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Abstract

The United States (U.S.) is ranked first in gun possession globally and is among
the countries suffering the most from firearm violence. Several aspects of the U.S.
firearm ecosystem have been detailed over the years, mostly focusing on national
or state-level phenomena. Systematic, high-resolution studies that compare U.S.
cities are largely lacking, leaving several questions open. For example, how does
firearm violence vary with the population size of a U.S. city? Are guns more
prevalent and accessible in larger cities? In search of answers to these questions,
we apply urban scaling theory, which has been instrumental in understanding
the present and future of urbanization for the last fifteen years. We collate a
dataset about firearm violence, accessibility, and ownership in 929 cities, ranging
from 10,000 to 20,000,000 people. We discover superlinear scaling of firearm vio-
lence (measured through the incidence of firearm homicides and armed robberies)
and sublinear scaling of both firearm ownership (inferred from the percentage
of suicides that are committed with firearm) and firearm accessibility (measured
as the prevalence of federal firearm selling licenses). To investigate mechanism
underlying the U.S. firearm ecosystem, we establish a novel information-theoretic
methodology that infers associations from the variance of urban features about
scaling laws. We unveil influence of violence and firearm accessibility on firearm
ownership, which we model through a Cobb-Douglas function. Such an influence
suggests that self-protection could be a critical driver of firearm ownership in
U.S. cities, whose extent is moderated by access to firearms.
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Introduction

The origin of cities can be traced back thousands of years to the rise of human civiliza-
tion. As human populations grew and settled in fertile regions, the need for organized
communities and shared resources became crucial. These early settlements gradually
evolved into cities, serving as centers of political, economic, and cultural activities [1].
Cities provided a hub for trade, governance, innovation, and socialization, attract-
ing individuals from diverse backgrounds. Over time, cities have grown in size and
complexity, shaping the trajectory of human history and becoming integral to our
modern world [2]. Cities are an embodiment of self-organization that exemplifies how
humans have evolved through intricate interactions among each other and with their
surroundings [3].

Cities exhibit emergent behaviors characterized by urban scaling laws [3, 4], akin
to other complex systems, such as turbulent fluid flows [5] or ant colonies [6]. Urban
scaling laws describe the relationship between population size and certain features
of cities, such as the Gross Domestic Product (GDP). A large body of literature
has been dedicated to the study of urban scaling laws, leading to many insightful
conclusions about the present and future of urbanization. For example, quantities
related to the volume occupied by infrastructure, such as road surface area, built area,
and power cable lengths, exhibit sublinear scaling [3]. Quantities related to household
needs, such as water and electricity consumption, tend to have linear scaling with
population size [3]. Lastly, variables related to social outputs, such as GDP, number of
new patents, and research and development jobs, tend to have a superlinear scaling [3].
The larger a city is, the less (more) its infrastructure (social output) per capita will
be; household needs per capita, instead, will not vary with the population size.

The origins of urban scaling laws can be traced to social interactions [3, 4],
associated with reciprocating thoughts and experiences that allow for information
exchange [7]. Superlinear scaling of the economy and sublinear scaling of infrastruc-
tural needs indicate clear benefits of living in cities, yet, not every social interaction
is conducive to a scaling law that favors urbanization. As we have seen during the
COVID-19 pandemic, social interactions in cities are also a vector to support the
propagation of infectious diseases [8], leading to superlinear scaling of incidence with
population [9]. To a less understood extent, there is also evidence of superlinear scaling
of crime in cities [10].

Regardless of the kind of crime, superlinear scaling has almost always been
observed [3, 11-13]. For example, thefts show superlinear scaling in the United States
(U.S.), as well as in countries in Central and South America (Mexico and Colombia)
and Europe (Belgium, Denmark, France, Italy, Spain, and the United Kingdom) [13].
Likewise, murder and aggravated assault scale superlinearly with population size for
cities in the U.S. [12]. Interestingly, an equivalent scaling has been found for homi-
cides, which encompass lawful and unlawful killing of a person [14]. A few hypotheses
have been posited to explain superlinear scaling of crime. Some scholars [12, 15, 16]
have proposed crimes to be an output of social interactions, thereby scaling equiva-
lently to any other socioeconomic output (GDP, contagious disease rates, number of
patents, etc.). Others have suggested that superlinear scaling is due to the fact that



the prevalence of police officers scales sublinearly with population size, so that crimi-
nals are winning in number [17]. Others have described superlinear scaling of crimes
within a theory that combines economic complexity and cultural evolution, so that
the larger the city the more it will offer “factors” that allow its residents to commit a
crime [11]. Another potential mechanism may relate to “societal differences in mate-
rial inequality” [18], whereby higher levels of inequality in larger cities [19] will lead
to higher incidence of violent crime.

