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Remarkable progress has been made in the field of robot-assisted surgery in recent years, particularly in the area of surgical task
automation, though many challenges and opportunities still exist. Among these topics, the detection and tracking of surgical tools
play a pivotal role in enabling autonomous systems to plan and execute procedures effectively. For instance, accurate estimation
of a needle’s position and posture is essential for surgical systems to grasp the needle and perform suturing tasks autonomously.
In this paper, we developed image-based methods for markerless 6 degrees of freedom (DOF) suture needle pose estimation using
keypoint detection technique based on Deep Learning and Point-to-point Registration, we also leveraged multi-viewpoint from a
robotic endoscope to enhance the accuracy. The data collection and annotation process was automated by utilizing a simulated
environment, enabling us to create a dataset with 3446 evenly distributed needle samples across a suturing phantom space for
training and to demonstrate more convincing and unbiased performance results. We also investigated the impact of training set size
on the keypoint detection accuracy. Our implemented pipeline that takes a single RGB image achieved a median position error of
1.4 mm and a median orientation error of 2.9 degrees, while our multi-viewpoint method was able to further reduce the random

errors.

Keywords: Surgical Robotics; Markerless Tracking; Keypoint Detection; Deep Learning.

1. Introduction

In Minimally Invasive Surgeries (MIS), when surgeons ma-
nipulate tools to perform suturing instead of using their
hands, the suturing procedure becomes more demanding
and tedious, while it still requires high dexterity. The suc-
cess of the surgery and the patient’s well-being is directly
influenced by the quality of suturing and the time taken
to complete the procedure. Therefore, it is important to
reduce the physical and mental burden of the surgeon in
this situation. As a result, there has been a growing inter-
est in automating suturing through robotic assistance, and
advanced suturing is a technique that can be expected to
reach Level 3 - Conditional Autonomy To automate su-
turing with a robot, a crucial prerequisite is that the robot
needs to know where the needle locates and to track the
pose so that the robot can pick up a needle and adjust its
suturing movements according to the latest estimated nee-
dle pose. Nevertheless, tracking a small needle efficiently,
especially in dynamic surgical environments with varying
lighting conditions and complex tissue backgrounds, re-
mains a challenging problem.

Besides optical tracking products like Aurora (North-

ern Digital Inc., Canada), many researchers favor pattern-
based markers, such as ArUco markers? because they only
require an image from a typical camera to track, which
is readily available or easily integratable on many exist-
ing robotic surgical systems. Despite the reduced hardware
restrictions, these markers can still achieve good pose esti-
mation accuracy of less than 0.7 mm translation error and
0.85 deg rotation error® The flexibility of these markers
allows their application in diverse scenarios. For instance,
Qian et al. used the integrated camera on a head-mount
display to track such a marker and determine the pose of
the surgeon’s head relative to the surgical robot.# Also,
these markers can also be scaled as small as 6 mm x 6
mm, to be attached to a laparoscopic photoacoustic probe
for image reconstruction.” However, for some other surgi-
cal instruments, such as the forceps in the da Vinci surgical
system (Intuitive Surgical Inc, USA), a markerless tracking
approach is the preferred choice/® and this preference ex-
tends to suture needles tracking as well.

To address the challenges mentioned above, we pro-
posed a markerless method based on Deep Learning and
Point-to-point Registration that only uses RGB images to
estimate the 6 DOF pose of a suture needle” under a pub-
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lic, standard surgical scene simulator® (Fig. . Our method
does not require any modification to a commercial suture
needle and introduces little interference to the existing sur-
gical workflows.

da Vinci PSMs

Suture needle

(b)

Fig. 1. Visualization of the needle pose tracking results given
the input of images captured from a robotic endoscope. (a) Su-
turing training environment provided by the 2021-2022 Accel-
Net Surgical Robotics Challenge, PSM refers to Patient Side
Manipulator of the da Vinci surgical system. (b) Scanned 3-
Dmed suturing pad provided by the 2023-2024 AccelNet Surgi-
cal Robotics Challenge.

