG with
different line search methods (with or without fast evaluation of the energy) that we
introduce in section 5. Note that we cannot afford to implement the exact line search
without the fast evaluation of the energy. Therefore, there are five schemes: (a) exact
line search with fast evaluation; (b) quadratic line search with fast evaluation; (c)
quadratic line search without fast evaluation; (d) backtracking line search with fast
evaluation; (e) backtracking line search without fast evaluation. Note that the exact
line search performed by MATLAB’s built-in function fminsearch is parameter-free,
and the quadratic and backtracking line search use a small number of parameters
whose values are predetermined, independent of the test problems. Here, we test two
cases: (I) n = 100, Q@ = 0.9, and V(x) is chosen with v, =, = 1, @ = 0.5, and
k = 0; (II) n = 1000, @ = 2, and V(x) is chosen with v, = v, = 1, @ = 1.2, and
x = 0.3. The computational domain and mesh size are D = [-10,10]? and h = 3%7
respectively. To make fair comparison, all the experiments are performed with the
combined preconditioner only. The results are summarized in Tables 8.1 and 8.2,
respectively. We can see that the exact line search and quadratic line search are
more competitive than the backtracking line search. Also, the exact line search could
marginally improve the number of iterations compared with the quadratic line search.
More importantly, the fast evaluation of the energy is always preferred.

8.2. Partial spectrum of preconditioned Hessian. In this section, we pro-
vide numerical examples to illustrate the partial spectrum of preconditioned Hessian
with our Hessian preconditioner (7.2) at the converged ground state solution ¢.. Here,
we have two cases: (I) n=500,22=0.8, and V(x) is chosen with v, =~, =1, a =0.5,
and « = 0; (II) n = 5000 and ©Q =1, and V(x) is chosen with v, =~, =1, a = 1.2,
and k£ = 0.3. We use the MATLAB built-in function eigs to compute the partial
spectrum for the preconditioned Hessian operators.

8.2.1. Partial spectrum with different shift o. In this example, we apply
the eighth order finite difference scheme to form (7.2), i.e, finite difference method for
both the effective Hessian itself (4.4) and the Hessian preconditioner (4.5). Also, we
perform an exact Cholesky factorization of the Hessian preconditioner for illustration,
which is too expensive for large realistic problems. Here, we fix h = % and the shift
o varies. The computational domain is D = [—10,10]?. Tables 8.3 and 8.4 list the 10
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TABLE 8.3
Partial spectrum of preconditioned Hessian with different shift o for case 1.

/\min Amax )\min >\max >\min )\max
-6.49e-16 1.25 -4.96e-17 1.24 -4.49e-16 1.22
-1.66e-19 1.00 4.84e-17 1.00 -1.90e-16 1.00
2.33e-08 1.00 8.65e-08 1.00 1.62e-07 1.00
2.87e-05 1.00 3.00e-05 1.00 3.86e-05 1.00
5.18e-02 1.00 5.44e-03 1.00 5.53e-04 1.00
1.82e-01 1.00 2.18e-02 1.00 2.22e-03 1.00
5.05e-01 1.00 9.28e-02 1.00 1.01e-02 1.00
5.43e-01 1.00 1.06e-01 1.00 1.17e-02 1.00
8.24e-01 1.00 3.20e-01 1.00 4.49e-02 1.00
8.49e-01 1.00 3.61e-01 1.00 5.35e-02 1.00

(a) 0=10"3 (b) 0 =102 (c) o=10"1

TABLE 8.4
Partial spectrum of preconditioned Hessian with different shift o for case II.

)\min Amax )\min Amax )\min Amax
-3.69e-16 1.77 -2.96e-16 1.17 -6.90e-17 1.16
2.92e-16 1.17 -8.12e-17 1.02 -4.16e-17 1.00
3.11e-06 1.00 4.33e-07 1.00 9.30e-06 1.00
4.55e-05 1.00 4.71e-05 1.00 4.65e-05 1.00
9.60e-01 1.00 6.97e-01 1.00 1.93e-01 1.00
9.60e-01 1.00 7.11e-01 1.00 1.94e-01 1.00
9.83e-01 1.00 8.53e-01 1.00 3.75e-01 1.00
9.85e-01 1.00 8.66e-01 1.00 4.03e-01 1.00
9.86e-01 1.00 8.90e-01 1.00 4.04e-01 1.00
9.89e-01 1.00 9.12e-01 1.00 4.90e-01 1.00

(a) o =10"3 (b) 0 =102 (c) o=10"1

smallest eigenvalues and 10 largest eigenvalues of the preconditioned Hessian operator
for our Hessian preconditioner with different shifts . We can see that most of the
eigenvalues of the precondition Hessian with Hessian preconditioner are approximately
1. These observations are consistent with Theorem 7.1.