In the U.S., many of these crimes are committed with guns; for example, about 80%
of murders in the U.S. in 2021 involved guns [20]. Firearm injuries have been a leading
cause of death in the country for years, surpassing the number of deaths due to car
accidents in 35 U.S. states in 2020 [21]. While some authors have demonstrated that
firearm homicides scale superlinearly with population size in Brazil [22], to date, an
analogous relationship has not been examined in the U.S. To fill this literature gap and
test the hypothesis of superlinear scaling of firearm violence in the U.S., we examine
urban scaling of both the incidences of firearm homicides and armed robberies.

Upon developing a scaling law for firearm violence, we focus on firearm ownership
and accessibility — two other key elements of the U.S. firearm ecosystem [23-25].
Recent statistics suggest that the number of firearms in the U.S. has reached 393.3 mil-
lion [26], more than one firearm per person, placing the U.S. at the very top rank of gun
possession globally [27]. Consistent with these figures, the number of licensed firearm
dealers has reached about 78,000 shops, passing “all McDonald’s, Burger King, Sub-
way, and Wendy’s locations combined, and twice the number of US post offices” [28].
We examine urban scaling of the percentage of suicides committed with firearm, scaled
by the city population. In the absence of a national registry, this quantity has been
shown to be one of the best proxies of the prevalence of firearm ownership (see Meth-
ods). The rationale behind this proxy is that the more guns are used as a means to take
one’s own life, the more likely they are prevalent in that community. The prevalence
of federal firearm selling licenses, instead, offers a direct measure of the ease-of-access
to (legal) firearms [25].

Within the framework of urban scaling, we study a long-standing question in
firearm research: why do people buy guns? A popular theory [29-31] advocates for
self-protection, whereby people will purchase weapons as they fear for themselves and
their loved ones to be victims of violence. Quantitative evidence in favor of this expla-
nation is limited, due to difficulties in teasing out cause-and-effect relationships from
complex datasets. We propose to use the variance of cities with respect to the scal-
ing laws to help address this technical limitation. Specifically, we investigate the triad
consisting of the incidence homicides (as a measure of violence that would trigger a
desire for better self-protection), firearm ownership, and prevalence of federal firearm
selling licenses.

Deviations from scaling laws are typically referred to as scale-adjusted metropolitan
indicators (SAMIs) [32]. SAMIs are used to disentangle local features from population
size, providing a true measure of local urban performance at different scales. They have
been previously employed in various attempts of understanding urban structures and
relationships between cities [32]. For example, while per capita homicide rates have
been increasing from 1990 to 2010 in Brazilian cities, the average of the SAMIs for cities



above and below the scaling law have been approaching zero, suggesting that more
violent cities (above the scaling law) have been experiencing a reduction in homicides
and less violent ones (below the scaling law) an increase in homicides [33]. Analyses
with the SAMIs should yield more reliable conclusions, as no spurious relationships
between urban features would appear due to the scaling laws. By applying tools of
casual discovery on the SAMIs, we demonstrate an influence of firearm accessibility and
homicides on firearm ownership, which we use to formulate a Cobb-Douglas model [34]
to predict firearm ownership in the country. The use of such models in the study of
urban scaling phenomena has been recently explored by Sarkar et al. [35] and Ribero
et al. [36] in the context of urban economies and CO2 emissions, respectively.

The study has two main contributions. First, we apply urban scaling theory to
detail the role of population size on firearm violence, ownership, and accessibility in
U.S. cities. We demonstrate that firearm violence scales superlinearly, like a social
output, in contrast with firearm ownership and accessibility. Both these quantities
exhibit sublinear scaling, similar to the scaling observed with respect to infrastructure:
there are less firearms and selling licenses per capita as cities grow in size, yet, firearm
violence per capita increases. Second, we propose a broadly applicable methodology
that combines causal discovery tools and SAMIs to infer associations in urban science.
Using our methodology, we offer support in favor of the theory of self-protection as a
driver of firearm ownership.

Results

Urban scaling

Urban scaling laws are expressed as simple power law models,
yi = cniﬂe&, (1)

where ¢ € {1,--- , N} such that N is the number of cities, y; is the urban feature of city
i (such as GDP), and n; is the population size of city ¢ (metropolitan and micropolitan
statistical areas, MSAs and MicroSAs, respectively; see Methods). ¢ is a constant and
0 is the scaling exponent. We say that the scaling is superlinear when 8 > 1, sublinear
when 8 < 1, and linear when § = 1. ¢ and § are usually found by fitting a linear
model using the ordinary least squares regression on the logarithmically transformed
data [3]. The &;’s are the SAMIs, which capture the deviation of each city from the
nominal scaling in Equation 1 [32]. SAMIs are dimensionless measures, independent
of the city size, which offer a metric of performance of any city with respect to others.

