
Runtime Analysis with Variable Cost

Per Kristian Lehre
p.k.lehre@bham.ac.uk

University of Birmingham
United Kingdom

Andrew M. Sutton
amsutton@d.umn.edu

University of Minnesota Duluth
USA

ABSTRACT

The usual approach in runtime analysis is to derive estimates on the

number of fitness function evaluations required by a method until

a suitable element of the search space is found. One justification for

this is that in real applications, fitness evaluation often contributes

the most computational effort. A tacit assumption in this approach

is that this effort is uniform and static across the search space.

However, this assumption often does not hold in practice: some

candidates may be far more expensive to evaluate than others. This

might occur, for example, when fitness evaluation requires running

a simulation or training a machine learning model.

Despite the availability of a wide range of benchmark functions

coupled with various runtime performance guarantees, the runtime

analysis community currently lacks a solid perspective of handling

variable fitness cost. Our goal with this paper is to argue for incor-

porating this perspective into our theoretical toolbox. We introduce

two models of handling variable cost: a simple non-adaptive model

together with a more general adaptive model. We prove cost bounds

in these scenarios and discuss the implications for taking into ac-

count costly regions in the search space.

CCS CONCEPTS

• Theory of computation→ Theory of randomized search

heuristics.

KEYWORDS

runtime analysis, variable cost model, adaptive strategies

ACM Reference Format:

Per Kristian Lehre and Andrew M. Sutton. 2023. Runtime Analysis with

Variable Cost. In Genetic and Evolutionary Computation Conference (GECCO

’23), July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3583131.3590432

1 INTRODUCTION

A typical assumption in the computational complexity of evolution-

ary algorithms is that the process of evaluating the fitness function

supplies the greatest contribution to the runtime, but that this cost

is uniform over all search points. However, in many real world appli-

cations the cost of evaluating the fitness of a candidate solution can

depend directly on its structure, and therefore varies throughout

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590432

the search process. For example, this can occur in structural design

applications, protein structure prediction [6], data streaming, robot

exploration [9], or tuningmachine learningmodels [10, 12]. In these

situations, it has been observed that fitness function evaluations

may only have a high cost in certain parts of the search space [10].

So far, settings in which the cost of fitness evaluation varies

over the space have not been addressed by the runtime analysis

community. With this paper, we provide a first step in this direction

by introducing and analyzing variable cost models.

We first introduce a simple non-adaptive cost model in which

an algorithm must optimize a function with both hidden cost and

fitness variables. We show that a simple strategy of fitness tie-

breaking to favor points that were cheaper at evaluation time can

lead to asymptotically faster runtimes. We then consider a more

refined adaptive cost model in which the algorithm may choose

to abandon the evaluation of search point if it decides that it has

spend too much time on it. We present a cost-adaptive fitness level

theorem to provide general bounds on optimization costs in this

setting. We also consider a simple benchmark function equipped

with a costly region and prove runtime bounds on a cost-adaptive

algorithm on this function.

The remainder of the paper is organized as follows. In the next

section we review related work and introduce some technical pre-

liminaries. We then introduce the non-adaptive cost model in Sec-

tion 3 and study several scenarios. In Section 4 we introduce the

non-adaptive cost model and the Cost-adaptive Fitness Level Theo-

rem. We conclude the paper in Section 5.

2 BACKGROUND

2.1 Related Work

Costly fitness functions are often handled in practice by so-called

surrogate models or meta-models [6, 10, 11]. These are some kind of

approximation of the true fitness function using machine learning

or statistical models. Most work in this area is focused on contin-

uous search spaces, but some strategies also exist for surrogate

models in discrete domains [1].

In the continuous setting, the field of Bayesian optimization deals

with optimizing expensive functions by assuming the objective

function is drawn from a stochastic process. Instead of optimizing

the expensive function directly, the strategy is to only query the

objective function periodically to place a prior over the distribution,

and then maximize a cheaper acquisition function to propose the

next query. This process repeats until a budget is exhausted [9].

Recent work in this area has focused on acquisition functions that

prefer cheaper function points to query in order to reduce the

overall computational cost [9, 12].

Our approach differs significantly from the case of surrogate

modeling in that we are still interested in directly optimizing the

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lehre and Su�on

fitness function, but try to take advantage of the fact that some

regions of the space may be cheaper to move through, and thus it

becomes sensible to balance the evaluation cost with the progress

of the search algorithm.

Mengshoel et al. [10] consider the trade-off between exploration

and exploitation in stochastic local search (SLS) algorithms applied

to computationally costly fitness functions. In particular, they point

out that SLS strategies like WalkSAT often employ a noise step

with some probability (selecting a random neighbor, regardless

of fitness), otherwise they perform a greedy step by choosing the

fittest element of the neighborhood. The noise step is comparatively

cheap, as it requires only a single fitness evaluation, whereas the

greedy step requires the evaluation of the entire Hamming neigh-

borhood. The authors model the SLS process as a Markov chain

and empirically analyze the hitting time (incorporating cost) as a

function of noise step probability.

