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ABSTRACT

The usual approach in runtime analysis is to derive estimates on the
number of fitness function evaluations required by a method until
a suitable element of the search space is found. One justification for
this is that in real applications, fitness evaluation often contributes
the most computational effort. A tacit assumption in this approach
is that this effort is uniform and static across the search space.
However, this assumption often does not hold in practice: some
candidates may be far more expensive to evaluate than others. This
might occur, for example, when fitness evaluation requires running
a simulation or training a machine learning model.

Despite the availability of a wide range of benchmark functions
coupled with various runtime performance guarantees, the runtime
analysis community currently lacks a solid perspective of handling
variable fitness cost. Our goal with this paper is to argue for incor-
porating this perspective into our theoretical toolbox. We introduce
two models of handling variable cost: a simple non-adaptive model
together with a more general adaptive model. We prove cost bounds
in these scenarios and discuss the implications for taking into ac-
count costly regions in the search space.
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1 INTRODUCTION

A typical assumption in the computational complexity of evolution-
ary algorithms is that the process of evaluating the fitness function
supplies the greatest contribution to the runtime, but that this cost
is uniform over all search points. However, in many real world appli-
cations the cost of evaluating the fitness of a candidate solution can
depend directly on its structure, and therefore varies throughout
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the search process. For example, this can occur in structural design
applications, protein structure prediction [6], data streaming, robot
exploration [9], or tuning machine learning models [10, 12]. In these
situations, it has been observed that fitness function evaluations
may only have a high cost in certain parts of the search space [10].

So far, settings in which the cost of fitness evaluation varies
over the space have not been addressed by the runtime analysis
community. With this paper, we provide a first step in this direction
by introducing and analyzing variable cost models.

We first introduce a simple non-adaptive cost model in which
an algorithm must optimize a function with both hidden cost and
fitness variables. We show that a simple strategy of fitness tie-
breaking to favor points that were cheaper at evaluation time can
lead to asymptotically faster runtimes. We then consider a more
refined adaptive cost model in which the algorithm may choose
to abandon the evaluation of search point if it decides that it has
spend too much time on it. We present a cost-adaptive fitness level
theorem to provide general bounds on optimization costs in this
setting. We also consider a simple benchmark function equipped
with a costly region and prove runtime bounds on a cost-adaptive
algorithm on this function.

The remainder of the paper is organized as follows. In the next
section we review related work and introduce some technical pre-
liminaries. We then introduce the non-adaptive cost model in Sec-
tion 3 and study several scenarios. In Section 4 we introduce the
non-adaptive cost model and the Cost-adaptive Fitness Level Theo-
rem. We conclude the paper in Section 5.

2 BACKGROUND
2.1 Related Work

Costly fitness functions are often handled in practice by so-called
surrogate models or meta-models [6, 10, 11]. These are some kind of
approximation of the true fitness function using machine learning
or statistical models. Most work in this area is focused on contin-
uous search spaces, but some strategies also exist for surrogate
models in discrete domains [1].

In the continuous setting, the field of Bayesian optimization deals
with optimizing expensive functions by assuming the objective
function is drawn from a stochastic process. Instead of optimizing
the expensive function directly, the strategy is to only query the
objective function periodically to place a prior over the distribution,
and then maximize a cheaper acquisition function to propose the
next query. This process repeats until a budget is exhausted [9].
Recent work in this area has focused on acquisition functions that
prefer cheaper function points to query in order to reduce the
overall computational cost [9, 12].

Our approach differs significantly from the case of surrogate
modeling in that we are still interested in directly optimizing the
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fitness function, but try to take advantage of the fact that some
regions of the space may be cheaper to move through, and thus it
becomes sensible to balance the evaluation cost with the progress
of the search algorithm.

