Idea Builder: Motivating ldea Generation and Planning for
Open-Ended Programming Projects through Storyboarding

Wengran Wang" Ally Limke Mahesh Bobbadi
North Carolina State University North Carolina State University North Carolina State University
Raleigh, USA Raleigh, USA Raleigh, USA

Amy Isvik Veronica Catété Tiffany Barnes

North Carolina State University
Raleigh, USA

North Carolina State University
Raleigh, USA

North Carolina State University
Raleigh, USA

Thomas W. Price
North Carolina State University
Raleigh, USA

ABSTRACT

In computing classrooms, building an open-ended programming
project engages students in the process of designing and imple-
menting an idea of their own choice. An explicit planning process
has been shown to help students build more complex and ambi-
tious open-ended projects. However, novices encounter difficulties
in exploring and creatively expressing ideas during planning. We
present Idea Builder, a storyboarding-based planning system to help
novices visually express their ideas. Idea Builder includes three fea-
tures: 1) storyboards to help students express a variety of ideas
that map easily to programming code, 2) animated example me-
chanics with example actors to help students explore the space of
possible ideas supported by the programming environments, and
3) synthesized starter code to help students easily transition from
planning to programming. Through two studies with high school
coding workshops, we found that students self-reported as feeling
creative and feeling easy to communicate ideas; having access to
animated example mechanics of an actor help students to build
those actors in their plans and projects; and that most students
perceived the synthesized starter code from Idea Builder as helpful
and time-saving.

CCS CONCEPTS

+ Human-centered computing — Human computer interac-
tion (HCI); User studies; Empirical studies in HCIL.

KEYWORDS

open-ended programming, planning, block-based programming,
novice programming

“Currently at Apple Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03...$15.00
https://doi.org/10.1145/3626252.3630872

ACM Reference Format:

Wengran Wang, Ally Limke, Mahesh Bobbadi, Amy Isvik, Veronica Catété,
Tiffany Barnes, and Thomas W. Price. 2024. Idea Builder: Motivating Idea
Generation and Planning for Open-Ended Programming Projects through
Storyboarding. In Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2024), March 20-23, 2024, Portland,
OR, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3626252.
3630872

1 INTRODUCTION

In computing classrooms, building an open-ended programming
project engages students in designing and implementing an idea
of their own choice [11]. It motivates students by placing learning
in a real-world context and encourages students to take owner-
ship of their work by generating ideas, designing solutions, and
implementing their plans [2]. As a result, open-ended programming
projects are widely-used in introductory programming classes (e.g.,
[7, 8, 11]). Many popular novice programming environments, such
as Scratch [7], Snap! [8] and Alice [5], are designed to build such
open-ended projects, which lowers the barriers to building com-
plex projects, and help students to build visual, interactive artifacts,
increasing their interest in computing [12].

Planning, involving idea generation and step-by-step design, is
a crucial first step in creating open-ended projects [23]. Explicitly
planning the key functionalities of their programs helps students de-
velop more complex and ambitious projects [10]. Prior work shows
a correlation between high-quality plans and high-quality projects
[29]. However, beginners often struggle to create detailed plans,
express their ideas clearly, and link their plans to later projects [25].
Novices find it challenging to explore and explain their ideas using
traditional text-based methods for open-ended project planning,
preferring visual communication through storyboards instead [19].
This highlights the necessity for teaching methods and tools that
assist students in planning open-ended projects, particularly those
that use visual approaches.

In this work, we present Idea Builder, a system that helps novices
to design and plan an open-ended project through storyboarding.
Idea Builder includes 3 key features. 1) It uses storyboards to help
students express a variety of ideas that map easily to programming
code. 2) It provides animated example mechanics, to help students

https://doi.org/10.1145/3626252.3630872
https://doi.org/10.1145/3626252.3630872
https://doi.org/10.1145/3626252.3630872
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630872&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

explore the space of possible ideas supported by the programming
environments. And 3) it generates an executable starter project
after storyboarding to help students easily transition from planning
to programming.

We deployed Idea Builder in two small-scale pilot evaluations:
in a high school summer internship program (n = 7) and sum-
mer camp (n = 20). We present students’ perceptions of each of
the 3 core features of Idea Builder (storyboards, examples, starter
projects), exploring how they helped students to plan and imple-
ment open-ended projects. We reflect on our experience as design-
ers and educators using the tool.

The Idea Builder system offers the following novel contributions:
1) We propose a storyboard-based planning experience, which stu-
dents self-reported to have helped them express and communicate
ideas that connect to programming. 2) We provide animated exam-
ples during the planning process and provide evidence of its impact
on students’ planning and programming outcomes. 3) We apply
program synthesis to the domain of block-based programming en-
vironments, and present evidence that the synthesized code was
perceived by the students as useful and time-saving.