8.2.2. Partial spectrum with different preconditioners. In this example,
we compare the partial spectrum of preconditioned Hessian with the state-of-the-art
combined preconditioner [8] and our Hessian preconditioner. To be consistent with
[8], we compute the partial spectrum based on the expression of the nonsymmetric
preconditioned Hessian (7.1). The Hessian operator (4.4) is discretized in Fourier
pseudo-spectral scheme for both cases. Moreover, we apply the combined precon-
ditioner in Fourier pseudo-spectral scheme and the Hessian preconditioner in eighth
order finite difference scheme, which is consistent with the preconditioning strategy
proposed in section 4. To make fair comparison, we scale the computed eigenvalues
so that the largest eigenvalue of both preconditioned Hessian is of the same value
for each experiment. Also, we perform an inexact Cholesky factorization with drop
tolerance 1073 of the shifted Hessian preconditioner (4.5) with shift o = 1073, per-
mutated by the approximate minimal degree ordering. For case I, we fix h = % and
vary the domain length L from 4 to 12. For case II, we fix L = 10 and vary h from
% to Tle Tables 8.5 and 8.6 list the 10 smallest scaled eigenvalues and 10 largest
scaled eigenvalues of the preconditioned Hessian operator (7.1) for the combined
preconditioner and the Hessian preconditioner with different domain D, respectively.
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TABLE 8.5
Partial spectrum of preconditioned Hessian with combined preconditioner for case 1.

/\min )\max >\min >\max /\min )\max
-1.02e-16 1.00 7.38e-16 1.00 -1.23e-16 1.00
5.09e-17 1.00 3.77e-16 1.00 1.68e-16 1.00
1.25e-03 1.00 1.31e-09 0.98 2.56e-11 0.98
2.18e-03 1.00 3.71e-05 0.98 3.71le-05 0.98
2.70e-03 1.00 3.71e-05 0.98 3.71e-05 0.98
3.48e-03 1.00 2.26e-04 0.98 2.26e-04 0.98
5.18e-03 1.00 3.40e-04 0.98 2.26e-04 0.98
7.27e-03 1.00 4.62e-04 0.98 3.39e-04 0.98
8.22e-03 0.98 7.11e-04 0.98 3.39e-04 0.98
1.06e-02 0.98 7.28e-04 0.98 4.62e-04 0.98

(a) D=[—4,4]* (b) D=1[-8,8] (¢) D=[-12,12)?

TABLE 8.6
Partial spectrum of preconditioned Hessian with incomplete Cholesky Hessian preconditioner
for case 1.

)\min Amax )\min Amax )\min Amax
-2.91e-16 1.00 -1.96e-15 1.00 -1.26e-16 1.00
1.07e-16 1.00 1.40e-16 1.00 1.34e-15 1.00
6.85e-03 1.00 7.02e-09 1.00 1.30e-10 1.00
1.13e-02 1.00 2.05e-04 1.00 1.97e-04 1.00
1.26e-02 1.00 2.23e-04 1.00 2.02e-04 1.00
1.69e-02 1.00 1.33e-03 1.00 1.23e-03 1.00
2.78e-02 1.00 1.38e-03 1.00 1.31e-03 1.00
3.62e-02 1.00 1.80e-03 1.00 1.69e-03 1.00
3.96e-02 1.00 1.92e-03 1.00 1.77e-03 1.00
5.81e-02 1.00 2.77e-03 1.00 2.58e-03 1.00

(a) D=[—4,4]? (b) D=1[-8,8% (c) D=1[-12,12)

Furthermore, Tables 8.7 and 8.8 list the 10 smallest scaled eigenvalues and 10 largest
scaled eigenvalues of the preconditioned Hessian operator for the combined precondi-
tioner and Hessian preconditioner with different mesh size h, respectively. From these
results, we can see that the conditioning deteriorates for both preconditioners as both
the spatial resolution and the size of the domain increase, which is consistent with the
observation in [8]. However, the preconditioned Hessian with Hessian preconditioner
has a more favorable eigenvalue distribution and smaller condition number compared
with the combined preconditioner. More importantly, the nonlinear PCG with the
Hessian preconditioner is expected to converge fairly quickly when approaching con-
vergence.