In this paper, we made several improvements to fur-
ther extend our previous work. Firstly, the dataset collec-
tion and annotation process was automated, this allowed us
to generate a significantly larger dataset of 3446 samples,
and the needle positions were evenly distributed across the
phantom space. This expanded dataset served for training
and enabled us to demonstrate more convincing and unbi-
ased performance evaluation results. The impact of set size
on the keypoint detection accuracy was investigated by ex-
perimenting with the model using different sizes of training
sets. Secondly, a new suture needle model with a different
size and shape was created, and a more realistic suture pad
was included as a background. This demonstrates the ex-

tensibility of our approach. Furthermore, we conducted a
more comprehensive analysis. We adopted relative L2 er-
ror with respect to the needle bounding box to assess the
keypoint localization accuracy more informatively. We also
included a thorough examination of the sample error dis-
tribution and tested the extensibility of our approach. This
analysis offers insights into the strengths and limitations
of our approach, providing a deeper understanding of its
performance and effectiveness.

2. Related Work

Over the years, a variety of approaches have been developed
to track suture needles and estimate their poses, evolv-
ing from color-based detection to advanced computer vi-
sion techniques. Early efforts, such as those by Wengert et
al.? Kurose et al. 1 and Sen et al.1! although achieved
sub-millimeter position accuracy and less than 3° orienta-
tion accuracy, their systems relied on painting and the help
of optimal lighting conditions or camera settings. As ev-
idenced by a 73% needle contour detection rate reported
in [12] due to specular highlights and so on. In [13], three
green markers were put on the needle to ensure precise
detection, but attaching physical markers would make the
needle not suitable for many suturing tasks. These color-
based approaches are usually limited by the modifications
to the suture needles and the need for environment-specific
tuning of parameters, which suffers to accommodate the
complex and varying surgical background with different ob-
jects, changed light conditions, or various tissue textures.
More recently, advanced computer vision techniques
including Deep Learning have been explored to address
some of the limitations. Ferro et al'# introduced Bayesian
filters with diverse observation models to account for uncer-
tainties in needle features and motion. Mei et al 22 utilized
two popular object detection architectures: YOLO (You
Only Look Once)t® and R-CNN (Region-based Convolu-
tional Neural Network):? to extract the bounding box of
a suture needle in the images. Zhou et al*¥ also used Fea-
ture Pyramid Net (FPN) to detect a tiny needle tip with
an accuracy of 0.55 (Intersection over Union) in the con-
fidence of 99.2%. While these approaches excelled in 2D
object detection/segmentation, they lacked in providing 6
DOF pose information. Wilcox et al1? combined semantic
segmentation with random sample consensus (RANSAC)
to obtain an estimated needle pose but did not include a
numerical evaluation of the accuracy. In a separate line of
research, studies in [20] and later in |21] focused on the nee-
dle circular geometries and their elliptical projections from
extracted feature points, reporting error levels of 0.87 mm
and 0.12 degrees in their simulated environments. Other re-
searchers also incorporated physical constraints related to
manipulator dynamics to enhance tracking robustness.??
However, these tracking methods were designed to track
continuous needle motion but not to estimate the needle
pose from a single image. Lastly, an end-to-end pose esti-
mation neural network model GDRnet?® showed promising
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Overview of the two-stage pose estimation method. We utilize R-CNN to localize pre-defined keypoints on the needle based

on the image input, then calculate the needle pose using point set registration techniques.

center-meter level accuracy with various objects in a much
larger spatial scale and may have the potential for better su-
ture needle tracking performance with specific fine-tuning.

3. Methods

Our study aims to estimate the 6 DOF pose of a suture
needle using only 2D RGB images from a robotics endo-
scope, without the need for markers or any modification to
the off-the-shelf suture needle. The proposed method com-
prises two main steps. Firstly, we utilize a neural network
architecture from Mask R-CNN24 which was trained on a
customized dataset, to extract the pre-defined key points
on the needle body from a 2D image. Then, we calculate
the needle transformation with respect to the endoscope us-
ing point-to-point registration techniques using the 2D or
3D positional information and the correspondence of these
needle key points. (Fig. [2)

Additionally, we leverage the robotic endoscope’s abil-
ity to provide multiple viewpoints of the needle, which con-
tributes to error reduction in our approach.