We investigate urban scaling of five urban quantities in the U.S.: incidence of
homicides, incidence of firearm homicides, prevalence of federal firearm selling licenses,
incidence of armed robberies, and prevalence of firearm ownership. The incidence of
homicides or firearm homicides and the prevalence of federal firearm selling licenses can
be found from the Center for Disease Control (CDC) and from the Listing of Federal
Firearms Licensees from the Bureau of Alcohol, Tobacco, Firearms and Explosives
(ATF), respectively (see Methods). For armed robberies, we employ the Gun Violence
Archive dataset published on Kaggle (see Methods). Since there is no accessible data



about firearm ownership in the U.S., we use the percentage of suicides committed
with firearms as a proxy, following established practices (see Methods). Specifically,
for each city, the estimate of the prevalence of firearms ownership as the fraction of the
number of suicides committed with firearm over the total number of suicides, scaled
by the population size of the city (see Methods). Suicide data can also be directly
accessed from the CDC (see Methods).

Urban scaling for the incidence of firearm homicides (Figure 1la), incidence of
armed robberies (Figure 1b), prevalence of federal firearm selling licenses (Figure 1c),
and prevalence of firearm ownership (Figure 1d) reveal nonlinear scaling. Specifically,
in agreement with observations on firearm violence in Brazil [22], the incidences of
firearm homicides and armed robberies in the U.S. scale superlinearly with g = 1.15
(B € [1.10,1.19];¢ = 107545, 0 = 0.15) and B = 1.10 (B € [1.05,1.14];¢ = 10759, 0 =
0.14), respectively. In line with survey results from Pew Research Center on gun
ownership in urban versus rural America [37], prevalence of firearm ownership scales
sublinearly with 8 = 0.95 (8 € [0.94,0.97];¢ = 10°°*; 0 = 0.01). Likewise, we find
that prevalence of federal firearm selling licenses scales sublinearly with 8 = 0.66
(B € [0.63,0.69];¢ = 107 147; 5 = 0.04). Superlinear scaling is observed for homicide
incidence with 8 = 1.12 (8 € [1.08,1.15];¢ = 1075%; 5 = 0.11) (see Supplemental
Figure 1), in strong agreement with the scaling reported by Bilal et al. [14], based on
a smaller dataset (376 U.S. cities) and an earlier time period (up to 2016). Scaling
results for the incidence of suicides and firearm suicides are presented in Supplemental
Material S1. Results about the SAMIs of the three main variables are in Supplemental
Material S2. Scaling results obtained by varying the number of cities are examined in
Supplemental Material S3.

Analysis of associations based on scale-adjusted metropolitan
indicators

To study relationships between the SAMIs of homicide incidence, prevalence of firearm
ownership, and prevalence of federal firearm selling licenses, we adopt the framework
pioneered by Pearl, which relies on conditional independence between variables [38].
Through conditional independence, one can delve into the nature of the associations
that are seen from scatter plots between the SAMIs (Figure 2a-c), hinting at the inde-
pendence between homicide incidence and prevalence of federal firearm selling licenses
and at their associations with prevalence of firearm ownership. We rely on conditional
mutual information, a model-free measure of dependence among variables [39] (see
Methods).

Mutual information results on pairwise dependencies and conditional mutual infor-
mation results on triple-wise dependencies are summarized in Table la. For a 5%
significance level, the SAMIs of the prevalence of firearm ownership are dependent on
the SAMIs of homicide incidence, as well as on the SAMIs of the prevalence of federal
firearm selling licenses. These pairwise dependencies still hold when conditioning on
the third variable; that is, the prevalence of firearm ownership depends on the inci-
dence of homicides also when conditioning on the prevalence of federal firearm selling
licenses, and it depends on the prevalence of federal firearm selling licenses also when



N

10*

10
B=1.15 € [1.10,1.19] . B=1.10 € [1.05,1.14]
R?=0.72 o 3
10
3 o
k] — Q
5 10 g 2
I ) 10 1
=} °©
T Y
S kel 1
s © 10 1
8 10° £
ir <
10°1
10’ 10 ‘ :
10* 10° 10" 10> 10° 100 10° 10
Population Population
(a) (b)
10° 10°
B=0.66 € [0.63,0.69] B=0.95 € [0.94,0.97]
2 _ 2 __
1047 R“=0.76 , R*=0.97
” 10"
Q
2 3] ®
810 £
3 & 106,
E 8
s 10 1 e
o
s
1 10°]
10 1 0° 2
10° : ‘ 10* ‘ ‘
10 10° 10> 10" 10 10° 10 10" 10> 10" 10° 10°
Population Population
(c) (d)

