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ABSTRACT

Modern scientific applications and supercomputing systems are
generating large amounts of data in various fields, leading to critical
challenges in data storage footprints and communication times. To
address this issue, error-bounded GPU lossy compression has been
widely adopted, since it can reduce the volume of data within a
customized threshold on data distortion. In this work, we propose
an ultra-fast error-bounded GPU lossy compressor cuSZp. Specif-
ically, cuSZp computes the linear recurrences with hierarchical
parallelism to fuse the massive computation into one kernel, dras-
tically improving the end-to-end throughput. In addition, cuSZp
adopts a block-wise design along with a lightweight fixed-length
encoding and bit-shuffle inside each block such that it achieves high
compression ratios and data quality. Our experiments on NVIDIA
A100 GPU with 6 representative scientific datasets demonstrate
that cuSZp can achieve an ultra-fast end-to-end throughput (95.53x
compared with cuSZ) along with a high compression ratio and high
reconstructed data quality.
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1 INTRODUCTION

Today’s scientific high-performance computing (HPC) applications
produce a sheer amount of data during execution for post hoc anal-
ysis [6, 12, 18, 23, 26, 27, 36]. For example, reverse time migration
(RTM), which is a representative simulation for seismic imaging
containing thousands of timesteps, may produce up to 2,800 TB data
for a 10x10x8 square kilometers geological structure within only
one timestep [13, 25]. Hence, it has become extremely challenging
to store and manage such a great amount of data in an efficient
manner in the existing storage infrastructure.

Data compression is a widely used approach to address the
challenges of managing vast amounts of data in HPC applica-
tions [6, 26, 29, 40]. While lossless compression techniques suffer
from low compression ratios (up to 2:1) [24, 26], error-bounded lossy
compression turns out to be a promising solution [21, 33, 41]. By
allowing certain errors introduced by lossy compression, the tech-
nique can significantly improve the compression ratios (up to 100+)
while also preserving high reconstructed data quality [8, 30, 41].

In general, three goals are often pursued in the design of a
lossy compressor: (1) high compression/decompression through-
put, (2) high compression ratios, and (3) high reconstructed data
quality, which can be analyzed by visualization or statistical met-
rics. Although existing GPU lossy compression techniques, such as
cuSZ [21], cuZFP [33], cuSZx [39], can achieve high kernel through-
put and compression ratios, their designs have several key defects.
For example, cuSZ relies on CPU computation to build its Huffman
tree for the variable-length encoding step, which may significantly
affect the overall end-to-end performance. Moreover, cuSZ performs
the compression (and decompression) in multiple kernels, which
may cause inevitable extra data movement overheads. Another
state-of-the-art lossy compressor, cuSZx, improves the throughput
by using a constant block design, however, it still requires extra
CPU computations to accomplish preprocessing and global syn-
chronization, thereby end-to-end throughput still suffers. Moreover,
the constant block design in cuSZx flushes the data points in the rel-
atively smooth regions to a constant value, which may significantly
lower the reconstructed data quality unexpectedly. cuZFP has no
drawbacks mentioned above because it integrates all steps in one
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GPU kernel, but it experiences low quality in reconstructed data
because it supports only fixed-rate mode (hence not error-bounded).

In this work, we propose a novel error-bounded GPU lossy com-
pressor that exhibits the best level for all the three design goals
mentioned above. There are two main research challenges that
we have to address: (C1) Putting the entire parallel computa-
tion in one kernel. The ideal implementation for an ultra-fast
GPU compressor is to put all components into one single kernel,
inhibiting unnecessary overheads including kernel launching and
data movements. Unlike fixed-rate compressors [21], error-bounded
lossy compressors are often designed in a block-wise processing
manner [19-21, 28, 39], and each block incurs uncertain length of
compressed data, leading to imbalanced workload. This is a serious
issue for GPU implementation because there exists a linear recur-
rence to aggregate all the variable-length data chunks together at
the end of compression across different thread blocks. (C2) Balanc-
ing between high throughput and high compression ratio.
To achieve high compression ratios, existing error-bounded com-
pressors often require fine-grained computations such as Huffman
encoding [33] and entropy/dictionary encoding [7] to operate for
repeated patterns generated from previous components. Such ex-
pensive designs unavoidably reduce the throughput, especially in
GPU platform that prefers massive parallelism.

Toward this end, we propose cuSZp!, an ultra-fast error-bounded
lossy compression framework for GPU with optimized end-to-end
performance. Specifically, cuSZp is a block-wise design that can
be roughly categorized into four major steps. (S1) Quantization
and Prediction: After dividing the whole dataset into blocks each
with the same length, cuSZp first performs a pre-quantization and a
lightweight Lorenzo prediction inside each block, which is the only
“lossy" step in cuSZp. (S2) Fixed-length Encoding: Then, still
inside each block, cuSZp computes the maximum absolute value
of the quantization integer and adopts a fixed-length encoding to
compress the data losslessly. If all quantization integers of a block
are zero, CUSZP records this block as zero-block and bypasses this
step. By doing so, cuSZp can achieve a fairly high compression ra-
tio on smooth and sparse datasets. (S3) Global Synchronization:
Since different blocks may have various maximum required num-
bers of bits in the fixed-length encoding, cuSZp performs a global
prefix-sum synchronization to compute the compressed data index
along with the compressed size of the whole dataset. Our designed
global synchronization fully utilizes the hierarchy parallelism and
thus can achieve high throughput. (S4) Block Bit-shuffle. Finally,
cuSZp optimizes the bit-level shifting operation with a bit-shuffle
algorithm to store the compressed data back to GPU global memory.
To the best of our knowledge, we are the first work that proposes an
error-bounded lossy compressor in a single GPU kernel and achieves
an ultra-fast end-to-end performance also with a high compression
ratio and high data quality. We perform a comprehensive evalua-
tion using NVIDIA Ampere A100 GPU provided by Argonne Swing
cluster, based on 6 real-world application data across from differ-
ent domains (including weather simulation, cosmology simulation,
quantum Monte Carlo simulation, seismic imagining, and so on),
which involves 100+ datasets fields in total. The main evaluation
results of cuSZp are summarized as follows:

1cuSZp code: https://github.com/szcompressor/cuSZp.
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e CcUSZP can achieve 93.63 GB/s and 120.04 GB/s end-to-end
throughput on average for compression and decompression,
respectively, which are 95.53% and 55.18x faster than cuSZ
and cuSZx. By end-to-end throughput, we mean the period
from the moment when the raw data are populated in the
GPU global memory to the moment when the compressed
data are put in the GPU global memory by the compressor.

o The kernel throughput of cuSZp is also inline/comparable
(around 100GB/s or higher in most cases) with state-of-the-art
GPU lossy compressors including cuZFP, cuSZx, and cuSZ,
where the kernel throughput means the performance of kernel
execution excluding kernel launch and data movement.

e Compared with two cutting-edge error-bounded lossy com-
pressors (cuSZ and cuSZx), cuSZP can obtain the highest
compression ratios in most cases at the same error bound
with far higher end-to-end throughput.

e CcUSZp can preserve a good quality for reconstructed data in
both statistical and visualization metrics for different scientific
datasets. Specifically, compared with cuZFP, not only can
cuSZp significantly improve the rate distortion for both PSNR
and SSIM, but it can also considerably remove the undesired
artifacts in the reconstructed datasets.