2 RELATED WORK

Idea Builder is designed for students who are planning an open-
ended programming project in Snap!, a block-based programming
environment, which enables novice programmers to build visual,
interactive programming artifacts, such as games, apps, and sto-
ries [13]. The Snap! programming environment contains blocks for
users to program instructions for “sprites”, which are actors on the
Snap! stage!. Snap! is commonly used to build open-ended projects
in introductory programming classrooms [8], as it lowers the barri-
ers for students to build complex games and apps, increasing their
interests in computer science [12].

Our design and development of Idea Builder are motivated by
related work on planning and its impact on novices’ programming
experience. Specifically, the design goals of Idea Builder are in-
formed by 3 fields of research: storyboarding, supporting explo-
ration for open-ended project-making, and systems for planning
(closed-ended) problem solutions.

Planning. Soloway et al. describes project planning as a process
where students 1) identify the key goals of a program they will write;
2) design methods to achieve those goals; and 3) specify objects or
data items that compose the solution [24]. Prior works show that an
explicit planning process, where students write down a step-by-step
plan for their programming project, is beneficial for programming
outcomes [10, 15]. For example, Gonzalez-Maldonado et al. investi-
gated the impact of using planning sheets with 155 middle school
students from an introductory Scratch programming course, and
found that the students who used planning sheets completed sig-
nificantly more objectives, and built more complex programming
projects, compared to those who did not have access to planning
sheets [10]. Wang et al. conducted an analysis on undergraduate
students’ open-ended programming, by comparing their planning
data extracted from a text-based planning application, with features
they have completed in their projects. The results show that the

'We will use “sprites” and “actors” interchangeably. Actors in Idea Builder map directly
to sprites in Snap!.

1403

Wengran Wang et al.

number of features students listed in their plans is significantly
correlated with the number of features achieved in their final pro-
gramming artifact, showing that students who build more complex
plans also tend to produce more ambitious programming projects.

However, novice students also encounter many challenges when
planning for open-ended programming projects [25, 28], as they fre-
quently lack the skills to express programming features they want
to build, and may encounter challenges when exploring new ideas
[28]. Thomas et al. conducted a three-year study on an enrichment
program that guides African-American middle school students to
iteratively design (using a design document) and build complex,
open-ended projects for social change. The results showed that stu-
dents experienced struggles in expressing game ideas, user actions,
and related game functionalities [25]. Some of these challenges may
be due to the limits of traditional, text-based planning, and they
suggest the need for better support planning support.

Storyboarding. Prior works on personal narrative and story-
telling show the potential for storyboarding to help learners become
more expressive and creative when creating and communicating
their ideas [22]. The theory of embodied cognition [30] suggests
that drawing and imagery connect human thinking with real-world
experience [21], and lead to richer, more creative storytelling ex-
periences [4, 22, 27]. Powell et al. conducted a qualitative study on
how 17 6-13 year-old children made use of The Telling Board, a
storyboarding tool in which images are drawn to build stories, and
found that children were highly engaged in the process, and felt
creative and proud of their artifacts [22]. As a prototyping method,
storyboarding is also commonly used by UI designers to prototype
system interfaces [26], for K-12 students to design video games [6],
and for children to prototype interactive systems [9].

One study investigated the use of storyboard-based planning in
computing classrooms — Limke et al. conducted a 2-day qualitative
case study to investigate 5 pairs of students’ planning experience
during open-ended project-making, comparing text-based planning
to storyboard-based planning using Google Slides. The students
expressed feeling more creative when using storyboards and pre-
ferred using storyboards to text when planning their projects [19].
This work shows the potential of using storyboards to support stu-
dents during open-ended project-making. However, Google Slides
is not designed explicitly for planning programming projects, in-
cludes unrelated features that may distract students, and lacks any
code-specific scaffolding.

Supporting exploration for open-ended project-making.
Kery and Myers defined “exploratory programming” as an open-
ended programming process, where programmers 1) make use of
external resources (e.g., the web) to explore and generate ideas;
and 2) use prototyping and experimentation to iterate through
different ideas [16]. However, novice programmers encounter many
challenges when finding and deciding ideas during open-ended
programming [18, 24]. To help students explore ideas, some prior
works provide a gallery of examples they could request on-demand
during programming [28, 29]. However, as shown by Wang et al. in
an interview study on novices’ example use, many students do not
feel motivated to use examples to explore different ideas once they
start programming. Without leveraging support such as examples to
understand what is possible to build in their projects, students can
instead plan and build simple projects that they are familiar with,

Idea Builder: Motivating Idea Generation and Planning for Open-Ended Programming Projects through Storyboarding

without exploring and learning new programming concepts and
APIs [18, 19]. These findings show students’ needs to explore ideas
during the planning phase of open-ended programming, which
examples can potentially support. However, no prior work has
evaluated the impact of having access to examples during planning,
on students’ planning and programming outcomes. Additionally,
many systems exist to support closed-ended planning, e.g. through
pseudocode (e.g., [18]), flowcharts (e.g., [14]), and UML diagrams
(e.g., [1]), but these systems are less relevant for creative, open-
ended novice projects.