8.3. Numerical experiments in two dimensions. In this section, we apply
our method to compute the ground state for some 2D BEC problems with strong
repulsive interaction and rotational speed, which are more relevant for real physical
problems. We compare our Hessian preconditioner with the state-of-the-art combined
preconditioner. The maximum iteration number is set to be 100000. All the exper-
iments are performed on a Ubuntu 22.04 LTS (64 bit) PC-Intel Core i7-4700 CPU
2.40 GHz, 32 GB of DDR3 1600MHz RAM running MATLAB R2022b. Note that the
fast energy evaluation and exact line search are used for all experiments in sections 8.3
and 8.4. Our numerical results show that the Hessian preconditioner is more efficient
than the combined preconditioner especially for the fast rotating BEC problems.
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TABLE 8.7
Partial spectrum of preconditioned Hessian with combined preconditioner for case II.

/\min Amax )\min >\max >\min )\max
-2.66e-17 1.00 -1.38e-17 1.00 -5.37e-17 1
-1.40e-17 1.00 1.99e-17 1.00 -1.55e-17 1

3.58e-04 1.00 1.76e-04 0.99 5.82e-08 0.99
3.58e-04 1.00 1.76e-04 0.99 3.56e-07 0.99
9.42e-04 1.00 4.63e-04 0.98 1.88e-05 0.98
9.75e-04 1.00 5.02e-04 0.98 1.99e-05 0.98
1.40e-03 1.00 5.77e-04 0.98 7.17e-05 0.98
1.78e-03 1.00 8.26e-04 0.98 7.93e-05 0.98
1.78e-03 0.98 8.26e-04 0.98 7.95e-05 0.98
2.75e-03 0.98 9.92e-04 0.98 7.96e-05 0.98

(@) h=1 (b) h=1% (c) h=

1
16

TABLE 8.8
Partial spectrum of preconditioned Hessian with incomplete Cholesky Hessian preconditioner
for case 11.

Amin Amax )\min Amax Amin Amax
1.29e-17 1.00 -3.45e-17 1.00 -1.79e-16 1.00
2.76e-17 0.98 2.32e-16 1.00 2.00e-16 1.00
1.21e-01 0.96 1.43e-02 1.00 1.23e-06 1.00
1.30e-01 0.96 1.48e-02 1.00 7.51e-06 1.00
2.28e-01 0.96 3.87e-02 1.00 3.58e-04 1.00
2.28e-01 0.96 4.04e-02 1.00 3.79e-04 1.00
2.31e-01 0.96 6.10e-02 1.00 1.55e-03 1.00
2.31e-01 0.96 6.95e-02 1.00 1.58e-03 1.00
2.31e-01 0.96 7.05e-02 0.98 1.59e-03 1.00
2.31e-01 0.96 8.66e-02 0.98 1.71e-03 1.00