Mengshoel et al. [10] consider the trade-off between exploration
and exploitation in stochastic local search (SLS) algorithms applied
to computationally costly fitness functions. In particular, they point
out that SLS strategies like WalkSAT often employ a noise step
with some probability (selecting a random neighbor, regardless
of fitness), otherwise they perform a greedy step by choosing the
fittest element of the neighborhood. The noise step is comparatively
cheap, as it requires only a single fitness evaluation, whereas the
greedy step requires the evaluation of the entire Hamming neigh-
borhood. The authors model the SLS process as a Markov chain
and empirically analyze the hitting time (incorporating cost) as a
function of noise step probability.

Jansen and Zarges [5] cautioned against over-simplified views of
counting function evaluations and demonstrated that different ways
of accounting for the cost of algorithm modules can lead to contra-
dictory results. This underscores the importance of understanding
how to deal with evaluation cost properly when conducting theo-
retical research.

2.2 Preliminaries

Consider any finite set X which we call the “search space” and any
function f : X — R, which we will call the fitness function. We
consider a scenario where evaluating the f-value of any search
point x is associated with a “cost” g(x) given by a cost function
g: X ->N.

Given f and g, we define the cost of an algorithm optimizing
f as the total cost of every fitness evaluation required to locate
the optimum. The classical idea of runtime is recovered by setting
g(x) =1forall x € X.

Forn e N, let [n] :={1,2,--- ,n}.

The following notation will be used in Section 4. For any finite
set X, assume that (A1, ..., Ap) is a partition of X. Then, for all
j € [m]wewrite Ay := U;’;jA j. Assume furthermore that for each
j € [m], (Ajo, ..., Ajm;) is a partition of A; for some m; > 0. Then,
forall j € [m] and i € [m;], we write Ay j; = (U;Cn:"l.Ajk) UAsj.
For any function f : X — R, we say that a partition is f-based if
forall x,y € X, f(x) < f(y) if and only if there exist i < j such
that x € Ajand y € Aj.

In Section 3 we will make use of the following two important
drift theorems, which we restate here for completeness.

THEOREM 1 (WITT [13]). Consider an algorithm A maximizing
a function f and a partition of the search space into nonempty sets
Ay, ..., Ay where forallx € Aj,y € Aj with1 < i < j < m, it holds
that f(x) < f(y). Ifpi is a lower bound on the probability that a step
of A escapes fitness level A;, independently of previous steps, then for
any é > 0 the first hitting time of Ay, is at most

m—1
1
—+d

iz Pi

S (8
with probability at least 1—e~ 1 ™M 1Y for any finites > ymt #

andh=min{p; |i=1,...,m—1}.
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THEOREM 2 (LENGLER AND SPOONER [8]). Let (Xy)r>0 be a sto-
chastic process, and letb € N and 0 < § < 1. If forallt < b,
E[X; — Xse1 | X¢ = x] > 6x, then E[X | Xo] < Xo(1-68)? <
Xoe ™Y Ifforallt < b, E[X; — Xpa1 | X¢ = x| < 6x, then
E[Xp | Xo] = Xo(1 = 6)? > Xoe 2% for § < 0.797.

3 NON-ADAPTIVE COST MODEL

For our first model, we assume that the fitness function f depends
on a subset 5 C [n] decision variables, and that the cost function
g depends on a subset 7; C [n] decision variables. Moreover, we
assume that 7y and J; are hidden variables in the sense that they
are not known to the algorithm. The fitness evaluation component
is thus somewhat similar to the setting of unknown problem lengths
in which only a subset of bits are fitness relevant [2-4].

In their work on stochastic local search, Mengshoel et al. [10]
consider three variants of the cost function, linear, quadratic and
exponential. They point out that experiments suggest a linear cost
model g(x) = a|x| + f is a reasonable approximate for various
applications. This also seems to be the case in the continuous setting,
e.g., Luong et al.[9] also use a linear cost function and point out
that cost is often assumed to be linear in real applications.

Thus, for this section, we employ a linear cost function with

a=p=1,ie,
g(x) =1+ Z Xij.
iely,

We point out, however, that the runtime results we present in this
section are easily generalized to arbitrary « and f parameters.