3 THE IDEA BUILDER SYSTEM

3.1 Design Goals
We built Idea Builder with the following design goals:

e DG1: Help students creatively express a variety of ideas that
map easily to programming code.

e DG2: Help students explore the space of possible ideas that
are well-supported by their target programming environ-
ment.

e DG3: Help students easily transition from planning to pro-
gramming.

We built Idea Builder? in a two-stage process. The first stage
focused on the “storyboarding” feature for Idea Builder, which
aimed to achieve DG1. The second stage focused on the “example”
& “translation” feature, which aimed to achieve DG2 and DG3.
Feature 1: The “Storyboarding” Feature. This feature aims to
allow students to quickly prototype ideas that are possible in Snap!,
such as mechanics, movements, and interactions (DG1).

Step 1: Define Actors. To bridge between visual storytelling and
planning for an interactive programming project, Idea Builder
prompts users to define actors. A student can search and click
on “use” to copy actors and backgrounds in a gallery of images (Fig-
ure 1 - 2), or upload images on their own. An actor maps to a sprite
in Snap! (similar to an Object in object-oriented programming).

Step 2: Make Storyboards. Next, a student can build a storyboard
to express a feature they are interested in building, such as “a
fruit drops to the ground,” or “a goat jumps over the platforms”
Idea Builder allows making a wide variety of storyboards that will
translate easily into Snap! programs through 4 key features:

1. Making frames. By clicking on an actor or a background users
can copy it to a frame of their storyboard. Within each storyboard,
several frames can be created to indicate how a mechanic works
in action. For example, Figure 1 shows that after a user clicks on
the green flag, the sticks will start to fall from the tree. This helps
the student plan and communicate movement, interaction, and
animation, which are central parts of interactive Snap programs.

2. Define events. Games and animations in Snap! commonly
include user interactions, which consist of user-generated events.
To express those events, Idea Builder provides an “events” category.
There are 6 pre-defined events, which students can directly click
to move to their storyboards (e.g., when the green flag is clicked;
when the key is pressed; and when the mouse is clicked).

’Idea Builder is an open-source software that can be downloaded at
github.com/emmableu/Idea-Builder.

1404

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

3. Draw motions. Users can draw a trajectory to describe actor
movement. As an example, to describe actor movements, a student
can add the sticks’ falling trajectory by clicking on the “Add motion”
button, and drawing a trajectory of the sticks falling from the tree
(Figure 1).

4. Write textual descriptions. As prior work shows that students
preferred to combine text and images to express their ideas [19], Idea
Builder also allows students to add descriptions of each storyboard
on the right section named “Storyboard Notes”.

Feature 2: The “Example” Feature. The “example” feature aims
to achieve DG2 - to help students explore what is possible in Snap/,
so that they can plan interesting and ambitious features. To do that,
Idea Builder links example animations to actors that they could
directly apply to their plans. As shown in Figure 1, when selecting
actors, one can click on the “®” sign to explore a gallery of example
actors. The example actor gallery is sorted into four categories:
Surrounding Actors, Main Actors, Tools/Accessories, and Buttons.
Under each example actor, they can view an animation of an actor
(called “example mechanic”), which shows the potential usage of
the actor. For example, the top-right of Figure 1 shows a potential
usage of three actors: snow, fish, and star. The animated example
mechanic of the “star” actor is to create a moving background with
many small, twinkling stars. Specifically, the example mechanics we
presented were designed to 1) be easy to implement with the blocks
available in Snap!; 2) encourage students to use the full variety of
APIs that they had learned, including more advanced features like
cloning.

Feature 3: The “Translation” Feature.

Moving from planning to programming (DG3), a student can click
the “download code” button (“<>” on Figure 1, Reference 3). This
button enables downloading an XML file as the starter code for their
Snap! program. The provided code creates sprites corresponding
to each actor, with appropriate costumes and starting positions.
It also includes basic code for moving sprites as per events and
movements from the storyboards. The goal of the starter code is
not to do the students’ programming for them, but rather to allow
them to dive right into programming more interesting mechanics,
rather than trivial setup code.

To translate a plan into students’ starter code, Idea Builder uses
human-authored synthesizing rules, which interpret properties
such as actors’ positions, clones, movements, events, and conversa-
tions, and generate code that can reproduce the storyboard with
the most frames in a student’s storyboards>.