(a) h=1 (b) h=1% (c) h= 1

8.3.1. Example. In this example, V(x) is chosen with 7, =7, =1, a = 1.2,
and k = 0.3 [8]. The computational domain and mesh sizes are D = [—20,20]? and
h = é We compute the ground states ¢, of rotating BECs with large values of 7
and €. In Table 8.9, n is fixed to be 10000 and €? is chosen from 1 to 5. In Table
8.10, 2 is fixed to be 5 and 7 is chosen from 1000 to 20000. Tables 8.9 and 8.10
list the iterations, runtime, and final energy functional our method attain with the
combined preconditioner and the Hessian preconditioner, respectively. Also, we un-
derline the lower final energy value obtained by the two preconditioners when there
is a significant difference. The contour plots of the density function |¢,(x)|* obtained
with the Hessian preconditioner are shown in Figure 8.1. For example, in Table 8.9,
when 7 = 10000, 2 = 5, the nonlinear PCG with the combined preconditioner takes
26522 iterations to attain -485.0282069197 in 21126.00 seconds, whereas only 4488
iterations are needed to attain -485.0305526536 in 4681.19 seconds with the Hessian
preconditioner. Tables 8.9 and 8.10 show the advantage of our Hessian preconditioner
involving €2 over the combined preconditioner that disregards (2. We can see that
with larger values of nonlinearity n and rotating speed {2, our Hessian preconditioner
gains more advantage in runtime. Note that as we mentioned in section 6, the PCG
method (local minimization method) cannot guarantee the convergence to the global
minimizer of BEC. The choice of the preconditioner also affects the final converged
stationary states. From Tables 8.9 and 8.10, we can see that the combined precondi-
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7 =1000, Q =5 %1073 7 = 5000, Q =5 %1073 n = 20000, Q2 =5 %1073
10 [ 10 10 10 6
5 v s 8 5 °
4
> 0 10 > 0 6 > 0 3
4
-5 5 -5 -5 2
— 2 1
-10 -10 -10
-10 0 10 -10 0 10 -10 0 10
X
7 =10000, Q =1 %1073 X 7 =10000, Q =5 %1073

Fic. 8.1. Corresponding contour plots of the density function obtained with the Hessian pre-
conditioner |$q(x)|? in Tables 8.9 and 8.10.

TABLE 8.9
Performance comparison of PCG with two preconditioners for n = 10000 and different 2 values.

PCG iteration Time (sec) Final E, o

Q Combined Hessian Combined Hessian Combined Hessian

1 724 2088 576.51 2052.01 63.02007542539 62.96553732649

1.5 749 697 593.38 583.06 53.26795985753 53.26795985751

2 4929 2443 3885.88 2399.98 37.59961999660 37.59961999657

2.5 5770 3287 4589.90 3137.76 13.63739471900 13.63739471896

3 16435 6226 12885.70 6347.01 —23.48312229660 —23.48295831441
3.5 8653 3612 6895.37 3733.51 —82.54564206625 —82.54564207131
4 25890 6047 20546.26 6430.85 —172.7171085876 —172.7188268092
4.5 18115 3701 14125.19 3868.01 —303.3183033037 —303.3185838060
5 26522 4488 21126.00 4681.19 —485.0282069197 —485.0305526536

tioner achieve lower energies for n = 10000, 2 = 3, and = 20000, 2 = 5. However, the
nonlinear PCG with our Hessian preconditioner tends to achieve a lower final energy
for most problems.

8.3.2. Example. In this example, we compare the performance of our Hessian
preconditioner with the combined preconditioner to solve some more difficult prob-
lems. Here, V(x) is chosen with 7, =10, 7, =1, a =2, and £ = 3. We fix = 25000
and vary § from 4 to 16. We take L, = L, = 13, h = 1/64. The results are shown
in Table 8.11. Figure 8.2 shows the contour plots of the density function |¢,(x)|?
obtained with the Hessian preconditioner. Note that the nonlinear PCG with the
combined preconditioner does not terminate after 100000 iterations, thus we report
the energy and the runtime it attains after the 100000 iterations. More importantly,
Table 8.11 shows that our Hessian preconditioner gains significant advantage over the
combined preconditioner.
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TABLE 8.10
Performance comparison of PCG with two preconditioners for Q=5 and different n values.

PCG iteration Time (sec) Final E, o
n Combined Hessian Combined Hessian Combined Hessian
1000 12922 2426 10322.28 2446.36 —522.1631296805 —522.1631296901
2000 10846 2164 8727.81 2192.61 —516.1164313740 —516.1164313839
5000 17673 5349 14009.90 5710.81 —502.4144226059 —502.4145222867
10000 26522 4488 21126.00 4681.19 —485.0282069197 —485.0305526536
20000 60757 6401 47431.78 6956.86 —457.6996232199 —457.6981668537
TABLE 8.11

Performance comparison of PCG with two preconditioners for n = 25000 and different 2 values.

