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A B S T R A C T

This paper explores the application of active learning strategies to adaptively learn Sobol indices for global
sensitivity analysis. We demonstrate that active learning for Sobol indices poses unique challenges due to the
definition of the Sobol index as a ratio of variances estimated from Gaussian process surrogates. Consequently,
learning strategies must either focus on convergence in the numerator or the denominator of this ratio.
However, rapid convergence in either one does not guarantee convergence in the Sobol index. We propose a
novel strategy for active learning that focuses on resolving the main effects of the Gaussian process (associated
with the numerator of the Sobol index) and compare this with existing strategies based on convergence in the
total variance (the denominator of the Sobol index). The new strategy, implemented through a new learning
function termed the MUSIC (minimize uncertainty in Sobol index convergence), generally converges in Sobol
index error more rapidly than the existing strategies based on the Expected Improvement for Global Fit (EIGF)
and the Variance Improvement for Global Fit (VIGF). Both strategies are compared with simple sequential
random sampling and the MUSIC learning function generally converges most rapidly for low-dimensional
problems. However, for high-dimensional problems, the performance is comparable to random sampling. The
new learning strategy is demonstrated for a practical case of adaptive experimental design for large-scale
Boundary Layer Wind Tunnel experiments.
1. Introduction

Active learning is widely used in computational physics-based mod-
eling, and increasingly in experimental studies [1], to serve a variety
of objectives. In these schemes, a machine learning (ML) model is em-
ployed in an iterative routine to extract information from previous sim-
ulations/experiments and identify, through some learning function the
most informative simulation/experiment to run next. This has been es-
pecially beneficial in the fields of optimization and reliability, although
it has also found wider applications in uncertainty quantification (UQ)
more generally.

In optimization, active learning is at the heart of Bayesian Opti-
mization (BO). In BO, Bayes Rule is used to define a learning function
(termed an acquisition function in BO) that seeks to identify the min-
imum (or maximum) of some function. Comprehensive reviews of BO
can be found in the following Refs. [2–4]. A detailed discussion of BO
s beyond the scope of this work, but the most common approach in
hese methods is to approximate the function with a Gaussian Process
GP) and construct a learning function that exploits the jointly Gaussian
ature of the function to adaptively learn where the sought extremum
as the highest probability of lying. Among these developments, the

∗ Corresponding author.
E-mail address: michael.shields@jhu.edu (M.D. Shields).

most widely used learning functions are the Expected Improvement
Function (EIF) [5–7] the Knowledge Gradient [8,9] and the Entropy
Search [10,11] algorithms.

For reliability analysis, the objective is to estimate the probability of
failure of a physical system, which involves solving a high-dimensional
probability integral (expectation) over a binary classifier that indicates
either safety or failure. This integral is often solved statistically using
Monte Carlo methods wherein the integral is estimated as the statistical
expectation of the failure indicator by sampling from the input distribu-
tion and assessing the indicator at each sample point. Active learning is
then used to approximate this indicator function efficiently to minimize
the computational burden associated with assessing system failure at
each sample with an expensive computational model. Numerous learn-
ing functions have been developed for this task, with each attempting
to efficiently approximate the limit surface (surface that separates safe
and failure domains) in different ways, but in most cases using a GP.
The first such method, termed the Expected Feasibility Function (EFF)
was proposed by Bichon et al. in 2008 [12]. This was followed by
the widely used U-function developed by Echard et al. [13] in the
vailable online 24 January 2024
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Adaptive Kriging with Monte Carlo Simulation (AK-MCS) method. Since
then, various modifications have been made and these concepts have
been integrated with other reliability methods (such as subset simula-
tion [14,15]) to improve the efficiency, convergence, and accuracy of
these methods [16–20].

Although optimization and reliability are the most common appli-
cation domains for active learning, it has been applied more broadly
in UQ, for example to efficiently construct surrogate models (aka
metamodels or emulators) for expensive physics-based computational
models. Lam [21], for example, proposed the Expected Improvement
for Global Fit (EIGF) learning function to improve the convergence of
GP surrogate models for UQ purposes. Active learning has also been ap-
plied using other ML surrogate model forms, such as Polynomial Chaos
Expansions (PCE) [22–24] and Deep Neural Networks (DNNs) [25–27].
Furthermore, recent efforts have integrated active learning concepts
into the design of physical experiments for wind tunnel experiments
[1,28–30], materials discovery [31,32], and biological sciences
[33,34].

Regardless of their application or objective, a common challenge
in active learning is to balance exploration and exploitation. That is, any
active learning method (i.e. learning function) must simultaneously use
(exploit) the information obtained from prior simulations/experiments
to guide further analyses and, at the same time, explore new regions
of the parameter space where little or no data has been collected
and uncertainty is correspondingly high. Balancing these objectives
is a primary challenge in active learning [35], especially in high-
dimensional parameter spaces where exploration can be particularly
difficult [36].

In this work, we explore the potential for active learning for Global
Sensitivity Analysis (GSA), which to the authors’ knowledge, has not
previously been studied. Active learning for GSA is of particular interest
here because of its potential to aid in other UQ studies. In partic-
ular, GSA can be used as an initial filter in UQ studies to reduce
the number of random variables that need to be considered in the
study. For example, in Section 6 we consider a practical boundary
layer wind tunnel (BLWT) experimental design problem that has 10
input random variables and, through active learning, determine that
only 3 random variables contribute appreciably to the variance of the
response. We can then practically ignore uncertainty in the other 7
random variables, thus making UQ more computationally tractable in
this complex physical setting. Hence, active learning for GSA allows
us to adaptively reduce the dimension rapidly on-the-fly and therefore
speed up the overall UQ task.

We show that active learning for GSA presents some unique chal-
lenges that do not arise in other active learning domains. These chal-
lenges arise from the definition of Global Sensitivity Indices (specifi-
cally Sobol indices [37]) as the ratio of two variances, which makes the
construction of a learning function that directly targets the Sobol index
difficult to derive. Instead, we explore two different learning functions
— one that targets efficient learning for the numerator and one that
targets the denominator. We show that each can be beneficial under
certain circumstances, but neither approach universally outperforms
random sampling. We explore the reasons for this, and specifically
demonstrate that this results from the challenges of minimizing the
error in a ratio. We discuss when the different approaches appear to be
beneficial using a series of analytical functions of varying dimensions.
We then demonstrate our use of active learning for GSA on the BLWT
application of interest.

2. Preliminaries

Here, we briefly review the foundations of Global Sensitivity Anal-
ysis using Sobol Indices and Gaussian Process (GP) regression, upon
which all further analyses will depend.
2

{

2.1. Sobol sensitivity indices

Variance-based methods for GSA aim to decompose the variance
of the model output 𝑦(𝑿) into distinct contributions from each of
the individual random variables 𝑋𝑖 (main effects) and the interaction
of multiple random variables. In the Sobol method [37–39], this is
done by first constructing the high-dimensional model representation
(HDMR) of the model as:

𝑦(𝑿) = 𝑓0 +
𝑑
∑

𝑖=1
𝑓𝑖(𝑋𝑖) +

𝑑
∑

𝑖=1

∑

𝑗>𝑖
𝑓𝑖𝑗 (𝑋𝑖, 𝑋𝑗 ) +… (1)

where
𝑓0 = 𝐸[𝑌 ]

𝑓𝑖 = 𝐸[𝑌 |𝑋𝑖] − 𝐸[𝑌 ]

𝑓𝑖𝑗 = 𝐸[𝑌 |𝑋𝑖, 𝑋𝑗 ] − 𝑓𝑖 − 𝑓𝑗 − 𝐸[𝑌 ]

(2)

Taking the variance of Eq. (1) and exploiting the orthogonality between
erms in the expansion yields the following variance decomposition:

ar(𝑌 ) =
𝑑
∑

𝑖=1
𝑉𝑖 +

𝑑
∑

𝑖=1

∑

𝑗>𝑖
𝑉𝑖𝑗 +… (3)

here 𝑉𝑖 represent the main effect variances and 𝑉𝑖𝑗 represent the
ariance contribution from interactions between variables 𝑋𝑖 and 𝑋𝑗
iven by:

𝑉𝑖 = Var𝑋𝑖
(𝐸𝑋∼𝑖

[𝑌 |𝑋𝑖])

𝑖𝑗 = Var𝑋𝑖𝑗
(𝐸𝑋∼𝑖𝑗

[𝑌 |𝑋𝑖, 𝑋𝑗 ]) − Var𝑋𝑖
(𝐸𝑋∼𝑖

[𝑌 |𝑋𝑖]) − Var𝑋𝑗
(𝐸𝑋∼𝑗

[𝑌 |𝑋𝑗 ])

(4)

The Sobol sensitivity indices reflect the relative contribution of each
term in Eq. (4) to the total variance and are given by:

𝑆𝑖 =
𝑉𝑖

Var(𝑌 ) =
Var𝑋𝑖

(𝐸𝑋∼𝑖
[𝑌 |𝑋𝑖])

Var(𝑌 ) (5)

𝑆𝑖𝑗 =
𝑉𝑖𝑗

Var(𝑌 )

=
Var𝑋𝑖𝑗

(𝐸𝑋∼𝑖𝑗
[𝑌 |𝑋𝑖, 𝑋𝑗 ]) − Var𝑋𝑖

(𝐸𝑋∼𝑖
[𝑌 |𝑋𝑖]) − Var𝑋𝑗

(𝐸𝑋∼𝑗
[𝑌 |𝑋𝑗 ])

Var(𝑌 )
(6)

where 𝑆𝑖 are the main effect sensitivity indices and 𝑆𝑖𝑗 are the interac-
tion sensitivities and we have that:
𝑑
∑

𝑖=1
𝑆𝑖 +

𝑑
∑

𝑖=1

∑

𝑗>𝑖
𝑆𝑖𝑗 +⋯ = 1. (7)

ere, we will focus predominantly on the main effect sensitivity indices
n Eq. (5), with some supporting discussion of interaction sensitivities.
mportantly, we highlight that the sensitivity index 𝑆𝑖 is defined as a
atio of variances (the so-called main effect variance in the numerator
nd total variance in the denominator), which both must be estimated
n an active learning framework.

.2. Gaussian process regression/Kriging

Gaussian Process (GP) regression is a machine learning (ML) method
hat seeks to identify the best fit Gaussian stochastic process to a set
f data points [40]. Kriging [41–43], a variation of GP regression, is a
pecial case wherein the GP regressor serves to interpolate between the
et of training points. Kriging is a widely-used ML method to construct
pproximate surrogate models for complex computational models. It is
articularly attractive for active learning because it provides a model
redictor as well as a measure of the uncertainty in the prediction of
he Gaussian posterior standard deviation.