We first consider the classical (1+1) EA (Algorithm 1). Note that
when fitness evaluation is a bottleneck, it is advisable to store the
result to eliminate unnecessary function calls [5].

Algorithm 1: (1+1) EA

Choose x from {0, 1}" uniformly at random
fx « value of f(x)
fort=0,1,2,... until termination condition met do
Obtain y by flipping each bit in x with probability 1/n.
fy < value of f(y)
if fy > fi then
Xy
fx < fi y
end if
end for

We also introduce a slight variation to the (1+1) EA that, all
else being equal, prefers points that are cheaper to evaluate. This is
similar to some strategies in continuous optimization of costly black-
box functions in which both the function value and the function
query cost are minimized in parallel [12]. This variant, called the
Cost-Aware (1+1) EA, is illustrated in Algorithm 2. Essentially, it is
identical to Algorithm 1, except that is breaks fitness ties by taking
the solution that was cheaper to compute.

We consider the stochastic process (Y;);en where Y; is the ran-
dom variable corresponding to the cost g(y) to compute f(y) in
line 5 on iteration ¢ of Algorithm 2.



Algorithm 2: Cost-Aware (1+1) EA

Choose x from {0, 1}" uniformly at random
(fx» gx) < value of f(x), cost required to compute it
fort =0,1,2,... until termination condition met do
Obtain y by flipping each bit in x with probability 1/n.
(fy»9y) < value of f(y), cost required to compute it
if fy > fxor (fy = fx and gy < gx) then
Xy
fx = fi y
end if
end for

The following lemma supplies a general upper and lower bound
to the drift of the random cost variables during the optimization of
Algorithm 2.

LemMA 1. Suppose I N1y = O and denote by &7 the event that the
offspring produced in generation t has strictly greater fitness. Denote
by E the event that the fitness of the offspring generated in iteration
t is equal in fitness. Then the drift in cost for Algorithm 2 is bounded
as follows.

Pr (8>)
E[Y; = Yer [ Ve =s] > (2s = | Zg])
Pr(&F [ Zg1-1
+M (1_ 1) ,
n n
Pr(&) s
Y = Yo | Ve = 5] £ ——= (25— | g+~

Proor. Under the event &, the offspring is accepted but since
71, N [g = 0, selection is independent of the cost variables. Each
cost variable flips with exactly probability 1/n, which yields

s (gl -5s)
E[Y; = Y1 | Ye=sn& | => - L=
n n
Under &7, the offspring is only accepted if its cost is reduced, which
yields the conditional drift

_ 1 [Z4]-1
E[Y; =Y | Y =snEF] > —(1——)
i€l x;= n
s ( 1) 5
=—|1--
n n
= 1 s
E[Y— Y1 | Vi =sNE]] < Z -=-
i€ lyx;=1
The bounds follow from the law of total probability. O

3.1 LEADINGONES

To begin the analysis we make the simplifying assumption that
Iy NI = 0, ie., the fitness and cost variables are decoupled, which
is required by Lemma 1. We also assume that |Z¢| = |Zy| = n/2, but
point out that our results hold as long as both variable sets contain
©(n) positions each. We consider the well-known LEADINGONES

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

benchmark function:

n

fx) =Zr|xl

i=1 j=1

Since the standard (1+1) EA simply ignores evaluation cost, every
function evaluation costs ©(n) in expectation, and we have the
following.

THEOREM 3. Let f be the LEADINGONES function on the variables
in Ir with |Z¢| = |I4| = n/2 with Iy N Iy = 0. Then the optimization
cost of the (1+1) EA (Algorithm 1) is ©(n®).

The strategy of preferring neutral mutations that were cheaper
to evaluate leads to a linear factor improvement, as we prove in the
following theorem.

