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Abstract—Seismic imaging is an exploration method for esti-
mating the seismic characteristics of the earth’s sub-surface for
geologists and geophysicists. Reverse time migration (RTM) is
a critical method in seismic imaging analysis. It can produce
huge volumes of data that need to be stored for later use during
its execution. The traditional solution transfers the vast amount
of data to peripheral devices and loads them back to memory
whenever needed, which may cause a substantial burden to
I/O and storage space. As such, an efficient data compressor
turns out to be a very critical solution. In order to get the
best overall RTM analysis performance, we develop a novel
hybrid lossy compression method (called HyZ), which is not
only fairly fast in both compression and decompression but also
has a good compression ratio with satisfactory reconstructed
data quality for post hoc analysis. We evaluate several state-of-
the-art error-controlled lossy compression algorithms (including
HyZ, BR, SZx, SZ, SZ-Interp, ZFP, etc.) in a supercomputer.
Experiments show that HyZ not only significantly improves the
overall performance for RTM by 6.29∼6.60× but also obtains
fairly good qualities for both RTM single snapshots and the final
stacking image.

Keywords—Lossy Compression, Performance, Seismic Imag-
ing, Reverse Time Migration

I. INTRODUCTION

Seismic imaging is an exploration method used to estimate

the seismic characteristics of the earth’s sub-surface by mea-

suring the reflected acoustic energy waves. This technology

has been broadly used to explore the sub-surface structure of

rock formations for geologists and geophysicists or used to

explore mineral, coal, gas, and oil for fuel companies. Reverse

time migration (RTM) is a cutting-edge seismic imaging

method, which has been widely used in the seismic imaging

community.

The parallel RTM code, however, suffers from an extremely

large amount of data to process, which turns out to be the

major concern for seismic imagining analysis. Specifically,

RTM involves two critical stages – a forward propagation of

Corresponding author: Sheng Di, Mathematics and Computer Science
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the source wavefield and a backward propagation of the re-

ceiver wavefield. During the forward propagation, RTM would

generate thousands of 3D snapshots, which occupy extremely

large volumes of data and need to be maintained for later

access by the RTM. According to [1], for instance, an aperture

of 10x10 km and a maximum depth of 8 km may project up to

2,800 terabytes of the data to process for only one shot with

6k snapshots if the maximum frequency is 80 Hz, migration

time is set to 6 seconds, and minimum velocity is 1500m/s.

During the backward propagation, the 3D snapshots produced

by the forward propagation need to be retrieved and processed

to generate a stacking image, which is a final analytic result to

reveal the structural information of the sub-surface. With the

development of parallel programming models (e.g. OpenMP

and MPI) and GPU implementation supports (CUDA), the

computation costs of RTM are significantly reduced. However,

how to efficiently process such a large volume of 3D snapshot

data remains a critical challenge.

To address the above-mentioned big data issue, a straight-

forward solution is transferring the snapshots from memory

to peripheral devices temporarily and loading them back to

memory upon usage, which however still faces some serious

issues or challenges. On the one hand, using the peripheral

device to store a vast amount of runtime data may degrade the

overall execution performance because of the expensive data

transferring cost inevitably. On the other hand, the capacity of

the peripheral device may still be not enough, in the consid-

eration of the extremely large amount of data to be produced

during the forward propagation. For the CPU environment,

for example, the peripheral device could be a parallel file

system (PFS), which projects only tens or hundreds of TBs

for a regular user on a supercomputer [2].

Another potential solution is compressing the RTM snapshot

data to mitigate data transfer costs and storage burden. Specif-

ically, the snapshots produced by the forward propagation

are compressed by a data compressor, and the compressed

snapshots would be kept in either memory or peripheral

devices. Later on, the compressed snapshots will be loaded

and decompressed for the backward propagation analysis at
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runtime. As revealed by many existing studies [3]–[5], loss-

less compression suffers from very low compression ratios

(1.2∼2 in general) for scientific datasets. Thus we focus on

error-controlled lossy compression in our work, to achieve

both a high compression ratio and user-accepted introduced

errors. In order to prevent the RTM execution from being

delayed significantly by compression/decompression overhead,

the qualified compressor must offer very high compression and

decompression throughput. This is because the RTM method

generally has quite high performance in its execution [6]

due to substantially optimized parallel code. To the best of

our knowledge, this is the very first work to integrate lossy

compression into the RTM execution framework.

In this paper, we explore the best lossy compression solution

that has high speed in both compression and decompression

while preserving a good compression quality (high compres-

sion ratio and high fidelity of data), so that the overall RTM

execution can be improved significantly without any loss

of analysis quality. The key contributions in this work are

summarized as follows:

• We develop a lossy compression-based RTM framework

for seismic imaging analysis by integrating data com-

pression and decompression into forward and backward

propagation respectively, to deal with the vast amount of

data produced during the RTM execution more efficiently.

• We propose a novel lossy compression method – called

HyZ which combines two high-speed lossy compression

algorithms. The first one is our proposed block-wise

regression-based compressor (BR), and the other one is

ultra-fast prediction-based compressor SZx [7].

• We integrated different lossy compressors (including

HyZ, BR, SZx, SZ, ZFP, SZ-Interp, etc.) into an industrial

RTM code and run it with thousands of snapshots on a

supercomputer.

• We comprehensively investigate the quality for each of

the lossy compressors and their impact to RTM execution

results as well as overall performance. Results show that

our proposed hybrid compressor HyZ has the best visual-

ization quality in class, also leading to good compression

ratios (5+) for users. In overall RTM execution, HyZ

outperforms the second-tier lossy compressors (SZ, ZFP,

etc.) by up to 2.23× and outperforms execution without

lossy compressor by 6.29-6.60×.