Consider a computational model 𝑦(𝒙) having input vector 𝒙 =
𝑥 , 𝑥 ,… , 𝑥 } ∈ R𝑑 . Next, consider that we have 𝑛 realizations of 𝒙,
1 2 𝑑
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denoted by 𝑿 = {𝒙(1),𝒙(2),… ,𝒙(𝑛)} and corresponding model outputs
= {𝑦(1), 𝑦(2),… , 𝑦(𝑛)} evaluated by 𝑦(𝑖) = 𝑦(𝒙(𝑖)). The pairs, 𝑿, 𝒀 serve

as the training data for the Gaussian process regression wherein the
model 𝑦(𝒙) is approximated by:

(𝒙, 𝜔) =  (𝒙) +𝑍(𝒙, 𝜔) (8)

where  (⋅) is a regression model and 𝑍(⋅) is a zero-mean Gaussian
andom process having sample space indexed by 𝜔 ∈ 𝛺. We consider
hat the regression model  (⋅) is defined through a linear combination
f basis functions 𝒇 (𝒙) = {𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑝(𝒙)} having coefficients
= {𝛽1, 𝛽2,… , 𝛽𝑝} as:

(𝑥) = 𝜷𝑇 𝒇 (𝒙). (9)

he Gaussian random process 𝑍(⋅) is considered to have zero mean and
ovariance:

[𝑍(𝒙1)𝑍(𝒙2)] = 𝜎2𝑧(𝒙1,𝒙2|𝜽) (10)

here (⋅) is the autocorrelation function having hyperparameters 𝜽.
n this work, we will consider the Gaussian correlation model having
orm:

(𝒙1,𝒙2|𝜽) =
𝑑
∏

𝑘=1
exp(−𝜃𝑘|𝑥2𝑘 − 𝑥1𝑘|

2) =
𝑑
∏

𝑘=1
𝑟𝑘(𝑥1𝑘, 𝑥2𝑘|𝜃𝑘). (11)

The GP is then fit to the normalized training data by identifying
the posterior distribution of the random process given the data. Given
the Gaussian assumption, the posterior distribution is determined by
considering that the joint distribution of the GP predictions (𝒙) and
the observations 𝒀 is a multivariate Gaussian and can be expressed as:

{

(𝒙)
𝒀

}

∼ 𝑁
({

𝒇 (𝒙)𝑇 𝜷
𝑭𝜷

}

, 𝜎2𝑧

{

1 𝒓𝑇 (𝒙)
𝒓(𝒙) 𝑹

})

(12)

where 𝑭 is the matrix of basis function evaluations at the training
points given by 𝐹𝑖𝑗 = 𝑓𝑗 (𝒙(𝑖)), 𝑖 = 1,… , 𝑛, 𝑗 = 1… 𝑝, 𝒓(𝒙) is the vector of
correlations between the prediction point 𝒙 and the training points 𝒙(𝑖)
given by 𝒓𝑖 = (𝒙,𝒙(𝑖)|𝜽), 𝑖 = 1,… , 𝑛, and 𝑹 is the correlation matrix of
points in the training set given by 𝑅𝑖𝑗 = (𝒙(𝑖),𝒙(𝑗)|𝜽), 𝑖, 𝑗 = 1,… , 𝑛.

This posterior can be estimated by identifying the hyperparameters
𝜽, variance 𝜎𝑧, and the regression coefficients 𝜷. This is typically done
by solving for the parameters that either maximize the likelihood
of the observations or minimize the cross-validation error. We apply
maximum likelihood estimation where the likelihood function follows
from the Gaussian assumption as:

(𝜽, 𝜎𝑧, 𝜷|𝒀 ) =
(det𝑹)−1∕2

(2𝜋𝜎2𝑧 )𝑛∕2
exp

[

− 1
2𝜎2𝑧

(𝒀 − 𝑭𝜷)𝑇𝑹−1(𝒀 − 𝑭𝜷)

]

(13)

After estimating the hyperparameters, the mean and the variance
of the Gaussian random variable conditioned on the training data are
given by:

𝑦̂(𝒙) = 𝒇 (𝒙)𝑇 𝜷 + 𝒓(𝒙)𝑇𝑹−1(𝒀 − 𝑭𝜷) (14)

𝜎2𝑦̂ (𝒙) = 𝜎2𝑧
(

1 − 𝒓(𝒙)𝑇𝑹−1𝒓(𝒙) + 𝒕(𝒙)𝑇 (𝑭 𝑇𝑹−1𝑭 )−1𝒕(𝒙)
)

(15)

where

𝒕(𝒙) = 𝑭 𝑇𝑹−1𝒓(𝒙) − 𝒇 (𝒙) (16)

These provide the Kriging prediction at a new point 𝑦̂(𝒙) along with a
measure of its uncertainty 𝜎𝑦̂(𝒙).

. Estimating Sobol indices from Gaussian process regression

In this section, we review the process through which Sobol sensitiv-
ty indices can be estimated from a GP regression model as originally
erived in [44]. Marrel et al. [44] presented two approaches to com-
ute Sobol indices using GPs. In the first approach, the Sobol indices are
3

H

computed simply using the GP predictor, in which case the method pro-
vides a deterministic point estimator based purely on the conditional
mean as:

𝑆𝑖 =
Var𝑋𝑖

(𝐸𝑋∼𝑖
[𝐸𝛺[(𝑋,𝜔)]|𝑋𝑖])

Var𝑋 (𝐸𝛺[(𝑋,𝜔)])
=

Var𝑋𝑖
(𝐸𝑋∼𝑖

[𝑦̂(𝑋)|𝑋𝑖])
Var𝑋 (𝑦̂(𝑋))

(17)

where 𝑦̂(𝑋) denotes the conditional mean in Eq. (14) and is treated as
a deterministic function in this approach.

The second approach, which we will employ in this study, uses the
full GP model as a stochastic function, which results in random variable
sensitivity indices given by:

𝑆̃𝑖(𝜔) =
Var𝑋𝑖

(𝐸𝑋∼𝑖
[(𝑋,𝜔)|𝑋𝑖])

𝐸𝛺[Var𝑋 ((𝑋,𝜔))]
(18)

The sensitivity measure (𝑆̃𝑖(𝜔)) is obtained using the global GP, (𝑋,𝜔),
where the denominator considers the complete variance of the GP
itself over all 𝑋, which remains a random variable indexed on 𝜔. The
expectation in the denominator therefore reduces this to a deterministic
expected variance. Further, the mean and variance of the Sobol indices
are given by:

𝜇𝑆̃𝑖
=

𝐸𝛺[Var𝑋𝑖
(𝐸𝑋∼𝑖

[(𝑋,𝜔)|𝑋𝑖])]
𝐸𝛺[Var𝑋 ((𝑋,𝜔))]

(19)

and

𝜎2
𝑆̃𝑖

=
Var𝛺(Var𝑋𝑖

(𝐸𝑋∼𝑖
[(𝑋,𝜔)|𝑋𝑖]))

(𝐸𝛺[Var𝑋 ((𝑋,𝜔))])2
(20)

where 𝜇𝑆̃𝑖
provides an estimate of the Sobol index and 𝜎2

𝑆̃𝑖
gives an

estimate of its uncertainty. To compute the first-order Sobol indices,
we start by taking the expectation of the GP (𝑋,𝜔) over all the inputs
except ‘𝑋𝑖’ in the numerator of Eq. (18) and denote this as:

𝐴𝑖(𝑋𝑖, 𝜔) = 𝐸𝑋∼𝑖
[(𝑋,𝜔)|𝑋𝑖]. (21)

Since, (𝑋,𝜔) is a Gaussian process and expectation is a linear oper-
ator, 𝐴𝑖(𝑋𝑖, 𝜔) is also a GP referred to as the main effect GP for 𝑖th
input dimension. Hereafter 𝐴𝑖(𝑋𝑖, 𝜔) is denoted as 𝐴𝑖(𝑋𝑖) for brevity in
notation.

The mean and covariance function of the main effect GP can be
determined by integrating the original GP with respect to the joint
probability measure over all inputs except 𝑋𝑖. Considering independent
inputs, the mean function is given by [45]:

𝜇𝐴𝑖
(𝑥𝑖) = 𝐸𝑋∼𝑖

[𝐴𝑖(𝑋𝑖)] = ∫𝒙∼𝑖
𝑦̂(𝒙)

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗 (22)

which is easily computed as a product of one-dimensional integrals.
Again considering independent inputs, the covariance function of the
main effect GP is given by [45]:

Cov𝑋∼𝑖 ,𝑋∼𝑖
(𝐴𝑖(𝑋1𝑖), 𝐴𝑖(𝑋2𝑖))

= ∫𝒙1∼𝑖 ∫𝒙2∼𝑖
Cov((𝒙1),(𝒙2))

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗
∏

𝑘≠𝑖
𝑝𝑋𝑘

(𝑥2𝑘)𝑑𝑥2𝑘

(23)

hich can be expressed as a product of 2-dimensional integrals. De-
ailed derivations for computing the mean and covariance functions
f the main effect GPs in closed form under specific conditions are
rovided in Appendix A. We further note that Eqs. (22) and (23) can be
eneralized for interactions between variables as shown in Appendix B.
omputation of the interaction sensitivities follows directly from the
ollowing for main effect sensitivities. These interaction sensitivities
an, in principle, be used within the learning although this is outside
he scope of the present work.

To compute Sobol indices, we need to compute the variance of the
ain effect GP as:
2
𝐴𝑖

= ∫𝑋𝑖

(𝐴𝑖(𝑥𝑖) − 𝐸[𝐴𝑖(𝑋𝑖)])2𝑝𝑋𝑖
(𝑥𝑖)𝑑𝑥𝑖 (24)
ere, a Monte Carlo estimate of this integral is computed by defining
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a random discretization of the sample space of 𝑋𝑖 as {𝑎1, 𝑎2,… , 𝑎𝑛𝑗 }
(note these points will be reused later for learning function evaluations
as well) and constructing the following Gaussian random vector to
approximate the main effect GP:

𝑉𝑖 = [𝐴𝑖(𝑎1), 𝐴𝑖(𝑎2),… , 𝐴𝑖(𝑎𝑛𝑗 )]
𝑇

We can then develop the following two Monte Carlo estimators of the
Sobol indices.