Jansen and Zarges [5] cautioned against over-simplified views of

counting function evaluations and demonstrated that different ways

of accounting for the cost of algorithm modules can lead to contra-

dictory results. This underscores the importance of understanding

how to deal with evaluation cost properly when conducting theo-

retical research.

2.2 Preliminaries

Consider any finite set X which we call the “search space” and any

function 5 : X → R, which we will call the fitness function. We

consider a scenario where evaluating the 5 -value of any search

point G is associated with a “cost” 6(G) given by a cost function

6 : X → N.

Given 5 and 6, we define the cost of an algorithm optimizing

5 as the total cost of every fitness evaluation required to locate

the optimum. The classical idea of runtime is recovered by setting

6(G) = 1 for all G ∈ X.

For = ∈ N, let [=] := {1, 2, · · · , =}.

The following notation will be used in Section 4. For any finite

set X, assume that (�1, . . . , �<) is a partition of X. Then, for all

9 ∈ [<] wewrite�≥ 9 := ∪
<
8=9� 9 . Assume furthermore that for each

9 ∈ [<], (� 90, . . . , � 9< 9) is a partition of� 9 for some< 9 ≥ 0. Then,

for all 9 ∈ [<] and 8 ∈ [< 9], we write �≥ 98 :=
(
∪
< 9

:=8
� 9:

)
∪�≥ 9+1.

For any function 5 : X → R, we say that a partition is 5 -based if

for all G,~ ∈ X, 5 (G) < 5 (~) if and only if there exist 8 < 9 such

that G ∈ �8 and ~ ∈ � 9 .

In Section 3 we will make use of the following two important

drift theorems, which we restate here for completeness.

Theorem 1 (Witt [13]). Consider an algorithm A maximizing

a function 5 and a partition of the search space into nonempty sets

�1, . . . , �< where for all G ∈ �8 , ~ ∈ � 9 with 1 ≤ 8 < 9 ≤ <, it holds

that 5 (G) < 5 (~). If ?8 is a lower bound on the probability that a step

ofA escapes fitness level �8 , independently of previous steps, then for

any X > 0 the first hitting time of �< is at most

<−1∑
8=1

1

?8
+ X

with probability at least 1−4−
X
4 ·min{ XB ,ℎ} , for any finite B ≥

∑<−1
8=1

1
?2
8

and ℎ = min{?8 | 8 = 1, . . . ,< − 1}.

Theorem 2 (Lengler and Spooner [8]). Let (-C)C≥0 be a sto-

chastic process, and let 1 ∈ N and 0 < X < 1. If for all C ≤ 1,

E[-C − -C+1 | -C = G] ≥ XG , then � [-1 | -0] ≤ -0 (1 − X)1 ≤

-04
−X1 . If for all C ≤ 1, E[-C − -C+1 | -C = G] ≤ XG , then

� [-1 | -0] ≥ -0 (1 − X)
1 ≥ -04

−2X1 for X ≤ 0.797.

3 NON-ADAPTIVE COST MODEL

For our first model, we assume that the fitness function 5 depends

on a subset I5 ⊆ [=] decision variables, and that the cost function

6 depends on a subset I6 ⊆ [=] decision variables. Moreover, we

assume that I5 and I6 are hidden variables in the sense that they

are not known to the algorithm. The fitness evaluation component

is thus somewhat similar to the setting of unknown problem lengths

in which only a subset of bits are fitness relevant [2–4].

In their work on stochastic local search, Mengshoel et al. [10]

consider three variants of the cost function, linear, quadratic and

exponential. They point out that experiments suggest a linear cost

model 6(G) = U |G | + V is a reasonable approximate for various

applications. This also seems to be the case in the continuous setting,

e.g., Luong et al.[9] also use a linear cost function and point out

that cost is often assumed to be linear in real applications.

Thus, for this section, we employ a linear cost function with

U = V = 1, i.e.,

6(G) = 1 +
∑
8∈I6

G8 .

We point out, however, that the runtime results we present in this

section are easily generalized to arbitrary U and V parameters.

We first consider the classical (1+1) EA (Algorithm 1). Note that

when fitness evaluation is a bottleneck, it is advisable to store the

result to eliminate unnecessary function calls [5].

Algorithm 1: (1+1) EA

Choose G from {0, 1}= uniformly at random

5G ← value of 5 (G)

for C = 0, 1, 2, . . . until termination condition met do

Obtain ~ by flipping each bit in G with probability 1/=.

5~ ← value of 5 (~)

if 5~ ≥ 5G then

G ← ~

5G ← 5~
end if

end for

We also introduce a slight variation to the (1+1) EA that, all

else being equal, prefers points that are cheaper to evaluate. This is

similar to some strategies in continuous optimization of costly black-

box functions in which both the function value and the function

query cost are minimized in parallel [12]. This variant, called the

Cost-Aware (1+1) EA, is illustrated in Algorithm 2. Essentially, it is

identical to Algorithm 1, except that is breaks fitness ties by taking

the solution that was cheaper to compute.