PCG iteration Time (sec) Final E, o
Q Combined Hessian Combined Hessian Combined Hessian
4 51864 17454 74290.97 33295.91 141.3951364011 141.3951364033
8 100000+ 39510 143848.1+ 83809.49 —294.0500897923 —294.0521455922
12 98901 9616 170704.1 20936.99 —1871.149053296 —1871.148855358
16 100000+ 30003 168655.4+ 68113.02 —5913.255005955 —5913.256644684
7=25000,0=4  x10° n=25000,0=8  x10® 7 = 25000, Q =16
15 10 0.025
15
5 0.02
10 10 0.015
> 0
0.01
5 5 5
0.005
-10
-10 0 10
x x x

Fic. 8.2. Corresponding contour plots of the density function obtained with the Hessian pre-
conditioner |¢g(x)|? in Table 8.11.

8.4. Numerical experiments in three dimensions. In this section, we apply
our method to compute some 3D problems. We perform the 3D experiments on a
single node with 16 cores on Clemson Palmetto Cluster running MATLAB R2022a.

In this example, we test four cases: (i) n = 15000, Q =4; (ii) n = 15000, Q = 5;
(iii) 7 = 25000, Q = 4; (iv) n = 25000, Q = 6. The mesh size is h = 5 for all
cases. For (i) and (ii), V(x) is chosen with v, =v, =1,7, =1, =0.3, and k = 1.4.
The computational domain is D = [—15,15]? x [—8,8]. For (iii) and (iv), V(x) is
chosen with v, =, =1,7. = 3,a = 0.3, and x = 1.4. The computational domain
is D = [-10,10]? x [-5,5]. We summarize the results in Tables 8.12 and 8.13. Fig-
ure 8.3 shows the isosurfaces |¢,(x)|? = 1072 and surface plots of |¢,(z,y,z = 0)|?
obtained with the Hessian preconditioner for all the cases. From these results, we can
see that our method works efficiently tackling challenging problems and our Hessian
preconditioner is still competitive compared with the combined preconditioner.

9. Conclusions. In this paper, we propose a preconditioned nonlinear CG
method in real arithmetic to compute the ground states of the GPE with fast rotation
and large nonlinearities that arise in the modeling of BECs. We develop a problem-
dependent Hessian preconditioner involving the rotational speed €2, which is very ef-
ficient especially for solving BECs with high nonlinearity and high rotational speeds.
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TABLE 8.12
Performance comparison of PCG with two preconditioners for cases I and II.

PCG iteration Time (sec) Final E, o
(n, Q) Combined Hessian Combined  Hessian Combined Hessian
(15000, 4) 14568 3864 378007.4 156913.9 —210.8746065833 —210.8746066226
(15000, 5) 28023 10866 691078.8 448749.6  —529.2941298728  —529.2943293465
TABLE 8.13

Performance comparison of PCG with two preconditioners for cases III and IV.

PCG iteration time (sec) final E; o
(n, ) Combined  Hessian = Combined Hessian Combined Hessian
(25000, 4) 3509 2325 29258.16 23823.73  75.88162274531  75.88162274514
(25000, 6) 16929 7611 140570.9 74431.28  1.258275896279  1.258275895894

7 =25000, 2 =4 7 =25000, Q =6

7=15000, 2 =4 7=15000, =5

5 s NP
10 -10 10 -10

7=15000, 2 =4 x10° 7=15000, 2 =5 10°

Fic. 8.3. Corresponding isosurface |pg(x)|? = 1073 and surface plot of |¢g(z,y,z = 0)|? in
Table 8.12 obtained with the Hessian preconditioner.

Also, we provide an efficient method to perform fast energy functional evaluation
without repeated computation in the original problem dimension. Exact line search
can be enabled by fast energy evaluation at many different step sizes at little extra
cost, which tends to result in more rapid and robust convergence compared to inexact
line search. Furthermore, our methodologies can be extended to solve other different
types of BEC in the future.

Appendix A. Proof of Theorem 4.1.