3.1. SI computation using the mean of the main effect GP

In the first approach, the mean of vector 𝑉𝑖 (i.e. 𝜇𝑉𝑖 = 𝐸𝑋𝑖
[𝑉𝑖]) is

omputed using Eqs. (22), where each element of the mean vector is
efined as 𝜇𝑉𝑖,𝑗 = 𝜇𝐴𝑖

(𝑎𝑗 ) = 𝐸[𝐴𝑖(𝑎𝑗 )] ∀ 𝑗 ∈ {1, 2,… , 𝑛𝑗}. Then, the
ollowing standard Monte Carlo estimators are used to estimate the
ariance of the main effect GP:

𝜎̂2𝐴𝑖
= 1

𝑛𝑗 − 1

𝑛𝑗
∑

𝑗=1
(𝜇𝑉𝑖,𝑗 − 𝜇̄𝑉𝑖 )

2 (25)

here 𝜇̄𝑉𝑖 = 1
𝑛𝑗

∑𝑛𝑗
𝑗=1 𝜇𝑉𝑖,𝑗 is the average of the mean vector. The

irst-order Sobol indices are then estimated by:

𝑆𝑖
=

𝜎̂2𝐴𝑖

𝜎̂2
∀ 𝑖 ∈ {1, 2,… , 𝑑} (26)

here 𝜎̂2 is the total variance of (𝒙). This estimator provides the Sobol
ndex as identified from the mean GP predictor for the main effect, but
oes not account for uncertainty/variability in the main effect GP. In
he next section, an estimator for the standard deviation of the Sobol
ndex is also given.

.2. SI computation using the main effect GP

Here, we simulate the main effect GP and use these simulations to
stimate both the mean and the standard deviation of the Sobol index.
irst, the mean vector and covariance matrix of 𝑉𝑖 are computed using
qs. (22) and (23), respectively. We then generate 𝑛𝑠 realizations of the

random vector 𝑉𝑖 using the Cholesky decomposition of the covariance
matrix [42], 𝐶 = 𝐿𝐿𝑇 , where the 𝑘th realization for 𝑖th input (i.e. 𝑉𝑖𝑘)
is given as follows:

𝑉𝑖𝑘 = 𝐸[𝐴𝑖(𝑋𝑖)] + 𝐿𝜖𝑘 = [𝐴𝑖𝑘(𝑎1), 𝐴𝑖𝑘(𝑎2),… , 𝐴𝑖𝑘(𝑎𝑛𝑗 )]
𝑇 (27)

where 𝜖𝑘 is a realization of an 𝑛𝑗 dimensional zero-mean, uncorrelated
Gaussian random vector. Then, the following standard Monte Carlo
estimators are used to estimate the variance of the main effect GP:

𝜎̂2𝐴𝑖
= 1

𝑛𝑠

𝑛𝑠
∑

𝑘=1
𝜎̂2𝐴𝑖𝑘

= 1
𝑛𝑠

𝑛𝑠
∑

𝑘=1

1
𝑛𝑗 − 1

𝑛𝑗
∑

𝑗=1
(𝐴𝑖𝑘(𝑎𝑗 ) − 𝜇̂𝑉𝑖𝑘 )

2 (28)

where 𝜇̂𝑉𝑖𝑘 is the sample mean for vector 𝑉𝑖𝑘, 𝜎̂2𝐴𝑖𝑘
is the 𝑘th estimate

of the variance of main effect GP (𝐴𝑖), and the corresponding standard
error is given by:

𝑠̂2𝐴𝑖
= 1

𝑛𝑠 − 1

𝑛𝑠
∑

𝑘=1
(𝜎̂2𝐴𝑖𝑘

− 𝜎̂2𝐴𝑖
)2. (29)

rom these, the mean and standard deviation of the first-order Sobol
ndices are estimated as:

𝑆𝑖
=

𝜎̂2𝐴𝑖

𝜎̂2
and 𝜎2𝑆𝑖

=
𝑠̂2𝐴𝑖

𝜎̂2
∀ 𝑖 ∈ {1, 2,… , 𝑑} (30)

here 𝜎̂2 is the total variance of (𝒙).
4

.3. Computational considerations

The computational cost of applying these two methods for Sobol
ndex estimation are vastly different and can play a critical role when
ntegrated into an active learning loop where estimates need to be
omputed repeatedly. Moreover, we have to repeat these estimates for
ach input dimension, which can be problematic for problems with a
arge number of inputs. This must be weighed against the accuracy of
he two approaches and the need to estimate the standard deviation of
he Sobol index. The first approach only utilizes the mean predictor
f Main Effect GP, which is computationally inexpensive but does
ot estimate the uncertainty in Sobol indices. The second approach
onsiders the complete probability structure of the Main Effect GP
nd therefore provides an error measure for each Sobol index. But it
omes at a high computational cost because it requires a large set of
ample points (𝑛𝑗 should be large) to compute Sobol indices with high
ccuracy. This results in large covariance matrices, which can make
he main effect simulations in Eq. (27) expensive. We therefore employ
the first approach to estimate Sobol indices because we do not require
uncertainty estimates on the Sobol indices at each iteration.

4. Active learning for Sobol Index estimation

Next, we compare strategies to perform active learning for Sobol
Index estimation. We specifically consider two different learning func-
tions designed with the GP-based Sobol index estimates from Eq. (18)
in mind. We first recognize that the Sobol indices given by Eq. (18) are
expressed as a ratio of two variances. The numerator is the variance
of the main effect GP and can be expressed as 𝜎2𝐴𝑖

= Var𝑋𝑖
(𝐴𝑖(𝑋𝑖)),

hile the denominator is the expected value of the variance of the
omplete GP, (𝑋,𝜔). The challenge of active learning in this case is
herefore to minimize uncertainty in both components. To do so is not
traightforward. We therefore propose two learning strategies that aim
o minimize uncertainty in either the numerator or the denominator.

According to the first strategy, we aim to minimize uncertainty
n the overall GP surrogate (specifically output variance, the Sobol
ndex denominator). Several learning functions have been proposed to
chieve this objective including the Expected Improvement for Global
it (EIGF — described in Section 4.1 [21]), Variance Improvement for
lobal Fit (VIGF — described in Section 4.2) [46], Integrated Variance
eduction (IVR) [47], and Posterior Variance Contribution (PVC) [48].
n this study, we specifically select the EIGF and VIGF as exemplars
or this class of methods. Note that the PVC has specifically been
sed to compute Sobol’ indices [49], although the learning function
tself does not explicitly account for the main effects necessary for
heir computation. For the second strategy, we develop a new learning
unction, referred to as the MUSIC (Minimize Uncertainty in Sobol
ndex Computation) learning function, designed to select samples that
educe uncertainty in the main effect GPs 𝐴𝑖(𝑋𝑖) and described in
ection 4.3.
These two learning strategies are integrated into a standard active

earning loop illustrated in Fig. 1, which operates as follows. First, a set
f initial training data (𝑿, 𝒀 ) are generated by randomly sampling the
nput random vector 𝒙 and evaluating the computational model 𝑦(𝒙) for
each sample. Then, an initial GP surrogate model is fit to the data and
initial estimates of the Sobol indices can be made using the estimators
above. Next, we generate a large set of 𝑛𝑗 candidate samples (𝑿𝒄 of
the input random variables (typically 𝑛𝑗 ≥ 10 000) and evaluate the
appropriate learning function at each candidate sample. According to
the specified learning function, a candidate sample, say 𝒙∗, is selected
and the model is evaluated at this point, 𝑦(𝒙∗). A new GP is fit to the
augmented data set and the Sobol indices are updated. A convergence
criterion on the Sobol indices is assessed. If the Sobol indices are
deemed sufficiently accurate, the process stops. If the indices are not
considered converged, then a new set of candidate points are generated
and the iterations continue.
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Fig. 1. Flowchart of the active learning strategies for global sensitivity analysis. Each of the learning functions (and random sampling) shown in green are studied in this work.
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We compare both of these strategies with a simple random sampling
pproach in which, rather than employing a learning function in each
teration, one of the 𝑛𝑗 candidate samples is selected at random. This
provides a baseline to measure whether the active learning strategies
are effective for improving the convergence of Sobol index estimates.

4.1. Expected improvement for global fit (EIGF)

To improve the fit of the global GP, (𝑋,𝜔), and specifically mini-
mize uncertainty in the estimate of its variance, we employ the EIGF.
Proposed by Lam [21], the EIGF defines an improvement function given
by:

𝐼(𝒙) = ((𝒙) − 𝑦(𝒙(𝑗∗)))2 (31)

where 𝑦(𝒙(𝑗∗)) is the observation of 𝑦 at the training point 𝒙(𝑗∗) (𝒙(𝑗∗) ∈
) that is nearest to the candidate point 𝒙 (𝒙 ∈ 𝑿𝒄) and (𝒙) is the
ormal random variable resulting from evaluating the GP at point 𝒙.

Taking the expectation of Eq. (31) yields:

EIGF(𝒙) = 𝐸[𝐼(𝒙)] = (𝑦̂(𝒙) − 𝑦(𝒙(𝑗∗)))2 + 𝜎2𝑦̂ (𝒙) (32)

here, 𝑦̂(𝒙) and 𝜎2𝑦̂ (𝒙) are the GP mean and variance at point 𝒙 (see Eqs.

14) and (15)). The EIGF learning function aims to identify the point
𝒙∗ that maximizes the expectation in Eq. (32) as:

𝒙∗ = argmax
𝒙

(EIGF(𝒙)).

This point is selected as the new sample point for model evaluation and
retraining of the GP surrogate model in the active learning loop shown
in Fig. 1.

A closer look at the EIGF in Eq. (32) demonstrates a balance of two
actors — often referred to as exploration and exploitation. In the first
erm, (𝑦̂(𝒙) − 𝑦(𝒙(𝑗∗)))2, we see that the EIGF targets regions where vari-
bility in the function is large, which corresponds to exploitation. This
s balanced by the second term, 𝜎2𝑦̂ (𝒙), which corresponds to regions
here the GP prediction has high uncertainty, likely caused by a lack
f training data in this region and encouraging exploration. However, it
s well-known that the EIGF learning function favors exploitation (i.e.
he first term often dominates) and may not explore new regions of
5

arameter space sufficiently. Therefore a more balanced approach may
e considered.