3.1. Simulated Suturing Environment

The simulated surgical scene used in this paper is a stan-
dard robotic suturing environment provided by 2021 2022
and 2023-2024 AccelNet Surgical Robotics Challenge ® and
it is built based on Robot Operating System (ROS)-
and Asynchronous Multi-Body Framework (AMBF)28 The
scene includes suturing training phantoms of two types:
a simple virtually constructed phantom (Fig. [lla), or a
scanned realistic 3-Dmed Suture Pad (Fig. [I}b). On the
phantoms, there are red squares representing the entry and
exit holes for guiding the needle’s path. The needle itself
has a thread connected to the tail. Moreover, this setup
is equipped with two da Vinci patient- side manipulators
(PSMs) and one Endoscopic Camera Manipulator ( ECM)
from the da Vinci Research Kit (dVRK)*“ The images in
Fig. [1] were captured from the left camera of the stereo

endoscope on the ECM.

The needle model provided by AccelNet Surgical
Robotics Challenge (Fig. [3| (a)) is essentially a 120-degree
arc with a radius of 10.18 mm, we defined five body points
(A, B, ..., E) which are equally spaced on the needle body.
Note the coordinates of one of these points in the needle
frame as Py = [xn, YN, zn]- To demostrate the extendibil-
ity of our method, we made another 150-degree suture nee-
dle with a radius of 9mm (Fig. 3| (b)).
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/
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Fig. 3. Needle frame and keypoints definition. Five keypoints
are evenly distributed over the needle body, Point A is the head
of the needle, and Point E is the tail connected with a thread.
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3.2. Automatic Data Collection and Labeling

Creating a dataset for training a keypoint detection model
typically requires a substantial effort, involving image col-
lection of the objects in various poses, followed by extensive
manual annotation of all the bounding boxes and keypoints
on the images as ground truth. Particularly in our case,
wherein identifying the 3 middle keypoints on the needle
precisely is challenging for humans as no salient features
are associated with them.

Leveraging the benefits of a simulated environment,
we streamlined and automated these processes. Regarding
sample collection, by programmatically moving the object
model to various locations and setting it to random poses
in the simulator, we were able to collect thousands of un-
biased image samples with random suture needle poses.
Specifically, we divided a cuboid zone into grids and po-
sitioned the needle in the 360 corner locations, as elabo-
rated in Section [I.I] As for annotation, in our simulator,
the 6 DOF transformation between any two objects can
be directly queried. With the 3D transformation from the
camera coordinate system to the needle coordinate system,
we can project any points on the needle body, including all
the 5 defined key points, to the 2D images captured by the

camera. (Eq.
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where x, y, z are 3D coordinates of a needle keypoint;
u, v are projected 2D coordinates of that keypoint on the
image; R, T are the rotation matrix and translation matrix
of the camera; camera intrinsic parameters are:
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foa = 1.2, W = 1920, H = 1080.

Obtaining the coordinates of the bounding box is then
straightforward. The minimum values of all key points
along each axis determine the coordinates of the upper left
corner, while the maximum values dictate those of the lower

right corner. Eq. .

(2)
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where i is any keypoint on the needle, u, v are the image
coordinates of the keypoints.

Our automated approach facilitates the data collec-
tion process and eliminates the necessity for manual label-
ing and ensures accurate annotations. As a result, we were
able to generate a large dataset of 6892 images within a
mere 3-hour timeframe to be ready for use in training and
testing with minimal effort.

3.3. Keypoint Localization using R-CNN

In recent years, the object detection area has witnessed the
development of numerous approaches, primarily falling un-
der two families, YOLO and R-CNN Given that our
objective is not confined to obtaining the bounding box
of the needle but also the “landmarks” on the needle body.
To accomplish this goal, we opted to use Keypoint R-CNN.
Keypoint R-CNN is an extension of Mask R-CNN for key-
point detection?# It begins with a backbone network to
extract features, a Region Proposal Network for candidate
region selection, and uses ROI Align for precise feature ex-
traction within these regions. Instead of the mask head in
Mask R-CNN, which generates pixel-level masks for each
object, Keypoint R-CNN uses the keypoint head that mod-
els a keypoint’s location as a one-hot m? binary mask,
where only a single pixel is labeled as foreground. We im-
plemented a Keypoint R-CNN model with a pre-trained
ResNet-50-FPN“® backbone using the PyTorch library.s?
Fine-tuned the model on a customized dataset. The loss
function contains three terms, which are the classification
(Eq. [f)) and regression losses (Eq. [7)) for both the Region
Proposal Network and the R-CNN ¥ and the keypoint loss
in a form of cross-entropy loss over an m2-way softmax
output, m is the side length in pixels of the binary mask
represents the training target, Eq. [6]