The rest of this paper is organized as follows. Section 2 defines the
terminologies and states the problem. Section 3 and 4 describes the
design of cuSZp. Section 5 evaluates cuSZp with several represen-
tative scientific datasets. Section 6 and 7 present several discussions
and the related works, respectively. In Section 8, we conclude this
work with a vision of future work.

2 TERMINOLOGIES AND PROBLEM
STATEMENT

In this Section, we first define the terminologies that are used in
this paper, then we state the problem based on these terminologies.

2.1 Terminologies

e Error-bounded lossy compression: In error-bounded lossy
compression, the introduced error should be strictly bounded
by the user-defined tolerance (i.e. error bound). Given a sci-
entific dataset D = {dy,d>, ...,dN}, where d; and N denote
the i-th data point and the length of D, respectively. After
the compression and decompression computations, the recon-
structed data can be denoted by D’ = {d{, dé, dj’\]}, which
should satisfy max;=12.. n|di — dlfl < eb, where eb is the
user-defined error bound.

Error bound: There are two types of error modes, absolute
error bound (ABS) and value-range-based relative error bound
(REL), that are commonly used in scientific applications [31].
ABS error bound § is set as a constant value, while REL error
bound can be denoted as Ar, where A € (0, 1) denotes relative
ratio and r represents the value range (i.e. max value - min
value) in scientific dataset D. Thus, these two error bounds
can be formulated as

_]d, ABSerror bound § is used. (1)
- Ar, REL error bound A is used.
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For simplicity, we use ABS § and REL A (e.g. ABS=1E-4, REL=1E-
3) to denote these two error bounds in later text.
Throughput: Compression/decompression throughput rep-
resents how much data can be processed in a segment of time
(e.g. GB/s). This is also the main benefit to utilize a GPU lossy
compressor rather than a CPU one.

e Compression ratio: Compression ratio is defined as the ratio

of the original data size to the compressed data size.

Data quality: Data quality evaluates the distortion (i.e. errors)

in a dataset that is reconstructed by a lossy compressor.

e PSNR: Peak signal-to-noise ratio (PSNR) [11], measured by
decibels (dB), is a commonly used statistical metric to measure
the quality of reconstructed data compared to its original
version. PSNR measures the quality from the perspective of
pixel-wise differences, and the higher the better.

o SSIM: Structural similarity index measure (SSIM) [35] is an-
other important metric to evaluate the reconstructed data
quality. SSIM is a perceptual metric that is designed to reflect
the perceived quality by calculating luminance, contrast, and
structure information. The value range of SSIM is from -1 to
1, and the higher the better (1 indicates perfect similarity).

2.2 Problem Statement

In this work, our objective is to propose a GPU error-bounded lossy
compressor that can achieve (i) end-to-end high throughput, (ii)
high compression ratio, and (iii) high data quality at the same time.

(i) As for the end-to-end throughput, we notice that the sci-
entific applications running on GPU often load the data stored in
GPU global memory and process them at runtime. Regarding the
compression operation, they expect to deal with the data compres-
sion and decompression fully in GPU kernels with all related data
pointed by GPU pointers. Note that a kernel here denotes a function
that is fully executed on GPU. In our work, we target the end-to-end
performance, which refers to the duration from the moment when
the original data is generated in GPU memory to the time stamp
that the compressed data is stored in GPU memory. In contrast,
many of existing GPU compression methods [33, 39] focus only
on the kernel throughput, which still suffers from very low end-to-
end performance because of the inevitable CPU operations in their
methods or expensive data movements among CPU, GPU global
memory and shared memory. In our solution, we manage to develop
an efficient compression method that includes every step in one
GPU kernel, which effectively eliminates the costs mentioned above.
Consequently, in single-kernel GPU compressor design, end-to-end
throughput is the same as kernel throughput.

(ii) For the compression ratio, due to the need for high through-
put, it is challenging to develop a lossy compressor that can have a
higher compression ratio than cuSZ, which is a cutting-edge GPU
error-bounded lossy compressor optimized for high compression
ratio in particular [33]. Whereas, we still manage to devise an ef-
fective compression method that also features comparable or even
higher compression ratios in comparison.

(iii) For data quality, we use not only statistical metrics PSNR
and SSIM, but also perform visualization assessment, which is also
conducted commonly in many applications such as climate sim-
ulation [15], reverse time migration (RTM) [43] and cosmology

simulations [9]. The importance of visualization assessment is also
verified in Figure 1. We use a real-world scientific dataset - RTM
simulation [4, 13] as an example, which was reconstructed by two
different lossy compressors. Figure 1(a) demonstrates the visual-
ization of the original dataset, and Figure 1(b) and 1(c) correspond
to the decompressed datasets by different settings. Although the
reconstructed data2 has a higher SSIM (0.9948), it has more obvious
distorted patterns compared with reconstructed datal, which is
almost identical to the original data. This example reveals the fact
that only using PSNR and SSIM may not be adequate to assess
the reconstructed data quality: i.e., a high PSNR or SSIM may still
have notably distorted visualization, which is not satisfied from
the perspective of domain experts. Therefore, we use all of them to
assess the data quality.

(b) Reconstructed datal (c) Reconstructed data2

(a) Original data

(SSIM: 0.9871) (SSIM: 0.9948)

Figure 1: Demonstrating the importance of visualization in
the compressed data quality assessment. Scientific Dataset:
RTM (dim2, slice100).

3 HIGH-LEVEL DESIGN OF CUSZP

In this section, we provide a high-level overview of the compression
and decompression algorithms in cuSZp.

3.1 cuSZp Compression

Figure 2 shows a high-level overview of cuSZp compression frame-
work. Given a scientific dataset as input, cUSZp always treats it as
a 1D array and divides it into a set of blocks each with the same
length. If one block is a “Non-Zero" block (i.e., the block has at least
one data point which is not 0), cuSZp will conduct Quantization and
Prediction (@) and Fixed-length Encoding (@), also generating the
block offset (i.e. compressed data size of this block) for this block.
Otherwise, the block offsets are recorded as 0, representing that all
data points in this block are zero. Then, all computed block offsets
are written into a block offset array, which is stored as a global vari-
able with a length that equals to the total number of blocks in the
input dataset. To generate the locations of the encoded/compressed
block data, cuSZp performs Global Synchronization () to par-
allelize this linear recurrence and generate a synchronized offset
array. The synchronized offset array has the same length as the
block offset array, recording the encoded data location in the final
compressed data. Finally, cuSZp performs a Block Bit-shuffle (®)
and writes the encoded data into final compressed data based on
the computed location.

3.2 cuSZp Decompression

Figure 3 presents a high-level overview of cuSZp decompression
framework. Given the compressed data in bytes, cuSZp first reads
the fixed-length for each block and generates block offset array
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Figure 2: High-level overview of cuSZp compression.

(details will be presented in Equation 2). Similar to the compression
phase, cuSZp performs Global Synchronization (@) to generate
the locations that store the compressed data for each block. Given
these locations, cuSZp performs the reverse operations of Block
Bit-shuffle (@), Fixed-length Encoding (®), and Quantization and
Prediction (@), in order to obtain the reconstructed data.

Block Offset Array

R Output

Cmp.
Data Fixed-length Quant. and Data
— %Iobal _BIOC';ﬂ Encoding Prediction | =
BAE: Bit:shuffle [Encoded Quant. Integer
Sync. Offset Array T _Data
Read Compressed Bytes If ‘ﬂ Reverse ] “Non-Zero” ‘Zero” |
“Non-Zero” Block ' Operation Block Offset Block Offset :

Figure 3: High-level overview of cuSZp decompression.