.2. Variance of improvement for global fit (VIGF)

Mohammadi and Challenor [46] proposed a learning function using
ame improvement function as EIGF function, given in Eq. (31). They
urther recognized that 𝐼(𝑥)∕𝜎2(𝑥) can be characterized by a non-central
hi-square distribution [46].

(𝑥)∕𝜎2(𝑥) ∼ 𝜒
′2
(

𝜅 = 1, 𝜆 =
(

𝜇(𝑥) − 𝑦(𝒙(𝑗∗))
𝜎(𝑥)

))

(33)

where the number of degree of freedom (𝜅) and noncentrality pa-
rameter (𝜆) are defined using the GP’s posterior mean and standard
deviation. Thus, the variance of the improvement function is expressed
as:

VIGF(𝑥) = 𝑉 𝑎𝑟{𝐼(𝑥)} = 4𝜎2(𝑥)
[

(𝜇(𝑥) − 𝑦(𝒙(𝑗∗)))2 + 2𝜎2(𝑥)
]

. (34)

In the VIGF, the first term (4𝜎2(𝑥)(𝜇(𝑥) − 𝑦(𝒙(𝑗∗)))2) is a product of
terms that contribute towards local exploitation and global exploration,
thus favoring both. The second term (8𝜎4(𝑥)) focuses exclusively on
global exploration. This learning function therefore gives more weight
to global exploration than EIGF and may provide a better balance in
the exploration/exploitation trade off.

4.3. MUSIC learning function

From Eqs. (26) and (30), we see that the quality of the Sobol
index estimates depends strongly on the quality of the main effect GPs.
Large uncertainties in the variance of the main effect GPs will result
in associated large uncertainties in Sobol index estimates. We therefore
aim to create a training set that produces the most accurate main effect
GPs. This problem, as we will see, can be posed in active learning terms
as identifying the set of points that yields the best global fit for the main

effect GPs, taking inspiration from the EIGF [21] and VIGF [46].
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Let us first consider that we can construct an improvement function
for the main effect GPs in each dimension, similar to Eq. (31), as
ollows:

𝑖(𝑥𝑖) = (𝐴𝑖(𝑥𝑖) − 𝐸𝑋∼𝑖
[𝑌 |𝑋𝑖](𝑥

(𝑗∗)
𝑖 ))2, 𝑖 ∈ {1,… , 𝑑} (35)

here 𝑥𝑖, 𝑥
(𝑗∗)
𝑖 are the 𝑖th component of points 𝒙 and 𝒙(𝑗∗), respectively

nd 𝑥(𝑗
∗)

𝑖 is the nearest training sample to 𝑥𝑖 in 𝑖th dimension. We
mmediately recognize that we cannot actually observe the true main
ffect 𝐸𝑋∼𝑖

[𝑌 (𝑥(𝑗
∗)

𝑖 )|𝑋𝑖]. Instead, we must estimate this value using the
ain effect GP yielding a component-wise improvement function given
y:

𝐴𝑖
(𝑥𝑖) = (𝐴𝑖(𝑥𝑖) − 𝐴𝑖(𝑥

(𝑗∗)
𝑖 ))2, 𝑖 ∈ {1,… , 𝑑} (36)

Taking the expectation and variance of Eq. (36) yields:

[𝐼𝐴𝑖
(𝑥𝑖)] = (𝜇𝐴𝑖

(𝑥𝑖) − 𝜇𝐴𝑖
(𝑥(𝑗

∗)
𝑖 ))2 + 𝜎2𝐴𝑖

(𝑥𝑖) (37)

[𝐼𝐴𝑖
(𝑥𝑖)] = 4𝜎2𝐴𝑖

(𝑥𝑖)[(𝜇𝐴𝑖
(𝑥𝑖) − 𝜇𝐴𝑖

(𝑥(𝑗
∗)

𝑖 ))2 + 2𝜎2𝐴𝑖
(𝑥𝑖)] (38)

here 𝜇𝐴𝑖
(𝑥𝑖), 𝜇𝐴𝑖

(𝑥(𝑗
∗)

𝑖 ) can be computed using Eq. (22) and 𝜎2𝐴𝑖
(𝑥𝑖)

can be computed from the diagonal terms of Eq. (23). A closer look at
𝐸[𝐼𝐴𝑖

(𝑥𝑖)] demonstrates that it also balances exploration and exploita-
tion specifically with regard to resolving the main effects. The first
term targets regions where the main effects vary strongly with 𝑋𝑖 (ex-
ploitation) and the second term targets regions where the main effect
GP has high uncertainty due to a lack of training data (exploration).
Eq. (38) has the same interpretation as the VIGF, balancing exploration
and exploitation, but operating on the main effects.

Notice that the improvement criteria in Eqs. (37) and (38) focus on
improving the prediction of individual main effect GPs. These learning
criteria can be collectively represented by a vector as follows:

𝑴𝑨(𝒙) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐸[𝐼𝐴1
(𝑥1)]

𝐸[𝐼𝐴2
(𝑥2)]

⋮
𝐸[𝐼𝐴𝑑

(𝑥𝑑 )]

⎤

⎥

⎥

⎥

⎥

⎦

or

⎡

⎢

⎢

⎢

⎢

⎣

𝑉 [𝐼𝐴1
(𝑥1)]

𝑉 [𝐼𝐴2
(𝑥2)]

⋮
𝑉 [𝐼𝐴𝑑

(𝑥𝑑 )]

⎤

⎥

⎥

⎥

⎥

⎦

(39)

From Eq. (39), we could directly derive improvement-based learn-
ing functions over individual main effects. This might be useful, for
example, if we were interested in resolving a specific term in the HDMR
in Eq. (1). However, we are not interested only in individual main
effects. Rather, we are interested in ensuring convergence of all main
effects, to the extent possible. This means we must somehow balance
the 𝑑 improvement functions that result from Eq. (39) to establish a
single improvement function. We do so by introducing a distance-based
pre-factor that combines individual learning criteria on main effect GPs.
This results in a new learning function, expressed as:

�(𝒙) = 𝑫𝑇 (𝒙)𝑴𝑨(𝒙) (40)

and termed the MUSIC (Minimizing Uncertainty in Sobol Index Conver-
gence) learning function. We can consider numerous different distance
pre-factors. Here, we specifically propose the following two pre-factors
that produce convex combinations of main effect improvements:

𝑫1(𝒙) = 𝑾 ⋅

⎡

⎢

⎢

⎢

⎢

⎣

|𝑥1 − 𝑥(𝑗
∗)

1 |

|𝑥2 − 𝑥(𝑗
∗)

2 |

⋮

|𝑥𝑑 − 𝑥(𝑗
∗)

𝑑 |

⎤

⎥

⎥

⎥

⎥

⎦

and 𝑫2(𝒙) = 𝑾 ⋅ ‖𝒙 − 𝒙(𝑗∗)‖22𝟏𝑑 (41)

where ‖𝒙 − 𝒙(𝑗∗)‖2 is the Euclidean distance between the sample 𝒙
and nearest point 𝒙(𝑗∗), and |𝑥𝑖 − 𝑥(𝑗

∗)
𝑖 | is the distance between the 𝑖th

component of 𝒙 and nearest point 𝒙(𝑗∗) along the 𝑖th dimension. In
either function, given two points whose total main effect improvements
are comparable the algorithm should favor the point that is furthest
from its nearest neighbor either in a Euclidean sense or in a component-
wise sense. The weights (𝑾 = [𝑤1, 𝑤2,… , 𝑤𝑑 ]𝑇 ) can be arbitrarily

∑

6

selected such that 𝑖 𝑤𝑖 = 1 to favor improvement in particular main
Table 1
Four different combinations of MUSIC learning strategy based on improvement and
distance-based pre-factor.
S.No. Combinations Learning function

1 MUSIC+EIGF D1 �𝐸1
(𝒙) =

∑𝑑
𝑖=1 𝑤𝑖|𝑥𝑖 − 𝑥(𝑗

∗ )
𝑖 |𝐸[𝐼𝐴𝑖

(𝑥𝑖)]

2 MUSIC+EIGF D2 �𝐸2
(𝒙) = ||𝒙 − 𝒙(𝑗∗ )

||

2
2
∑𝑑

𝑖=1 𝑤𝑖𝐸[𝐼𝐴𝑖
(𝑥𝑖)]

3 MUSIC+VIGF D1 �𝑉1
(𝒙) =

∑𝑑
𝑖=1 𝑤𝑖|𝑥𝑖 − 𝑥(𝑗

∗ )
𝑖 |𝑉 [𝐼𝐴𝑖

(𝑥𝑖)]

4 MUSIC+VIGF D2 �𝑉2
(𝒙) = ||𝒙 − 𝒙(𝑗∗ )

||

2
2
∑𝑑

𝑖=1 𝑤𝑖𝑉 [𝐼𝐴𝑖
(𝑥𝑖)]

effects. For example, these can be set equal to the existing Sobol index
estimates in order to favor exploration in directions that correspond to
higher Sobol indices.

Using this learning function, we then select the next sample as the
one that maximizes it as:

𝒙∗ = argmax
𝒙

�(𝒙)

from among the set of 𝑛𝑗 candidate samples. Table 1 summarizes
the learning function for four combinations based on the improvement
criteria and the distance-based pre-factor.

5. Exploration of convergence using analytical functions

In this section, we study the convergence of the proposed active
learning methods for four benchmark analytical functions with known
Sobol indices and having increasing dimensions ranging from 2 to 15.
Prior to presenting these examples, we provide a simple basis upon
which to explain the observed convergence by considering the ratio of
two quantities with some error.