Loss = Leis + Lyeg + Lieypts (4)
1 Ncls
Lcls - _N’l i Z(yc,iZOQQC,i + (1 - yc,z)log(l - @c,z))) (5)

=1

where N, is the number of classes, y.; is 0 or 1
whether the region proposal i predicts class ¢ is correct,
Y, ; is the predicted probability.

Nreg
smoothr (t;,t}) (6)
i—1

Lyeg =X
g Nreg

where A is a hyperparameter, N;.q is the number of
positive anchors, t; represents the predicted bounding box,
t7 represents the ground truth bounding box.

1

Lkeypts = _W Z (yi,jlo.g@?j + (1 - ylj)log(l - @fj))

1<i,j<m
(7)

where m is the side length of the binary mask, y; ; is
0 or 1 whether the prediction of pixel (i, j) is correct, g}ljz
is the predicted probability that pixel (i, j) is keypoint k.
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Fig. 4. Pipeline I. R-CNN extracts the defined 5 needle body points from the left and right images, the transformation from the
left and right cameras to the needle are calculated respectively, the final result is an average of the two transformations. Note that

the core algorithm of this pipeline does not require stereo images. Transformations from multiple viewpoints can be combined, see
Section II. D.
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Pipeline II. Both of the images are taken from the endoscope at the same time. 3D coordinates are triangulated from the

2D coordinates pairs (red dots are the ground truth, red ones are from stereo triangulation). The needle pose is the 3D point sets
registration result.

3.4. Point-to-point Registration

transformation from a tracker to an object given the posi-
tional data from the tracker’s and object’s coordinate sys-

Point-set registration is a technique to align two sets of  tems. In our specific case, we utilize this method to es-
points in space and can be used to determine the spatial ~ timate the 6 DOF pose of a suture needle relative to a

camera, based on the positional information of the needle’s



July 31, 2024 15:9 output

6 Author’s Name

keypoints in both the camera’s and its own coordinate sys-
tems.

We implemented two distinct pipelines to achieve this
goal. The first pipeline directly performs 2D-t0-3D regis-
tration using the 2D coordinates of the key points on an
image. In contrast, the second pipeline first determines a
3D point set using stereo triangulation, then registers the
point set to the needle’s frame and computes the pose of
the needle.

Pipeline I - 2D-to-3D Registration

Based on the detected 2D image coordinates of the needle
key points from the previous step, along with the corre-
sponding 3D coordinates of these points in the needle’s lo-
cal frame, the task of estimating the pose of the needle with
respect to the camera is referred to as the Perspective-n-
Point3! problem. To solve the PnP problem, we utilized the
Efficient Perspective-n-Point (EPnP) method®? to directly
calculate the 6 DOF transformation. The complete pipeline
for one pair of images is as Fig. [4]shows. The final output is
an average of the two transformations. Averaging the trans-
lation part is straightforward. As for the rotation part, we
converted the rotation metrics into quaternions, the two
quaternions are averaged and then transformed back into
a rotation matrix.

Pipeline II - 3D-to-3D Registration

An alternative method to register and compute the trans-
formation is by using 3D point set coordinates. Utilizing
the paired 2D coordinates of the key points on the left and
right camera, along with the camera parameters, we can
use stereo triangulation to calculate the 3D coordinates of
these points. Finally, given the shape of the needle and
the local 3D coordinates of these body points, we can per-
form a point cloud registration (PCR) with known corre-
spondence to obtain the 6 DOF pose of the needle with
respect to the camera. We used Direct Linear Transforma-
tion®? (DLT) method to triangulate the key points. Arun’s
method®? was used to calculate the homogeneous transfor-
mation from the point set in the camera frame to it in the
needle frame, which is equivalent to the needle pose relative
to the camera. The complete pipeline is as Fig. [5| shows.