The rest of the paper is organized as follows. In Section II,

we discuss the related work. In Section III, we formulate the

research problem. In Section IV, we first analyze an existing

ultra-fast prediction-based lossy compression algorithm SZx

and explain its limitation in the RTM execution, then we

propose the BR compressor along our hybrid solution HyZ. In

Section V, we comprehensively evaluate many state-of-the-art

compressors by running an industry-level parallel RTM code

used in a supercomputer. In Section VI, we conclude the paper

with a discussion of future work.

II. RELATED WORK

In this section, we introduce the related works from two

perspectives: existing solutions to resolve the big snapshot data

issue in RTM and existing lossy compression algorithms that

have been developed and used widely.

A. Resolving the Limited Memory Capacity Issue in RTM

The RTM simulation is facing a serious memory burden in

practice due to terabytes of snapshot data being generated dur-

ing forward propagation. To overcome this bottleneck, several

solutions from different perspectives have been proposed. Fu

et al. [8] adopted an FPGA-based solution to remove memory

constraints and provide a high performance. Perrone et al. [9]

designed a domain-specific data partition strategy to parallel

RTM execution on main memory of different nodes and thus

avoid the low I/O bandwidth of disk. AlOnazi et al. [10]

addressed this issue by deploying executions on distributed-

memory systems equipped with multiple GPUs. Alturkestani

et al. [11] leveraged the GPU’s High Bandwidth Memory

(HBM) as an additional storage media layer to maximize

RTM I/O Bandwidth. Although these existing methods achieve

promising performance in RTM, the high storage requirement

is not mitigated at all, as the size of generated image data

remains the same. Several works [8], [9] have explored the

possibility of using data compression techniques to trade for

the I/O bandwidth and storage cost, while they mainly focus

on the lossless compression in their solutions. Many existing

studies [12] showed that lossless compressors [13]–[15] suffer

from very low compression ratios, especially in a comparison

with lossy compressors on scientific datasets.

B. Error-controlled Lossy Compression for Scientific Datasets

Error-controlled lossy compression is a very promising

solution to resolve the big data issue in RTM execution. The

most important advantage of lossy compression is a signifi-

cantly higher compression ratio than lossless compression, as

demonstrated in prior studies [16], [17]. The existing state-of-

the-art lossy compressors include SZ [16], [17], ZFP [18],

FPZIP [19], TTHRESH [20], MGARD [21], bit grooming

[22], digit rounding [23], and several emerging auto-encoder-

based compressors [24]–[26].

In the scientific data lossy compression community, SZ

and ZFP are two leading compressors, because of their fairly

high compression ratios and high compression speed compared

with other state-of-the-art. According to [16], SZ and ZFP

have much higher compression ratios than FPZIP because

of their innovative algorithms in data prediction and decor-

relation. Based on the SZ compression framework, Zhao et

al. [5] developed a very effective prediction method that can

significantly improve the compression ratio on RTM analysis

datasets. However, its speed is comparable or even lower than

that of the generic SZ compressor, which does not meet the

high-speed requirement in our use case. Although TTHRESH

can get much higher compression ratios than SZ and ZFP

do, it suffers from very low compression/decompression per-

formance (about one order of magnitude lower) due to its
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expensive high-order singular value decomposition (HOSVD).

Bitgrooming and digitrounding both suffer from very low com-

pression ratios because they both ignore the data correlations

in compression. There have been a few auto-encoder-based

lossy compression methods [24]–[26] proposed recently, but

none of them are qualified for RTM executions because of very

low performance in both compression and decompression.

Specifically, Liu et al. [26] proposed an effective method to

combine the auto-encoder and SZ compression framework

which exhibits the best compression quality from among all

auto-encoder-based compressors, but it is still about 2-3×
slower than SZ and ZFP.

III. SYSTEM DESIGN AND PROBLEM FORMULATION

In this section, we describe our designed RTM method in-

tegrated with error-controlled lossy compression technologies,

and also formulate the research problem.

A. Design of Lossy-compression based RTM

Figure 1 illustrates the workflow of a parallel RTM exe-

cution, which corresponds to the practical seismic imaging

analysis. Specifically, at the beginning of each run, the RTM

execution is triggered based on the input information which

contains several key parameters such as problem size, initial

background data file, total number of snapshots, and how many

time steps a snapshot will be saved for backward propagation

analysis. The forward propagation of source wavefield gen-

erates a snapshot at each time step; while only a subset of

the snapshots (e.g., every K time steps) are selected/kept for

the later analysis (see step 1 in Figure 1) and others are

disregarded. In the traditional design, the selected snapshots

are kept either in memory (if memory capacity is large enough)

or dumped to external devices temporally. After the forward

propagation, the user will perform a backward propagation of

the receiver wavefield for the analysis of sub-surface structure,

which depends on the snapshots generated by the forward

propagation. As such, the snapshots saved previously during

the forward propagation need to be retrieved for the imaging

analysis (see step 2 in Figure 1). A final stacking image (as

the analysis result) would be generated after the backward

propagation (see step 3 in Figure 1).

Fig. 1. Illustrating of the big data issue in Reverse Time Migration (RTM)

Through an in-depth investigation of RTM execution work-

flow [27], [28] and diverse error-bounded lossy compressors

[7], [18], [29], we successfully integrated lossy compression

techniques in a scalable parallel industrial RTM code. Specifi-

cally, unlike the traditional code which keeps the original raw

snapshots either in memory or external devices such as parallel

file systems (PFS), our design compresses the snapshots by

a lossy compression method before saving them. During the

backward propagation stage, whenever a snapshot needs to be

used, the corresponding compressed data is queried and loaded

into the memory, and decompressed for the imaging work.