5.1. Ratios of errors

The dependence on the absolute error of a ratio on estimates of
the numerator and denominator is not straightforward. As we will
see, reducing error in the numerator, denominator, or both does not
necessarily reduce error in the ratio. Consider the following ratio:

𝑆 = 𝐴
𝑌

Next, consider that we have estimates of 𝑆,𝐴 and 𝑌 given by 𝑆̂, 𝐴̂ and
̂ . Define the absolute error in the numerator (𝐴) and denominator (𝑌 )
s:

𝐴 = |𝐴 − 𝐴̂|

𝑌 = |𝑌 − 𝑌 |

uch that

̂ = 𝐴 ± 𝛥𝐴
̂ = 𝑌 ± 𝛥𝑌

ext, the absolute error in the ratio can be expressed as:

𝑆 = |𝑆 − 𝑆̂| =
|

|

|

|

|

𝑆 − 𝐴̂
𝑌

|

|

|

|

|

𝑆 =
|

|

|

|

|

𝑆 − 𝐴 ± 𝛥𝐴
𝑌 ± 𝛥𝑌

|

|

|

|

|

𝛥𝑆 =
|

|

|

|

|

𝑆(𝑌 ± 𝛥𝑌 ) − 𝐴 ∓ 𝛥𝐴
𝑌 ± 𝛥𝑌

|

|

|

|

|

𝛥𝑆 =
|

|

|

|

|

𝑆𝑌 ± 𝑆𝛥𝑌 − 𝐴 ∓ 𝛥𝐴
𝑌 ± 𝛥𝑌

|

|

|

|

|

𝑆 =
|

|

|

|

|

±𝑆𝛥𝑌 ∓ 𝛥𝐴
𝑌 ± 𝛥𝑌

|

|

|

|

|

,

which depends, in a nontrivial way, on the errors 𝛥𝐴 and 𝛥𝑌 – but also

depends on the value of 𝑆 itself.
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Fig. 2. Influence of errors in the numerator, 𝛥𝐴, and denominator, 𝛥𝑌 , on error 𝛥𝑆 in the ratio 𝑆 = 𝐴∕𝑌 for 𝑆 = 0.01 for four cases of systematic bias (a) Case 1: Both 𝛥𝐴 and
𝛥𝑌 are underestimated, (b) Case 2: Both 𝛥𝐴 and 𝛥𝑌 are overestimated, (c) 𝛥𝐴 is overestimated and 𝛥𝑌 is underestimated, and (d) 𝛥𝐴 is underestimated and 𝛥𝑌 is overestimated.
a
p

Recognizing that our GP models for 𝐴 and 𝑌 presented in the
formulation of the GP-based Sobol indices above may be systematically
biased (depending on the training set and learning function being used)
and that we may not know this bias a priori, we explore this error under
four specific cases.

• Case 1: 𝐴̂ and 𝑌 are both underestimated such that 𝐴̂ = 𝐴 − 𝛥𝐴
and 𝑌 = 𝑌 − 𝛥𝑌 yielding

𝛥𝑆 =
| − 𝑆𝛥𝑌 + 𝛥𝐴|

𝑌 − 𝛥𝑌

• Case 2: 𝐴̂ and 𝑌 are both overestimated such that 𝐴̂ = 𝐴+𝛥𝐴 and
𝑌 = 𝑌 + 𝛥𝑌 yielding

𝛥𝑆 =
|𝑆𝛥𝑌 − 𝛥𝐴|
𝑌 + 𝛥𝑌

• Case 3: 𝐴̂ is overestimated (𝐴̂ = 𝐴+𝛥𝐴) and 𝑌 is underestimated
(𝑌 = 𝑌 − 𝛥𝑌 ) yielding

𝛥𝑆 =
| − 𝑆𝛥𝑌 − 𝛥𝐴|

𝑌 − 𝛥𝑌

• Case 4: 𝐴̂ is underestimated (𝐴̂ = 𝐴−𝛥𝐴) and 𝑌 is overestimated
(𝑌 = 𝑌 + 𝛥𝑌 ) yielding

𝛥𝑆 =
|𝑆𝛥𝑌 + 𝛥𝐴|
𝑌 + 𝛥𝑌

Figs. 2 and 3 show plots of the dependence of 𝛥𝑆 on 𝛥𝐴 and 𝛥𝑌
or 𝑆 = 0.01 and 𝑆 = 0.8, respectively, in each of these four cases
or a hypothetical ratio. Notice that, for 𝑆 = 0.01 (Fig. 2) the errors
ppear to decrease towards zero as both 𝛥𝐴 and 𝛥𝑌 decrease.1 That is,
f either (or both) 𝛥𝐴 and 𝛥𝑌 decrease, then 𝛥𝑆 decreases. However,
or 𝑆 = 0.8, a decrease in either 𝛥𝐴 or 𝛥𝑌 (or both) does not guarantee
decrease in 𝛥𝑆. In Cases 1 and 2, regardless of 𝛥𝐴 (even for very high
𝐴), it is possible to obtain zero 𝛥𝑆. In fact, for a fixed value of 𝛥𝑌 , as
𝐴 decreases 𝛥𝑆 will decrease to zero and then begin increasing again.
his occurs because the systematic bias in both Case 1 and Case 2 can
ause the ratio 𝑆 = 𝐴∕𝑌 to be correct even if both 𝐴 and 𝑌 are (perhaps
everely) incorrect. Indeed, two points 𝑋1 and 𝑋2 are shown in Fig. 3
here 𝛥𝐴𝑋1

> 𝛥𝐴𝑋1
and 𝛥𝑌𝑋1

> 𝛥𝑌𝑋2
, yet 𝛥𝑆𝑋1

< 𝛥𝑆𝑋2
. As we will

ee, this systematic bias in 𝐴 and 𝑌 can make accelerated convergence
n the Sobol indices difficult.

Next, we will study the convergence, and specifically the behavior of
rrors in light of the discussion above, for the different active learning
chemes using four analytical test cases of increasing dimension.

.2. Square exponential function

First, we consider the following square exponential function of two
andom inputs (i.e. 𝐗 = [𝑋1, 𝑋2]).

= 𝑋1 exp (−𝑋2
1 −𝑋2

2 )

1 In fact, Cases 1 and 2 have the same bias observed in the 𝑆 = 0.8 case
but the influence is negligible because 𝑆 is very small.
7

where, 𝑋1 and 𝑋2 are uniformly distributed between [a, b]. Two cases
re considered in this study, one with tight bounds around the two
eaks (𝑎 = −2 and 𝑏 = 2) and another with larger bounds 𝑏 (𝑎 = −2

and 𝑏 = 6) such that a large flat region is observed across much of
the domain. Both cases are illustrated in Fig. 4. The presence of this
flat region has a significant impact on the Sobol indices and, moreover,
affects the convergence of the active learning algorithms. In both cases,
the Sobol indices can be computed analytically. For the first case (𝑏 =
2), the first-order Sobol indices are 𝑆1 = 0.6208 and 𝑆2 = 0. For the
second case, the Sobol indices are 𝑆1 = 0.3119 and 𝑆2 = 2.30 × 10−5.

Fig. 5 shows the mean square error convergence from 100 repeated
trials of the different active learning schemes using the EIGF and MUSIC
learning functions compared with random sampling for the case where
𝑏 = 2 (no flat region). Fig. 5(a) shows convergence of the variance of
the output, 𝜎2𝑌 , as estimated by the GP. We see that the EIGF generally
outperforms the other two approaches, converging to a very accurate
estimate for 𝜎2𝑌 with less than ∼ 30 samples. Fig. 5(b) and (c) show
the same convergence plots for the variance of the main effect GPs
𝜎2𝐴1

and 𝜎2𝐴2
, respectively. We see that, in main effects the MUSIC

learning function offers comparable convergence to the EIGF in 𝐴1
and superior convergence in 𝐴2. Both methods generally outperform
random sampling in the main effect variances.

Finally, Fig. 5(d) and (e) show convergence of the Sobol indices 𝑆1
and 𝑆2. For this problem, the Sobol convergence tracks closely with the
main effect convergence, but with slight differences. For example, we
recall that the variance 𝜎2𝐴1

from Fig. 5(b) is the numerator and 𝜎2𝑌 from
Fig. 5(a) is the denominator of the Sobol index 𝑆1. However, despite
superior performance in both 𝜎2𝐴1

and 𝜎2𝑌 , the MUSIC function performs

mildly worse than random sampling in 𝑆1 for small samples. This is due
to the ‘ratio of errors’ issues discussed in the previous section.

Fig. 6 shows the same convergence plots but compares VIGF and
MUSIC (based on VIGF) learning functions against the sequential ran-
dom sampling. Similar to EIGF, the VIGF learning function results in the
best estimate for output variance (𝜎2𝑌 ), as shown in Fig. 6(a). However,
VIGF outperforms EIGF for main effect and sobol estimates (𝜎2𝐴𝑖

) and
yields similar convergence to the ‘MUSIC+VIGF D2’ combination. This
improvement is due to the better prediction at both functional features
(peak and valley). Consider, the main effect of first dimension 𝐸[𝑌 |𝑋1]
for a fixed value of 𝑋1 (imagine a cross-section at arbitrary 𝑋1 in
Fig. 4), the main effect function depends on either the peak or the
valley (depending on the value of 𝑋1). But, the main effect of the
second dimension (𝐸[𝑌 |𝑋2]) depends on both features for all values of
𝑋2. Since VIGF gives more importance to exploration (as compared to
EIGF), it resolves both features simultaneously — it does not get stuck
exploiting one feature. This results in better estimates for 𝜎2𝑌 as well as
𝜎2𝐴𝑖

and eventually better Sobol estimates as shown in 6(e).
Figs. 7 and 8 show the same convergence plots for the case with

𝑏 = 6 (having a flat region). As expected, the EIGF/VIGF learning
functions perform much better than the other methods for 𝜎2𝑌 , as they
both perform well for tasks where exploitation is paramount [50]. They
both also exhibit superior performance in the main effect variances 𝜎2
𝐴1
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Fig. 3. Influence of errors in the numerator, 𝛥𝐴, and denominator, 𝛥𝑌 , on error 𝛥𝑆 in the ratio 𝑆 = 𝐴∕𝑌 for 𝑆 = 0.8 for four cases of systematic bias (a) Case 1: Both 𝛥𝐴 and
𝛥𝑌 are underestimated, (b) Case 2: Both 𝛥𝐴 and 𝛥𝑌 are overestimated, (c) 𝛥𝐴 is overestimated and 𝛥𝑌 is underestimated, and (d) 𝛥𝐴 is underestimated and 𝛥𝑌 is overestimated.

Fig. 4. Square exponential functions (a) with tight bounds and no flat region and (b) with wide bounds and large flat region.

Fig. 5. Exponential Function (𝑏 = 2, no flat region) – Mean square convergence with 𝜎 confidence intervals from 100 repeated trials of (a) output variance 𝜎2
𝑌 , (b,c) main effect

variances 𝜎2
𝐴1

and 𝜎2
𝐴2
, and (d,e) Sobol indices 𝑆1 and 𝑆2 for MUSIC and EIGF active learning schemes compared with random sampling.
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Fig. 6. Exponential Function (𝑏 = 2, no flat region) – Mean square convergence with 𝜎 confidence intervals from 100 repeated trials of (a) output variance 𝜎2
𝑌 , (b,c) main effect

ariances 𝜎2
𝐴1

and 𝜎2
𝐴2
, and (d,e) Sobol indices 𝑆1 and 𝑆2 for MUSIC and VIGF active learning schemes compared with random sampling.
nd 𝜎2𝐴2
and Sobol indices 𝑆1 and 𝑆2 for small sample sizes. Again, this

s a result of its strong exploitation properties. The MUSIC function
eanwhile provides superior convergence to random sampling in all
ases as well.