We consider the stochastic process (.C)C ∈N where .C is the ran-

dom variable corresponding to the cost 6(~) to compute 5 (~) in

line 5 on iteration C of Algorithm 2.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Algorithm 2: Cost-Aware (1+1) EA

Choose G from {0, 1}= uniformly at random

(5G , 6G) ← value of 5 (G), cost required to compute it

for C = 0, 1, 2, . . . until termination condition met do

Obtain ~ by flipping each bit in G with probability 1/=.

(5~, 6~) ← value of 5 (~), cost required to compute it

if 5~ > 5G or
(
5~ = 5G and 6~ < 6G

)
then

G ← ~

5G ← 5~
end if

end for

The following lemma supplies a general upper and lower bound

to the drift of the random cost variables during the optimization of

Algorithm 2.

Lemma 1. SupposeI5 ∩I6 = ∅ and denote by E>C the event that the

offspring produced in generation C has strictly greater fitness. Denote

by E=C the event that the fitness of the offspring generated in iteration

C is equal in fitness. Then the drift in cost for Algorithm 2 is bounded

as follows.

E [.C − .C+1 | .C = B] ≥
Pr(E>C)

=
(2B − |I6 |)

+
B Pr(E=C)

=

(
1 −

1

=

) | I6 |−1
,

E [.C − .C+1 | .C = B] ≤
Pr(E>C)

=
(2B − |I6 |) +

B

=
.

Proof. Under the event E>C , the offspring is accepted but since

I5 ∩ I6 = ∅, selection is independent of the cost variables. Each

cost variable flips with exactly probability 1/=, which yields

E
[
.C − .C+1 | .C = B ∩ E>C

]
=

B

=
−
(|I6 | − B)

=
.

Under E=C , the offspring is only accepted if its cost is reduced, which

yields the conditional drift

E
[
.C − .C+1 | .C = B ∩ E=C

]
≥

∑
8∈I6 :G8=1

1

=

(
1 −

1

=

) | I6 |−1

=
B

=

(
1 −

1

=

) | I6 |−1
,

E
[
.C − .C+1 | .C = B ∩ E=C

]
≤

∑
8∈I6 :G8=1

1

=
=

B

=
.

The bounds follow from the law of total probability. �

3.1 LeadingOnes

To begin the analysis we make the simplifying assumption that

I5 ∩I6 = ∅, i.e., the fitness and cost variables are decoupled, which

is required by Lemma 1. We also assume that |I5 | = |I6 | = =/2, but

point out that our results hold as long as both variable sets contain

Θ(=) positions each. We consider the well-known LeadingOnes

benchmark function:

5 (G) =

=∑
8=1

8∏
9=1

G8 .

Since the standard (1+1) EA simply ignores evaluation cost, every

function evaluation costs Θ(=) in expectation, and we have the

following.

Theorem 3. Let 5 be the LeadingOnes function on the variables

in I5 with |I5 | = |I6 | = =/2 with I5 ∩I6 = ∅. Then the optimization

cost of the (1+1) EA (Algorithm 1) is Θ(=3).

The strategy of preferring neutral mutations that were cheaper

to evaluate leads to a linear factor improvement, as we prove in the

following theorem.

Theorem 4. Let 5 be the LeadingOnes function on the variables

in I5 with |I5 | = |I6 | = =/2 with I5 ∩I6 = ∅. Then the optimization

cost of the Cost-Aware (1+1) EA (Algorithm 2) is Θ(=2).

Proof. In each iteration C , a strictly improving LeadingOnes

offspring ~ can be created from G if the leading zero in I5 is flipped,

while none of the 5 (G) leading ones in I5 are changed. This occurs

with probability Pr(E>C) =
1
=

(
1 − 1

=

) 5 (G)
. Similarly, the event E=C

occurs when none of the 5 (G) leading ones nor the leading zero in

I5 are changed. This event occurs with probability
(
1 − 1

=

) 5 (G)+1
.

Recall that .C denotes the random variable that measures the cost

of computing the fitness of the offspring generated in line 5 of

Algorithm 2. By Lemma 1, the cost drift is bounded as

E[.C − .C+1 | .C = B] ≥

(
1 −

1

=

) 5 (G) (
2B − =

2

)
=2

+

(
1 −

1

=

) 5 (G)+1 (
1 −

1

=

) =
2 −1 B

=

≥
B

4

(
1

=
+

2

=2

)
−

1

24=

≥
B

4

(
1

=
+

2

=2

)
−

B

24=
≥

B

24=
.

Let) be the first iteration where Algorithm 2 finds an optimal so-

lution maximizing 5 . By Theorem 1, setting ?8 = 1/(4=) ≤ Pr(E>C),

for any constant 0 < n < 1, we have

Pr

(
) ≤

=−1∑
8=0

4= + n4=2 ≤ (1 + n)4=2

)
≥ 1 − 4−n

2=/4 .

Conditioning on the event {) < (1+n)4=2}, we apply Theorem 2

to obtain the following upper bound on the total expected cost.