For simplicity, in Section 4, we only introduce the compression
phase in detail, whereas some reverse operations, such as how to
perform reverse Quantization and Lorenzo based on error bounds
eb, will only be discussed in context if needed.

4 DETAILED DESIGN OF CUSZP

In this Section, we describe each component in cuSZp compression
and explain the design motivation. Key notations that are used in
this section are summarized in Table 1.

Notation Description

D Original scientific dataset.

D’ Reconstructed scientific dataset.

eb User-defined error bound.

By The k-th block in scientific dataset D or D’.

L The length of one block.

N The number of blocks in scientific dataset D or D’.
d; The i-th original data in one block.

d; The i-th reconstructed data in one block.

Table 1: Notations that are frequently used in Section 4.

4.1 Quantization and Prediction (0)

The goal of Quantization and Prediction step is to convert floating
point data into a set of integers that contain less randomness in
their bits, making them easier to be processed in the succeeding
encoding steps. Similar to previous works [33], cuSZp first adopts
a pre-quantization to convert data types from floating points to
integer based on the user-defined error bound. This is the only
“lossy" step in the entire compression pipeline. Then, inside each
block, cuSZp performs a lightweight Lorenzo prediction to reduce
the integer value to a smaller reversible one, removing repeated
bit-level patterns and hence increasing encoding efficiency.
Pre-quantization in cuSZPp is used to convert the continuous float-
ing point values to a discrete set of integers, where the maximum
error in integers is guaranteed to be within the user-defined error
bound. Given one block B = {d1,dy, ...,dr }, di denotes i-th floating
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Integer Shown in 4 Bytes (32 Bits) Integer Value

J r.,=11604
'«—— Effective Bits ——
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Quant. Integers . L
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{[]Quant. Integers
i L] Without Lorenzo

Figure 4: Processing quantization integer with lightweight
Lorenzo prediction.

point element in block B and L represents the block length. The
pre-quantization step can generate a set of integers {ri,72,....,rL},
where each integer r; can be computed as a rounding operation
round(d;/2eb), guaranteeing |r; X 2eb — d;| < eb. In the decom-
pression, given a quantization integer r;, the output data can be
constructed as d] = r; X 2eb. As we can see, the pre-quantization in
cUSZpr is the only “lossy" step and can be computed independently,
indicating it is naturally suitable for parallel implementation on
GPU. The quantization step in cuSZp is similar to other state-of-
the-art lossy compression works [10, 30, 33].

cuSZp then performs a lightweight Lorenzo prediction [14], a
1D 1-Layer Lorenzo prediction, to process the quantization integers,
making them easier to be encoded in the later steps. In the pre-
quantization, a smaller user-defined error bound can lead to a larger
quantization integer, causing repeated bit patterns in the stream of
data, as shown in Figure 4. To deal with this, cuSZp uses a Lorenzo
prediction to eliminate these redundant repeated bits by recording
only the differences between adjacent quantization integers inside
the block. For each quantization integer r; in one block, this process
can be formulated as [; = r; — rj—1, where r;_1 is set as 0 for the
first quantization integer. Our Lorenzo prediction is conducted
separately among different blocks, so that the linear recurrence
only occurs within each block, making this possible for parallelism.
Figure 4 illustrates why Lorenzo prediction can reduce the repeated
bit patterns significantly. Here we use only 3 data points from a
data block. We can see that the number of effective bits is reduced
from 14 to 4, aggregating the data information into a denser format.

Beyond 1D 1-Layer Lorenzo prediction, there are also other
Lorenzo predictions with higher dimensions and layers [14, 30].
The reason we choose this lightweight one is discussed as follows.
First, for the parallel implementation in GPU, we conduct Lorenzo
prediction only inside each block in the scientific dataset, where the
values are relatively smooth among adjacent data points (we will
demonstrate this in Section 4.2). Such operation reduces the data
complexity, generating similar performance between lightweight
and more complex Lorenzo predictions (also validated in our ex-
periments). Since the first and foremost target of cuSZp is high
throughput, we use a lightweight one with fewer computations.

4.2 Fixed-length Encoding (8)

cuSZp uses a Fixed-length Encoding to reduce the data size by only
preserving a fixed number of bits for each data point in one “Non-
Zero" block. Given a block that consists of quantization integers
(processed after Lorenzo prediction), cuSZp first records their sign
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information with bits and combines those bits into a combined sign
map, since the C language stores negative integers with an extra
complement notation. If this integer is positive, cuSZp will mark it
using the bit 0, otherwise bit 1. Therefore, for a block with length
L, cuSZp requires extra L/8 unsigned chars, of which length is 1
byte for each unsigned char, to store the sign map. Then, cuSZp
iterates the data points in the block and computes the maximum
value. As all the quantization integers are already converted to
their corresponding absolute values, cuUSZP just needs to record
the position of the last non-zero bit of this maximum integer. This
position is then regarded as the fixed-length for this block. We use
an example to further illustrate this idea. Suppose a non-zero block
(after pre-quantization+Lorenzo+absolute) contains 8 data points
{1,2,5,11,2,0,0,1,0}, then the maximum value is 11, which indicates
we just need to keep 4 bits (the position mentioned above) for each
of the data points. cuUSZp preserves the same number of bits (i.e.
fixed-length) for all absolute integers in each “non-zero” block. If
the fixed-length of block By, is computed as F, the compressed data
length (in bytes) of By can be computed as the following equation:

(Fr+1) XL

Cmka = 3

@
where CmpLy. denotes the compression size of block Br. CmpLy
is also the block offset to be stored in the global variable for later
synchronization.

Figure 5 illustrates the fixed-length encoding step in cuSZp by a
block consisting of 8 quantization integers (i.e. L = 8). After gener-
ating the sign map, cuSZp iterates all absolute integers and localizes
the maximum value I, = 134. We can see that [, has the leftmost
leading non-zero bit (8th bit), which also decides the fixed-length
as 8. The decided fixed-length 8 can cover all effective bits (from
the first bit to the last non-zero bit) for the rest absolute integers
within the same block. The compression size can be computed as
(8 4+ 1) x 8/8 = 9 bytes, based on Equation (2).

Integer Shown in 4 Bytes (32 Bits) Abs. Int. Sign

Value r =
[T/, = 123, 1|
|, =15 xi-11

<<
|

LI
LIt
(I
(I
(I
LTI IrIT]
(I
(I

T ]8Bits To Bits To ! ' Max | -
Remove Store [osit @1 Bt OAbs. Int. ’D:I:D:D:D Sign Map

Figure 5: Compressing a “None-Zero" block (L = 8) with Fixed-
length Encoding.