.3. Ishigami function

Next, consider the well-known Ishigami function with three inde-
endent input random variables (𝐗 = [𝑋1, 𝑋2, 𝑋3]) that are uniformly
istributed over [−𝜋, 𝜋], and defined by:

(𝐱) = sin 𝑥1 + 𝑎 sin2 𝑥2 + 𝑏𝑥43 sin 𝑥1

here parameters 𝑎 = 7, and 𝑏 = 0.1. This function has nonlinear
nd nonmonotonic behavior, but the third input dimension exhibits a
eculiar behavior. The first-order contribution of the third dimension is
ero towards output variance, but it cannot be completely ignored as an
nteraction sensitivity index (i.e. 𝑆13) has a significant impact on output
ariance. The first-order Sobol indices are 𝑆1 = 0.3139, 𝑆2 = 0.4424, and

𝑆3 = 0, determined analytically by solving for the variance of the main
effect and output as:

𝑉 𝑎𝑟{𝐴1} = 1
2

(

1 + 𝑏𝜋4

5

)2
, 𝑉 𝑎𝑟{𝐴2} = 𝑎2

8
, 𝑉 𝑎𝑟{𝐴3} = 0

𝑉 𝑎𝑟{𝑌 } = 𝑎2

8
+ 𝑏𝜋4

5
+ 𝑏2𝜋8

18
+ 1

2
The performance of EIGF and MUSIC (‘EIGF D1’ and ‘EIGF D2’)

adaptive sampling strategies is shown in Fig. 9. The adaptive algorithms
start with a small set of 10 samples generated using Latin Hypercube
Sampling and convergence is observed up to 500 samples. After up-
dating the surrogate model, Sobol indices are estimated using 25,000
candidate points. The process is repeated for 100 trials to obtain confi-
dence intervals in the convergence. In this example, the EIGF struggles
to accurately estimate the output variance (𝜎2 in Fig. 9(a)) and the
9

𝑌

main effect variances (𝜎2𝐴𝑖
in Fig. 9(b)–(d)). This can be explained

by the sinusoidal nature of the Ishigami function, which requires a
balance between exploration and exploitation. Error convergence of
the ‘MUSIC+EIGF D1’ learning function is similar to random sampling
for every estimate. ‘MUSIC+EIGF D2’, on the other hand, leads to
superior convergence in nearly all aspects. The distance-based pre-
factor is the main difference here. The 𝐷2 function uses the Euclidean
distance and ensures that training samples are globally far away from
each other, which helps the ‘MUSIC+EIGF’ learning function to avoid
local exploitation. Because the 𝐷1 function utilizes an element-wise
distance component, it does not avoid local exploitation as effectively.
Fig. 9(e–g) show the ultimate convergence of the Sobol index estimates
where again ‘MUSIC+EIGF D2’ generally outperforms the other criteria.

Fig. 10 likewise compares the VIGF and MUSIC (+VIGF) learning
functions to random sampling. The main difference here is that the
VIGF improves performance considerably over the EIGF. Given this
consistent improvement with the VIGF, we will compare only the
results using VIGF in the remaining analytical examples.

Here, the convergence of the first and second Sobol indices may
appear counterintuitive. The MUSIC function estimates both the total
and main effect variances with high accuracy, but the error in the Sobol
estimates is comparable to random sampling. This is again due to the
effect of ratios of errors. Fig. 11 shows the convergence path of the
Sobol indices by plotting traces of (𝜎̂2𝑌 , 𝜎̂

2
𝐴𝑖
) averaged over 100 trials.

The gray surface represents the Sobol index for any specific pair. The
green star is the actual first-order Sobol index (𝑆𝑖) value for the 𝑖th

dimension. The gray line shows all combinations of (𝜎̂2𝑌 , 𝜎̂
2
𝐴𝑖
), such that

their ratio is equal to the true Sobol index (i.e. 𝑆̂𝑖 = 𝑆𝑖). The black,
orange, and blue curves illustrate the convergence of random, EIGF,
and MUSIC sampling, respectively. We notice that, although MUSIC
and EIGF perform better in the variance estimators (see convergence
above), the path that their estimators takes towards the true value does
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Fig. 7. Exponential Function (𝑏 = 6, with flat region) – Mean square convergence with 𝜎 confidence intervals from 100 repeated trials of (a) output variance 𝜎2
𝑌 , (b,c) main effect

variances 𝜎2
𝐴1

and 𝜎2
𝐴2
, and (d,e) Sobol indices 𝑆1 and 𝑆2 for MUSIC and EIGF active learning schemes compared with random sampling.

Fig. 8. Exponential Function (𝑏 = 6, with flat region) – Mean square convergence with 𝜎 confidence intervals from 100 repeated trials of (a) output variance 𝜎2
𝑌 , (b,c) main effect

variances 𝜎2
𝐴1

and 𝜎2
𝐴2
, and (d,e) Sobol indices 𝑆1 and 𝑆2 for MUSIC and VIGF active learning schemes compared with random sampling.
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Fig. 9. Ishigami Function — Mean square convergence with 𝜎 confidence intervals from 100 repeated trials of (a) output variance 𝜎2
𝑌 , (b–d) main effect variances 𝜎2

𝐴𝑖
∀ 𝑖 ∈ {1, 2, 3},

and (e–g) Sobol indices 𝑆1, 𝑆2, and 𝑆3 for MUSIC and EIGF active learning schemes compared with random sampling.
Fig. 10. Ishigami Function — Mean square convergence of (a) output variance 𝜎2
𝑌 , (b–d) main effect variances 𝜎2

𝐴𝑖
∀ 𝑖 ∈ {1, 2, 3}, and (e–g) Sobol indices 𝑆1, 𝑆2, and 𝑆3 for MUSIC

and VIGF active learning schemes compared with random sampling.
not follow the gray line. That is, their Sobol index estimates are biased
due to the ratio of errors. This is not the case for random sampling,
which converges largely along the gray line. This counter-intuitive
behavior is not observed for the third dimension because the actual
Sobol index is zero (i.e. 𝑆3 = 0) and therefore depends only on the main
effect GP. As illustrated in Fig. 2, when 𝑆𝑖 is very small convergence
in the numerator will yield convergence in the ratio. We can therefore
conclude that the MUSIC function will be very effective at identifying
small Sobol indices.

5.4. G-function

Next, we consider the 5-dimensional G-function, defined as the
following product of non-linear functions in each dimension,

𝑦(𝐱) =
𝑑
∏

|4𝑥(𝑘) − 2| + 𝑎(𝑘)
(𝑘)
11

𝑘=1 𝑎 + 1
where each input feature is uniformly distributed between [0, 1]
(i.e. 𝑋(𝑘) ∼ Uniform(0, 1)). The analytical Sobol indices in five dimen-
sions (i.e. 𝑑 = 5) are 0.48, 0.21, 0.12, 0.08, 0.06, corresponding to
𝑎(𝑘) = 𝑘, 𝑘 ∈ 1, 2, 3, 4, 5 from the following equations:

𝑉 𝑎𝑟{𝐴𝑖} = 1
3(1 + 𝑎(𝑖))2

𝑉 𝑎𝑟{𝑌 } =
[

𝑑
∏

𝑘=1
(1 + 𝑉 𝑎𝑟{𝐴𝑘})

]

− 1

𝑆𝑖 =
1∕(3(1 + 𝑎(𝑖))2)

[

∏𝑑
𝑘=1 [1 + 1∕(3(1 + 𝑎(𝑘))2)]

]

− 1

Again we compare the three sampling strategies, where each sam-
pling strategy initiates by training a GP on 30 samples obtained from
Latin Hypercube Sampling and adaptively selects new samples up to
500 samples. The Sobol indices are computed using 25000 candidate
points. Fig. 12 shows the convergence for VIGF and MUSIC (based on
VIGF) compared to random sampling. Here, the ‘MUSIC+VIGF’ strategy
and the VIGF show superior performance to random sampling in the

total variance (Fig. 12(a)), main effects (Fig. 12(b)–(f)), and Sobol
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w

Fig. 11. Dependence of Sobol indices on the variance of main effect GPs and Output GP.
Fig. 12. G-Sobol Function — Mean square convergence with 𝜎 confidence intervals from 100 repeated trials of (a) output variance 𝜎2
𝑌 , (b–f) main effect variances 𝜎2

𝐴𝑖
∀

𝑖 ∈ {1, 2, 3, 4, 5}, and (g–k) Sobol indices 𝑆𝑖 for MUSIC and VIGF active learning schemes compared with random sampling.
indices ((Fig. 12(g)–(k)). Results from EIGF learning are not shown due
to poor convergence in comparison to VIGF.

5.5. Gaussian function

To conclude, we compare performance for a high input dimensional
problem. A synthetic 15d function is considered here, such that 75.5%
of the contribution is from the first-order effects of three inputs. The
function is defined as a product of 15 independent square exponential
functions, similar to a Gaussian kernel given by:

𝑦(𝒙) =
𝑑
∏

𝑖=1
exp

(

−
𝑥2𝑖
𝑎𝑖

)

here, 𝑥𝑖 ∼ 𝑈 (−3, 3) ∀ 𝑖 ∈ {1, 2,… , 𝑑} and

𝒂 = [1.45, 3.3, 15, 50, 55, 58, 59, 100, 102, 112.5, 150, 160, 180, 190, 200]

Fig. 13(a) shows the main effect contribution and Fig. 13(b) shows the
true Sobol indices (in log scale).

Fig. 14 shows convergence of the Sobol indices for the first three
dimensions using the VIGF and MUSIC with VIGF learning functions
compared to random sampling for 500 samples. We notice that the
VIGF and ‘MUSIC+VIGF D2’ perform quite poorly for this example.
In particular, the ‘MUSIC+VIGF D2’ exhibits poor convergence be-
cause the Euclidean distance is not a good measure of distance in
15 dimensions [51]. When this is replaced with the component-wise
12
distance measure, convergence is much better and is comparable with
random sampling. Convergence for dimensions 4–15 are not shown
here because they immediately produce very low errors in all cases
given that the corresponding Sobol indices are near zero. Importantly,
we observe that no learning function is capable of producing superior
convergence to random sampling in high-dimensions.