E


(1+n)4=2∑

C=1

.C

������.0

≤ .0

(1+n)4=2∑
C=1

4−C/(24=)

≤ .0

∫ (1+n)4=2

0
4−C/(24=)3C

≤ 4=2 (1 − > (1)),

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lehre and Su�on

since .0 ≤ |I6 | = =/2. Furthermore, since Pr() > (1 + n)4=2) ≤

4−Ω (=) and the maximum cost is 6(G) ≤ =, we have that for ev-

ery polynomial) , the contribution to the expectation vanishes

exponentially fast. Applying the law of total expectation, the upper

bound on the total cost is $ (=2). The lower bound trivially follows

from the well-known expected runtime bound on the standard

(1+1) EA on LeadingOnes together with the fact that 6(G) ≥ 1. �

3.2 OneMax

The success of Algorithm 2 on LeadingOnes is due to the fact that

it has the side effect of making significant progress minimizing

the cost function while waiting for an improvement in the fitness

function. This generous waiting time afforded by LeadingOnes

does not arise with OneMax, and the case here is not as clear.

Theorem 5. Let 5 be the OneMax function on the variables in

I5 with |I5 | = |I6 | = =/2 with I5 ∩ I6 = ∅. Then for 0 < n < 1,

the optimization cost of the Cost-Aware (1+1) EA (Algorithm 2) is

Ω(=2) ∩$ (=2 log=).

Proof. Let) ∗ be the runtime of the Cost-Aware (1+1) EA. Since

the tie breaking rule of the Cost-Aware (1+1) EA is independent of

the fitness variables,) ∗ is distributed identically to the (1+1) EA.

Applying a lower tail bound to the multiplicative drift [7, Theorem

8], Pr() ∗ ≥ 4=
4 ln= − 2=

2) = 1 − > (1) for a constant 2 > 0. We

condition on this event for the remainder of the proof.

By Lemma 1,

E[.C − .C+1 | .C = B] ≤
Pr(E>C)

=

(
2B −

=

2

)
+
B

=

=
B

=

(
2 Pr(E>C) + 1

)
−
Pr(E>C)

2
≤

3B

=
.

By Theorem 2, we have E[.C] = E[E[.C | .0]] ≥ E[.0]4
−6C/= . It is

therefore possible to bound the total optimization cost as

) ∗∑
C=1

E[.C] ≥ E[.0]

∫) ∗+1

1
4−6C/=3C

= E[.0]
(=
6

)
·
(
4−6/= − 4−6()

∗+1)/=
)
= Ω(=2),

since E[.0] = =/4 and we have conditioned on) ∗ ≥ 4=
4 ln= − 2=

2 .

The asymptotic upper bound on the optimization cost follows

immediately from the fact .C ≤ =/2 for all C ≥ 0 and the $ (= log=)

runtime of the standard (1+1) EA. �

We point out that the quadratic lower bound in Theorem 5 arises

only from the trivial upper bound Pr(E>C) ≤ 1, and therefore is

possibly too weak. Nevertheless, we conjecture that the Cost-Aware

(1+1) EA has an advantage over the standard (1+1) EA in this setting,

and that the quadratic bound is closer to the truth. Empirical support

for this conjecture is provided by Figure 1, which plots the mean

optimization time over 100 runs each for = = 100, 200, . . . , 1000 of

both Algorithms 1 and 2.

3.3 Shared fitness and cost variables

We now consider a case where the cost and fitness variables overlap.

In particular, for : = l (log=), the fitness function is LeadingOnes

200 400 600 800 1000

0.5

1

1.5

2

·106

=

co
st

(1+1) EA

Cost-Aware (1+1) EA

Figure 1: Mean optimization cost of the (1+1) EA and the

Cost-Aware (1+1) EA on OneMax with |I5 | = |I6 | = =/2. Error

bars denote standard deviation over 100 trials for each =.

on the first : bits. In this setting, we have [:] = I5 ⊆ I6 = [=],

5 (G) = 5: (G) =

:∑
8=1

8∏
9=1

G8 .

Theorem 6. Let : = l (log=). The expected cost of the standard

(1+1) EA (Algorithm 1) on :-LeadingOnes and shared linear cost is

Θ(:=2).

Proof. For the upper bound, note that the cost of each evalua-

tion is at most =, and the expected number of evaluations until a

strictly better offspring is generated is Θ(=). The function is opti-

mized after at most : improvements, so the runtime is at $ (:=2).

For the lower bound, let) ′ ≔ min{C : 5 (G) ≥ :/2}, which

cannot be larger than the runtime. Let (.C)C≥0 be the stochastic

process that corresponds to the contribution to the cost at time C

from the trailing = −:/2 bits. Clearly, if ~ is the offspring generated

in time C , we would have 6(~) ≥ .C . Moreover, since none of the

= − :/2 trailing bits are under selection before time) ′, the .C
variables may be regarded as i.i.d., and thus we may apply Wald’s

equation to bound the cost until) ′:

E

[
) ′∑
C=0

.C

]
= E[) ′] E[.0] = Ω(:=2) .