B. Problem Formulation

Our objective is to optimize the overall end-to-end execution

performance of the RTM execution, covering the cost of

preprocessing, forward propagation, and backward propaga-

tion as well as all possible overheads such as compression

time and I/O cost. The fundamental idea is to leverage lossy

compression to reduce the volume of forward propagation

snapshot data, which thus can significantly reduce I/O cost

for the overall execution.

Although lossy compression can obtain significantly higher

compression ratios than lossless compression, it may introduce

data distortion to the reconstructed data, thus we need to

control the compression errors carefully, especially from the

perspective of the post hoc seismic analysis. As for the com-

pression quality, we will focus on both the compression ratio

and the quality of the reconstructed data. On the one hand, we

use commonly-used lossy compression-related metrics such

as peak signal-to-noise ratio (PSNR) and structural similarity

index measure (SSIM) to check the data distortion from the

perspective of lossy compression. On the other hand, with

the involvement of seismic researchers from industry, we also

evaluate the visual quality of the reconstructed data as Seismic

imaging analysts often need to analyze the waves by observing

the snapshots and stacking images [27], [28].

IV. HYZ: A HIGH-SPEED HIGH-FIDELITY LOSSY

COMPRESSION METHOD FOR RTM

In this section, we propose a novel high-speed high-fidelity

lossy compression method (called HyZ), which can also main-

tain a satisfactory compression ratio, for RTM execution and

post hoc analysis.

Since RTM method generally has a relatively high par-

allel performance in seismic imaging analysis, a qualified

lossy compressor has to be fast enough and also with good

compression ratios. To this end, we first analyze an existing

ultra-fast lossy compression algorithm (called SZx [7]) and

explain its limitations in RTM execution. We observe that SZx

cannot maintain high-fidelity in reconstructing single snapshot

images within a satisfactory compression ratio (5+). To solve

this issue, we then develop a high-speed regression-based

lossy compressor (BR) that can preserve the quality of the

snapshot data very well. Finally, to enable error-control in BR

compressor, we propose our hybrid compressor design – HyZ,
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which integrates SZx to compress blocks that exceed the error

bound in BR compressor during RTM execution.

A. Discussing the Limitations of SZx
One ultra-fast lossy compressor that is potentially suitable

for RTM execution is SZx, which was proposed by Yu et

al. [7]. The design guideline of SZx is making the com-

pressor composed of fairly lightweight operations including

only bitwise, addition, and subtraction. By comparison, other

state-of-the-art lossy compressors depend on relatively heavier

operations such as multiplication (used by SZ, ZFP), variable-

length encoding (adopted by SZ, ZFP, MGARD, digit round-

ing, and bit grooming), and dictionary encoding (adopted by

SZ, MGARD, digit rounding, and bit grooming).

Fig. 2. Compression pipeline (workflow) of SZx

The SZx algorithm splits the whole dataset into many

small 1D fixed-size segments (or blocks), and then performs

compression on each block separately. It consists of two

critical stages to process different data points in the dataset:

1 block-wise filtering, 2 compressing non-constant blocks,

as illustrated in Figure 2.
Block-wise filtering aims to check each block to see if it can

be represented by some constant number μ. Specifically, if the

amplitude of the data variation in one block is lower than or

equal to twice of the user-specified error bound, the data in this

block can be approximated by μ=(max−min)/2, where min
and max refer to the minimal value and maximum value in the

corresponding data block, respectively. Such blocks are called

‘constant blocks’; otherwise, they are ‘non-constant blocks’.

As such, the block-wise filtering step requires a preprocessing

step to compute the middle value μ for each block (shown as

step 0 in Figure 2). After finishing the block-wise filtering

step, there will be two outputs committed to the compressed

data: the μ array and the block-type array, which record the

middle values and block types, respectively.
Such a block-wise filtering method can significantly im-

prove the compression ratio, however, it may reduce the

visualization quality for RTM snapshot data. The constant

blocks can be reconstructed only based on the μ array and the

RTM snapshot data is routinely very smooth in space so that

majority of the data belong to the constant blocks. Though

such a design can improve compression ratio in RTM data,

indiscriminately using the same μ to represent the whole block

is likely to cause visible artifacts.
To verify such a situation, Figure 3 visualizes the recon-

structed single snapshot (time step=3000) produced by SZx.

(a) Original Data (b) SZx Reconstructed Data

Fig. 3. Visualization of single snapshot image (time step=3000) by SZx with
REL=1E-2 error bound (∼5 compression ratio) and 128 block size choice.
Human-visible artifacts in (b) are highlighted.

We set the error bound as REL=1E-2 (c.f. Section V-A4) to

keep the compression ratio at around 5, which is the minimal

satisfactory ratio in RTM execution. As shown in Figure 3 (b),

a large area of distorted patterns can be observed. Because

of the compression algorithm design for ‘constant blocks’ in

SZx, the distorted patterns are also distributed continuously.

Also, the PSNR and SSIM are only 54.95dB and 0.7244,

respectively. Improving visualization quality requires a smaller

error bound such as REL=1E-3 or a smaller block size choice

such as 32, which will also cause a lower compression ratio

and cannot satisfy the seismic community. In conclusion,

the ultra-fast design of SZx is suitable in speed for RTM

execution, however, it has some defects with respect to data

visualization.

B. Block-wise Regression-based Lossy Compression (BR)

The key idea is splitting the entire dataset into many small

blocks (e.g., 4×4×4) and then approximating the data values

in each block by a regression hyperplane. This idea is moti-

vated by an important observation that the data points in a very

small region in space are likely able to be approximated by

a simple hyperplane (e.g., linear regression). We demonstrate

three examples in Figure 4: block A , block B , and block

C . Because values are continuous between adjacent data

points, their colors also exhibit similarly, hence showing their

linear hyperplane properties. Such observations are verified

on almost all RTM snapshots by checking slopes between

adjacent data points.