To generate starter code, Idea Builder calculates the changes be-
tween frames and uses them to infer actor movements, appearance
alterations, and dialogues, translating these into Snap! code. It also
utilizes the “events”® users indicated in the storyboard, translat-
ing them into corresponding “hat blocks” in Snap!. This process
involves three steps: First, generate code that positions each actor
as defined in the storyboard, with the same size and appearance as
in the first frame of the storyboard. This is done using blocks such
as “when green flag clicked”, followed by “set size to”, and “go to x:

3As it is challenging to infer transition rules between multiple storyboards, Idea Builder
only selects the longest storyboard, and try to reproduce the behavior only on the
longest storyboard.
“Events are what triggers the code to run, such as “when green flag clicked”, or “when
space key pressed”.

https://github.com/emmableu/Idea-Builder

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Stick Catching Game

) Sticks falling from the tree.
Sticks falling from © ‘ \dd a new actor [l \‘ \

Actors \ \
the tree. E o

My Storyboards

m b o =
My Drafts ©] @ .7 ()
= DraftStoryboard 1 [R T eworon v B
> bowl can.
L]

sticks

> sticks can

> Example gif

Ot < b OO AR e

a CLEAR BACKDROP.

X ovv | wey
) |

Wengran Wang et al.

Actors e

Storyboard
Notes:

snow e fish star

When the green flag is
clicked, the sticks will start
to fall from the tree.

v Example gif v Example gif

Figure 1: The Idea Builder interface. Students can make storyboards that express their game mechanics and actor interactions
(1). They can also click on the “®” button to view animated mechanics, for example, actors (2). Finally, they can click on the “<
>” button to download an executable starter code for Snap!, synthesized from their storyboards (3).

_y: . If the user specifies multiple actor clones, the code gener-
ates clones at the indicated positions. For instance, the generated
program in Figure 1 starts by placing 4 stick clones at the top of the
stage, with space between them. Second, generate code for the actor
to respond to specified events. For instance, if the user indicates the
actor’s movement with the right arrow key, generate code using the
“when right arrow key pressed” block. Third, create movements that
imitate the motions drawn by students. For example, in Figure 1,
the generated program uses a “repeat 100” and “change y by -3” to
simulate sticks gradually falling towards the ground.

As a limitation, the generated examples can be of lower qual-
ity compared to curated, human-authored examples. For instance,
instead of using a loop structure to create the four sticks (seen
in Figure 1 bottom-right), the generated example employs four
separate statements for precise placement.

4 EVALUATIONS

We describe two small-scale deployments of Idea Builder: Deploy-
ment 1 investigates students’ self-perceived experiences using the
“storyboarding” feature in Idea Builder, while Deployment 2 includes
all 3 features in a high school coding workshop, and investigates
the usefulness of the “example” and “translation” features.

4.1 Deployment 1

The primary goals of Deployment 1 were to 1) assess whether Idea
Builder’s storyboarding is an effective planning medium for open-
ended projects, as suggested by prior work [19] and; 2) understand
why this might be the case (i.e., affordances of IdeaBuilder and
storyboarding in general).

Participants and Procedure: We recruited participants from a
high school internship program, where students learn Snap!, and
build computing-infused programs for instructors. The study took

1405

place over 2 afternoons, during the COVID pandemic, and was
held over Zoom. Each afternoon, students spent an hour using
Idea Builder to plan for a new open-ended project and then spent
one to two hours implementing their plans in Snap!. Additionally,
on the afternoon of Day 2, between storyboarding and planning,
students took 20 minutes to share their storyboards with their peers
in breakout rooms, each room including 5 to 7 students. At the end
of each day, we reached out to consented students (5 on Day 1 and
4 on Day 2) to invite them to a 10-minute 1-1 interview, where
we asked students about their experience planning their projects
and communicating ideas. Over the two days, a total of 7 students
attended these interviews. 8 consented students® indicated their
demographics in a pre-survey. The students were all Females, with
3 self-reported ethnicities as Biracial/Multiracial, 2 Asian, 2 White,
and 1 Black. Students self-reported as having some (6) or very
strong (2) programming skills.

Analysis: We next employed the thematic analysis method [3]
to analyze the transcribed interview data. Two researchers first
independently open-coded all 7 interview documents to collect all
potential codes that described students’ experience and perceptions
with their planning, programming, and communication. The two
researchers then merged their codes and sorted them into high-
level themes by grouping codes that explain similar phenomena.
Next, they organized these themes into a codebook and generated
definitions of them. One researcher then used the codebook to
review the original interview documents to confirm the themes and
the definitions. Our final themes revealed two key activities students
engage in when using Idea Builder: generating and communicating
ideas.

SWe did not retain students’ names during interviews, so we report all consented
students’ demographics, instead of the 7 students who attended interviews.