6. Application to boundary layer wind tunnel experimental design

The original motivation for developing this active learning scheme
for Sobol index estimation came from an experimental investigation
into the influence of roughness terrain parameters in large-scale Bound-
ary Layer Wind Tunnel (BLWT) experiments. In this study, experiments
were performed using the University of Florida BLWT (UF-BLWT illus-
trated in Fig. 15), which features a novel automated roughness element
grid called the Terraformer. This Terraformer is capable of rapidly and
automatically changing the roughness terrain at the push of a button
to mimic a wide-range of wind flow conditions [52].

In this work, we parameterize the Terraformer (which has 1116
independent elements capable of changing both height and profile
orientation) by a random field in the along-wind direction using a
truncated Karhunen–Loeve (KL) expansion such that the element at a
location 𝑥 along the Terraformer is given by:

ℎ(𝑥,𝜽) = 𝜇𝐻 +
𝑑
∑

√

𝜆(𝑖)𝜃(𝑖)𝑓 (𝑖)(𝑥)

𝑖=1
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Fig. 13. Gaussian function: (a) First-order main effect functions and (b) True Sobol Indices.
Fig. 14. Gaussian Function — Mean square convergence with 𝜎 confidence intervals from 50 repeated trials for Sobol indices (a) 𝑆1, (b) 𝑆2, and (c) 𝑆3 for MUSIC and VIGF
ctive learning schemes compared with random sampling.
Fig. 15. Schematic of the University of Florida Boundary Layer Wind Tunnel (BLWT). The Terraformer roughness element grid is capable of rapidly and automatically reconfiguring
its 1116 elements to produce a wide-range of wind flow characteristics.
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where 𝜇𝐻 = 80 mm is the mean element height, 𝜃(𝑖) are standard
ormal random variables, and 𝜆(𝑖) and 𝑓 (𝑖)(𝑥) are the eigenvalues and
igenfunctions of the covariance function given by:

(𝑥1, 𝑥2) = 𝜎2 exp(−𝑎|𝑥2 − 𝑥1|) cos(𝜔|𝑥2 − 𝑥1|) (42)

ere 𝜎2 = 100 mm is the variance of the field, 𝜔 is the wave number,
nd 𝑎 and 𝜔 are selected such that the length scale of the covariance
unction is given by 𝐿 = 𝑎∕(𝑎22 + 𝜔2) = 3000 mm, or approximately
/6 of the Terraformer length. The KL expansion is truncated to 𝑑 = 10

terms.
The significant expense in this project is due to experimental time,

where the execution time for a single experiment is approximately
20 min. Even with the high degree of automation afforded by the UF-
BLWT, we cannot afford to run a sufficient number of experiments to
explore the influence of all 𝑑 = 10 random field parameters on the
resulting wind flow. We therefore aim to adaptively perform global
sensitivity analysis to identify which random field parameters have the
13

most influence on the wind characteristic of interest and reduce the t
dimension of the random field to facilitate a feasible set of experiments.
Our specific characteristic of interest is the turbulence intensity profile
of the resulting wind flow defined at a height above the floor (𝑧) by:

𝐼𝑢(𝑧) =
𝜎𝑢(𝑧)
𝜇𝑢(𝑧)

(43)

where 𝜇𝑢(𝑧) and 𝜎𝑢(𝑧) are the mean and standard deviation of the
ongitudinal component of the wind velocity 𝑢(𝑧) – which is a random
rocess. More specifically, we aim to quantify the sensitivity of the
ollowing distance measure to the 10 KL random variables:

(𝜽) = ‖𝑰𝑢(𝜽) − 𝑰∗
𝑢‖2 (44)

here 𝑰𝑢(𝜽) is the vector of discretized turbulence intensities observed
t points separated by 20 mm in the range 𝑧 = [180, 500] mm for a
erraformer configuration with parameters 𝜽 and 𝑰∗

𝑢 is the same vector
efined for a reference roughness grid with all element uniformly set
o ℎ = 80 mm. In other words, we aim to quantify the sensitivity of the
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Fig. 16. Final estimates of the first-order Sobol Indices.
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eviation of the turbulence intensity profile from the reference profile
o each of the KL random variables.

For this investigation, we applied an earlier component-wise ap-
lication of the proposed EIGF-based MUSIC learning function not
emonstrated in detail above. This initial version of MUSIC focuses on
nly one dimension at a time and chooses a new sample to minimize the
ncertainty in the estimate of the particular Sobol index associated with
he largest MUSIC component. More specifically, using the expected
ain effect improvement defined in Eq. (37), this version selects the
imension with maximum improvement in the individual main effect
Ps as:
∗
𝑖 = argmax

𝑥𝑖
𝐸[𝐼𝐴𝑖

(𝑥𝑖)] (45)

here 𝑥∗𝑖 is the 𝑖th element of the new sample 𝒙∗ and the other elements
re selected randomly over the input marginal distribution. Although
his version of the MUSIC function was ultimately improved and the
ethods discussed in detail above were explored in more detail, it
as successfully used to adaptively estimate sensitivities for the BLWT
xperimental investigation.

Initially, 30 experiments were performed with parameters 𝜽 selected
y Latin Hypercube sampling. Then, 270 more experiments were con-
ucted using the MUSIC learning strategy described above. Fig. 16
hows the final estimates (after 300 experiments) of the first-order
obol indices, along with the standard error in the estimates. The
xperiments show that the distance metric between two roughness
onfigurations is dominated by the second eigen parameter. Although
he first eigen parameter is the most influential for the variance of the
errain random field ℎ(𝑥), it is not the most influential in terms of the
ariance of the resulting flow field. This is due to the particular shape
f the second eigenvector and its impact on flow at the measurement
ocation. Furthermore, except for input dimensions 1 and 2, no other
nput parameter has a considerable first-order effect on the distance.
sing the approach described in Appendix B, we were further able to
ake an initial assessment of the interaction sensitivities and deter-
ine that significant interactions between inputs 1, 2, and 3 play an

mportant role in the resulting turbulence intensity profiles. Using these
nsights, we were able to reduce the dimension of the KL random field
o 𝑑 = 3 and conduct a more rigorous study, further details of which
re provided in [1].

. Conclusions

This study investigates the application of active learning for global
ensitivity analysis. We specifically propose a novel new learning func-
ion, termed the MUSIC (minimize uncertainty in Sobol index conver-
14

ence) function, that leverages the main effect variances in Gaussian C
rocess-based Sensitivity Indices, i.e. the numerator in Sobol index
efinition. We compare this strategy with a more traditional active
earning strategy aimed at accurately capturing output variance 𝜎2𝑌 ,
.e. the denominator of the Sobol index, using the existing EIGF and
IGF learning functions. Both strategies are further compared with
imple sequential random sampling. We provide a careful analysis of
he convergence for four analytical test functions and study the conver-
ence behavior. An important insight that arises is that convergence in
obol indices are difficult for active learning because they are defined
s a ratio and the learning strategies must focus on either the numerator
r the denominator and achieving rapid convergence in either, or both,
s not sufficient to ensure convergence in the ratio.

Summarizing, we can make the following observations:

• In general, the VIGF function outperforms the EIGF, as does the
MUSIC with VIGF when compared to the MUSIC with EIGF.

• The MUSIC learning functions are very successful at rapidly iden-
tifying small Sobol indices.

• For low-dimensional problems, the MUSIC with VIGF and dis-
tance pre-factor based on a Euclidean distance generally outper-
forms the other methods in terms of Sobol index convergence.

• The Euclidean distance-based pre-factor (𝑫2) is effective for low-
dimensional problems but does not work well in high-dimensions.

• At best, the MUSIC learning strategy is comparable in perfor-
mance to random sampling for high-dimensional problems.

Finally, we provide a motivating application where active learning
s applied to learn global sensitivity indices for a set of large-scale
oundary layer wind tunnel experiments. This demonstrates a real,
ractical use case and illustrates how it helped to significantly reduce
xperimental effort.
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Appendix A

In this appendix, we show how to compute the mean and covariance
functions for the main effect GPs under specific conditions. We then
demonstrate that under conditions of widely used correlation models,
these functions can be evaluated analytically without the need for
numerical integrations.

A.1. Mean function of the main effect GPs

We begin by restating Eq. (22) as:

𝐸[𝐴(𝑋𝑖)] = ∫𝒙∼𝑖
𝑦̂(𝐱)

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

Next, we simply plug in the expression for 𝑦̂ from Eq. (14), which
yields

𝐸[𝐴(𝑋𝑖)] = ∫𝒙∼𝑖
(𝒇 (𝒙)𝑇 𝜷 + 𝒓(𝒙)𝑇𝑹−1(𝒀 − 𝑭𝜷))

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗 (A.1)

=
[

∫𝒙∼𝑖
𝒇 (𝒙)𝑇

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

]

𝜷 +
[

∫𝒙∼𝑖
𝒓(𝒙)𝑇

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

]

× 𝑹−1(𝒀 − 𝑭𝜷) (A.2)

Integrating the first term of Eq. (A.2) for a linear basis 𝒇 (𝒙) =
[

1 𝑥1 𝑥2 … 𝑥𝑑
]𝑇 .