THEOREM 4. Let f be the LEADINGONES function on the variables
in Iy with | I¢| = |1g| = n/2 with I N 15 = 0. Then the optimization
cost of the Cost-Aware (1+1) EA (Algorithm 2) is ©(n?).

ProoF. In each iteration ¢, a strictly improving LEADINGONES
offspring y can be created from x if the leading zero in J is flipped,
while none of the f(x) leading ones in 7y are changed. This occurs

(x)
with probability Pr(6;) = 1 (1- 1 !

occurs when none of the f(x) leading ones nor the leading zero in

) f(x)+l

. Similarly, the event &7

Iy are changed. This event occurs with probability (l - =
Recall that Y; denotes the random variable that measures the cost
of computing the fitness of the offspring generated in line 5 of
Algorithm 2. By Lemma 1, the cost drift is bounded as

or) e

E[Y; =Y | Vp =s] 2

s (1 2 1
>-|l-+—=|-—

e\n n? 2en

s (1 2 s s
2 - — —_— JR—

e\n n? 2en 2en

Let T be the first iteration where Algorithm 2 finds an optimal so-
lution maximizing f. By Theorem 1, setting p; = 1/(en) < Pr(&;),
for any constant 0 < € < 1, we have

n—1
2
Pr (T < Z en+een? < (1 +e)enz) >1-e €Nt
i=0

Conditioning on the event {T < (1+¢)en?}, we apply Theorem 2
to obtain the following upper bound on the total expected cost.

(1+€)en? (1+€)en?

E Z Y| Yol < Yo Z

t=1 t=1

(1+€)en?
Y / e—t/(Zen)dt
0

en?(1-o0(1)),

e—t/(Zen)

IN

IN



GECCO ’23, July 15-19, 2023, Lisbon, Portugal

since Yy < |y| = n/2. Furthermore, since Pr(T > (1 + €)en?) <
e~ 2" and the maximum cost is g(x) < n, we have that for ev-
ery polynomial T, the contribution to the expectation vanishes
exponentially fast. Applying the law of total expectation, the upper
bound on the total cost is O(n?). The lower bound trivially follows
from the well-known expected runtime bound on the standard

(1+1) EA on LEADINGONES together with the fact thatg(x) > 1. O

3.2 ONEMAX

The success of Algorithm 2 on LEADINGONES is due to the fact that
it has the side effect of making significant progress minimizing
the cost function while waiting for an improvement in the fitness
function. This generous waiting time afforded by LEADINGONES
does not arise with ONEMAX, and the case here is not as clear.

THEOREM 5. Let f be the ONEMAX function on the variables in
Iy with [I¢| = |I4| = n/2 with Iy N 15 = 0. Then for0 < € < 1,
the optimization cost of the Cost-Aware (1+1) EA (Algorithm 2) is
Q(n?) N O(n?logn).

ProOOF. Let T* be the runtime of the Cost-Aware (1+1) EA. Since
the tie breaking rule of the Cost-Aware (1+1) EA is independent of
the fitness variables, T* is distributed identically to the (1+1) EA.
Applying a lower tail bound to the multiplicative drift [7, Theorem
8], Pr(T* = §Inn— ) = 1 - 0(1) for a constant ¢ > 0. We
condition on this event for the remainder of the proof.

By Lemma 1,

E[Yt—YH.]lYt:S]S 25— =)+ —

Pr(&7)
=)

n
Pr(8t>) 3s
2 n’

IA

- % (2Pr(E7) +1) -

By Theorem 2, we have E[Y;] = E[E[Y; | Y]] > E[Yole ®/m It is
therefore possible to bound the total optimization cost as

o

I T*+1
ElY;] > E[Y
;[d>[d[

— E[Y] (g) ) (e—é/n _ e—6(T*+1)/n) - Q(n?),

e—6t/ndt

since E[Yy] = n/4 and we have conditioned on T* > € Inn — <.