Compared with Fixed-length Encoding in cuSZp, there are some
other more fine-grained variable-length encoding strategies, such
as Huffman encoding, which can achieve a high compression ra-
tio by storing high-frequency data with fewer bits. However, we
still choose Fixed-length Encoding in cuSZp, because of the fol-
lowing reasons. First, cuSZp is a parallel design and splits data
into multiple blocks, where data frequency inside one block is not
high, limiting the compression ratio for Huffman encoding. Second,
building and storing the Huffman tree acquires extra computation
and space overhead, especially for a parallel block-wise design,

inhibiting a high throughput design for cuSZp. At last, we observe
that scientific datasets are routinely very smooth in space, and the
value range of one cuSZp block (L consecutive data points) is rel-
atively small. Figure 6 shows a quantitative analysis for 3 widely
used scientific datasets, which are Hurricane (Field: U) from cli-
mate simulation [15], NYX (Field: temperature) from cosmology
simulation [3], and QMCPack from quantum simulation [17]. We
calculate the cumulative distribution function (CDF) of the block’s
value range (L=8 and 32) and normalize this range into [0, 1] based
on the value range of the whole dataset for the sake of clear ob-
servation. As we can see, these datasets exhibit high smoothness
within blocks. In absolute terms, in Hurricane, the relative value
ranges of more than 80% blocks are smaller than 0.02 when block
length L is set as 8. Figure 7 demonstrates such smoothness from
the perspective of visualization as well. The same conclusions can
be drawn when we set L as 64 and 128. As a result, we reckon that
Fixed-length Encoding is an appropriate choice in cuSZp design.

100% = 100% ~
80% | 80% |
L 60% . WL 60% .
o 40% Hurricane o 40% Hurricane
20% NYX | 20% NYX
0% QMCPack 0% QMCPack

0 02 04 06 08 1 0 02 04 06 08 1
Relative Value Range in One Block Relative Value Range in One Block
(a) Block length L = 8 (b) Block length L = 32
Figure 6: Cumulative Distribution Function (CDF) of block’s
relative value range in 3 scientific datasets.

(a) Hurricane (dim3, (b) NYX (dim2, slice200) (c) QMCPack (dim3,
slice50) slice1000)
Figure 7: Demonstrating high smoothness in scientific

datasets by visualization.

4.3 Global Synchronization (©)

Global Synchronization in cuSZp can generate the index of each
block in the final compressed data (for the whole scientific dataset).
Recall that the compressed length for each block, decided by block
fixed-length (see Equation (2)), varies a lot across different blocks.
One cannot directly concatenate the compressed blocks with a
uniform length per block, otherwise, there would be data loss for
some blocks or extra holes in the final compressed data, drastically
decreasing the compression ratio. Existing GPU lossy compressors,
such as cuSZx [39], generally perform this step in the CPU for
simplicity. Such a design is suitable for the CPU-GPU hybrid simu-
lations but cannot achieve high end-to-end throughput in the pure
GPU simulations (as stated in Section 2.2), due to the expensive
CPU-GPU data movement overheads.

Global Synchronization in cuSZp is formulated as a classic prefix-
sum (i.e.scan) problem [22]. Figure 8 explains this with a concate-
nation of 4 blocks in cuSZp. After the Fixed-length Encoding step,
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Figure 8: Illustrating Global Synchronization is a prefix-sum
problem with a toy example.

each block By is compressed from L integers into CmpLy bytes.
To concatenate those compressed blocks into the final consecutive
memory, each compressed block should know its start index and
end index. For By, its compressed length is CmpLo, indicating it
should be stored starting from index 0 to index CmpLg. B stores in
the same way, starting from index CmpLg to index CmpLo+CmpL;.
Thus, for each block By, the compressed bytes should be stored
from index Z{F:_Ol CmplL; to index Zi‘(:o CmpL;. Calculating those
indexes can thus be formulated as an exclusive prefix-sum problem:
Input : BlockOf fsetArray = {CmpLy, ..., CmpLn}
®)

0 N
Output : SyncOf fsetArray = {0, Z CmplLi, ..., Z CmpL;}
i=0 i=0

where N denotes the number of blocks in the scientific dataset D.

Restore Offset
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ThreadOffset
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WarpOffset

| Global Prefix-Sum }SyT
WarpOffset
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BlockOffsetArray

SyncOffsetArray

Figure 9: Workflow of Global Synchronization in cuSZp

In cuSZp, Global Synchronization is implemented in a hierar-
chical fashion, including thread-level, warp-level, and global-level
(i.e. device-level), exploiting the NVIDIA GPU parallelism. Figure 9
illustrates the workflow of Global Synchronization in cuSZp. Given
the input BlockOffsetArray, cuSZp first performs thread-level prefix-
sum, which generates thread offset by iteratively adding up all
block offsets that belong to the same thread. cuSZp utilizes one
thread to operate multiple blocks, to achieve higher throughput
with more register computations. Then, cuSZp performs warp-level
prefix-sum by warp shuffle, generating warp offset, which is the
local prefix-sum in a warp (i.e. 32 consecutive threads in the same
thread block). Warp shuffle is a CUDA feature that allows threads
within the same warp to exchange data with neglect latency (only
slightly slower than register accesses). Based on our performance
characterization, we set only one warp for each thread block, hence
this step also completes the thread block-level prefix-sum. In the
next step, cUSZp writes the warp offsets to a global variable to
perform global prefix-sum and generates the synchronized warp
offsets. Similar to existing solutions [22, 37], we implement the
global prefix-sum using chained-scan parallelization, which is a
single-pass approach to decode linear recurrences at a fine granu-
larity. Since massive local prefix-sum computations are assigned to
thread- and warp-level, the global variable accesses in this step are
significantly reduced, hence increasing the performance. At last,
CcUSZp restores the offset to each block reversely by synchronized
warp offset, generating the output SyncOffsetArray, where the last
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element denotes the compressed size of the whole dataset. To the
best of our knowledge, we are arguably the first work that imple-
ments the global synchronization inside a GPU error-bounded lossy
compressor (also within one kernel) and fine-tunes the performance
via a hierarchical design.

» 300 260,33 260.77

o
5 20 190.64
150 120.52
100
50 H
0

Hurricane NYX QMCPack RTM
Figure 10: Throughput evaluation of Global Synchronization.

Throughput(

We profile the Global Synchronization in cuSZp performance
on an NVIDIA A100 GPU with 4 scientific datasets. The selected
datasets are the same as what we used in Figure 1 and 7. Figure 10
shows the performance, which is calculated by dividing the original
data size (by GB) and runtime (by second). As we can see, our fine-
tuned Global Synchronization can achieve on average of 208.06 GB/s
throughput, varying from 120.52 GB/s in Hurricane to 260.77 GB/s
to QMCPack due to intrinsic data characteristics, demonstrating
our efficient Global Synchronization design.

4.4 Block Bit-shuffle (®)

Block Bit-shuffle rearranges compressed fixed-length encoded in-
tegers before storing them in final compression memory space ac-
cording to the indexes generated from Global Synchronization. The
goal of Block Bit-shuffle is to transform encoded integers (lengths
are different across different blocks) into a set of aligned bytes that
can be easily stored. This design avoids irregular bit-shifting com-
putation when the fixed-length is not divisible by 8, optimizing
the program control flow, hence making this step a highly parallel
process that can be well-suited for GPU implementation.
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Figure 11: Illustrating Block Bit-shuffle using example block
from Figure 5.

Figure 11 illustrates Block Bit-shuffle with a fixed-length encoded
block (L = 8) obtained from Figure 5. Instead of directly storing
the encoded integers {ly, l1, ..., I7}, Block Bit-shuffle rearranges the
bits with the k-th offset into Byte k. For example, the first bits
from {lp, I, ..., Iy} are stored into Byte 0. For blocks with different
lengths, the number of Bytes that store bits with the same offset can
be calculated as L/8. After those shuffled bytes are generated, they
will be stored in the final compression data, based on the indexes
generated from Global synchronization.
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Figure 12 shows the composition of compression data for the
whole dataset D. There are two fractions in the compression data:
Fixed-length for each block (®) and shuffled bytes for each block
(@). Note that the block offset array mentioned in Figure 2 can
be easily computed to this fixed-length information (®) based on
Equation 2. In our implementation, we use one byte to store the
fixed-length for each block, and this is utilized to guide Global
Synchronization in cuSZp decompression.