3.5. Multi-viewpoint from a Robotic
Endoscope

The ECM is a robotic arm with an endoscope, and the en-
doscope pose can be calculated from ECM’s forward kine-
matics. When performing an MIS with the da Vinci robot,
the surgeon can use the Master Tool Manipulator (MTM)
to adjust the pose of the endoscope to get a different view-
point. In suture needle tracking, self-occlusion is a special
case when one part of the needle obstructs another part
of it from a certain point of view so that the camera can

not see its full body. In some particular viewpoints, the
projection of the needle shape into a 2D image can even
shrink to a line segment rather than a curve. To mitigate
this problem and take advantage of the robotic endoscope,
we introduce multi-viewpoint tracking to enhance our core
algorithm. The surgeon can move the ECM to a few dif-
ferent poses and get multiple different views of the needle.
Alternatively, a set of ECM poses surrounding the region of
interest can be pre-selected or generated, so that the robot
can automatically sweep these viewpoints. A valid image
will be used only if the neural network reports a confidence
score larger than a threshold, ensuring that the endoscope
captures the entire needle and detects the keypoints for
subsequent pose computation via EPnP.

The workflow is as Fig. [f] shows. Transformations esti-
mated from valid image samples are stored in a queue, every
time the ECM moves to a new pose, a new transformation
inserts into the queue, and all the stored transformations
are multiplied by the offset to convert them to the cur-
rent endoscope pose. The tracking result is the average of
all elements in the queue after eliminating outliers, which
are identified based on Eq[8 and Eq. [9 to reduce random
errors.

Endoscope

Tenn Tgen
TBEyf1 * Tggn_1*
TBEn-l * Tpgn-1*
TBEn.—l

Needle

Tgy Queue Tenn-1 Base

Fig. 6. ECM Multi-viewpoint ensemble. When the ECM moves
from the previous pose (Index n-1) to the current pose (Index
n), the latest estimation Ty, is inserted into the queue, all
previous results (TENn—_1, - TENn_Fk, K 18 the queue size) are
converted into the current endoscope frame for comparison and
averaging.

p: (x7y7277;7j7k) (8)

6-dimensional pose vector representing the combina-
tion of translation and rotation vectors.

s(i) = |p(i) — mean(P;)/std(P;)] (9)

Scores are computed axis-wise, P; is the set of all i‘"
values in the pose vectors. If any of the 6 scores for a pose
sample is beyond the set threshold, that sample is an out-
lier.
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4. Experiments and Evaluation Metrics
4.1. Single Viewpoint

Within a cuboid zone of 50 mm (horizontal) x 10mm (ver-
tical) x 90 mm (distance to the camera, 50 - 140 mm), we
partitioned the space into gird cells of 5 mm x5 mm x5 mm,
then move the needle to each of the grid corners sequen-
tially. After each movement, the needle’s orientation (roll,
pitch, yaw) was randomly set 10 times. The image data
and ground truth pose data were recorded corresponding
to every distinct 6DOF pose.

This process resulted in a total of 3600 samples, en-
compassing various needle poses evenly distributed across
the space. In total, 7200 labeled images were captured from
both the left and the right cameras. Finally, 3446 samples
were included in the dataset, 154 (4.3%) samples were ex-
cluded because of corrupted data or asynchronous align-
ment between image and pose data. The yield rate can be
improved but is out of the scope of this project.

In addition to the main dataset, we collected sam-
ples of another 150-degree needle (Fig. [3(b)), and used the
scanned 3-Dmed suturing training pad (Fig. [[[b)). The da
Vinci PSMs were also included due to their color similar-
ity to the needle. This augmentation allowed us to further
evaluate the robustness and performance of our proposed
methods in different scenarios where background interfer-
ence is present.

4.2. Multi-viewpoint

In addition to the default ECM pose, we incorporated 10
alternative poses, thereby surrounding the region of inter-
est from multiple perspectives. To evaluate the multi-view
idea, we performed five auto-sweep tests, during which the
ECM was moved to each of the 10 predefined poses se-
quentially, and the needle pose was estimated from all these
viewpoints. Upon the completion of the sweep, outliers were
identified and removed, allowing us to subsequently aver-
age the remaining inlier transformations as the final results.
We also intentionally selected 3 failed cases of a single view-
point, ECM to different poses, and eliminated the outliers.
In each test, the needle was manually thrown on the phan-
tom by a human, intentionally making the key points tend
to be co-linear. Then the first three joints of the ECM were
adjusted by small random angles within (—=/10,7/10) for
2 times.