The asymptotic upper bound on the optimization cost follows
immediately from the fact Y; < n/2 for all t > 0 and the O(nlogn)
runtime of the standard (1+1) EA. O

We point out that the quadratic lower bound in Theorem 5 arises
only from the trivial upper bound Pr(&7) < 1, and therefore is
possibly too weak. Nevertheless, we conjecture that the Cost-Aware
(1+1) EA has an advantage over the standard (1+1) EA in this setting,
and that the quadratic bound is closer to the truth. Empirical support
for this conjecture is provided by Figure 1, which plots the mean
optimization time over 100 runs each for n = 100, 200, . . ., 1000 of
both Algorithms 1 and 2.

3.3 Shared fitness and cost variables

We now consider a case where the cost and fitness variables overlap.
In particular, for k = w(log n), the fitness function is LEADINGONES
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Figure 1: Mean optimization cost of the (1+1) EA and the
Cost-Aware (1+1) EA on ONEMAX with |Z¢| = |Z4| = n/2. Exrror
bars denote standard deviation over 100 trials for each n.

on the first k bits. In this setting, we have [k] = Iy C Ij = [n],

fm:ﬁm=zlxﬁ

i=1 j=1

THEOREM 6. Let k = w(logn). The expected cost of the standard
(1+1) EA (Algorithm 1) on k-LEADINGONES and shared linear cost is
O(kn?).

Proor. For the upper bound, note that the cost of each evalua-
tion is at most n, and the expected number of evaluations until a
strictly better offspring is generated is ®(n). The function is opti-
mized after at most k improvements, so the runtime is at O(kn?).

For the lower bound, let T = min{¢: f(x) > k/2}, which
cannot be larger than the runtime. Let (Y;);>0 be the stochastic
process that corresponds to the contribution to the cost at time ¢
from the trailing n — k/2 bits. Clearly, if y is the offspring generated
in time ¢, we would have g(y) > Y;. Moreover, since none of the
n — k/2 trailing bits are under selection before time T’, the Y;
variables may be regarded as i.i.d., and thus we may apply Wald’s
equation to bound the cost until T”:

T

S

t=0

E =E[T’]E[Yo] = Q(kn?).

The asymptotic bound follows from E[T’] = Q(kn) and E[Yy] =
(n—k/2)/2 = Q(n) since k < n. O

THEOREM 7. Letk = w(logn). The expected cost of the Cost-Aware
(1+1) EA (Algorithm 2) on k-LEADINGONES and shared linear cost is
0(n? + kn).



Proor. We decompose the cost function as g(x) = g1(x) +g2(x)

where
k

n

g1() =Y %, and, ga(x)= ) x
i=1 i=k+1
and let (Y);>0 denote the sequence of random variables corre-
sponding to the “trailing bits” cost gy of the offspring generated in
iteration ¢. Let T be the random variable corresponding to the run-
time. Conditioning on the event {T < ckn} for a positive constant
¢ > 0, we bound the conditional expected contribution of the cost
from g as

T ckn ckn
E [Z Y| < ZE[Y,] < nZ et/ 2en) = o(n?),
t=1 t=1 t=1

where the sum can again be bounded by a definite integral similar
to the proof of Theorem 4. We point out that Theorem 4 requires 7
and I, to be disjoint, which does not hold in this setting. However,
note that we only bound here the cost contribution from gz, which
comes from a proper subset of 74, and this subset is in fact disjoint
from 7.

Since 0 < g1(x) < k for any x € {0, 1}", the contribution from
g1 can be trivially bounded as kT = O(k?n).

We now argue that Pr(T > ckn) approaches zero superpolyno-
mially fast, and thus the contribution to the total expected cost
conditioned on this event vanishes. For this, we appeal to The-
orem 1, since T is the hitting time of fitness level k. Each fit-
ness level has an escape probability of at most 1/(en), so we may
choose § = ckn, s = ke?n? and h = (en)_l, thereby bounding
Pr(T < ckn) > 1 - e () Since we require k = w(logn), the
proof is complete. O

4 ADAPTIVE COST MODEL

In the non-adaptive cost model described above, the algorithm
cannot abort the evaluation of a search point once evaluation has
been initiated. Hence, if evaluating the wrong search points, the
algorithm may suffer exceedingly high evaluation costs. This is
an unrealistic assumption in some practical settings. Suppose for
example that fitness values are obtained through a simulation. It is
reasonable to assume that the algorithm can abort the simulation if
it takes too long.