Fig. 1: Results on urban scaling of firearm violence, accessibility, and own-
ership in the U.S. The dots identify (a) incidence of firearm homicide as function
of the combined population in 810 cities from 2014 to 2019, (b) incidence of armed
robbery as function of the combined population in 649 cities from 2013 to 2018, (c)
prevalence of federal firearm selling licenses as function of the combined population
in 833 cities from 2014 to 2019, and (d) prevalence of firearm ownership as function
of the combined population in each of the 833 cities from 2014 to 2019. Data about
firearm homicides were intentionally hidden for areas with less than ten homicides per
the privacy policy of the CDC.

conditioning on the incidence of homicides. These results alone address only symmet-
ric, bidirectional relationships. However, the incidence of homicides and the prevalence



Null hypothesis MI p-value Null hypothesis p p-value
F1L 0.048 | < 0.001 F1L 0.265 < 0.001
F1H 0.106 | < 0.001 F1H 0.400 | < 0.001
L1H 0.005 0.273 L1H 0.003 0.930

F1L|H 0.041 | < 0.001 F1L|H 0.288 < 0.001
F1H|L 0.090 | < 0.001 F1H|L 0.413 < 0.001
LIH|F 0.007 0.043 L1H|F -0.116 0.001

(a) (b)

Table 1: Results of the analysis of associations based on scale-
adjusted metropolitan indicators to explain firearm ownership
in U.S. cities. Table of pairwise and triple-wise results from mutual
information (a) and Spearman correlation (b) of the three examined
variables: the prevalence of firearm ownership (F'), prevalence of fed-
eral firearm selling licenses (L), and homicide incidence (H). The first
column indicates the null hypothesis with AL B|C implying that A is
independent of B given C, the second column represents the associa-
tion measure, and the last column has the corresponding p-values. Bold
associations are significant at a 5% level.

of federal firearm selling licenses are not dependent, but conditioning on the prevalence
of firearm ownership makes them dependent. Under standard causal learning assump-
tions [38], this is the classic case of a “collider” [38], where one can conclude that
both the incidence of homicides and the prevalence of federal firearm selling licenses
influence the prevalence of firearm ownership (Figure 2d); see Methods for details on
the deduction of the collider, and Supplemental Material S3 for robustness tests of
our claims with respect the use of alternative measures of violence, accounting for
the presence of external confounders (such as income inequality or urbanicity), and
use of synthetic data. We warn prudence in interpreting these findings as true cause-
and-effect relationships due to the inherent inability to test for assumptions of causal
learning from data, such as causal sufficiency, faithfulness, and Markovianity. The
observed associations could, in fact, emerge due to direct or indirect causality [40].

To infer the signs of associations between homicide incidence and the prevalence
firearm ownership and between the prevalence of federal firearm selling licenses and
prevalence of firearm ownership, we perform a Spearman partial correlation (Table 1b).
We register that the associations are both positive: the worse a city is performing with
respect to homicides, the more firearms it has. Similarly, the more a city has access to
firearms, the higher it is its firearm ownership. To stress the importance of using the
SAMISs instead of the per capita rates, we note that Spearman correlation between per
capita rates for homicide incidence and the prevalence of federal firearm selling licenses
would yield a spurious significant negative correlation (p = —0.157 and p < 0.001; see
Supplemental Material S4 for details on how spurious correlations might arise).

We calibrate a Cobb-Douglas model to predict the prevalence of firearm owner-
ship in terms of the incidence of homicide and the prevalence of federal firearm selling
licenses (see Methods). The fitted powers for incidence of homicides and prevalence
of firearm licenses are 3; = 0.45 (3 € [0.41,0.48]) and By = 0.68 (B2 € [0.62,0.74]),



respectively, R? = 0.61 (Figure 2d). Given that 8;+32 > 1, returns to scale are increas-
ing, meaning that an increase in both the incidence of homicides and the prevalence
of federal firearm selling licenses by a factor k produces an increase in the prevalence
of firearm ownership by more of a factor k.

Discussion

Over the last fifteen years, the theory of urban scaling has provided critical insight into
the present and future of urbanization [3]. The superlinear scaling of GDP, number of
new patents, and research and development jobs with population size is a compelling
argument for cities to grow and thrive. Yet, not all urban features that grow superlin-
early are actually beneficial to cities. Several studies have documented that crime also
grows superlinearly with population size [11-13], with crime per capita being higher
in larger cities than smaller ones. In this paper, we apply urban scaling theory to the
study of firearm violence, ownership, and accessibility in the U.S.

Unlike most nations, the U.S. has a strong tradition of individual gun owner-
ship [41] and the Second Amendment of its Constitution guarantees the right to bear
arms [42]. In agreement with the recent survey by Pew Research Center [37] that
broadly identified that 46% of adults in rural areas own firearm compared to only
19% of adults in urban areas, we document sublinear scaling of prevalence of firearm
ownership. At 8 = 0.95, per capita firearm prevalence decreases with the population
size of a city so that per capita prevalence would drop by a factor of two when com-
paring a small community of ~ 1,000 people with a large city of millions. Sublinear
scaling is also found with respect to the prevalence of federal firearm selling licenses,
suggesting that licensed dealers locate proportionally more in smaller cities, likely to
serve the increased fraction of gun owners.