Idea Builder: Motivating Idea Generation and Planning for Open-Ended Programming Projects through Storyboarding

Results (1): Generating ideas. When asked about how they
came up with their ideas, some students mentioned that having
access to a gallery of actors helped them generate ideas: “We saw
a dinosaur in there. Then we saw a unicorn, which is what kind of
inspired my little fantasy storyboard things.” (P2), explained that
“scroll[ing] through the icons ... gave me some inspiration”. One
student added that the interface helped them get started (“get the
ball rolling”), but afterward was not as necessary, since “once you
have one idea you can start building off of each other” (P6). P6 also
suggested that to help students generate “more ideas about events
that could happen in the game”, it would be helpful to include “a list
of common actions that happen” in Snap!.

Results (2): Communicating ideas. Students noted that Idea
Builder’s visualizations helped with explaining and communicat-
ing ideas: 4 students mentioned that being able to visualize ideas
was helpful for communication and that if they “had just ... ver-
bally explained it, [then others] wouldn’t have understood what I
was thinking” (P5). Students appreciated that Idea Builder broke
down a design project into storyboards and frames. Some noted
similarities between the frames in Idea Builder on the Snap! stage,
as “different slides [i.e., frames] ... mimic what you would see on Snap!
in different stages”(P1), which makes me feel like I have part of a
project that’s actually there”(P3), and was “a lot simpler than actu-
ally having to go into Snap! and do it”(P1). Some discussed that the
process of planning is useful to “collect [their] ideas and organize
them better”(P5), and that “being able to use multiple storyboards for
different mechanics really helped my group member envision what
I wanted for my game”. In addition, two students mentioned that
combining storyboards and textual descriptions were useful when
explaining ideas, as “having the game mechanics written down next
to the storyboard”(P6) provides a “side by side” view, and makes it
easier to express a “clear idea of ... what we can do in our game” (P1).

4.2 Deployment 2

In Deployment 2, we investigated the usefulness of the example
mechanics, as well as the generated starter code.

Participants: We recruited 20 high school students for a full-
day programming workshop. There were 6 female and 14 male
students, including 7 White, 5 Asian, 6 Black or African American,
1 Caribbean Islander, and 1 Hispanic or Latino student. Reported
prior CS experience follows: 5 had no programming experience, 10
had completed a few programming tutorials before, 2 had taken one
course in programming, 2 had taken two courses in programming,
and 1 had taken more than two courses in programming.

Procedure: In the morning, students completed a 2-hour Snap!
introduction, where they followed the instructor to build a game in
Snap!, while learning basic programming concepts and Snap! APIs:
loops, conditionals, concurrency, cloning, and broadcast. In the
afternoon, students completed a 20-minute storyboarding activity
in Idea Builder. To prompt students to use example mechanics,
students were required to select a minimum number of actors to
use in their storyboards from various categories. Students then used
10 minutes to communicate their ideas with a peer. After planning,
students downloaded starter code synthesized from Idea Builder and
used it to build an open-ended project in Snap!. After programming,
students were asked: “Was having access to the starter XML helpful

1406

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

for you to get started with programming?”, where they provide a
binary response (helpful/unhelpful) with an explanation.

Within-subject conditions: To compare the usefulness of ex-
ample mechanics, we designed within-subject conditions, where, in
each student’s Idea Builder interface, a random half of the example
actors were attached to an animated example mechanic using that
actor, while another random half did not have animated example
mechanics.

Analysis: We collected students’ submissions of Idea Builder
and final projects along with their design survey responses. To
examine the impact of example mechanics on students’ preferences
for actors in their plans and programs, we first defined the “sto-
ryboard use rate” for an example actor. This rate represents the
percentage of students who saved and used the actor in at least one
of their storyboards. For each example actor, such as the star, we
calculated the “storyboard use rate” among two groups: students
who had access to the animated example mechanics of the star actor
(animation group) and those who did not (no-animation group®).
Likewise, we examined the “program use rate” among students who
did not view animations for a specific actor and those who had
access to animations for that actor. The “program use rate” refers
to the percentage of students who programmed at least one feature
different from the starter code translated from Idea Builder. This
signifies meaningful engagement with programming the respective
actor.

Next, to understand how students used the generated starter code
from Idea Builder, we compared each student’s starter code with
their final submissions, and inspected the types of blocks students
were more likely to keep in the starter code and actually integrate
into their final project code. To do that, we first defined the “kept
rate” of a block type (e.g. the “move” block) as the number of blocks
of that type from the starter code that were kept in students’ final
code, divided by the number of times that block type appeared in the
starter code. We ranked the “kept rate” of all blocks that appeared
more than once in all student programs to analyze what blocks
from the starter code were more/less preferred by the students.