We will introduce a more refined cost model that captures this
scenario. We assume that the oracle accepts queries composed of an
evaluation budget ¢ and a search point x. More formally, assuming
fitness function f : X — R and cost function g : X — N, the oracle
responds to the query (¢, x) € N x X with the value

r(c,x) == {f(x)

L otherwise.

if g(x) < ¢, and

The special response L signifies that the evaluation time for search
point x exceeded the requested budget ¢ and therefore that the
evaluation was aborted before the fitness value f(x) was obtained.

A black-box optimization algorithm in this setting now works as
follows. In each iteration ¢ € N, using a “history” I*~! of the past
t — 1 queries,

= {(l,xl,cl,r(cl,xl)), (= l,xt_l,ct_l,r(ct_l,xt_l))},
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algorithm A makes an oracle-query composed of a pair (cf, x?) €
N x X, and obtains the oracle response r(c’, x*). The cost-adaptive
runtime of algorithm A on fitness function f with cost function g
is defined as

TAf

TA,f,g = Z min{ct,g(xt)}
=1

where
Tof =min{t € N | g(x") < ¢’ and f(x') > f(y) forall y € X}.

We obtain the classical black-box scenario for the constant cost
function g(x) =1 for all x € X.

Note that the algorithm cannot accumulate evaluation time in
the cost-adaptive model through repetitive evaluation of a search
point. In particular, if the evaluation at time ¢ of a search point y
is aborted after ¢! time, then no information is stored about the
fitness evaluation. Hence, if the algorithm attempts to evaluate the
same search point y at some later time ¢’ > t, the algorithm obtains

f(y) if and only if ¢!’ > g(y).

4.1 A cost-adaptive algorithm

We now design an algorithm which adapts evaluation budgets to
the cost of solutions. A challenging aspect is that the algorithm has
no a priori information about the cost values. To make the problem
more tractable, we will assume that the search space is composed
of a cheap region where the cost equals g(x) = 1, and an expensive
region where the cost is g(x) > 1. Furthermore, we assume that
the probability that a uniformly sampled search point is cheap is
relatively high.

Based on these assumptions, the idea behind Algorithm 3 is to
maintain two search points, a search point x which is constrained
to the cheap region, and a search point y which is free to explore
the entire search space. Based on these constraints, new candidate
search points are produced via standard bitwise mutation, akin to
the (1+1) EA. The challenge is to distribute the evaluation budget
between the two search points x and y. The evaluation budget is
adapted using variable b;.

In line 2-7, the algorithm assumes that two “cheap” initial search
points x and y with cost 1 can be found by sampling uniformly
at random from the search space. We leave open to future work
how to design initialization mechanisms for problems when this
assumption is not met.

We call the search point y’ obtained from search point y in line
13 an “offspring” of search point y. Similarly, the search point x’
obtained in line 23 is an “offspring” of search point x.

During one iteration of lines 8-27 in Algorithm 3, the value of
t increases by 1. We call such an iteration an outer iteration. The
start of the outer loop (line 14-20) ensures that the following two
invariants are satisfied: search point x is the fittest search point
discovered so far with cost 1 (lines 14-16), and search point y is the
fittest among all search points observed by the algorithm.