The asymptotic bound follows from E[) ′] = Ω(:=) and E[.0] =

(= − :/2)/2 = Ω(=) since : ≤ =. �

Theorem 7. Let : = l (log=). The expected cost of the Cost-Aware

(1+1) EA (Algorithm 2) on :-LeadingOnes and shared linear cost is

$ (=2 + :2=).

GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Proof. We decompose the cost function as 6(G) = 61 (G) +62 (G)

where

61 (G) =

:∑
8=1

G8 , and, 62 (G) =

=∑
8=:+1

G8 ,

and let (.C)C≥0 denote the sequence of random variables corre-

sponding to the “trailing bits” cost 62 of the offspring generated in

iteration C . Let) be the random variable corresponding to the run-

time. Conditioning on the event {) ≤ 2:=} for a positive constant

2 > 0, we bound the conditional expected contribution of the cost

from 62 as

E

[
)∑
C=1

.C

]
≤

2:=∑
C=1

E[.C] ≤ =

2:=∑
C=1

4−C/(24=) = $ (=2),

where the sum can again be bounded by a definite integral similar

to the proof of Theorem 4. We point out that Theorem 4 requires I5
and I6 to be disjoint, which does not hold in this setting. However,

note that we only bound here the cost contribution from 62, which

comes from a proper subset of I6 , and this subset is in fact disjoint

from I5 .

Since 0 ≤ 61 (G) ≤ : for any G ∈ {0, 1}= , the contribution from

61 can be trivially bounded as :) = $ (:2=).

We now argue that Pr() > 2:=) approaches zero superpolyno-

mially fast, and thus the contribution to the total expected cost

conditioned on this event vanishes. For this, we appeal to The-

orem 1, since) is the hitting time of fitness level : . Each fit-

ness level has an escape probability of at most 1/(4=), so we may

choose X = 2:=, B = :42=2 and ℎ = (4=)−1, thereby bounding

Pr() ≤ 2:=) ≥ 1 − 4−Ω (:) . Since we require : = l (log=), the

proof is complete. �

4 ADAPTIVE COST MODEL

In the non-adaptive cost model described above, the algorithm

cannot abort the evaluation of a search point once evaluation has

been initiated. Hence, if evaluating the wrong search points, the

algorithm may suffer exceedingly high evaluation costs. This is

an unrealistic assumption in some practical settings. Suppose for

example that fitness values are obtained through a simulation. It is

reasonable to assume that the algorithm can abort the simulation if

it takes too long.

We will introduce a more refined cost model that captures this

scenario. We assume that the oracle accepts queries composed of an

evaluation budget 2 and a search point G . More formally, assuming

fitness function 5 : X → R and cost function 6 : X → N, the oracle

responds to the query (2, G) ∈ N × X with the value

A (2, G) :=

{
5 (G) if 6(G) ≤ 2, and

⊥ otherwise.

The special response ⊥ signifies that the evaluation time for search

point G exceeded the requested budget 2 and therefore that the

evaluation was aborted before the fitness value 5 (G) was obtained.

A black-box optimization algorithm in this setting now works as

follows. In each iteration C ∈ N, using a “history” �C−1 of the past

C − 1 queries,

�C−1 :=
{
(1, G1, 21, A (21, G1)), . . . , (C − 1, GC−1, 2C−1, A (2C−1, GC−1))

}
,

algorithm � makes an oracle-query composed of a pair (2C , GC) ∈

N × X, and obtains the oracle response A (2C , GC). The cost-adaptive

runtime of algorithm � on fitness function 5 with cost function 6

is defined as

)�,5 ,6 :=

g�,5∑
C=1

min{2C , 6(GC)}

where

g�,5 := min{C ∈ N | 6(GC) ≤ 2C and 5 (GC) ≥ 5 (~) for all ~ ∈ X}.

We obtain the classical black-box scenario for the constant cost

function 6(G) = 1 for all G ∈ X.

Note that the algorithm cannot accumulate evaluation time in

the cost-adaptive model through repetitive evaluation of a search

point. In particular, if the evaluation at time C of a search point ~

is aborted after 2C time, then no information is stored about the

fitness evaluation. Hence, if the algorithm attempts to evaluate the

same search point ~ at some later time C ′ > C , the algorithm obtains

5 (~) if and only if 2C
′
≥ 6(~).

4.1 A cost-adaptive algorithm

We now design an algorithm which adapts evaluation budgets to

the cost of solutions. A challenging aspect is that the algorithm has

no a priori information about the cost values. To make the problem

more tractable, we will assume that the search space is composed

of a cheap region where the cost equals 6(G) = 1, and an expensive

region where the cost is 6(G) > 1. Furthermore, we assume that

the probability that a uniformly sampled search point is cheap is

relatively high.