Sublinear scaling has been systematically discovered in previous urban scaling
studies addressing different forms of infrastructure volume of cities (road surface area,
built area, and power cable lengths, etc.) [3]. Could this imply that firearms are some
sort of infrastructure for U.S. cities, or, at least, that some segments of the American
society view them as such? Infrastructure generally refers to the physical and organiza-
tional structures and facilities necessary for the functioning of a society. Firearms are
not infrastructure in this traditional sense, and many Americans raise issues of public
safety and violence around firearms [43]. Yet, as detailed by Boine et al. [41], “gun
culture is not monolithic,” there are many attitudes and behaviors related to firearms
in the country. The network of gun dealers and owners in the country may be viewed
by some segments as infrastructure needed for self-defense, recreational purposes, and
criminal activity. In this vein, the observed sublinear scalings are not unexpected.

Reciprocally to firearm ownership and accessibility, the incidence of firearm vio-
lence scales superlinearly with population size. By associating firearm violence with
criminality, this finding is consistent with the view that criminality is a socioeconomic
output of a city [3, 12], which follows a superlinear scaling, like GDP, number of new
patents, and research and development jobs. Particularly relevant to our observations
is the recent theory by Gomez-Lievano et al. [11], which explains superlinear scaling of
socioecomic output in terms of the economic complexity of the specific phenomenon
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Fig. 2: Results from the study of scale-adjusted metropolitan indicators
(SAMIs) of violence, firearm ownership, and firearm accessibility. (a-c) Scat-
ter plots and histograms showing marginal and pairwise joint distributions of the
SAMIs of the three examined variables of homicide incidence, prevalence of firearm
ownership, and prevalence of federal firearm selling licenses. The contour plots visually
represent the joint distribution; the more tilted the contours, the higher the pairwise
linear association between the variables. (d) Collider structure discovered through our
framework and estimation of the fitted Cobb-Douglas model in Equation 2 versus
data; F' and Br = 0.95 represent prevalence of firearm ownership and its scaling expo-
nent, L and 81, = 0.66 the prevalence of federal firearm selling licenses and its scaling
exponent, H and Sy = 1.12 homicide incidence and its scaling exponent, and 5, and
(B2 are the exponents of the Cobb-Douglas model for H and L, respectively.



and cultural evolution. Within this theory, the number of concurrent factors M that
are required for a specific phenomenon controls the scaling exponent, proportional-
ity factor, and variance. As such, when comparing homicides with homicides with
firearm, one should see an increase in the complexity of the phenomenon by at least
one, that is, the action of securing a firearm. In agreement with this theory, we regis-
ter an increase in the scaling exponent, a decrease in the intercept, and an increase of
the variance, when comparing scaling laws for homicides with firearm and homicides
(see Supplemental Material S5).

Urban scaling laws detail the nominal behavior of cities with respect to their pop-
ulation size, but, obviously, they do not capture the totality of the variance about
urban quantities. Deviations from scaling laws are called SAMIs — a relevant com-
modity for scoring cities’ performance and understanding urban systems at different
scales. Here, we put forward an approach to discover associations between urban fea-
tures using SAMIs in urban science, focusing on answering a long-standing questions
in firearm research: why do people in the U.S. buy guns? In our previous work [44],
we studied national and state-level patterns of firearm ownership as functions of mass
shootings, media coverage of shootings, and media coverage of firearm regulations.
Through time-series analysis, we discovered an influence of media coverage of firearm
regulations on firearm prevalence. Such a relationship supports the hypothesis that
people buy guns as they fear that new regulations may be enacted to curtail their rights
to own firearms, offering a statistical basis to the anecdotal observation of increased
firearm sales at the time of the election of President Obama when stricter regulations
were on the horizon [45].

Our previous work [44] does not offer support for another known driver of firearm
prevalence, that is, self-protection [29-31]. People may want to purchase a firearm
under the fear that they and their loved ones could be the victim of a crime. Working
with finer data from 99 geographic areas (nationally representative counties and county
clusters from the General Society Survey [46]), Rosenfeld et al. [31] created a structural
equations model to study the relationship between social trust and firearm ownership,
while controlling for several conditions, including firearm violence. Their results point
at an indirect effect of social trust on firearm ownership through firearm violence,
whereby they propose that “people arm themselves in response to mistrust only insofar
as mistrust is translated into high levels of firearm violence.” Despite the important
insights the work offered, it is based on a relatively small dataset of 99 areas and,
most importantly, it uses a model that is not designed to discover causal structures:
as acknowledged in the paper, “the result holds only if we [the authors] have properly
specified the causal direction of the relationship between firearm homicide and firearm
prevalence.”