In our design, to achieve fast compression/decompression

speed and high compression ratio, we explore linear regression

in our proposed block-wise regression (BR) method, as de-

scribed below. During the compression phase, each data block

is approximated by a linear hyperplane with four coefficients,

which can be found as β0 to β3 in Formula 1.

f(x, y, z) = β1x+ β2y + β3z + β0 (1)

where x, y, and z denots the relative location (or index)

of in the data block. That is, x = {0, 1, · · · , n1}, y =

{0, 1, · · · , n2}, z = {0, 1, · · · , n3}, for the data block

n3×n2×n1. Thus, only four coefficient values need to be
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Fig. 4. Illustration of Linearity of Small Data Blocks in An RTM Snapshot

stored to substitute all the data in one block, no matter what

size of the block is (e.g. 3× 3× 3 or 4× 4× 4). During the

decompression, each data block would be recovered by the

hyperplane reconstructed with the four regression coefficients

(i.e. Formula 1). Without loss of generality, again suppose the

data block size is n3×n2×n1, then its regression coefficients

can be calculated as the following formula (dijk refers to the

data values in the data block at the location {i,j,k}).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β1 = 6
n1n2n3(n1+1) (

2Vx

n1−1 − V0)

β2 = 6
n1n2n3(n2+1) (

2Vy

n2−1 − V0)

β3 = 6
n1n2n3(n3+1) (

2Vz

n3−1 − V0)

β0 = V0

n1n2n3
− (n1−1

2 β1 +
n2−1

2 β2 +
n3−1

2 β3)

(2)

where

V0 =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

dijk, Vx =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

i ∗ dijk,

Vy =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

j ∗ dijk, Vz =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

k ∗ dijk.

In this compression method, all computations are linear and

their required data are independent. Thus, these computations

can be highly parallelized, guaranteeing the compression and

decompression speeds with multi-thread designs. Because of

the nature of linear properties on RTM snapshot data, linear

regression also can preserve a high fidelity for reconstructed

data, which will be evaluated in Section V. In addition, the

compression ratio can be estimated based on the following

formula. For instance, when the block size is 4×4×4, the

compression ratio is 64/4=16; when the block size is 3×3×3,

the compression ratio is 27/4=6.75. Note that though a greater

block size leads to a higher compression ratio, it can reduce

the reconstructed data fidelity in turn, since it maintains the

same number of coefficients on more data points.

CR =
n3n2n1

4
(3)

1) Discussion 1: High-Order Regressions: Besides our

linear regression design, there are also other high-order re-

gression methods. We use quadratic (i.e. 2nd-order) regression

here for example, and similar conclusions can be drawn on

other high-order regressions (i.e. cubic or 3rd-order regression)

as well. Quadratic regression approximates each block via

a quadratic hyperplane with 10 coefficients. Compared with

linear regression, quadratic regression maintains more coeffi-

cients and thus can predict data points more accurately. The

formula can be found below.

f(x, y, z) = β0 + β1x+ β2y + β3z + β4x
2 + β5xy

+β6xz + β7y
2 + β8yz + β9z

2 (4)

Similar to linear regression, the quadratic regression based

compression needs to store 10 coefficients in each block,

which will be used to reconstruct data during the decom-

pression. Using the least-square method, the 10 regression

coefficients can be calculated as the Equation (5).

β =

⎛
⎝n1−1∑

i=0

n2−1∑
j=0

n3−1∑
k=0

A

⎞
⎠

−1

V T (5)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x y z x2 xy xz y2 yz z2

x x2 xy xz x3 x2y x2z xy2 xyz xz2

y xy y2 yz x2y xy2 xyz y3 y2z yz2

z xz yz z2 x2z xyz xz2 y2z yz2 z3

x2 x3 x2y x2z x4 x3y x3z x2y2 x2yz x2z2

xy x2y xy2 xyz x3y x2y2 x2yz xy3 xy2z xyz2

xz x2z xyz xz2 x3z x2yz x2z2 xy2z xyz2 xz3

y2 xy2 y3 y2z x2y2 xy3 xy2z y4 y3z y2z2

yz xyz y2z yz2 x2yz xy2z xyz2 y3z y2z2 yz3

z2 xz2 yz2 z3 x2z2 xyz2 xz3 y2z2 yz3 z4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V = (V1, V2, .., V9), Vt =

n1−1∑
x=0

n2−1∑
y=0

n3−1∑
z=0

gxyz(t) ∗ fxyz, 0 ≤ t ≤ 9

gx,y,z(t) returns tth element from list [1, x, y, z, x2, xy, xz, y2, yz, z2]

In this method, the compression ratio can be calculated as

follows, as there are 10 coefficients to store per block.

CR =
n3n2n1

10
(6)

High-order regression methods may preserve good recon-

structed image quality in some circumstances since they

store more coefficients within the same block (i.e. the same

number of data points). Moreover, more coefficients inside

the same block can lead to a lower compression ratio. Given

a 3×3×3 block size, for example, linear regression can achieve

a 27/4 = 6.75 compression ratio, while quadratic regression

has a compression ratio of 27/10 = 2.7, which cannot satisfy

the RTM execution (5+). In addition, higher-order regression

methods require more complex computations while obtaining

the coefficients in the compression stage, which significantly

reduces the compression speeds in RTM. Therefore, we only

consider linear regression in this work.
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2) Discussion 2: Other Regression-based Compressors:
Besides our BR solution, polynomial regressions (e.g. lin-

ear/quadratic regression) have also been adopted in several

existing lossy compression techniques [30], [31]. However,

our solution substantially differs from the prior works, due

to a lightweight design for RTM execution. SZ2.1 [29]