Based on these assumptions, the idea behind Algorithm 3 is to

maintain two search points, a search point G which is constrained

to the cheap region, and a search point ~ which is free to explore

the entire search space. Based on these constraints, new candidate

search points are produced via standard bitwise mutation, akin to

the (1+1) EA. The challenge is to distribute the evaluation budget

between the two search points G and ~. The evaluation budget is

adapted using variable 1C .

In line 2-7, the algorithm assumes that two “cheap” initial search

points G and ~ with cost 1 can be found by sampling uniformly

at random from the search space. We leave open to future work

how to design initialization mechanisms for problems when this

assumption is not met.

We call the search point ~′ obtained from search point ~ in line

13 an “offspring” of search point ~. Similarly, the search point G ′

obtained in line 23 is an “offspring” of search point G .

During one iteration of lines 8–27 in Algorithm 3, the value of

C increases by 1. We call such an iteration an outer iteration. The

start of the outer loop (line 14–20) ensures that the following two

invariants are satisfied: search point G is the fittest search point

discovered so far with cost 1 (lines 14–16), and search point ~ is the

fittest among all search points observed by the algorithm.

In any outer iteration C , the algorithm spends a cost of at most 21C
corresponding to evaluate one offspring of search point ~, first with

budget 1 then with budget 1C − 1. Then, the algorithm evaluates 1C
offspring of search point G with budget 1 each. Hence, both search

points are updated with the same amount of evaluation budget in

each outer loop.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lehre and Su�on

Algorithm 3: (2+2) Cost-balancing Evolutionary Algo-

rithm (CBEA)

1: Initialize G,~ ∼ Unif ({0, 1}=) and 10 ← 1

2: while A (1, G) = ⊥ do

3: G ∼ Unif ({0, 1}=)

4: end while

5: while A (1, ~) = ⊥ do

6: ~ ∼ Unif ({0, 1}=)

7: end while

8: for C = 0, 1, 2, . . . until termination condition met do

9: if 5 (G) ≥ 5 (~) then

10: ~ ← G .

11: 1C ← 1

12: end if

13: Obtain ~′ by flipping each bit in ~ with probability 1/=.

14: if A (1, ~′) ≠ ⊥ and 5 (~′) ≥ 5 (~) then

15: ~ ← ~′ and G ← ~′

16: 1C ← 1

17: else if A (1C − 1, ~
′) ≠ ⊥ and 5 (~′) ≥ 5 (~) then

18: ~ ← ~′

19: 1C+1 ← 1

20: else

21: 1C+1 ← 21C
22: for C ′ = 1, . . . , 1C do

23: Obtain G ′ by flipping each bit in G with probability 1/=

24: if A (1, G ′) ≠ ⊥ and 5 (G ′) ≥ 5 (G) then

25: G ← G ′

26: 1C+1 ← 1

27: end if

28: end for

29: end if

30: end for

Theorem 8 (Cost-adaptive Fitness Level Theorem). Assume

an 5 -based partition (�1, . . . , �<), and for each � 9 , an 5 -based sub-

partition (� 9,0, . . . , � 9,< 9) such that for all 9 ∈ [<],

0. The initial search points have cost 6(G) = 1 and 6(~) = 1.

1. All search points G ∈ X, have cost 6(G) ≤ 2max.

2. All search points G ∈ � 9,0 have cost 6(G) = 1.

3. Pr
(
mut(G) ∈ �≥ 9,8+1

)
≥ B 9,8 for all G ∈ � 9,8 .

4. Pr
(
mut(G) ∈ ∪<

:=9+1
�:,0

)
≥ ? 9 for all G ∈ � 9,0.

5. 1 +
∑< 9

8=0
1
B 9,8
≤ 1

42max Pr(F9)? 9
, where event F9 occurs if ~ ∈

�≥ 9,1 before G ∈ �≥0, 9 .

then Algorithm 3 obtains an element in�< with expected cost at most

4

<−1∑
9=1

min



1

? 9
, 2max

©­
«
1 +

< 9−1∑
8=0

1

B 9,8

ª®
¬


.

Proof. Following the proof of the classical fitness-based parti-

tion theorem, we split the runtime cost into< − 1 phases, where)9
is the cost accumulated to obtain G,~ ∈ �≥ 9+1,0, assuming that the

algorithm starts with ~ ∈ �≥ 9,1. We say that phase 9 starts with

failure event F9 if G ∉ �≥ 9,0 and ~ ∈ �≥ 9,1. In the case of a failure,

we assume G ∉ �≥ 9,0 holds until the end of the phase.

For each sub-level � 9,8 , 8 ∈ [0..< 9], we let)9,8 denote the accu-

mulated cost from having a search point ~ ∈ � 9,8 until ~ ∈ �≥ 9,8+1.

We divide this time into two sub-phases, first until 1C ≥ 2 9,8 , and

second until ~ ∈ �≥ 9,8+1. After at most log(2 9,8) + 1 outer iterations,

the computation budget satisfies 1C ≥ 2 9,8 or ~ ∈ �≥ 9,8+1. Hence,

by condition 1, the expected cost of the first sub-phase, assuming

failure, is at most

log(2 9,8)+1∑
8=0

2 · 28 = 2log(2 9,8)+2 − 1 < 42max .