Finding 2: Students who saw an animation of an exam-
ple actor are more likely to use it in their storyboards and
significantly more likely to use it in their programs.

We found that students who saw an animation of an example
actor (the animation group) are somewhat more willing to use
the example actors, compared to the no-animation group. For an
average example actor, its “storyboard use rate” among the ani-
mation group is 16.8% (min = 0, max = 45.5%, std = 0.148), which
is higher than the example actors’ storyboard use rate among the
no-animation group (mean = 13.0%, min = 0, max = 44.4%, std =
0.119). A paired t-test shows that this difference was not significant,
with a small effect size (p = 0.12, Cohen’s d = 0.28).

We also found that the animation group had significantly higher
program use rate than the no-animation group - for an average
example actor, its “program use rate” among the animation group is
9.17% (min = 0, max = 44.4%, std = 0.13), which is more than twice of
the program use rate among the no-animation group (mean = 4.44%,
min = 0, max = 22.2%, std = 0.06). This difference is significant, with a

Unlike the “experiment” and “control” groups in controlled between-group experi-
ments, the “animation” and “no-animation” groups differ for each actor. This is because,
for each student, a random half of the actors will have example mechanics.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

medium effect size (p = 0.037, d = 0.45). This suggests that presenting
example actors with animated mechanics helped students to become
more willing to integrate this actor into their plans and projects.

This shows presenting students with an animated example me-
chanic can potentially guide students towards planning and build-
ing features that are afforded by the programming environment
and applying more challenging programming structures and APIs
into their code.

Finding 3: Many students perceived translating plans to
code as helpful. Our rating data shows that most students (90%,
18/20) rated that having access to the starter code was helpful,
explaining that it “transport my backgrounds and sprites over imme-
diately instead of trying to recreate them.”, and that it “saved their
time”. Two students, on the other hand, rated that having access to
the starter code was not helpful, explaining that “I did not use any
of the code that it generated as I could make the code that I actually
needed myself, and the code was just the positions of the sprites in the
presentation which was only a rough draft of the game.”.

By comparing each student’s translated starter code to their sub-
mitted programs, we found that most sprites from the starter
code, and half of the code from the starter code were kept
in students’ final submissions. Among the 20 students, the gen-
erated starter code includes an average of 49 blocks (std = 42.22),
from an average of 8.25 sprites (std = 2.02). On the other hand, the
20 students’ final submitted code includes an average of 87.3 blocks
(std = 48.38), from an average of 8.8 sprites (std = 3.38). We found
that students on average kept 50.1% of the starter code (std = 0.282),
showing that about half of the starter code was helpful. Inspecting
the kept rate, we found that the synthesized hat blocks, appear-
ance blocks, and motion blocks were the most likely to be
kept. We found that the blocks that had above average kept rate
are: “when green flag clicked” (100%), “hide” (92.9%), “show” (77.0%),
“set size t0” (66.7%), “say _ for 2 seconds” (60%), “change y by” (55%),
and “go to x:_, y:_” (52.2%). We also found that the 2 blocks that had
the lowest kept rate are “create a clone of myself” (0), and “when I
start as a clone” (7.55%). As discussed in Section 3, the synthesized
cloning code are sometimes not clean or high quality (e.g., using
multiple cloning statement rather than a “repeat” loop). Therefore,
students may be less likely to keep these blocks, due to their lack
of high quality.

5 DISCUSSION & LIMITATIONS

In this work, we presented Idea Builder, a storyboarding-based
planning system to help novices visually express their ideas while
having access to planning examples, and synthesizes programming
starter code after storyboarding. Through two studies in high school
coding workshops, we found that students discussed feeling creative
and feeling easy to communicate ideas when using Idea Builder;
having access to animated example mechanics of an actor helped
students to plan and program those actors; and the synthesized
starter code from Idea Builder was perceived by many students as
useful and time-saving. The usage of Idea Builder can be extended
to all types of visual, interactive programming environments (e.g.,
Scratch [20]), to help students generate ideas and communicate their
plans. It can be used not only in workshops, but also in computing
classrooms for open-ended programming project planning and

1407

Wengran Wang et al.

implementation. Our work has the following teaching and research
implications:

1. Students enjoy flexible modes of idea expression. Ob-
servations by instructors revealed diverse styles in students’ sto-
ryboard creation. For instance, some students consolidated all po-
tential game scenes into a single storyboard instead of using one
for each game mechanic. Others opted for a single core frame but
used lengthy text to describe the game. Additionally, some students
viewed storyboards as actor presentations, placing one actor with
their properties in each frame. Notably, all students heavily utilized
the “motion” feature, indicating a strong need to convey movements
in their plans. This highlights the necessity for tool designers to
allow flexible expression of students’ ideas.