leverages linear regression to predict the data values in the

high-compression cases [30]. Zhao et al. [31] integrates the

quadratic regression into the prediction stage of the SZ

compression framework, which can significantly improve the

compression quality for some wave-patterned datasets. These

related works both treat the regression method as a predictor

in the entire compression pipeline. In order to keep a very

high compression ratio, they have to compress the coefficients,

which may degrade the accuracy of the regression/prediction in

turn. As such, they have to operate a few other expensive com-

pression steps (such as quantization, variable-length encoding,

and dictionary encoding) to control the compression errors. By

comparison, our solution can skip the three expensive com-

pression steps in that we store the regression coefficients as

they are in the compressed data. Such a lightweight algorithm

has substantially higher compression/decompression speeds,

while still preserving the reconstruction quality very well

because of the nature of linear properties in RTM snapshot

data (to be shown later).

C. HyZ: Combining BR and SZx for RTM Execution

In this subsection, we describe how we construct a hybrid

lossy compression framework HyZ by using two compression

methods (BR and SZx).

As shown in Section IV-B, BR splits RTM snapshot data

into many small blocks and adopts a regression hyperplane to

preserve data value inside each block, which preserves the re-

constructed RTM data quality and a controllable compression

ratio. By only storing the regression coefficients as compressed

data, BR is also ultra-fast and hence is suitable for RTM execu-

tion. However, due to the lightweight design, BR compressor

does not support error-control. For example, we use BR-Linear

with 4×4×4 block size to compress a single RTM snapshot

data (time step=3000). After the reconstruction, we find there

are around less than 1% data points (distributed in 3% blocks)

exceeding the REL 1E-2 error bound. Existing error-control

designs [29], [31] require time-consuming computations (such

as quantization and encoding) that negatively impact the speed

constraint in RTM execution. Thus, to further improve the

reconstructed data quality for RTM, we integrate SZx into BR

compressor and propose HyZ, of which workflow is shown in

Figure 5.

The fundamental design of HyZ is to enable fast error-

control in BR compressors via another ultra-fast compressor

SZx. Specifically, HyZ consists of 3 major steps: 0 BR

compressor, 1 sampling-based block error checking, and 2

SZx compressor. Given a user-specified error bound and the

input raw data, HyZ first utilizes BR compressor (shown as 0

in Figure 5) to process data and obtain the corresponding re-

gression coefficients. In order to check if data points are error-

Fig. 5. Compression pipeline (workflow) of HyZ

bounded inside each block, HyZ then reverses the regression

coefficients to the decompressed data. Since data comparison

operations are likely to incur extra computation cost, HyZ

samples data from eight corners inside a block (i.e. cube)

to determine if this block is error-bounded (shown as 1 in

Figure 5). By doing so, more than 97% of outlier blocks can be

found across all RTM snapshot data. Though there are still less

than 3% blocks that are not error-bounded, we argue that these

outlier data points only occupy less than 0.1% of the whole

dataset, which in fact has only negligible influence on both

statistic image quality (PSNR and SSIM) and visualization

quality. Finally, for all the recognized blocks that are not error-

bounded, HyZ combines them into an array and adopts SZx

to compress this array (shown as 2 in Figure 5). Note that

although constant block compression methodology in SZx may

cause visible errors on the RTM dataset, such circumstances

only can be observed on consecutive data. However, in this

combined array produced by 1 , the data points are actually

distributed discretely with respect to their position in the

original RTM snapshot, hence not leading to consecutive

visible errors. In all, HyZ combines two ultra-fast compressors,

hence not only can achieve promising visualization results but

also can maintain top-tier compression/decompression speeds.

V. PERFORMANCE EVALUATION

In this section, we present experimental setups and analyze

the performance evaluation results.

A. Experimental Settings

We describe the environment, datasets, and compressors as

follows.

1) Environment: We perform multi-thread OpenMP exper-

iments using Argonne Bebop supercomputer, in which each

node has two Intel Xeon E5-2695 v4 processors and 128 GB

of DRAM. Since each Bebop node is equipped with 36 cores,

we run our experiments with 36 threads for each compressor.

2) RTM Code and Datasets: We perform the evaluation

using an industrial parallel RTM code, which is a production-

level RTM implementation. Specifically, we run the code with

3600 time steps at a fraction of Overthrust Belt seismic data

of which dimension is 449×449×235. That is, there are 3600

snapshots generated to be compressed during the forward

propagation stage and each snapshot contains 449×449×235

single-precision floating-point data points.
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3) State-of-the-Art Compressors in Our Evaluation: We

evaluate BR, HyZ, and SZx compressors in RTM execution

with 4 other state-of-the-art lossy compressors (SZ-Interp

[5], SZ-Interp-fast, SZ2.1.12 [29], ZFP0.5.5 [18]). SZ-Interp

adopts an interpolation method in the SZ compression frame-

work, which can significantly improve the compression quality

in turn. SZ-Interp-fast is a modified version of SZ-Interp, by

replacing its expensive steps (Huffman encoding and Zstd)

with a lightweight encoder - run-length encoding [32]. SZ2.1 is

the latest public version of the SZ compressor, which exhibits

fairly high compression quality and performance as validated

by many prior studies [17], [30]. ZFP is another outstanding

error-bounded lossy compressor, which may outperform SZ2.1

in some cases as verified by existing studies [5]. We have

integrated all the lossy compressors into the RTM execution

in our experiments.

We also evaluate the compression ratios of 3 state-of-the-art

lossless compressors – ZFP, FPZIP, and Zstandard (Zstd) for a

comparison. ZFP and FPZIP also support lossless compression

in addition to lossy compression as long as all the bit-planes

are preserved during the compression. Zstd is an outstanding

lossless compressor, which is substantially faster than other

lossless compressors according to prior studies [14], [33].