5 EVALUATION

In this Section, we evaluate the performance of cuSZp with 6 rep-
resentative scientific datasets on a supercomputer.

Datasets Dims per field  No. of fields  Total Size
Hurricane [1] 500x500x100 13 1.3GB
NYX [3] 512x512x512 6 3.1GB
QMCPack [17] 288x115X69x69 2 1.2 GB
RTM [4] 449x449x235 36 6.4 GB
HACC [9] 280,953,867 6 6.3 GB
CESM-ATM [16] 1,800x3,600 79 2.0 GB

Table 2: Real-world HPC datasets used in our evaluation.
5.1 Experimental Setup

5.1.1  Platforms. We evaluate cuSZp on one NVIDIA Ampere A100
GPU (108 SMs, 40 GB), which is offered by Argonne Swing cluster?.
This node is also equipped with 2 AMD EPYC 7742 CPUs (64C,
128T) @2.25GHz and 1 TB DDR4 host memory. The host operating
system is Ubuntu 20.04.2 LTS and our GPU implementations are
based on CUDA 11.4 toolkit and NVCC V11.4.152. We measure the
GPU kernel performance using the Nsight system 2021.3.2.4, which
is a professional profiling tool developed by NVIDIA.

5.1.2  Dataset. We conduct experiments based on 6 real-world HPC
simulation datasets in various domains (shown in Table 2) from the
Scientific Data Reduction Benchmarks [42]: Hurricane (weather
simulation) [1], NYX (cosmology simulation) [3], QMCPack (quan-
tum computing) [17], RTM (seismic imaging) [5], HACC (cosmic
simulation) [9], and CESM-ATM (climate simulation) [16]. These
datasets are widely adopted to evaluate lossy compressors in the
data reduction community [28, 33, 41, 42].

5.1.3  Evaluation Metrics. Recall that our goal is to propose a GPU
error-bounded lossy compressor that can achieve high through-
put, high compression ratio, and high reconstructed data quality
(Section 2.2), We formulate the related evaluation metrics in detail,
which can be found as follows.

e End-to-end throughput: End-to-end throughput (GB/s) de-
notes how many gigabytes of data a compressor can process
during duration between the timestamp when the original
data are generated in GPU and the moment when the com-
pressed data are stored back to GPU; and vice versa for de-
compression. The end-to-end throughput is very important
for GPU HPC simulation.

o Kernel throughput: Kernel throughput (GB/s) denotes how
many gigabytes of data a compressor can process in kernel
execution time. If the compressor is executed in multiple ker-
nels, this time can be calculated by adding up each kernel
execution time.

Zhttps://www.lcrc.anl.gov/systems/resources/swing/

e Compression ratio (CR): Compression ratio can be calcu-
lated by Sizeorj/Sizecmp, Where Sizeor; and Sizecmp denote
the original and compressed data size, respectively. A higher
compression ratio indicates the compressor has a stronger
capability to aggregate information from the original data.

¢ Rate distortion: Rate distortion evaluates the reconstructed
data quality under the same bit rate (i.e. the average number
of bits per data point in compressed data). To quantify the data
quality, we use both PSNR and SSIM (c.f: Section 2.2). Rate
distortion is an important metric to statistically evaluate the
data quality of a lossy compressor, whether this compressor is
error-bounded (e.g. cuSZp, cuSZ, cuSZx) or fix-rated (cuZFP).

¢ Visualization under the same CR: In visualization evalua-
tion, we compare the visualized data quality under the same
compression ratio, for a fair comparison.

5.1.4 Baseline. We evaluate cuSZp with three state-of-the-art GPU
lossy compressors, including cuZFP [21], cuSZ [33], and cuSZx [39].
Specifically, cuSZp, cuSZ, and cuSZx are error-bounded lossy com-
pressors, and we evaluate them with 4 commonly used relative error
bounds (definition can be found in 2.1), which are REL 1E-1, REL 1E-
2, REL 1E-3, and REL 1E-4. cuZFP is a fast single kernel GPU lossy
compressor with only fixed-rate mode supported. We exclude Bit-
comp [2] in this evaluation as it is a closed-source implementation
with an unknown compression algorithm.

5.2 Throughput

We evaluate the throughput of cuSZp in this Section. For error-
bounded compressors (e.g. CUSZP, cuSZ, cuSZx), we measure the
average throughput across the error-bounds REL 1E-1, REL 1E-2,
REL 1E-3, and REL 1E-4 for each dataset. For cuZFP with only fixed-
rate mode, we measure the average throughput across the fixed
rates 4, 8, 16, and 24. First, we measure the end-to-end throughput
of four compressors along with a performance breakdown analysis,
which is a novel assessment way compared with other prior lossy
compression research [7, 33, 39] to our knowledge. Then, we evalu-
ate the kernel throughput, and this evaluation method is consistent
with other GPU lossy compression work [7, 33, 39].

Figure 13 presents the end-to-end throughput for compression
and decompression. We observe that cuSZp and cuZFP can achieve
top-tier end-to-end performance, due to their single GPU kernel
design, which significantly outperforms cuSZ and cuSZx (~100x).
On average, cUSZp can achieve 93.63 GB/s and 120.04 GB/s for
end-to-end compression and decompression throughput, respec-
tively. Specifically, compression throughput in cuSZp varies from
41.77 GB/s in CESM-ATM to 140.44 GB/s in QMCPack, whereas this
variation is from 49.91 in CESM-ATM to 190.11 in NYX for cuSZp de-
compression. In comparison, cuSZ and cuSZx can only achieve 1.04
GB/s~2.22 GB/s end-to-end throughput. The key reason is that both
cuSZ and cuSZx require CPU computations to perform the linear
recurrences which are hard to parallelize on GPU, such as building
Huffman in cuSZ and global synchronization in cuSZx. Such op-
erations introduce significant data movement cost between CPU
and GPU, hence reducing the end-to-end performance inevitably.
All in all, compared with state-of-the-art error-bounded GPU lossy
compressors, CUSZP can improve the end-to-end performance by
95.53x with cuSZ and by 55.18x with cuSZx.
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Figure 13: End-to-end throughput (GB/s).

In order to understand the end-to-end throughput deeply, we do
a performance breakdown using the dataset Hurricane (Field: U),
and the results are shown in Figure 14. We normalize the compres-
sion/ decompression runtime into 100% and profile the percentage
for each component. In general, the end-to-end throughput can
be roughly divided into three parts, including GPU computations
(denoted as GPU), CPU computations (denoted as CPU), and data
movement overheads (denoted as Memcpy). Since cuSZp and cuZFP
can be finished in one kernel, we can observe their GPU computa-
tions occupies 100% runtime. However, in cuSZ, the GPU computa-
tions take only 3.24% and 4.21% for the end-to-end compression and
decompression, which indicates users have to spend over 20X run-
time overhead if they adopt cuSZ for inline GPU HPC simulation in
practice. Similar results can be observed in cuSZx. We can also find
that cuSZx has higher CPU computation overheads in decompres-
sion. The reason is that cuSZx requires both CPU preprocessing
and postprocessing in decompression, compared with only post-
processing in compression. All in all, the end-to-end throughput
in CPU-GPU hybrid solution suffers from CPU computation and
data movement overheads, making a single-kernel design extremely
important for GPU HPC simulation.
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Figure 14: Breakdown performance analysis for end-to-end
throughput. Dataset: Hurricane (Field: U).