Here, we revisit the hypothesis of self-protection as a driver of firearm ownership
by combining the conditional independence framework of Pearl [38] with urban scaling
theory. In agreement with Rosenfeld et al. [31], we discover that people may purchase
firearms due to a desire for self-protection, as expressed by the level of violence they
will experience in their city. The effect of such a driver is moderated by another
association, between firearm ownership and accessibility — a result previously hinted
at by Chao et al. [25]. Importantly, increasing the number of variables in the analysis or
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modifying the way violence is measured does not affect the nature of these associations
(see Supplemental Material S3). Based on these findings, we calibrate a Cobb-Douglas
that is consistent with urban scaling to model to predict firearm ownership in terms
of the incidence of homicides and the prevalence of federal firearm selling in cities.

This study is not free of limitations. In particular, we identify two main limitations
related to the data collection. The first one is the lack of a direct measure of firearm
ownership in the U.S., which forces the community to utilize proxies that can be
estimated from available data. Based on the literature [47-49], we choose to use the
fraction of suicides committed with firearm as a valid proxy of firearm ownership. Such
a proxy is based on the notion that people will commit suicide with a firearm only
as a function of their ownership of a firearm, thereby discounting personal choice in
the selection of the way to take their own life. The second limitation is in the notion
of accessibility of firearm, which is purely based on the prevalence of federal firearm
selling licenses, thereby discounting other means (legal or illegal) to purchase a firearm.
As detailed by Wintemute [50] “guns sold by licensed dealers account for only about
60% of the guns sold in the United States. Guns sold by private parties, collectors,
and unlicensed vendors at gun shows account for 40% of all gun sales” — none of these
routes to gun ownership are part of our study. In addition, we should acknowledge that
federal firearm selling licenses do not impose limitations on where to trade, thereby
potentially straining the association between the prevalence of federal firearm selling
licenses and ease-of-access to firearms in a specific city. In principle, an authorized
dealer can also sell online [51] — presently, we have no ability to track these activities.

Despite these limitations, our effort provides critical, city-level insight into the
firearm ecosystem, which helps detail scaling laws and underpinning associations about
firearm violence, ownership, and accessibility. Alongside these insights, our work con-
tributes a methodology to study associations between urban features based on SAMIs,
which is broadly applicable to urban science.

Methods
Data

Homicide data were collected from the CDC Wonder causes of death database at a
county level [52]. Specifically, the “ICD-10 Codes” cause of death was filtered accord-
ing to the code “X85-Y09 (Assault).” The codes for homicides with firearm were
“X93 (Assault by handgun discharge), X94 (Assault by rifle, shotgun and larger
firearm discharge),” and “X95 (Assault by other and unspecified firearm discharge).”
In Supplemental Material S3, we expand the definition of homicides to include deaths
assigned to injuries of ill-defined intent, Code “Y10-Y34 (Event of undetermined
intent).” Interestingly, the superlinear scaling is not affected by potential under-
counting of deaths due to injuries of ill-defined intent as reported by the CDC [52].
These deaths are more frequent in smaller urban areas, so that it is prudent to
ensure that they would not affect the superlinear nature of the scaling of homicide
incidence. Our analysis points to a modest reduction in the scaling exponent, from
8 =112 € [1.08,1.15] to B8 = 1.07 € [1.04,1.11], a decrease in the variance from
o0 =0.11 to 0 = 0.08, and an increase in the intercept from ¢ = 107%98 to ¢ = 107470,
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From the same source, we retrieved suicide at the county level data using the
codes “X60-X84 (Intentional self-harm).” The codes for suicide with firearm were
“X72 (Intentional self-harm by handgun discharge), X73 (Intentional self-harm by rifle,
shotgun and larger firearm discharge),” and “X74 (Intentional self-harm by other and
unspecified firearm discharge).” From the CDC Wonder database, we also collected
population data. For city i, we estimated prevalence of firearm ownership (F;) from
the incidence of suicides (5;), the incidence of suicides with firearm (SF;), and the
population (n;), as F; = n;SF;/S;. This proxy has been validated against data about
the percentage of households reporting ownership of a firearm across 170 cities [49],
21 states [47], and the nine Census regions [48] with correlation coefficients of 0.86,
0.90, and 0.93, respectively.

Data about armed robberies were obtained from the Gun Violence Archive dataset
on Kaggle that ends in 2018 [53], as incidents that include the word “armed robbery”
in the incident’s characteristic. The geographical coordinates of the armed robberies
data were aggregated on a county level using the ARC GIS software [54] and the U.S.
census shape files [55]. To convert from county codes of homicides, firearm homicides,
suicides, firearm suicides, and armed robberies to MSAs and MicroSAs, we relied on
data from the U.S. Bureau of Labor Statistics [56], year 2013.