4) Error Bounds for Lossy Compressors: In lossy compres-

sors with error-control, there are two types of error bounds,

absolute (ABS) error bound and value-range-based relative

(REL) error bound, which are both commonly used in sci-

entific applications [17], [30], [34]. The ABS error bound

(denote as δ) is set as a constant. As for REL error bound,

it is a linear computation based on the global data value

range size, i.e. λr, where λ ∈ (0, 1) and r denote relative

ratio and data range size respectively. As a result, for a

given set of data D = {d1, d2, ..., dn}, its decompressed data

D′ = {d′1, d′2, ..., d′n} should satisfy error bounds by following

equations.

max
i=1,2,...,n

(di − d′i) ≤
{
δ, ABS error bound δ is used.

λr, REL error bound λ is used.
(7)

5) Evaluation Metrics:

• Compression Ratio (CR): CR (defined as original size
compressed size )

indicates how much the snapshot data can be reduced in

memory. The minimum qualified compression ratio for

RTM execution is 5 following the suggestions of seismic

experts. Besides, our execution node has 128GB memory

and the total volume of RTM snapshot data is up to

635GB. And we also avoid the execution crash because

of an out-of-memory issue.

• Compression speed and decompression speed: As men-

tioned, compression/decompression speed is critical to the

overall execution performance, as too high overhead may

cause significant delays unexpectedly. In general, these

two speeds are measured in the form of throughput (i.e.,
original size

compression time (GB/s) and reconstructed size
decompression time (GB/s),

respectively).

• PSNR and SSIM: as mentioned in Section III, they are

used for quantifying data distortion in RTM execution.

Their detailed definitions can be found in [35] and [36].

• Visual quality: We will visualize the data for both

snapshots and stacking image to present the impacts of

different lossy compressors to the results.

• Overall performance of RTM: Entire execution time of

one RTM run that involves four stages: execution kernel

(i.e. RTM algorithm computation), I/O write (including

data compression in forward propagation), I/O read (in-

cluding data decompression in backward propagation),

and stacking image generation.

B. Evaluation Results and Analysis

We present evaluation results and conclusions as follows.

TABLE I
AVERAGE COMPRESSION RATIOS BASED ON THE SAME ERROR BOUND

OVER 3600 SNAPSHOTS IN RTM EXECUTION. (ALL COMPRESSORS ARE

OPENMP VERSIONS EXCEPT FOR SZ (SERIAL))

Compressor
Relative Error Bound Absolute Error Bound Average

1E-3 4E-4 1E-5 4E-6

SZx 7.58 6.22 9.57 7.72 7.77
SZ-Interp 213.53 116.60 177.92 113.20 155.31
SZ-Interp-fast 17.05 9.09 16.26 11.06 13.37
SZ 26.94 25.51 26.83 24.37 25.91
SZ(Serial) 70.36 50.68 81.47 54.94 64.36
ZFP 26.92 20.65 38.74 32.04 29.59

Compressor
Block Size Average

3× 3× 3 4× 4× 4 5× 5× 5 6× 6× 6

BR 6.66 15.72 31.11 52.64 26.53

1) Compression Ratio: Table I presents the average com-

pression ratios of different lossy compressors among 3600

snapshots with the same error bounds. For error-bounded

compressors (such as SZx, SZ and ZFP), we use two types

of error bounds – ABS and REL. Their specific definitions

can be found in Section V-A4. For the non-error-bounded

compressor BR, we present its compression ratios based on

different block sizes. We can clearly observe that all lossy

compressors here meet the compression ratio requirement

(5+) even when we set relatively low error bounds: e.g.,

REL=4E-4 and ABS=4E-6. Specifically, SZ-Interp exhibits

the highest compression ratios (113.2∼213.53), and SZx has

lowest compression ratios (6.22∼9.57). The key reason is

that SZ-Interp fully leveraged the data correlation in 3D

dimensions by a dynamic interpolation method [5], while

SZx is designed based on 1D correlation of the dataset. BR

obtains compression ratios from 6.66 to 52.64. SZ-Interp-fast

has significantly lower compression ratios than SZ-Interp, in

that its run-length encoding is not as effective as Huffman

encoding especially when the error bound is relatively low

(the pattern with consecutive symbols is very rare in this

situation). We notice that SZ has different compression ratios

between its OpenMP and Serial (i.e. single thread) versions,

and the compression ratio in OpenMP version is degraded

by ∼2.5× on average. This is because the OpenMP version
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needs to make sure data independence across blocks during

compression, which would lose prediction accuracy inevitably.

TABLE II
AVERAGE COMPRESSION RATIOS OF HYZ BASED ON DIFFERENT ERROR

BOUNDS AND BLOCK SIZE CHOICES OVER 3600 SNAPSHOTS IN RTM
EXECUTION.

HyZ
Relative Error Bound Absolute Error Bound Average
1E-3 4E-4 1E-5 4E-6

3× 3× 3 5.01 4.61 5.17 4.99

12.31
4× 4× 4 9.14 8.20 10.29 9.69
5× 5× 5 13.87 12.24 17.10 15.59
6× 6× 6 18.50 16.11 24.84 21.52

Table II presents the compression ratios of HyZ. Since

HyZ has error-control by integrating SZx to BR, it has two

compression settings, block size and error bound. For these

two settings in HyZ, smaller error bounds and block sizes

exhibit lower compression ratios. Such results are similar to

what we have observed in SZx and BR, respectively. The

compression ratio of HyZ is smaller than BR, since it requires

extra space for error-control computation. In all, HyZ has an

average compression ratio of 12.31, which satisfy the RTM

execution.