4.3. FEwaluation Metrics

To assess the performance of our proposed methods, a few
metrics are defined as follows.

Regarding 2D keypoint detection, we initially used the
Euclidean distance (L2 norm error) between the model-
predicted keypoint coordinates in pixels and ground truth,
Eq. This metric has a limitation as it does not consider

Paper Title 7

variation in needle sizes appearing on the image because of
the distances from the camera to the needle. For instance, a
small value of an absolute L2 norm error in pixels indicates
a smaller error when the needle is closer to the camera,
while the same value may imply a larger localization error
when the needle is far from the camera because the nee-
dle appears much smaller. To overcome this limitation, we
propose relative L2 norm error as Eq.

L2.2D.err, = \/(up —up)? + (vp — vp,)? (10)

where p is an arbitrary keypoint, u,, v, are ground
truth images coordinates of a keypoint, uj,, v, are model
estimated coordinates.

) w2
Wbbozi beoa:i

rel. L2.2D.err; ) = \/(

where i refers to any image sample, Wipoz, and Hppog,
are the width and height of the ground truth bounding box
of the needle on that image sample.

As for 3D point localization, we use absolute L2 norm
error, the unit is in mm.

L2.3D.err, = \/(xp —xp)2 + (yp — yp)? + (2p — 2,)?
(12)
As for 6 DOF pose estimation, we use absolute L2
norm error for the positional error. the unit is in mm.

pos.err=/(z =22+ (y—y)?+ (e =) (13)

where x, y, z are from the ground truth translation vector,
x’, y', z’ are from the estimated translation vector.

Rotation error is computed as the angle of the rotation
vector from the rotation error matrix R, = R- R/, R is
the ground truth rotation matrix, and R’ is the estimated
rotation matrix.

. tr(R -1

ori.err = arccos(%) (14)
Table 1. Hyperparameters

Hyperparameter Name  Value

Epoch 20

Batch size 8

Learning rate 0.01

Momentum 0.9

Weight decay 0.0005
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5. Results

5.1. 2D Keypoint Detection

In order to examine the impact of the training set size
on the neural network model’s keypoint detection per-
formance, we conducted 6 experiments using the auto-
generated dataset containing a total of 6892 images, 1034
(15%) images were set aside for testing, and the remaining
images were used for training purposes. To explore the re-
lationship between the training set size and performance,
we randomly selected subsets of 70 (1%), 345 (5%), 690
(10%), 2070 (30%), 3446 (50%), and 5858 (85%) images to
train the models. Training hyperparamters are in Table. [T}
and the training is performed on an NVidia A100 GPU.

During each experiment, we train the model for 20
epochs and saved the weights after each epoch, the weights
with the least training loss are selected for evaluation on
the same testing dataset. The results are presented in Ta-
ble. 2] From it, we can see that as the size of the training
set rises from 70 images to 2070 images, the keypoint detec-
tion accuracy was significantly improved (65.0%), however,
when further more data (183%) are fed in, the accuracy
gain was only 2.6%.

Table 2. Impact of training set size on keypoint detection
error.

Training Set Size Training Loss L2 error rel. L2 error
70 (1%) 7.79 83.96 69.8%
345 (5%) 4.26 31.17 26.7%
690 (10%) 3.52 18.14 15.5%
2070 (30%) 2.66 5.48 4.8%
3446 (50%) 2.23 3.64 3.1%
5858 (85%) 1.86 2.54 2.2%

5.2. Point-wise Localization Error

As we defined 5 key points along the needle, from a human
perspective, it is relatively easy to identify and pick up the
head point (A) and the tail point (E), but the key points
in the middle (B, C, D) are more challenging to localize,
as there are no clear local features or distinct markers as-
sociated with them. However, Table. |3| of our experiment
results indicates that there is no large difference in local-
ization accuracy among the different types of keypoints.
Interestingly, the standard deviation for keypoints A and
E is higher than that for B, C, and D, implying that the
precision in localizing the middle points is higher than that
for the head and tail points. While we think that using
a human-labeled dataset would exhibit a different pattern,
the localization errors here for all 5 keypoint are acceptable
and better than the results we reported in/” with the help
of a larger dataset of more various needle poses.