To understand the effectiveness of our kernel design as well as
implementation, we also measure the kernel throughput for all four
GPU compressors, as presented in Figure 15. The kernel throughput
we measured in our experiments is inline with the results shown
in other existing works [21, 33, 39]. Specifically, cuSZ and cuSZx
can have relatively high throughput. CuSZx can achieve an average
of 161.51 GB/s in compression and 164.40 GB/s in decompression,
whereas these numbers are 46.39 GB/s and 59.44 GB/s for cuSZ.
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Figure 15: Kernel throughput (GB/s).

The throughput of cuSZp and cuZFP remain the same between end-
to-end throughput and kernel throughput, due to a single-kernel
design. Note that even without CPU computations and expensive
data movement overheads, cuSZp still increases the kernel through-
put by over 100% compared with cuSZ, validating the effectiveness
of the ultra-fast design in cuSZp.

5.3 Compression Ratio

Table 3 presents the compression ratio results of 3 error-bounded
lossy compressors. The highest average compression ratio for each
dataset under each error bound is underlined. We exclude the cuZFP
in this table because it does not support error bound mode but only
fixed-rate mode (its compression ratio is a fixed number, i.e. each
data point preserves the same number of bits). For each compressor,
same as Section 5.2, we adopt REL 1E-1, REL 1E-2, REL 1E-3, and
REL 1E-4 error bounds. There are several results marked as “n/a"
in Table 3, because the cuSZ would crash at those error bounds
probably due to the bugs in its implementation. We confirm that
the bugs are related to storing the Huffman codebooks in cuSZ, by
communicating with the cuSZ developers.

We can observe that cuSZp achieves the highest compression ra-
tios on 16/24 benchmarks with different error bounds, even though
cuSZp is devised under the single kernel design constraint. In abso-
lute terms, for the Hurricane dataset, cuSZp improves the average
compression ratios by 162.61%, 71.82%, 39.70%, and 39.55% in REL
1E-1, REL 1E-2, REL 1E-3, and REL 1E-4 error bounds, respectively,
compared with cuSZ. In the RTM dataset, cuSZp improves the av-
erage compression ratios by 41.45%, 78.78%, 78.60%, and 49.29 % in
the same four error bounds compared with cuSZx.

For the HACC dataset, cuSZx exhibits higher compression ratios
compared with cuSZp based on the error bounds of REL 1E-1 and
REL 1E-2. This is because HACC has a relatively large value range
(e.g., 7614.87 in the vx field), making the error bounds of REL 1E-1
and REL 1E-2 relatively large, generating more constant blocks in
the cuSZx compression phase, hence increasing the compression ra-
tios. This also explains why cuSZx can achieve the best compression
ratios in CESM-ATM dataset.

However, cuSZx’s high compression ratio is achieved at the
price of significantly degraded reconstructed data quality. Figure 16
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Table 3: Compression ratio of 3 error-bounded lossy compressors in GPU. The highest average compression ratios are underlined.

| Hurricane | NYX | QMCPack | RTM | HACC | CESM-ATM
REL ‘ min max avg ‘ min max avg ‘ min max avg ‘ min max avg ‘ min max avg ‘ min max avg
1E-1 | 13.56 12432 7545 | 4348 127.99 9911 | 8520 98.25 9173 | 7276 127.99 10848 | 1035 59.82 3430 | 3.99  101.27  27.40
cuUSZp 1E-2 5.96 88.88 38.71 9.62 127.80 66.74 1246 2223 17.35 | 13.89 127.96 67.06 5.24 10.09 7.63 2.93 43.75 14.21
1E-3 | 372 5688 2232 | 510 12555 3846 | 6.08 10.08 8.08 | 6.88 127.83 4240 | 343 520 431 | 231 3381  9.82
1E-4 | 271 3666 1436 | 336 9825 2215 | 379 557  4.68 | 416 12759 27.56 | 253 339 296 | 181 2611  7.35
1E-1 | 2642  29.98 2873 | 3124 31.58 3147 | 1941 2341 2141 | 2947 30.87 3045 | 30.31 3130  30.81 | 23.31 2543  24.63
cusz B2 | 1535 2862 2253 | 2871 3157 3022 | 750 2155 1453 | n/a n/a n/a n/a n/a n/a | 1918 2533  22.89
1E-3 8.91 23.61 15.97 n/a n/a n/a 426  17.70  10.98 n/a n/a n/a n/a n/a n/a 1134 25.16 18.48
1E-4 | 337 1725 836 | 1075 3128 1622 | n/a n/a n/a | 3.67 3084 1163 | n/a n/a n/a | 538 2443 1247
1E-1 | 28.68 11827 7419 | 77.09 12410 11074 | 2559 69.21 47.40 | 23.36 124.06  76.69 | 28.81 124.08 7041 | 16.05 12411 7430
cuszx [EZ | 391 5392 2167 | 468 12372 614 274 901 588 | 394 12392 3751 | 3.05 11757 4437 | 393 12411 3185
" 1E-3 | 2.86 3203 1347 | 3.11 11893 3037 | 236 431 334 | 283 12355 2374 | 218 431 300 | 277 12396 24.24
1E-4 | 203 2364 1029 | 238 7436 1512 | 168 284 226 | 217 12300 1846 | 170 268 213 | 211 12377 2257
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and SSIM, respectively. Here the x-axis denotes the bit rate, which
is the mean number of required bits per data point in compressed
data, so a lower bit rate indicates a higher compression ratio. The
y-axis represents the PSNR or SSIM. For each of the three error-
bounded compressors, we measure the PSNR and SSIM at the four
selected error bounds used in Table 3 and calculate bit rates based
on their compression ratios. For cuZFP(fixed-rate mode), we run it
with the 4 fixed rate settings that are close to the measured bit rates
of cuSZp’s compressed data and then measure the PSNR and SSIM,
for a fair comparison. As we can see, compared with other lossy
compressors, CUSZP can preserve a higher fidelity in reconstructed
data, achieving the highest PSNR and SSIM on certain fields such
as RTM and HACC. Specifically, cuSZp significantly improves the
PSNR and SSIM under the same bit rates over cuZFP especially
because of its effective error controls. It is worth noting that cuZFP’s
PSNR and SSIM are very low for HACC dataset: only 28.77 dB
and 0.1465, respectively, when the bit rate is set to 4, while these

Figure 17: Rate Distortion (PSNR)

numbers are up to 60.42 dB and 0.7892 in cuSZp. This is because
cuZFP’s orthogonal transform works particularly effective on multi-
dimensional datasets instead of 1D array. As verified via multi-
dimensional datasets such as Hurrican and Nyx (see Figure 17(a) and
(b)), we can observe cuZFP achieves relatively competitive SSIM. In
comparison, cuSZ exhibits a high reconstructed data quality, mainly
because cuSZ adopts both multi-dimensional Lorenzo prediction
and Huffman encoding, which is a nearly optimal variable-length
encoder to preserve data fidelity. However, it requires expensive
operations to build and store Huffman trees, drastically reducing
the end-to-end throughput in turn, as demonstrated in Figure 13.
Figure 19 presents visualization results between cuSZp and
cuZFP under the same error bounds. The fields and datasets we use
are the same as Figure 7. We can observe that cuSZp can achieve
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Figure 18: Rate Distortion (SSIM)

high visualization quality in three selected fields, preserving almost
identical data patterns. In comparison, cuZFP also can preserve
similar overall data patterns, but it introduces visible distortions,
such as the distorted wavefield in NYX (Figure 19(f)) and blocky
artifacts in Hurricane (Figure 19(c)). The reason can be explained
as follows: when the compression ratio requirement is relatively
high (e.g., >16), cuZFP preserves very few bits (<2) per data point
uniformly, inevitably losing fidelity in consecutive data points with
sharp value differences. Such an observation demonstrates that
cuSZp has a strong capability in maintaining data quality from the
perspective of visualization.