Data on federal firearm selling licenses at the zip code level were collected from
the ATF Listing of Federal Firearms Licensees, which begins in 2014 [57]. Specifically,
we counted the number of licenses in August for each studied year and aggregated
them over the years. The dataset contained eight types of licenses as follows: “type
01 Dealer in Firearms Other Than Destructive Devices,” “type 02 Pawnbroker in
Firearms Other Than Destructive Devices,” “type 06 Manufacturer of Ammunition
for Firearms,” “type 07 Manufacturer of Firearms Other Than Destructive Devices,”
“type 08 Importer of Firearms Other Than Destructive Devices,” “type 09 Dealer
in Destructive Devices,” “type 10 Manufacturer of Destructive Devices,” and “11
Importer of Destructive Devices.” Type 01 is by far the most common, see Supple-
mental Table 1. All the types of license allow for selling except for type 06 [58], which
we consistently excluded from our study. To convert from zip codes to MSAs and
MicroSAs, we relied on data from the Missouri Census Data Center [59] (CBSA/ZIP,
2010 geographies). Firearm licenses in a zip codes belonging to more than one MSA
or MicroSA were counted multiple times to account for the fact that persons from dif-
ferent, neighboring cities could purchase a firearm from the same seller. For example,
zip code 57785 belongs to both Spearfish and Rapid City, South Dakota and persons
from both cities may buy a firearm there.

To improve the reliability of the data, we combined all the variables over six-year
windows. Incidence of homicides, incidence of firearm homicides, prevalence of fed-
eral firearm selling licenses, and firearm prevalence were computed over six years,
from 2014 to 2019. We stopped in 2019 before the COVID-19 pandemic hit the U.S.,
bringing new insecurities in people’s lives that might have sparked more firearm pur-
chases [60, 61]. Incidence of armed robberies was also computed over six years, but
one year before (from 2013 to 2018) as the Kaggle dataset did not contain information
past 2018. As a result, population refers to the combined population over six years,
measures of incidence refer to total counts over six-year intervals, and measures of
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prevalence should be intended over the combined population over the six-year inter-
val. For example, incidence of homicides in city i means the total number of homicides
suffered by city ¢ from 2014 to 2019; likewise, firearm prevalence in city i should be
viewed as the combined number of firearm owners in city ¢ from 2014 to 2019.

All the data acquired were aggregated over MSAs and MicroSAs since they are
one of the functional definitions of cities [62]. Out of the 388 MSAs and 541 MicroSAs
studied, 7 MSAs and 5 MicroSAs in Puerto Rico were removed as they were not part
of the CDC dataset. Additional 26 MSAs and 58 MicroSAs were removed as they
experienced no homicide or had no federal firearm selling licenses (firearm prevalence
did not have null values for these cities), resulting in a total of 833 statistical areas,
or cities. The three main variables (incidence of homicides, firearm prevalence, and
prevalence of federal firearm selling licenses) were studied for this same set of 833 cities
to ensure consistency in the analysis of associations. For the scaling analysis of other
variables (armed robberies and firearm homicides), we removed cities that had null
values of those variables, separately (for example, cities that did not experience armed
robberies but suffered firearm homicides were still considered in the firearm homicides
scaling). Hence, we studied 366 MSAs and 283 MicroSAs for armed robberies and 355
MSAs and 455 MicroSAs for firearm homicides.

Urban scaling

To find B and the &;’s for each of the variable, the logarithmically transformed data
were fitted into a linear model using ordinary least square regression. To compute
the standard errors for the R? and the 95% confidence interval on 3 we took into
account heteroscedasticity. Heteroscedasticity in regression is the dependence between
the variance of the residuals and the regressor, which is typically accounted for in
urban scaling fits [63]. The white test of heteroscedasticity [64] indicates the presence
of heteroscedasticity for all three variables: incidence of homicides (p-value < 107%),
prevalence of firearm ownership (p-value = 0.033), and prevalence of federal firearm
selling licenses (p-value < 10~%). Linear regression estimations were performed using
the Python package Statsmodels [65]. In the text, we also report the variance o
computed for the SAMIs.

Cobb-Douglas model
The Cobb-Douglas model is written as

F=CHMLP, (2)

where F' is prevalence of firearm ownership, H incidence of homicides, and L prevalence
of federal firearm selling licenses. From the scaling analyses, we know that F ~ NA7
H ~ N85 and L ~ NPt with Br = 0.95, By = 1.12, and 81 = 0.66 are the scaling
exponents of prevalence of firearm ownership, homicide incidence, and prevalence of
federal firearm selling licenses, respectively. In order to retrieve F' ~ NA7 from the
Cobb-Douglas model, we set the following constraint:

B1Bu + P21 = BF. (3)
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The resulting model has only two free parameters, C' and 1, since it can be written
as follows:

InF — 6—FlnL =InC+ 5 (lnH - BHlnL), (4)
Br Br

so that the calibration is performed the same way as the scaling laws.