Proof. The derivation follows from several applications of the product rule and
quotient rule. More specifically, we have

o B(<Z>)<Z>
B o6 ' 2hd a¢

It is easy to obtain

99 A

T 2 o7 Ag
(A1) 55 = 59 (A¢_ oo ¢>
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and
a2 O%Grar _ 1 (2800 _ 57508,
' o (¢7¢)? ¢ (¢T0)*
From [34, Theorem 5.1], we have
9B(¢)¢

= B(¢) + 2diag(¢)? + 2 G é) diag(¢) (? é) diag(¢) (? é)

_ diag(¢7)  diag(¢r¢y)
=B@)+ (diag(wg) diag(¢?) )

Then, it follows that

T
(a3) 20 By (

99

0B(¢)9\"
o) ¢
_ diag(¢?)  diag(p,0y)))" , _

Tt follows from (A.2),

92 B(9)o on / B T
n 97GTeT 2 (9)p @' B(o)o
(&.4) ahi 06 hd<(¢T¢)2 @ToP ¢)'

Combining (A.1) and (A.4), we get

(A5)
OE(0) _ 2 A6\ 2 (B@)o _ ¢"Bo)
(10-Grgs) + i (G - ‘)

b 9To (o7 p)? (o7 )3
B(g)p ¢TA¢ ¢T B(¢)d ) 2
=—14 — — =—(A — .
¢T¢( ¢+’7hd¢T¢ o ¢ nhd(¢T¢)2¢ ¢T¢( ()9 — A(®)9)

Next, we know that

2 —
(A.6) 0 ;;ff) =1 ¢T2 e (¢T¢>8(A(¢)‘g 5 AP9) 2(A(d)¢ — A(¢)¢)¢>T>

2 (3(A(¢)¢—)\(¢)¢) 2(A(¢)¢—/\(¢)¢)¢T)

T 9T ¢ o7
Again, from [34, Theorem 5.1], we have
(A7)
DA(9)p n [(diag(362 +62)  2diag(érdy) \ 2 "
20—t gt [( 2diag(drd,)  ding(? + 323)) Ty 0)90 ] |
Also, we have
IAND)p (M)
(A.8) 90 ¢< 36 ) + A)I
_ 2 T "B(¢)  po"A¢ 7 ¢ B(¢)¢
= gm3” <¢ A¥Magry ¢ Tgrg ~ e hd<¢T¢)2> AL
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Combine (A.7) and (A.8), we get

(A.9)
I(A(d)d — A(¢)9)
99
N [(diag(3¢2 +¢2)  2diag(,6,) 2 ;
= At s hdq% K 2diag(éro,)  diag(e? +3§>g>> ~ grgB(#)ee ]
T ¢TB(¢) T¢TA¢ T ¢TB(¢)¢
- m¢ (¢ A2 hd(bT(b —¢ oTop ¢ hd(¢T¢)2> — o) !

_ n  (diag(3¢2 +¢2)  2diag(¢r¢,)
= AT g ( 2ding(d,,)  diag(6? +3§>§)> — AT

B(#) 66T 66T . 06T B(@) . oTASé6T 67 6TB(d)6

— — A— .

MhagTgoTe  Corg  MgTehigt T2 gTg o T Vg (gt g)2

Also, we have

2(A(0)¢ — A@)¢)o"

(A.10)

e
2((A+ A5 - (G2 + HYE) o7
- 7o

T T T T T T
_a 907 o, BLO) 66T 6T AG60T _ 6TB0)0 00

¢T¢ ThigTooTo ¢T¢ 676~ Thi(GTOR 9T’
Combining (A.9) and (A.10), it follows from (A.6) that

OPE(p) 2 n  (diag(3¢% +¢2)  2diag(¢rdy)
0 oo {A TS ( 2ding(d,,)  diag(6? + 323)) — AT
a0 _y00" ,_y BO) 66T | 66 B(9)

o6 2oTe ThigTe 6T~ “TgTg higT ¢
T A p¢T ¢oT ¢TB(8)o } .

4 6
TG 5T T T ha(gT )2

Next we will show that ¢ and $ are the eigenvectors of i 5 ¢(2 ) associated with
the zero eigenvalue. Note that B(¢)¢ = (zz(—;ﬁzg ) € R?". Then, we have
PE(¢), 2 N 363+ 36,67 ¢T Ag
355 0= 575\ s ( oty £oe) ) N0 —240-2%720
an ( 5} + 0,02 ) iy "B@e,
T higTo \ Plog+ Py higTe  ¢T¢
¢" A 6n  ¢"B(d)o
G gy )
_ 2, O3+ dr oy > K@ AP
“ g e < ¢2¢q +¢g’ 576 ¢
2n ¢'B B }
higT ¢ ¢T¢>
2 2
= 2 ) Ap- Ao 2 )\
5754 40~ Gt B0+ X@6 | = 1 (- (A= M@},
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which is zero since ag((;ﬁ) = (p%—(b (A(p)p — A(d)p) =0, i.e., ¢ is a stationary point of
E(¢) (local or global minimum, or saddle point). On the other hand, it is easy to see

that 7 ¢ =0, then we have
(A.11) ¢TAp = —¢F Loty + Qb! Lty + Q0L Ly + ¢F Loy =0,

since L, is symmetric and L, is skew-symmetric such that u” L,u =0 for any u € R™.
Also, we have