2. Introducing examples early helps. We found that stu-
dents were more willing to use example mechanics when they are
prompted during during planning. One potential explanation is that
students often face challenges in open-ended programming due to
not knowing the possibilities [17, 28]. Offering feasible ideas dur-
ing planning through example mechanics could guide students in
exploring new programming APIs and concepts. By providing a fea-
sible idea during planning, example mechanics have the potential
to help direct students toward practicing some new programming
APIs and knowledge. For example, instructors may author example
mechanics to prompt students to practice cloning, such as stars
with blinking effects.

3. Translating storyboards to code is challenging. Our work
revealed several challenges in synthesizing code based on story-
boards. Idea Builder’s users built storyboards for planning and
ideation, without knowing that this data is later used to provide
starter code, and therefore, may not provide structured data that
can be easily interpreted into code. However, we found that stu-
dents still kept half of the starter code (50.1%) and the majority of
the sprites, and rated the synthesized starter code as useful. This
shows that synthesizing starter code can help students set up their
program. However, it is unclear whether this might be helpful or
detrimental to students’ programming practice.

Our study has limitations: we relied on qualitative data from
a small number of participants, limiting the generalizability of
our findings to other student groups. Moreover, our assessment
only considered students’ self-assessments, and did not consider
instructors’ experiences and the learning impact of accessing code
examples. It’s also essential to further explore why some students
didn’t enjoy using Idea Builder and the translation feature, and how
Idea Builder might have failed to meet their goals and needs. This
exploration can guide future improvements to the system. Future
work should explore the learning impact and instructor experiences
of similar systems with a larger population, as well as students’
ideation process by inspecting how students storyboard and how
they connect their ideas to programming.

6 ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1917885.

REFERENCES

[1] Carl Alphonce and Blake Martin. Green: a pedagogically customizable round-
tripping uml class diagram eclipse plug-in. In Proceedings of the 2005 OOPSLA

Idea Builder: Motivating Idea Generation and Planning for Open-Ended Programming Projects through Storyboarding

[2

[

=

[10]

[11]

[12]

[13]

[14

[15

workshop on Eclipse technology eXchange, pages 115-119, 2005.

Phyllis C Blumenfeld, Elliot Soloway, Ronald W Marx, Joseph S Krajcik, Mark
Guzdial, and Annemarie Palincsar. Motivating project-based learning: Sustaining
the doing, supporting the learning. Educational psychologist, 26(3-4):369-398,
1991.

Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.
Qualitative research in psychology, 3(2):77-101, 2006.

Sharon Lynn Chu and Francis Quek. The effects of visual contextual structures
on children’s imagination in story authoring interfaces. In Proceedings of the
2014 conference on Interaction design and children, pages 329-332, 2014.
Stephen Cooper, Wanda Dann, and Randy Pausch. Alice: a 3-d tool for intro-
ductory programming concepts. In Journal of Computing Sciences in Colleges,
volume 15, pages 107-116. Consortium for Computing Sciences in Colleges, 2000.
Michael A Evans, Brett D Jones, and Sehmuz Akalin. Using video game design
to motivate students. Afterschool Matters, 26:18-26, 2017.

Diana Franklin, David Weintrop, Jennifer Palmer, Merijke Coenraad, Melissa
Cobian, Kristan Beck, Andrew Rasmussen, Sue Krause, Max White, Marco Anaya,
et al. Scratch encore: The design and pilot of a culturally-relevant intermediate
scratch curriculum. In Proceedings of the 51st ACM technical symposium on
computer science education, pages 794-800, 2020.

Dan Garcia, Brian Harvey, and Tiffany Barnes. The beauty and joy of computing.
ACM Inroads, 6(4):71-79, 2015.

Terrell Glenn, Ananya Ipsita, Caleb Carithers, Kylie Peppler, and Karthik Ramani.
Storymakar: Bringing stories to life with an augmented reality & physical proto-
typing toolkit for youth. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pages 1-14, 2020.

David Gonzalez-Maldonado, Alex Pugnali, Jennifer Tsan, Donna Eatinger, Diana
Franklin, and David Weintrop. Investigating the use of planning sheets in young
learners’ open-ended scratch projects. In Proceedings of the 2022 ACM Conference
on International Computing Education Research-Volume 1, pages 247-263, 2022.
Shuchi Grover, Satabdi Basu, and Patricia Schank. What we can learn about stu-
dent learning from open-ended programming projects in middle school computer
science. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, SIGCSE 18, page 999-1004, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450351034. doi: 10.1145/3159450.3159522. URL
https://doi.org/10.1145/3159450.3159522.

Mark Guzdial. Learner-centered design of computing education: Research on
computing for everyone. Synthesis Lectures on Human-Centered Informatics, 8(6):
1-165, 2015.