Although visualization by slice has been widely adopted by ex-
isting lossy compression works [28, 39-41], we also perform iso-
surface visualization to further evaluate the reconstructed data
quality by cuSZp. Figure 20 shows the results, where we visualize
the same NYX field in Figure 19 and the isovalue is set as 0. When
the compression ratio is set as ~8, cCUSZP can obtain almost iden-
tical patterns compared with the original visualization, whereas
the visualization reconstructed by cuZFP has visible artifacts. Such
conclusions can also be drawn for fields in other datasets and are
consistent with previous results, demonstrating the superiority of
cuSZp in maintaining data quality.

6 DISCUSSION

Breakdown Performance for cuSZp Kernel Throughput: We
perform breakdown performance analysis for cuSZp kernel through-
put, of which results are shown in Figure 21. We use REL 1E-2 error
bound here, and the results are consistent across other error bounds.
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Figure 19: Visualization of original data and reconstructed
data decompressed by cuSZp and cuZFP, respectively.
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Figure 20: Isosurface visualization of original data and recon-
structed data decompressed by cuSZp and cuZFP.

"BB", "GS", "FE", and "QP" denote Block Bit-shuffle, Global Synchro-
nization, Fixed-length Encoding, and Quantization and Prediction,
respectively. "*" in Figure 21(b) means the reverse operation in de-
compression. As seen, in compression kernel (Figure 21(a)), Block
Bit-shuffle, Global Synchronization, and Fixed-length Encoding are
more dominant in throughput, with 21.67%, 37.50%, and 30.00%.
The reason is that all these 3 steps include global memory access,
which is more time-consuming than computations. Specifically,
Block Bit-shuffle stores the compressed block data, Global Syn-
chronization requires flag and status information stored in global
memory, whereas Fixed-length Encoding saves the fixed-length
for each block as illustrated in Figure 12. In cuSZp decompression
kernel, the results are different (Figure 21(b)). Block Bit-shuffle,
Global Synchronization, and Quantization and Prediction occupy
more dominant time. The reason is that, in decompression, all oper-
ations are reversed — all read from global memory in compression
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turns to be write operations in decompression. Additionally, the
Global Synchronization reads the stored Fixed-length information
from global memory, making Fixed-length Encoding itself a very
lightweight step in decompression.
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Figure 21: Breakdown performance analysis for cuSZp kernel
throughput with REL 1E-2.

cuSZp with Time-Varying Simulations: We evaluate cuSZp
with a time-varying HPC simulation RTM from seismic imaging do-
main [13]. The RTM executes for 3600 timesteps, generating 1 snap-
shot for each timestep. We select 1 snapshot every 100 timesteps in
the overall RTM execution and perform cuSZp compression and
decompression to explore its compatibility. The results are shown
in Figure 22. We observe that compression and decompression
throughput decreases as timestep increases. The cause for this is,
the value ranges of the generated snapshots decrease along with
time, due to the intrinsic design in RTM, leading to fewer zero
blocks while using REL error mode. Such will also decrease the
throughput over time. Hence, cuSZp is more efficient in processing
sparse HPC data. In all, due to its single-kernel design, cuSZp is
highly compatible with time-varying HPC simulations.
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Figure 22: cuSZp with time-varying HPC simulation.

Compatibility with Other Lower-End GPUs: Beyond NVIDIA
A100 GPU evaluated in this work, cuSZp is also compatible with
other lower-end GPUs, such as V100 or RTX 3080 (10 GB VRAM).
Still taking one RTM snapshot as an example, the kernel throughput
for compression is 100.34, 87.44, and 80.13 GB/s on A100, V100, and
RTX 3080 GPUs, respectively. The differences are due to the specific
memory bandwidth in hardware specification, leading to different
throughput while accessing global memory.

7 RELATED WORKS

There have been some works that target optimizing data compres-
sion in GPU during the past decade [7, 21, 33, 38, 39]. Yang et
al. [38] proposed a GPU lossless compressor MPC for IEEE 754
floating point, but it provides only a limited compression ratio for
HPC floating-point data with significant randomness. Lindstrom
et al. [21] implemented ZFP algorithm, including transform and
bit truncation, to NVIDIA GPU with a single kernel, achieving an
ultra-fast compression and decompression throughput. However,
cuZFP only supports fixed-rate and hence suffers performance [34].
Tian et al. [33] proposed cuSZ, which is a prediction-based error-
bounded GPU lossy compression framework. Soon after that, Tian
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et al. [32] introduced a fine-grained variable length encoding strat-
egy to cuSZ to further improve the compression ratios. Yu et al. [39]
combined a block-wise design with lightweight bit-level operations
and proposed an error-bounded compressor cuSZx, achieving an
ultra-fast kernel throughput. Compared with existing works, our
proposed cuSZp is the first error-bounded lossy compressor putting
the entire computation into one kernel with a series of optimization
strategies, which can achieve high throughput, high compression
ratios, and high data quality (comprehensively evaluated by PSNR,
SSIM and visualization) meanwhile.

8 CONCLUSION AND FUTURE WORKS

In this paper, we propose cuSZp, a GPU error-bounded lossy com-
pressor with optimized end-to-end throughput. cuSZp consists of
a bunch of lightweight bit-level operations in register with a fine-
tuned global synchronization, to put the entire computation into
a single GPU kernel, hence achieving ultra-fast throughput. We
perform extensive experiments on four GPU lossy compressors, in-
cluding cuSZp, cuZFP, cuSZx, and cuSZ, with 6 real-world scientific
datasets. The main results are summarized as follows:

e Compared with two error-bounded GPU lossy compressors
cuSZ and cuSZx, cuSZp improves the end-to-end performance
by 95.53x and 55.18x. As for kernel throughput, cuSZpr can
achieve on average 93.63 GB/s and 120.04 GB/s for compres-
sion and decompression, which is faster than cuSZ and inline
with cuSZx and cuZFP.
CUSZPp can obtain the best compression ratios, compared with
cuSZ and cuSZx, on 16/24 cases while still preserving high-
quality reconstructed data and an ultra-fast throughput.
e Compared with cuZFP, cuSZp not only improves the rate
distortion for both PSNR and SSIM but also provides better
visualization images.

In the future, we will explore this work in two directions. First,
we plan to further improve the performance of cuSZp by exploiting
the hardware resources in most latest NVIDIA GPU infrastructure,
such as Hopper. Second, we aim to integrate cuSZp into real-world
scientific simulations that have high-speed demands.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://github.com/szcompressor/cuSZp

ARTIFACT IDENTIFICATION

This paper proposes CompX, which is an ultra-fast error-bounded
GPU compressor for NVIDIA GPU. The workflow of CompX con-
sists of 4 parts: (1) Quantization and Prediction, (2) Fixed-length
Encoding, (3) Global Synchronization, and (4) Block Bit-shuffle.
CompX performs compression or decompression in only one GPU
kernel function, significantly improving the end-to-end perfor-
mance compared with existing lossy compressors.