(A.12) T B(9)p=—(6) by — L 02 + L 62 + (63)T ¢, = 0.

Combining (A.11) and (A.12), we can easily obtain

PE~ 2 [~ (g, & N
920~ 575 {A“” TS ( o2 4 ¢5’:g> B A(W}

_ 2 *Ls(b + QLw¢r Ui 7¢72"¢ - ¢3 7¢

T oTo {( Labr +QLu, ) T hieTs ( ¢r¢§g+ sb?g) ~X9) ( ¢>rg)}
2 (0 —I\[(Ls, +QLw¢g> n <¢§ +r 2) _ (a»)}
N ¢T(25 (I 0 ) {(Lsd)g - QLw¢r * hd¢T¢ ¢72”¢9 + d)% )\((b) ¢g

_(? ‘Of) (A(¢)¢A(¢)¢)—(_OI é) 825(2@@5_

Therefore, if ¢ is a stationary point of E(¢) such that gllfgb =A(p)p — A(p)p =0, we

also have %15 gg =0. O

Proof of Theorem 7.1.
Proof. First, it is easy to obtain that P¢ = ¢ P =0. Then we have

0’E(¢)
992

(A.13) PL7'P PL~TP=2n'PL~'PH,PLTP.

Since P=1 — h¢WW7, we have

(A.14) PL7'PH,PL™T
=L 'H, LT - 'L HWWTLT — i ' wwr H, LT
+r2 L wwrHEWWT LT - nwwT L H, LT
+ M wwr Lt g, wwr LT + 2 wwr Lt wwr H, LT
—wwrLtwwra,wwtrL-"

and

(A.15)
PL'PH,PL TRiWWT
=prL 7 H,LTWwT - p2 Lt g, ww T L Tww T
— L WWTH,LTTWWT 4 L Ww T H,WW T L Tww T
— MWW L H, L7 TWWT + 3 ww T L, ww T L Tww T
+ 3 wwr L wwrH,L7TwWw T — pww T L ww Tt H,Ww T LT Tww T,
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Then, we obtain

PL™'PH,PL™TP
=L 'H,L7"+ W (R*WT L H,WWT LT — h*WT L H, LT

+r2 WL Wwr H, LT — 3wt Lt wwr H,ww T LT
+r2 WL , L TWw T - p3tw T L e, ww T Lo Tww T
— WL WWTH,LT"WWT + hW T L WW T H,WWw T LT ww T
+ LW (B WTH,WW LT — kW H, L™ + p**WT H, L "TWWwT
—WTHWWTLTWWT) + L H,W (R WL TWWT — pwTL-T)
— L H, LT TWWT.

Therefore, PL_lpHpPL_TP is a rank-8 update of L_alL_T. Also, Wy, Ws, and
W3 € R?"%2 can be obtained based on the above expression, respectively.

On the other hand, we have L™ *H,L~T = L~Y(H,+ol—ol)L- T =1L 'L7T.
Then, KL YH,L=TWWT =hi(I —oL 'L~ TYWWT. If 6 =0, then L~ 'H, LT =1
and we have

PL7'PH,PL™TP
=I+W (RP*WTL"WWTL™T — hWTLTL™" 4+ B WT L' WWTL
WL wwr g, wwr =T + 2wt - pw T L tm,wwr L= Tww?”
WL WwITLww? + hMw T L ww T H,ww LT ww T — htwT)
+ LW (R WTH,WWTL™T — h*WTL + W Lww™
—P*WTH,WWTL-TWWT) + L H,W (R*WTL-TWWw” — h*wTL™T).

Therefore, PL™'PH,PL~" P is a rank-6 update of I. ]
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