During the second sub-phase, in the worst case, the algorithm will

increase 1C until ~ ∈ �≥ 9,8+1. By conditions 1 and 4, the expected

cost will be at most

22max/B 9,8 .

Hence, the expected cost until ~ ∈ �≥ 9+1 is at most

E
[
)9 | F9

]
≤

< 9∑
8=0

E
[
)8, 9

]
≤ 42max

(
1 +

< 9∑
8=0

1

B 9,8

)
.

We now consider the duration of the phase, assuming no fail-

ure, i.e., we start the phase with G ∈ � 9,0. Within a cost of 1, the

algorithm evaluates 1/2 offspring from G . Hence, the expected cost

until G ∈ ∪<
:=9+1

�:,0 is at most 2/? 9 . The duration of the phase is

at most

E
[
)9 | F9

]
≤ 4min

{
1

? 9
, 2max

(
1 +

< 9∑
8=0

1

B 9,8

)}
.

Taking into account the failure probabilities (condition 5), the un-

conditional expected runtime is

E [)] ≤

<−1∑
9=1

Pr
(
F9

)
E

[
)9 | F9

]
+ Pr

(
F 9

)
E

[
)9 | F9

]

≤ 4

<−1∑
9=1

min

{
1

? 9
, 2max

(
1 +

< 9∑
8=0

1

B 9,8

)}
.

�

For two parameters :, 2max ∈ N, we consider the variable cost

problem JumpCost:,2max
which has fitness function

5 (G) = OneMax(G) =

=∑
8=1

G8

and cost function

6(G) =

{
2max if OneMax(G) ∈ [= − : + 1..= − 1]

1 otherwise.

This function is illustrated in Figure 2.

Theorem 9. Assuming that the initial search points G and ~ sat-

isfy OneMax(G) ≤ = − : and OneMax(~) ≤ = − : , the expected

optimization cost of Algorithm 3 on JumpCost is $ (= log(=/:) +

min{=: , 2max= log:}).

Proof. We apply Theorem 8 with< = = − : + 2 levels. For all

9 ∈ [0..= − :], we define level,

� 9 = {G | OneMax(G) = 9}.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal

= − : + 1 = − 1

2max

|G |

5
(G
)

6
(G
)

Figure 2: The JumpCost:,2max
benchmark function.

For levels 9 < = − : and 9 = = − : + 1, there are< 9 = 0 sub-levels.

And for level 9 = =−: , there are< 9 = : sub-levels, where sub-level

8 ∈ [0..: − 1] is defined as

�=−:,8 = {G | OneMax(G) = = − : + 8}.

Finally, for 9 = = − : + 1, we define the level

�=−:+1 = {G | OneMax(G) = =}.

Condition 0 is satisfied by the assumptions OneMax(G) ≤ = − :

and OneMax(~) ≤ = − : . Conditions 1-4 of the theorem can be

satisfied with the following parameters. A search point in sub-

level �=−:,8 has : − 8 0-bits, and can be “upgraded” by flipping

any single of these bits. Hence, we can use the parameter B=−:,8 =

Ω((: − 8)/=). A search point in level�=−:,0 has : 0-bits and can be

“upgraded” to the final level �=−:+1 by mutating all of these bits

simultaneously, which occurs with probability ?=−: = Ω(1/=:).

Finally, any search point in level � 9 for 9 < = − : have = − 9 0-bits,

and can be upgraded to level � 9+1 by flipping exactly one 0-bit,

which occurs with probability ? 9 = Ω((= − 9)/=).

Condition 5 is trivially satisfied because there exists only one

level with high cost.

By Theorem 8, the expected cost is

4

<−1∑
9=1

min

{
1

? 9
, 2max

(
1 +

< 9∑
8=0

1

B 9,8

)}
.

≤ 4

=−:−1∑
9=0

1

? 9
+ 4min

{
1

?=−:
, 2max

(
1 +

<=−:∑
8=0

1

B=−:,8

)}

= $
(
= log(=/:) +min{=: , 2max= log(:)}

)
. �

5 CONCLUSION

With this paper we have considered the setting in which the cost to

evaluate the fitness of a solution is not uniform across the search

space. These kinds of situations can occur in practical situations,

for example, when obtaining an objective value requires running

a costly simulation or comes from the accuracy measurement of

a machine learning model that must first be trained. Traditional

runtime analysis techniques assume fitness evaluations have unit

cost and are therefore blind to these scenarios.

We have introduced two models of managing variable cost: a

simple non-adaptive model that prefers points that were cheaper

during the evaluation phase and an adaptive model that can decide

to abort an incomplete evaluation in order to apportion its resources

to better balance the total optimization cost.

In a non-adaptive setting, the simple strategy of favoring cheaper

neutral mutations can be effective, especially on highly neutral

landscapes such as LeadingOnes, in which case we proved the

strategy gains a linear improvement factor when the hidden cost

and fitness variables do not overlap. When the cost and fitness

variables are shared, the advantage depends on the degree of the

overlap.