In any outer iteration ¢, the algorithm spends a cost of at most 2b;
corresponding to evaluate one offspring of search point y, first with
budget 1 then with budget b; — 1. Then, the algorithm evaluates b;
offspring of search point x with budget 1 each. Hence, both search
points are updated with the same amount of evaluation budget in
each outer loop.
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Algorithm 3: (2+2) Cost-balancing Evolutionary Algo-
rithm (CBEA)

1: Initialize x,y ~ Unif ({0, 1}") and by « 1
2: while r(1,x) = L do
3. x ~ Unif ({0, 1}")
4: end while

5: while r(1,y) = L do
6

7

8

9

y ~ Unif ({0, 1}")

: end while
: fort =0,1,2,... until termination condition met do
if f(x) = f(y) then
10: Y — x.
11: bt — 1
122 endif

13:  Obtain y’ by flipping each bit in y with probability 1/n.
14 if r(1,y’) # Land f(y’) > f(y) then

15: y—y andx «— ¢

16: by —1

17: elseif r(b;y —1,y") # L and f(y’) > f(y) then
18: y<y

19: bt+1 — 1

20:  else

21: b[+1 — Zb[

22: fort’=l,...,btd0

23: Obtain x” by flipping each bit in x with probability 1/n
24: if r(1,x’) # Land f(x”) > f(x) then

25: x — x’

26: bt+1 —1

27: end if

28: end for

29:  endif

30: end for

THEOREM 8 (COST-ADAPTIVE FITNESS LEVEL THEOREM). Assume
an f-based partition (Ay, ..., Am), and for each Aj, an f-based sub-
partition (Aj o, . . .,Aj,mj) such that for all j € [m],

0. The initial search points have cost g(x) = 1 and g(y) = 1.
1. All search points x € X, have cost g(x) < cmax-
2. All search points x € Ajo have cost g(x) = 1.
3. Pr (mut(x) € Azj,i+1) >sjiforallx € Aj;.
4. Pr (mut(x) € Ulrcn:j+lAk10) > pj forallx € Ajy.
mjo 1 1
51+ 3005 S e,
Asj1 beforex € Axg ;.

, where event F; occurs ify €

then Algorithm 3 obtains an element in A, with expected cost at most

-1 mj—1
&= 1 S
4Zm1n —,Cmax | 1+ Z —_
= pj =0 Sii

Proor. Following the proof of the classical fitness-based parti-
tion theorem, we split the runtime cost into m — 1 phases, where T;
is the cost accumulated to obtain x,y € A j+1,0, assuming that the
algorithm starts with y € A j 1. We say that phase j starts with
failure event ¥ if x ¢ A>jo and y € Axj 1. In the case of a failure,
we assume x ¢ A j o holds until the end of the phase.
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For each sub-level A ;, i € [0..mj], we let T;; denote the accu-
mulated cost from having a search point y € A;; until y € A t1.
We divide this time into two sub-phases, first until b; > cj;, and
second until y € A j ;1. After at most log(cj,;) + 1 outer iterations,
the computation budget satisfies by > cj; or y € Axj ;+1. Hence,
by condition 1, the expected cost of the first sub-phase, assuming
failure, is at most

log(cj,i)+1
2.2t = ploglei*2 _ g < ge
i=0
During the second sub-phase, in the worst case, the algorithm will
increase b; until y € A j ;1. By conditions 1 and 4, the expected
cost will be at most

zcmax/sj,i~
Hence, the expected cost until y € Ay j41 is at most
mj oy
B[ 175] < S E[T] < dem (1+Z—)~
— — Sj,i
i=0 i=0
We now consider the duration of the phase, assuming no fail-
ure, i.e., we start the phase with x € Aj. Within a cost of b, the

algorithm evaluates b/2 offspring from x. Hence, the expected cost
until x € UT" . Ag o is at most 2/p;. The duration of the phase is

k=j+1
at most
1 1
E[Tj|¢j]§4min —, Cmax 1+Z— .
pj i=0 S

Taking into account the failure probabilities (condition 5), the un-
conditional expected runtime is

ElTl < mZ_fPr (F5) E[T; | 73] +Pr (7_51)15 [Tj |?J]
=

ol 1 &1
<4 min{ —, Ccmax |1+ — .
; {Pj ( Z )}
]

For two parameters k, cmax € N, we consider the variable cost
problem JumpCosTy . which has fitness function

n
f(x) = ONEMaAX(x) = Z xi
i=1
and cost function

g(x)={1

This function is illustrated in Figure 2.

if ONEMAX(x) € [n—k+1..n—1]

otherwise.