Table. [3] also demonstrates a strong correlation be-
tween the accuracy and precision of keypoint localization in
2D images and those in 3D space. So, for the pose estima-
tion method based on stereo triangulation, improving the
performance of 2D keypoint detection methods would likely
result in a reduction of errors in 3D keypoint localization
and thus in 6 DOF pose estimation.

Table 3. Point-wise keypoint localization error
Keypoint 2D rel. Error 2D SD 3D Error (mm) 3D SD
A 2.7% 0.082 3.2 5.5
B 2.3% 0.022 2.9 4.2
C 2.2% 0.019 2.9 2.9
D 2.1% 0.021 3.0 4.8
E 2.3% 0.072 3.2 11.5

5.3. 6DOF Pose Estimation

Table. [4] presents the final 6 DOF pose estimation errors
of our proposed methods. The median position error of the
best pipeline is 1.3 mm, and the median orientation er-
ror is 2.9 degrees. When utilizing stereo images as input,
the PnP-based method demonstrated a slight performance
superiority over the stereo-triangulation method. Remark-
ably, the PnP-based approach was able to estimate the 6
DOF pose from a single 2D image with a comparable per-
formance level to that achieved when using stereo images
from either of the methods. Inference speed is up to 15 Hz
on a personal computer with an NVidia 3080 GPU.

Table 4. Position and orientation tracking errors of the
120° needle, pink suturing phantom background (Fig. a).

Error Type Mono-PnP  Stereo-PnP  PCR

Median  Position (mm) 1.37 1.28 2.13

Orientation (°) 2.85 2.91 13.68

Avg. Position (mm) 3.01 2.60 2.98

Orientation (°) 19.97 19.16 21.56

Std. Position (mm) 4.32 3.18 2.85

Orientation (°) 42.29 30.60 24.03

RMSE  Position (mm) 5.27 4.08 4.12

Orientation (°) 46.77 36.11 32.29
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lar dots.

5.4. Multi-viewpoint Test

From the pose estimation error distribution, we can see that
the errors for a majority of the samples are small, but there
are some outliers with large errors. Results from Sec.
as in Table. [f and Table. [6] demonstrate that the average
of multiple estimations from multi-viewpoint after elimi-
nating the outliers can often reduce the errors. In all test
cases, position errors were reduced with Multi-view, and
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there was only one case that the orientation error was in-
creased, in Test 4. On average, the position error is reduced
by 61% and the orientation error by 39%.

Table 5. Multi-viewpoint Experiment
Test Error Type Single View  Multi-view
Auto-sweep
1 Position (mm) 2.4 1.3
Orientation (°) 3.5 3.1
2 Position (mm) 1.4 0.5
Orientation (°) 2.4 2.3
3 Position (mm) 3.2 0.6
Orientation (°) 7.2 3.0
4 Position (mm) 1.6 0.8
Orientation (°) 1.1 1.4
5 Position (mm) 0.4 0.3
Orientation (°) 4.9 1.7
Manual
1 Position (mm) 13.7 1.5
Orientation (°) 146.5 1.2
2 Position (mm) 17.5 1.5
Orientation (°) 13.6 0.9
3 Position (mm) 9.3 0.6
Orientation (°) 98.4 1.3
Table 6. Comparison of position and orientation er-

rors from single view and multi-view auto-sweep.

Error Type Single-view  Multi-view
Median  Position (mm) 1.6 0.6
Orientation (°) 3.5 2.3
Avg. Position (mm) 1.8 0.7
Orientation (°) 3.8 2.3
Std. Position (mm) 0.94 0.34
Orientation (°) 2.10 0.67
RMSE  Position (mm) 2.03 0.77
Orientation (°) 4.36 2.39

5.5. FExtensibility

To further validate the extensibility of our proposed
method, we conducted similar experiments with a new su-
ture needle model of a different size and shape. Addition-
ally, we varied the background by including the realistic
3-Dmed suturing pad and da Vinci PSMs. A dataset com-
prising 730 images was used for training, and the perfor-
mance of the two pipelines was assessed on 70 test samples.
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The results of the 6 DOF pose estimation are presented in
Table [

Table 7. Position and orientation
rors of the 150° needle on

tracking  er-
varied backgrounds.