The experiments to evaluate CompX in this paper can be di-
vided into 4 parts: (1) end-to-end throughput evaluation, (2) kernel
throughput evaluation, (3) compression ratio evaluation, and (4)
data quality evaluation. The evaluation in this paper is conducted
under NVIDIA A100 GPU with CUDA 11.4 Toolkit.

Note that CompX has another name cuSZp, which belongs to the
SZ lossy compression family. Due to copyright with our collabora-
tors, the source code is temporarily not available, but it will soon be
open-source in this link: https://github.com/szcompressor/cuSZp
once the permission is granted.

REPRODUCIBILITY OF EXPERIMENTS

Artifact Persistent ID: https://github.com/szcompressor/cuSZp

Artifact name: CompX

Evaluation dataset: https://sdrbench.github.io/

Relevant hardware and software: CPU: AMD EPYC 7742
CPU @2.25GHz; GPU: NVIDIA A100 GPU (108 SMs, 40 GB); RAM:
128GB DDR4; OS: Ubuntu 20.04.2 LTS; Software dependencies:
CUDA 11.4 tookit, NVCC V11.4.152, Nsight system 2021.3.2.4.

Descriptions:

e Experiment workflow: First compile the source code into
executable binary, then perform compression and decom-
pression with the executable binary on the given scientific
dataset.

e Estimation execution time: Less than 1 second, since the
design of CompX targets to finish the compression and de-
compression with an ultra-fast speed.

o Expected results and evaluation: There are three parts to eval-
uate a CompX lossy compressor in this work: (1) End-to-end
throughput (i.e. kernel throughput since CompX is a single
kernel design), (2) Compression ratio, and (3) reconstructed
data quality.

o Results between experiment workflow and paper: The results
should be consistent with the data that is provided in the
Evaluation section (i.e. Sec. V) of this paper.

ARTIFACT DEPENDENCIES REQUIREMENTS

Due to the copyright issue with our collaborator, we cannot provide
the source code of compressor CompX. However, to reproduce the
results in this paper, we provide a prepared Docker image along

with the executable binary and other visualization tools (such as
QCAT). So the dependencies and requirements only include a Linux
machine with Docker installed and an NVIDIA GPU. The NVIDIA
GPU better be A100, so that the results will be consistent with the
paper, but other lower-end NVIDIA GPUs (e.g. 3080 10GB) are also
compatible.
To install and run the Docker we prepared, there are several
steps:
e Download Docker image from DockerHub:
docker pull hyfshishen/sc23-compx-env
e Start Docker image with NVIDIA GPU:
docker run —gpus all -it hyfshishen/sc23-compx-env /bin/bash

Note that the second command "-gpus" contains two dashes. After
you launch the Docker image as a running container, you are ready
to run CompX.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS

After launching the Docker environment, the CompX compres-
sor can be executed by demo command “compx [Data-To-Be-
Compressed] [Relative-Error-Bound]". No installation and building
processes are needed since compx command is already added into
the local environment. Here we use, an NVIDIA 3080 GPU with
NYX dataset from SDRBench, as an example to show how to obtain
the CompX execution throughput, compression ratio, and data qual-
ity. It will be better to reproduce the experiments with an NVIDIA
A100 GPU, and the results will be consistent with the paper.

First, move to root folder, and download and unzip NYX dataset
from the link provided by SDRBench website:

$root@64e73de40ab6:/# cd /root

$root@64e73de40ab6: ~# wget https://g-8d6b0.fd635.8443.data.globus.:

$root@64e73de40ab6:~# 1s
SDRBENCH-EXASKY-NYX-512x512x512.tar.gz software

$root@64e73de40a66: ~# tar -xvf SDRBENCH-EXASKY-NYX-512x512x512. tar.

SDRBENCH-EXASKY-NYX-512x512x512/
SDRBENCH-EXASKY-NYX-512x512x512/dark_matter_density.f32
SDRBENCH-EXASKY-NYX-512x512x512/velocity_x.f32
SDRBENCH-EXASKY-NYX-512x512x512/template_data. txt
SDRBENCH-EXASKY-NYX-512x512x512/velocity_z.f32
SDRBENCH-EXASKY-NYX-512x512x512/temperature.f32
SDRBENCH-EXASKY-NYX-512x512x512/baryon_density.f32
SDRBENCH-EXASKY-NYX-512x512x512/velocity_y.f32

Then, use temperature.f32 field as an example, we use CompX to
compress it with REL 1E-4 error bound. The results can be shown
as below:

$root@64e73de40ab6:~# compx temperature.f32 le-4
CompX Compression Kernel finished!
CompX Decompression Kernel finished!

CompX finished!

CompX Compression  end-to-end speed: 80.881768 GB/s



CompX Decompression end-to-end speed: 102.304867 GB/s
CompX Compression ratio: 6.624457

Pass error check!
The compression end-to-end (i.e. kernel, since CompX is a single
kernel design) throughput, decompression end-to-end through-
put, and the compression ratio will be printed on the screen. The
throughput can also be checked using Nsight profiler, such as using
command nsys profile —stats=true compx tempreture.f32 le-4. And
you will see, only two kernels (one for compression and one for
decompression) are executed.

There will be two files generated after the CompX compression
and decompression:
$root@64e73de40ab6: ~# ls
temperature.f32
temperature.f32.compx.cmp
temperature.f32.compx.dec
where xxx.compx.cmp denotes the compressed data and
xxx.compx.dec denotes the reconstructed data.

$root@64e73de40ab6:~# du -sh ./*
513M ./temperature.f32

78M ./temperature.f32.compx.cmp
513M ./temperature.f32.compx.dec

To obtain the data quality of the reconstructed data, such as
PSNR, SSIM, and slice visualization. QCAT (already installed in
this Docker image) can be used. To compute the PSNR between
the original data and the reconstructed data, the commands can be
shown below:

$root@64e73de40ab6: ~# compareData -f temperature.f32 temperature.f32.compx.dec

This is little-endian system.
reading data from temperature.f32

Min = 2280.975830078125, Max = 4782583.5, range = 4780302.524169921875

Max absolute error = 478.0390625000

Max relative error = 0.000100

Max pw relative error = 0.199965

PSNR = 84.770561, NRMSE = 5.7739355526161066342E-05
normErr = 3197659.788566, normErr_norm = 0.015479
pearson coeff = 0.999845

Before computing SSIM, the dimension of the dataset is needed,
and this information can be found in the dataset description table
(in Sec.V) or SDRBench website. To compute the SSIM between
the original data and the reconstructed data, the commands can be
found below.

$root@64e73de40a66: ~# calculateSSIM -f temperature.f32 temperature.f32.compx.dec 512 512 512

This is little-endian system.
reading data from temperature.f32
calcaulting....

ssim = 0.899964

To get a slice visualization of the reconstructed data, the com-
mand can be found below:

Huang, et al.

$root@64e73de40a66: ~# PlotSliceImage -f -i temperature.f32.compx.dec -3 512 512 512 -m INDV -p 2 -s 200 -o test.png

Image file is plotted and put here: ./test.png

Note that plot slice visualization requires Gnuplot, which can be
easily installed by “apt-get install -y gnuplot" inside the Docker
container.

This is one example to reproduce the experiments in CompX
paper, the rest dataset should also be the same way.