TABLE III
AVERAGE COMPRESSION RATIOS OF THREE LOSSLESS COMPRESSORS

OVER 3600 SNAPSHOTS IN RTM EXECUTION.

Compressor Zstd FPZIP ZFP

Average CR 1.53 2.17 1.85

Table III shows the compression ratios of the lossless

compressors. The overall compression ratios of Zstd, FPZIP,

and ZFP are in the range of [1.53, 2.17], which is too low

to complete the whole execution because of limited memory

capacity. Moreover, they are all considerably slower than

lossy compressors: the serial versions of FPZIP, ZFP and

Zstd are slower than SZ(serial) by ∼3-5×, ∼5-10×, 10+×,

respectively, which is far less than the expected compression

throughput.

Takeaway 1: HyZ and BR both can meet compression ratio

requirement (5+) in RTM execution across 3600 time steps,

with 12.31 and 26.53 on average.

TABLE IV
OPENMP COMPRESSION SPEEDS (GB/S) BASED ON THE SAME ERROR

BOUND OVER 3600 SNAPSHOTS IN RTM EXECUTION.

Compressor
Relative Error Bound Absolute Error Bound Average

1E-3 4E-4 1E-5 4E-6

SZx 12.48 11.08 16.00 8.78 12.09
SZ-Interp 2.87 2.76 2.76 2.47 2.72
SZ-Interp-fast 5.48 5.36 5.53 5.11 5.37
SZ 3.63 3.57 3.61 3.57 3.60
ZFP 2.82 2.56 4.33 4.04 3.44

Compressor
Block Size Average

3× 3× 3 4× 4× 4 5× 5× 5 6× 6× 6

BR 5.85 15.64 24.36 32.46 19.58

TABLE V
OPENMP DECOMPRESSION SPEEDS (GB/S) BASED ON THE SAME ERROR

BOUND OVER 3600 SNAPSHOTS IN RTM EXECUTION.

Compressor
Relative Error Bound Absolute Error Bound Average

1E-3 4E-4 1E-5 4E-6

SZx 19.65 18.13 22.45 15.44 18.92
SZ-Interp 5.26 4.88 4.77 4.48 4.85
SZ-Interp-fast 9.00 9.10 9.61 8.03 8.94
SZ 5.14 4.75 5.01 4.76 4.92
ZFP 0.60 0.54 0.62 0.58 0.59

Compressor
Block Size Average

3× 3× 3 4× 4× 4 5× 5× 5 6× 6× 6

BR 10.67 19.36 24.96 26.59 20.40

2) Compression and Decompression Speed: Table IV and

Table V present the OpenMP compression and decompression

speeds for different lossy compressors over 3600 snapshots

in RTM execution, respectively. As shown in the tables, the

SZx and our proposed BR significantly outperform other lossy

compressors. In absolute terms, the compression speeds of SZx

and BR reach 12.09GB/s and 23.67GB/s on one node from

Bebop supercomputer, which is about 2∼4× as high as the

state-of-the-art lossy compressors SZ and ZFP. Note that all

lossy compressors except ZFP have a larger throughput in the

decompression stage, and the reason is that decompression

requires fewer computations to reconstruct the data. For ZFP’s

decompression, it does not have OpenMP version, so we can

only run the serial version instead, which suffers very low

speed as shown in the table.

Table VI presents the OpenMP compression and

decompression speeds of HyZ. The average compression and

decompression speeds of HyZ are 10.69GB/s and 12.45GB/s,

which are 45.40% and 38.97% slower than those of BR,

respectively. The key reason is that HyZ introduces sampling-

based block error checking and SZx compression stages to

enable error-control and thus further improve visualization

quality. However, HyZ is still 3∼4× faster than the second

tier compressors such as SZ and ZFP. In all, HyZ achieves

first-class compression and decompression speeds in RTM

execution compared with existing lossy compressors.

Takeaway 2: HyZ and BR both have top-class com-

pression and decompression speeds. HyZ can achieve

10.69GB/s and 12.45GB/s compression and decompression

speeds respectively, while these numbers are 19.58GB/s

and 20.40GB/s in our proposed BR compressor.

3) Data Distortion: We evaluate data distortion on both

single snapshots and final stacking image in RTM execu-

tion. For single snapshot, we use one typical snapshot (time

step=3000) for example, and similar results can be obtained

in other RTM snapshots as well. Following the suggestions

of seismic experts, we choose REL=1E-3 as error bound for

examining the visualization errors in HyZ.

Figure 6 visualizes the reconstructed single snapshot pro-

duced by BR and HyZ. As seen in Figure 6 (b) and (c),

HyZ maintains a better visualization with identical patterns,
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TABLE VI
AVERAGE OPENMP COMPRESSION/DECOMPRESSION SPEEDS (GB/S) OF HYZ BASED ON DIFFERENT ERROR BOUNDS AND BLOCK SIZE CHOICES OVER

3600 SNAPSHOTS IN RTM EXECUTION.

HyZ
Compression Speed Decompression Speed

Relative Error Bound Absolute Error Bound Average Relative Error Bound Absolute Error Bound Average
1E-3 4E-4 1E-5 4E-6 1E-3 4E-4 1E-5 4E-6

3× 3× 3 4.54 4.28 4.72 4.33

10.69

7.45 7.33 7.65 7.26

12.45
4× 4× 4 8.45 8.37 8.83 8.34 12.71 12.16 12.94 11.83
5× 5× 5 13.12 11.93 13.42 12.32 14.64 14.43 15.01 13.47
6× 6× 6 17.64 16.41 17.94 16.40 15.85 15.47 16.01 15.03

(a) Original Data (b) BR, Block Size=5 × 5 × 5,
(PSNR: 50.86dB, SSIM: 0.9546)

(c) HyZ, Block Size=5 × 5 ×
5, REL=1E-3 (PSNR: 87.91dB,
SSIM: 0.9980)

(d) HyZ, Block Size=6 × 6 ×
6, REL=1E-3 (PSNR: 68.78dB,
SSIM: 0.9861)

Fig. 6. Visualization of single snapshot (time step=3000) image by BR and HyZ (REL=1E-3) compressors.