Brian Harvey, Daniel D Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel Ar-
mendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. Snap!(build
your own blocks). In Proceeding of the 44th ACM technical symposium on Computer
science education, pages 759-759, 2013.

Danial Hooshyar, Rodina Binti Ahmad, Moslem Yousefi, Moein Fathi, Shi-Jinn
Horng, and Heuiseok Lim. Sits: A solution-based intelligent tutoring system
for students’ acquisition of problem-solving skills in computer programming.
Innovations in Education and Teaching International, 55(3):325-335, 2018.

Wei Jin, Albert Corbett, Will Lloyd, Lewis Baumstark, and Christine Rolka. Eval-
uation of guided-planning and assisted-coding with task relevant dynamic hint-
ing. In International Conference on Intelligent Tutoring Systems, pages 318-328.
Springer, 2014.

1408

(16]

[17]

(18]

[19

[23

[24

[26]

[27

[28

™~
29,

[30

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Mary Beth Kery and Brad A Myers. Exploring exploratory programming. In 2017
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
pages 25-29. IEEE, 2017.

Amy] Ko, Brad A Myers, and Htet Htet Aung. Six learning barriers in end-user
programming systems. In 2004 IEEE Symposium on Visual Languages-Human
Centric Computing, pages 199-206. IEEE, 2004.

H Chad Lane and Kurt VanLehn. A dialogue-based tutoring system for beginning
programming. In FLAIRS Conference, pages 449-454, 2004.

Ally Limke, Alexandra Milliken, Veronica Cateté, Isabella Gransbury, Amy Isvik,
Thomas Price, Chris Martens, and Tiffany Barnes. Case studies on the use of
storyboarding by novice programmers. In Proceedings of the 27th ACM Conference
on on Innovation and Technology in Computer Science Education Vol. 1, pages 318—
324, 2022.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. The scratch programming language and environment. ACM Transactions
on Computing Education (TOCE), 10(4):1-15, 2010.

David McNeill. Gesture and thought. University of Chicago press, 2008.

Denise Powell, Peter Gyory, Ricarose Roque, and Annie Bruns. The telling board:
An interactive storyboarding tool for children. In Proceedings of the 17th ACM
Conference on Interaction Design and Children, IDC 18, page 575-580, New York,
NY, USA, 2018. Association for Computing Machinery. ISBN 9781450351522. doi:
10.1145/3202185.3210778. URL https://doi.org/10.1145/3202185.3210778.

Aslina Saad and Suhaila Zainudin. A review of project-based learning (pbl) and
computational thinking (ct) in teaching and learning. Learning and Motivation,
78:101802, 2022.

Elliot Soloway, James Spohrer, and David Littman. E unum pluribus: Generating
alternative designs. Teaching and Learning Computer Programming, pages 137—
152, 1988.

Jakita O Thomas, Yolanda Rankin, Rachelle Minor, and Li Sun. Exploring the
difficulties african-american middle school girls face enacting computational
algorithmic thinking over three years while designing games for social change.
Computer Supported Cooperative Work (CSCW), 26(4-6):389-421, 2017.

Khai N Truong, Gillian R Hayes, and Gregory D Abowd. Storyboarding: an
empirical determination of best practices and effective guidelines. In Proceedings
of the 6th conference on Designing Interactive systems, pages 12-21, 2006.

Sveva Valguarnera. Eppics: Enhanced personalised picture stories. In Interaction
Design and Children, pages 620-623, 2021.

Wengran Wang, Archit Kwatra, James Skripchuk, Neeloy Gomes, Alexandra
Milliken, Chris Martens, Tiffany Barnes, and Thomas Price. Novices’ learning
barriers when using code examples in open-ended programming. In Proceedings
of the 26th ACM Conference on Innovation and Technology in Computer Science
Education V. 1, ITiCSE ’21, pages 394-400, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450382144. doi: 10.1145/3430665.3456370.
URL https://doi.org/10.1145/3430665.3456370.

Wengran Wang, Audrey Le Meur, Mahesh Bobbadi, Bita Akram, Tiffany Barnes,
Chris Martens, and Thomas Price. Exploring design choices to support novices’
example use during creative open-ended programming. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 1, pages 619-625,
2022.

Margaret Wilson. Six views of embodied cognition. Psychonomic bulletin &
review, 9(4):625-636, 2002.

https://doi.org/10.1145/3159450.3159522
https://doi.org/10.1145/3202185.3210778
https://doi.org/10.1145/3430665.3456370

	Abstract
	1 Introduction
	2 Related Work
	3 The Idea Builder System
	3.1 Design Goals

	4 Evaluations
	4.1 Deployment 1
	4.2 Deployment 2

	5 Discussion & Limitations
	6 Acknowledgements
	References