Method Mono-PnP  Stereo-PnP  PCR

Median  Position (mm) 1.54 1.45 3.12
Orientation (°) 4.58 4.32 21.44

Avg. Position (mm) 2.86 2.51 4.36
Orientation (°) 13.43 12.32 28.73

Std. Position (mm) 4.82 3.36 4.53
Orientation (°) 23.52 17.60 23.33

RMSE Position (mm) 5.61 4.19 6.29
Orientation (°) 27.09 21.49 37.00

6. Discussion

Both of our proposed methods demonstrated good accu-
racy in estimating the position of the suture needle. How-
ever, when it comes to orientation estimation accuracy, the
PnP (Perspective-n-Points) method outperformed the PCR
(Point Cloud Registration) method. By including samples
with varied backgrounds in training, our method main-
tained the same level of performance as it in a consistent
background. Thus, to make the model perform well in a
specific scenario, either including training samples under
an environment similar to the testing environment, or in-
corporating domain randomization®? is imperative.

The approach is not specific to any geometry con-
straints and can be extended to support various needle
shapes used for suturing, even non-circular ones.) However,
large inaccuracies were produced when the needle’s body
was obstructed, and in MIS, the needle is often grasped
by tools, making it not fully visible to the camera. In this
paper, our proposed method only aims to track a suture
needle when the camera can see it completely. This is help-
ful at the beginning of a suturing task when a robot wants
to grab it from a surface.

In terms of the multi-viewpoint idea, we wanted to find
an early indicator to determine whether an estimation will
be good or not, for identifying the outliers. The R-CNN
model provides a confidence score that indicates the like-
lihood of an object being present inside the bounding box
and the accuracy of the box itself. However, as long as the
whole needle is present in the image, there is no correlation
between the confidence score and the final pose estimation
error. We also found that re-projection error is not strongly
correlated with pose estimation errors.

7. Conclusion and Future Work

In summary, we designed a markerless tracking method
that can estimate the 6 DOF pose of a suture needle pre-
cisely in the simulated surgical scene. A dataset of 6892
images for needle body points detection was programmati-
cally generated and annotated, and we trained a Keypoint
R-~-CNN model on it and achieved a low key points detection
error of 2.2% relative to the size of the needle bounding
box. We also investigated the impact of training dataset
size on the keypoint detection performance. Two complete
6 DOF tracking pipelines were built using different point-
to-point registration methods, and we achieved a median
position error of 1.4 mm and a median orientation error is
2.9 degrees, We also utilized a robotic endoscope to ensem-
ble transformations from multi-viewpoints, this idea was
able to significantly reduced the pose estimation error from
failed single view estimation cases. We also proved the ex-
tensibility of our approach by testing with a different needle
model and varied background.

The simulation results show that our approach has the
potential to be transferred to real-world cases. We are work-
ing on implementing this framework in a real-world scenario
on the dVRK, but there are challenges. When preparing the
training dataset, we rely on a very accurate needle pose
and camera projection matrix to compute the true coordi-
nates of the needle keypoints in an image. In reality, it is
not feasible without attaching any marker or changing the
appearance of the needle. So real-world dataset collection
would be more challenging than that in simulation. One
potential solution for this, similar to Thananjeyan et al.
proposed in [36], is to mark the keypoints on the needle
with ultraviolet-fluorescent paint, make those points only
visible under ultraviolet light. Additionally, Transfer Learn-
ing techniques® will be utilized to make the most of the
simulation data and mitigate the Sim-to-Real gap. To get
the ground truth of the 6 DOF poses for evaluation pur-
poses, we may still need to attach an external marker (op-
tical/electromagnetic) to the needle and use a tracker, but
the tracking pipeline will remain markerless. Furthermore,
we also plan to include partially occluded needle images to
the dataset, but modification on the R-CNN is necessary
as in [38] proposed.
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