For situations in which the process of evaluating the fitness func-

tion is costly but abortable, such as when fitness values are collected

from simulation runs, we introduced the (2+2) Cost-balancing Evo-

lutionary Algorithm (CBEA) that maintains two search points in

parallel to balance the evaluation cost against the waiting time to

jump over costly regions of the search space. For these scenarios

we developed a cost-adaptive fitness level theorem and provided

runtime bounds that depend on the correlation between maximum

cost and escape probability.

ACKNOWLEDGMENTS

P.K. Lehre was supported by a Turing AI Fellowship (EPSRC grant

ref EP/V025562/1). A.M. Suttonwas supported byNSF grant 2144080.

REFERENCES
[1] Thomas Bartz-Beielstein and Martin Zaefferer. 2017. Model-based methods for

continuous and discrete global optimization. Applied Soft Computing 55 (2017),
154–167. https://doi.org/10.1016/j.asoc.2017.01.039

[2] Stephan Cathabard, Per Kristian Lehre, and Xin Yao. 2011. Non-uniformmutation
rates for problems with unknown solution lengths. In Foundations of Genetic
Algorithms, 11th International Workshop, FOGA 2011, Schwarzenberg, Austria,
January 5-8, 2011, Proceedings, Hans-Georg Beyer and William B. Langdon (Eds.).
ACM, 173–180. https://doi.org/10.1145/1967654.1967670

[3] Benjamin Doerr, Carola Doerr, and Timo Kötzing. 2019. Solving Problems with
Unknown Solution Length at Almost No Extra Cost. Algorithmica 81, 2 (2019),
703–748. https://doi.org/10.1007/s00453-018-0477-7

[4] Hafsteinn Einarsson, Marcelo Matheus Gauy, Johannes Lengler, Florian Meier,
Asier Mujika, Angelika Steger, and Felix Weissenberger. 2019. The linear hidden
subset problem for the (1+1) EA with scheduled and adaptive mutation rates.
Theoretical Computer Science 785 (2019), 150–170. https://doi.org/10.1016/j.tcs.
2019.05.021

[5] Thomas Jansen and Christine Zarges. 2011. Analysis of evolutionary algorithms:
from computational complexity analysis to algorithm engineering. In Foundations
of Genetic Algorithms, 11th International Workshop, FOGA 2011, Schwarzenberg,
Austria, January 5-8, 2011, Proceedings, Hans-Georg Beyer and William B. Lang-
don (Eds.). ACM, 1–14. https://doi.org/10.1145/1967654.1967656

[6] Yaochu Jin. 2005. A comprehensive survey of fitness approximation in evolution-
ary computation. Soft Comput. 9, 1 (2005), 3–12. https://doi.org/10.1007/s00500-
003-0328-5

[7] Per Kristian Lehre and Carsten Witt. 2013. General Drift Analysis with Tail
Bounds. https://doi.org/10.48550/ARXIV.1307.2559

[8] Johannes Lengler and Nicholas Spooner. 2015. Fixed Budget Performance of
the (1+1) EA on Linear Functions. In Proceedings of the 2015 ACM Conference on
Foundations of Genetic Algorithms XIII, Aberystwyth, United Kingdom, January 17
- 20, 2015, Jun He, Thomas Jansen, Gabriela Ochoa, and Christine Zarges (Eds.).
ACM, 52–61. https://doi.org/10.1145/2725494.2725506

[9] Phuc Luong, Dang Nguyen, Sunil Gupta, Santu Rana, and Svetha Venkatesh.
2021. Adaptive cost-aware Bayesian optimization. Knowl. Based Syst. 232 (2021),
107481. https://doi.org/10.1016/j.knosys.2021.107481

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lehre and Su�on

[10] Ole Jakob Mengshoel, Eirik Lund Flogard, Tong Yu, and Jon Riege. 2022. Under-
standing the cost of fitness evaluation for subset selection: Markov chain analysis
of stochastic local search. In GECCO ’22: Genetic and Evolutionary Computation
Conference, Boston, Massachusetts, USA, July 9 - 13, 2022, Jonathan E. Fieldsend and
Markus Wagner (Eds.). ACM, 251–259. https://doi.org/10.1145/3512290.3528689

[11] Liang Shi and Khaled Rasheed. 2010. A Survey of Fitness Approximation Methods
Applied in Evolutionary Algorithms. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 3–28. https://doi.org/10.1007/978-3-642-10701-6_1

[12] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical Bayesian
Optimization of Machine Learning Algorithms. In Advances in Neural Information
Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (Eds.),
Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2012/file/
05311655a15b75fab86956663e1819cd-Paper.pdf

[13] Carsten Witt. 2014. Fitness levels with tail bounds for the analysis of randomized
search heuristics. Inform. Process. Lett. 114, 1 (2014), 38–41. https://doi.org/10.
1016/j.ipl.2013.09.013