Analysis of associations based on scale-adjusted metropolitan
indicators

Traditionally, teasing out associations in complex systems has relied on the use of time-
series [66], whereby causality has been typically rooted in a Wiener-Granger sense [67]
or in dynamical systems theory [68]. In the former case, a link from X to Z corresponds
to the possibility of reducing the uncertainty in the prediction of the future Z from
knowledge about the history of X [67]. In the latter case, a link from X to Z is related
to the variables belonging to the same dynamical system [68]. The use of time-series is
problematic, if not unfeasible, when working with urban data, which have high spatial
resolution (~ 100 — 1,000 cities) and low time-resolution (yearly sampling for a few
years). To address this issue, we leveraged the conditional independence framework
originally developed by Pearl [38].

The conditional independence framework does not require temporal data, as it
uses directed acyclic graphs (DAGs) to describe causal structures from conditional
independence tests [38]. The framework is based on several assumptions, one of them
being acyclicity, that is, two variables cannot be drivers of one another. This assump-
tion may not hold true in many applications. The framework could be extended to
temporal data [66], where one may argue for cyclic causality; however, such a route
is not feasible for urban data like hours, where only a handful of temporal snapshots
are available. Another assumption of the framework is that there are no unobserved
variables. Should this assumption not hold, one might propose different DAGs with
hidden variables that are compatible with the set of independence tests of Table 1.
Specifically, should we relax the assumption and allow for unobserved variables, we
would conclude that: i) either L — F', or there exists an unobserved common cause of
L and F, or both; and ii) either H — F', or there exists an unobserved common cause
of H and F, or both. Practically, contemplating this possibility calls for exploring
larger DAGs with more variables (see Supplemental Material S3).

The main component of the conditional independence framework is a statistical test
for independence between two variables conditioned on others. Typically, simple cor-
relations are employed, however, correlation assumes a linear relationship between the
variables, which might not hold for all real-world systems. Rank correlations relax the
assumption of linearity, but, they assume a monotonic relationship between the vari-
ables, which also might not hold. To test for possible nonlinear relationships between
random variables, we rely on an information-theoretic measure known as conditional
mutual information [69].

Conditional mutual information makes no assumption about the underlying
causal mechanism. The concept of conditional mutual information is based on the
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fundamental notion of (differential) entropy of a random variable X,

1) =~ [ plaosp(a)d. (5)

— 00

The entropy of random variable measures the unpredictability of its outcomes,
or the average surprise its outcomes can carry, hence it can be written also as
H(z) = (—logp(z)), measured in nats [39]. Mutual information is defined as the
amount of information shared between two random variables, X and Z, I(X,Z) =
H(X)—- H(X|Z)=H(Z)— H(Z|X). Mutual information serves as a measure of sta-
tistical association, in the sense that if X and Z are independent, then I(X,Z) = 0.
Conditional mutual information is defined as the shared information between two
random variables X and Z given a set of variables W,

I(X,Z|W) = HX|W) + H(Z|\W) — H(X, Z|W). (6)

Since the true probability distributions are unknown, we rely on the estimator pro-
posed by [70, 71], and the corresponding statistical testing scheme proposed by [72]
to assess the significance of the conditional mutual information. This estimator does
not require estimating a kernel for the probability distribution and is based on the
nearest neighbor statistic, which provides good estimates for small datasets. Usually,
to test the significance, the estimated mutual information is compared to a surrogate
distribution generated by randomly shuffling data of the X variable to destroy the
relationship between X and Z. However, such an approach will also destroy the rela-
tionship between X and W, which does not produce a correct null distribution. The
algorithm in [72] proposes a local permutation scheme of the nearest neighbors that
conserves the information between X and W while destroying the one between X and
Z, thereby offering an adequate statistical test.

The conditional independence tests were performed on the SAMIs to control for
the role of the population size in cities and grounding the associations in the variations
of cities from the nominal behavior that scaling laws would predict. Interestingly,
using per capita rates rather than SAMIs would beget spurious results in the presence
of underpinning sublinear or superlinear scalings (see Supplemental Material S4 for
details on how spurious correlations might appear). The estimation and the statistical
tests have only two free parameters, the numbers of nearest neighbors for the estimate
kcwr and the number of nearest neighbors that shall be permuted for the significance
test kperm. Following the suggested parameters in [72], we set kcvr = 0.15N and
kperm = 10, where N is the sample size. The surrogate distributions were each made
from 10,000 null estimates from the randomly permuted data.
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