THEOREM 9. Assuming that the initial search points x and y sat-
isfy ONEMaX(x) < n — k and ONEMAX(y) < n — k, the expected
optimization cost of Algorithm 3 on JumpCosT is O(nlog(n/k) +
min{n¥, cmaxn logk}).

Proor. We apply Theorem 8 with m = n — k + 2 levels. For all
Jj € [0..n — k], we define level,

Aj = {x | ONEMAX(x) = j}.



Cmax

fx)
g(x)

n—k+1 n-1

Ix|

Figure 2: The JumpCosTy . benchmark function.

Forlevels j < n—k and j = n — k + 1, there are m; = 0 sub-levels.
And for level j = n—k, there are m; = k sub-levels, where sub-level
i € [0..k — 1] is defined as

An—k,i = {x | ONEMAX(_X‘) =n—-k+ l}
Finally, for j = n — k + 1, we define the level
Ap_js1 = {x | ONEMAX(x) = n}.

Condition 0 is satisfied by the assumptions ONEMAX(x) < n—k
and ONEMAX(y) < n — k. Conditions 1-4 of the theorem can be
satisfied with the following parameters. A search point in sub-
level A,,_; has k — i 0-bits, and can be “upgraded” by flipping
any single of these bits. Hence, we can use the parameter s,y ; =
Q((k—1i)/n). A search point in level A,_  has k 0-bits and can be
“upgraded” to the final level A,,_;,; by mutating all of these bits
simultaneously, which occurs with probability p,_ = Q(1/ nk).
Finally, any search point in level A; for j < n —k have n — j 0-bits,
and can be upgraded to level Aj41 by flipping exactly one 0-bit,
which occurs with probability p; = Q((n - j)/n).

Condition 5 is trivially satisfied because there exists only one
level with high cost.

By Theorem 8, the expected cost is

4 Z min{ —,Cmax |1 + L
= i=0 )i
n—k—1 My_k 1
<4 Z — + 4 min ,Cmax |1+
=0 pj Pn—k =0 Sn—ki

- o(n log(n/k) + min{n*, cmaxnlog(k)}). o

5 CONCLUSION

With this paper we have considered the setting in which the cost to
evaluate the fitness of a solution is not uniform across the search
space. These kinds of situations can occur in practical situations,
for example, when obtaining an objective value requires running
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a costly simulation or comes from the accuracy measurement of
a machine learning model that must first be trained. Traditional
runtime analysis techniques assume fitness evaluations have unit
cost and are therefore blind to these scenarios.

We have introduced two models of managing variable cost: a
simple non-adaptive model that prefers points that were cheaper
during the evaluation phase and an adaptive model that can decide
to abort an incomplete evaluation in order to apportion its resources
to better balance the total optimization cost.

In a non-adaptive setting, the simple strategy of favoring cheaper
neutral mutations can be effective, especially on highly neutral
landscapes such as LEADINGONES, in which case we proved the
strategy gains a linear improvement factor when the hidden cost
and fitness variables do not overlap. When the cost and fitness
variables are shared, the advantage depends on the degree of the
overlap.

For situations in which the process of evaluating the fitness func-
tion is costly but abortable, such as when fitness values are collected
from simulation runs, we introduced the (2+2) Cost-balancing Evo-
lutionary Algorithm (CBEA) that maintains two search points in
parallel to balance the evaluation cost against the waiting time to
jump over costly regions of the search space. For these scenarios
we developed a cost-adaptive fitness level theorem and provided
runtime bounds that depend on the correlation between maximum
cost and escape probability.
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