(a) Original Data (b) BR, Block Size=4 × 4 × 4,
(PSNR: 74.50dB, SSIM: 0.9713)

(c) HyZ, Block Size=4 × 4 × 4,
(PSNR: 124.13dB, SSIM: 0.9935)

(d) HyZ, Block Size=5 × 5 × 5,
(PSNR: 117.35dB, SSIM: 0.9902)

Fig. 7. Visualization of stacking image by BR and HyZ (REL=1E-3) compressors.

while the image produced by BR has a few distorted patterns.

Besides, in HyZ reconstructed data, the PSNR and SSIM can

reach up to 87.91dB and 0.9546, which is higher than those

of BR reconstructed data. When we increase the block size of

HyZ from 5×5×5 to 6×6×6 (see Figure 6 (d)), though PSNR

and SSIM are slightly reduced from 87.91dB to 68.78dB and

from 0.9980 to 0.9861, they are still higher than those snapshot

reconstructed by BR compressor. In addition, both 5×5×5 and

6×6×6 in HyZ can preserve identical patterns in visualization.

Because of error-control, HyZ is better at preserving single

snapshot’s data quality.

Figure 7 presents the final stacking image generated by

BR and HyZ. As seen in Figure 7 (b) and (c), HyZ maintains

a better visualization quality than BR under the same block

size choice (4 × 4 × 4). The corresponding PSNR and SSIM

can reach up to 123.13dB and 0.9935, respectively. The same

conclusion can also be drawn when we increase the block size

of HyZ to 5× 5× 5 (see Figure 7 (d)). The key reason HyZ

outperforms BR is that the reconstructed snapshots without

error-control may introduce extra errors. Such extra errors

may only slightly affect the visualization of single snapshot,

but they will stack gradually along with the 3600 time steps

in RTM execution, leading to visible artifacts at last. In all,

HyZ is a better choice for preserving final stacking image.

Takeaway 3: HyZ is superior to BR compressor in pre-

serving the visualization quality for both single snapshots

and the final stacking image, with higher PSNR and SSIM.

4) Overall Performance of RTM: Figure 8 presents the

overall performance of RTM execution by integrating different

lossy compressors. The ‘Disk’ bar means the baseline RTM

execution that offloads uncompressed snapshots to disk. To

clearly present the execution time, we breakdown each RTM

execution into four major stages: (1) Execution Kernel Time:
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Fig. 8. Overall performance of RTM

the core RTM algorithm, (2) I/O Write Time: writing/saving

snapshot data during forward propagation including the com-

pression time, (3) I/O Read Time: loading snapshot data in

the backward propagation phase including the decompression

time, (4) Stacking Image Generating Time: generating the final

stacking image after backward propagation. According to the

figure, running RTM with HyZ can get a top-tier speedup in

class (6.29-6.60×) compared with original execution without

compression techniques, because of high performance of both

SZx and BR. In particular, SZx and BR obtain a speed-up

of 7.49× and 6.93× on average, respectively. All these three

compressors lead to top-tier performance. From among them,

the HyZ is the best choice because it can preserve high data

reconstruction quality for both snapshots and stacking image.

In contrast, the executions with other compressors (SZ,

ZFP, SZ-Interp, etc.) would take notably longer time to finish.

According to the figure, we can clearly observe that their I/O

write times are all considerably higher than that of any top-tier

performance compressor (HyZ, SZx, BR). This is due to the

fact that they all suffer from substantially higher compression

time (see Table IV). It is also observed that the RTM with

ZFP has a much higher time cost compared with other lossy

compressors. The key reason is that ZFP only supports single-

thread in the decompression, which causes significantly longer

total I/O read time in turn.

Note that we measure the performance with a single node

on Bebop supercomputer. In industrial scenario, the RTM

execution can be parallelized with multiple nodes. However,

its strategy of integrating lossy compression is the same. In

each time step of forward propagation, the host node divides

the snapshot data into multiple copies and sends them to

other nodes for later execution. These operations will then

be conducted reversely in backward propagation. As such,

each copy of snapshot data will be compressed/decompressed

in its corresponding node concurrently without dependency,

and hence our conclusion on performance along with other

analyses can remain the same.

Takeaway 4: HyZ and BR both can lead to top-tier per-

formances in RTM execution, increasing the performance

on average by 6.46× and 6.93×, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we develop a hybrid lossy compression

method (HyZ), in order to optimize the overall performance

in RTM execution while preserving the data quality very well

for users. We perform comprehensive experiments based on a

total of 10 state-of-the-art lossless and lossy compressors. The

key findings and results are summarized as below:

• Our solution HyZ combining BR and SZx has the top-

tier performance in both compression and decompression,

with satisfactory compression ratio (5+) and high fidelity

reconstructed data in both snapshots and stacking image.

• BR exhibits the best compression and decompression

speeds, with 19.58GB/s and 20.40GB/s on average.

• HyZ is a better choice for preserving data fidelity for both

single snapshot data and final stacking image.

• HyZ efficiently solves the big data issue in RTM execu-

tion and improves its overall performance from 6.29× to

6.60× over the original workflow execution performance.

In the future, we plan to further improve the RTM execution

performance by exploring more advanced lossy compression

techniques in heterogeneous computation environments.
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