∫𝒙∼𝑖

𝒇 (𝒙)𝑇
∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗 = ∫𝒙∼𝑖

[

1 𝑥1 𝑥2 … 𝑥𝑑
]
∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

=
[

1 𝐸[𝑋1] 𝐸[𝑋2] … 𝑥𝑖 … 𝐸[𝑋𝑑 ]
]

Integrating the second term of Eq. (A.2) yields:

∫𝒙∼𝑖
𝒓(𝒙)𝑇

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗 =∫𝒙∼𝑖

⎡

⎢

⎢

⎢

⎢

⎣

(𝒙,𝒙(1))
(𝒙,𝒙(2))

⋮
(𝒙,𝒙(𝑛))

⎤

⎥

⎥

⎥

⎥

⎦

𝑇

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

=∫𝒙∼𝑖

⎡

⎢

⎢

⎢

⎢

⎣

∏

𝑘 𝑟𝑘(𝑥𝑘, 𝑥
(1)
𝑘 )

∏

𝑘 𝑟𝑘(𝑥𝑘, 𝑥
(2)
𝑘 )

⋮
∏

𝑘 𝑟𝑘(𝑥𝑘, 𝑥
(𝑛)
𝑘 )

⎤

⎥

⎥

⎥

⎥

⎦

𝑇

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

=

⎡

⎢

⎢

⎢

⎢

⎢

𝑟𝑖(𝑥𝑖, 𝑥
(1)
𝑖 )

∏

𝑗≠𝑖 ∫𝑥𝑗 𝑟𝑗 (𝑥𝑗 , 𝑥
(1)
𝑗 )𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗
𝑟𝑖(𝑥𝑖, 𝑥

(2)
𝑖 )

∏

𝑗≠𝑖 ∫𝑥𝑗 𝑟𝑗 (𝑥𝑗 , 𝑥
(2)
𝑗 )𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗
⋮

𝑟 (𝑥 , 𝑥(𝑛))
∏

∫ 𝑟 (𝑥 , 𝑥(𝑛))𝑝 (𝑥 )𝑑𝑥

⎤

⎥

⎥

⎥

⎥

⎥

𝑇
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⎣

𝑖 𝑖 𝑖 𝑗≠𝑖 𝑥𝑗 𝑗 𝑗 𝑗 𝑋𝑗 𝑗 𝑗
⎦

where we recall that 𝒙(𝑙),∼ 𝑙 = 1,… , 𝑛 are the training samples
and 𝑟𝑘(𝑥𝑘, 𝑥

(𝑙)
𝑘 ) is the 𝑘th univariate correlation function expressed in

Eq. (11). Finally, Eq. (A.2) can be expressed as:

𝐸[𝐴(𝑋𝑖)] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐸[𝑋1]
𝐸[𝑋2]

⋮
𝑥𝑖
⋮

𝐸[𝑋𝑑 ]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

𝜷 +

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑟𝑖(𝑥𝑖, 𝑥
(1)
𝑖 )

∏

𝑗≠𝑖 ∫𝑥𝑗 𝑟𝑗 (𝑥𝑗 , 𝑥
(1)
𝑗 )𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗
𝑟𝑖(𝑥𝑖, 𝑥

(2)
𝑖 )

∏

𝑗≠𝑖 ∫𝑥𝑗 𝑟𝑗 (𝑥𝑗 , 𝑥
(2)
𝑗 )𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗
⋮

𝑟𝑖(𝑥𝑖, 𝑥
(𝑛)
𝑖 )

∏

𝑗≠𝑖 ∫𝑥𝑗 𝑟𝑗 (𝑥𝑗 , 𝑥
(𝑛)
𝑗 )𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

× 𝑹−1(𝒀 − 𝑭𝜷) (A.3)

Finally, in Appendix A.3, we show that the product of 1D integrals can
be computed analytically for the Gaussian correlation model, which
results in the following closed form for the mean of the main effect
GP for uniformly distributed 𝑋:

𝐸[𝐴(𝑋𝑖)] =
[

1 𝐸[𝑋1] 𝐸[𝑋2] … 𝑥𝑖 … 𝐸[𝑋𝑑 ]
]

𝜷

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟𝑖(𝑥𝑖, 𝑥
(1)
𝑖 )

∏

𝑗≠𝑖
1

𝑏𝑗−𝑎𝑗

√

𝜋
𝜃𝑗
[𝛷(

√

2𝜃𝑗 (𝑏𝑗 − 𝑥(1)𝑗 )) −𝛷(
√

2𝜃𝑗 (𝑎𝑗 − 𝑥(1)𝑗 ))]

𝑟𝑖(𝑥𝑖, 𝑥
(2)
𝑖 )

∏

𝑗≠𝑖
1

𝑏𝑗−𝑎𝑗

√

𝜋
𝜃𝑗
[𝛷(

√

2𝜃𝑗 (𝑏𝑗 − 𝑥(2)𝑗 )) −𝛷(
√

2𝜃𝑗 (𝑎𝑗 − 𝑥(2)𝑗 ))]

⋮

𝑟𝑖(𝑥𝑖, 𝑥
(𝑛)
𝑖 )

∏

𝑗≠𝑖
1

𝑏𝑗−𝑎𝑗

√

𝜋
𝜃𝑗
[𝛷(

√

2𝜃𝑗 (𝑏𝑗 − 𝑥(𝑛)𝑗 )) −𝛷(
√

2𝜃𝑗 (𝑎𝑗 − 𝑥(𝑛)𝑗 ))]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

× 𝑹−1(𝒀 − 𝑭𝜷) (A.4)

Note that in cases where the GP is trained with noisy data the
bove equation can be easily modified to incorporate the noise. We
imply substitute the correlation matrix, 𝑹, in the above equation by
𝑹𝒏 defined as:

𝑹𝑛 = ((1 − 𝜏)𝑹 + 𝜏𝑰)

where 𝜏 = 𝜎2𝜖 ∕𝜎
2
𝑧 and 𝜎2𝜖 is the variance due to the noise in the data and

𝜎2𝑧 is the total variance of the GP.

A.2. Covariance function of the main effect GPs

We again begin by restating the expression for the covariance
function of the main effect GPs from Eq. (23):

Cov(𝐴(𝑋1𝑖), 𝐴(𝑋2𝑖)) =∫𝒙1∼𝑖 ∫𝒙2∼𝑖
Cov((𝒙1),(𝒙2))

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗

×
∏

𝑘≠𝑖
𝑝𝑋𝑘

(𝑥2𝑘)𝑑𝑥2𝑘

The covariance of the GP (𝒙) can be expressed as:

Cov((𝒙1),(𝒙2)) =𝜎2𝑧 (𝑟(𝒙1,𝒙2) − 𝒓(𝒙1)𝑇𝑹−1𝒓(𝒙2) + 𝒕(𝒙1)𝑇

× (𝑭 𝑇𝑹−1𝑭 )−1𝒕(𝒙2)),

which yields the following covariance for the main effect GP:

Cov(𝐴(𝑋1𝑖), 𝐴(𝑋2𝑖))

= ∫𝒙1∼𝑖 ∫𝒙2∼𝑖

[

𝜎2𝑧 (𝑟(𝒙1,𝒙2) − 𝒓(𝒙1)𝑇𝑹−1𝒓(𝒙2) + 𝒕(𝒙1)𝑇 (𝑭 𝑇𝑹−1𝑭 )−1𝒕(𝒙2))
]

×
∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗
∏

𝑘≠𝑖
𝑝𝑋𝑘

(𝑥2𝑘)𝑑𝑥2𝑘 (A.5)

Expanding this, we can express the first term of Eq. (A.5) as:

2
𝑧 ∫𝒙1∼𝑖 ∫𝒙2∼𝑖

𝑟(𝒙1,𝒙2)
∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗
∏

𝑘≠𝑖
𝑝𝑋𝑘

(𝑥2𝑘)𝑑𝑥2𝑘

= 𝜎2𝑧 ∫𝒙1∼𝑖 ∫𝒙2∼𝑖

𝑑
∏

𝑙=1
𝑟𝑙(𝑥1𝑙 , 𝑥2𝑙)

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗
∏

𝑘≠𝑖
𝑝𝑋𝑘

(𝑥2𝑘)𝑑𝑥2𝑘

= 𝜎2𝑧𝑟𝑖(𝑥1𝑖, 𝑥2𝑖)
𝑑
∏

𝑙≠𝑖
∫𝒙1∼𝑖 ∫𝒙2∼𝑖

𝑟𝑙(𝑥1𝑙 , 𝑥2𝑙)𝑝𝑋𝑙
(𝑥1𝑙)𝑑𝑥1𝑙𝑝𝑋𝑙

(𝑥2𝑙)𝑑𝑥2𝑙
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∫𝒙1∼𝑖
𝒕(𝒙)𝑇

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗 = 𝑭 𝑇𝑹−1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑟𝑖(𝑥𝑖, 𝑥
(1)
𝑖 )

∏

𝑗≠𝑖
1

𝑏𝑗−𝑎𝑗

√ 𝜋
𝜃𝑗
[𝛷(

√

2𝜃𝑗 (𝑏𝑗 − 𝑥(1)𝑗 )) −𝛷(
√

2𝜃𝑗 (𝑎𝑗 − 𝑥(1)𝑗 ))]

𝑟𝑖(𝑥𝑖, 𝑥
(2)
𝑖 )

∏

𝑗≠𝑖
1

𝑏𝑗−𝑎𝑗

√ 𝜋
𝜃𝑗
[𝛷(

√

2𝜃𝑗 (𝑏𝑗 − 𝑥(2)𝑗 )) −𝛷(
√

2𝜃𝑗 (𝑎𝑗 − 𝑥(2)𝑗 ))]

⋮

𝑟𝑖(𝑥𝑖, 𝑥
(𝑛)
𝑖 )

∏

𝑗≠𝑖
1

𝑏𝑗−𝑎𝑗

√ 𝜋
𝜃𝑗
[𝛷(

√

2𝜃𝑗 (𝑏𝑗 − 𝑥(𝑛)𝑗 )) −𝛷(
√

2𝜃𝑗 (𝑎𝑗 − 𝑥(𝑛)𝑗 ))]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐸[𝑋1]
𝐸[𝑋2]

⋮
𝑥𝑖
⋮

𝐸[𝑋𝑑 ]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Box I.
c

𝑹

w
a

A

d
c

𝑟

N
b
b
a
𝑝

∫

w
F

∫

W

n Appendix A.3, we derive the closed form for this integral given a
niform distribution and Gaussian correlation model, which yields:

2
𝑧 ∫𝒙1∼𝑖 ∫𝒙2∼𝑖

𝑟(𝒙1,𝒙2)
∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗
∏

𝑘≠𝑖
𝑝𝑋𝑘

(𝑥2𝑘)𝑑𝑥2𝑘

= 𝜎2𝑧𝑟𝑖(𝑥1𝑖, 𝑥2𝑖)
𝑑
∏

𝑙≠𝑖

(

1
𝑏𝑙 − 𝑎𝑙

)2 √ 𝜋
𝜃𝑙

×

[

𝑎𝑙 + 𝑏𝑙 − 2[𝑎𝑙𝛷(
√

2𝜃𝑙(𝑏𝑙 − 𝑎𝑙)) + 𝑏𝑙𝛷(
√

2𝜃𝑙(𝑎𝑙 − 𝑏𝑙))]

− 1
√

𝜋𝜃𝑙
[1 − exp{−𝜃𝑙(𝑏𝑙 − 𝑎𝑙)2}]

]

Next, the second term of the Eq. (A.5) is:

−𝜎2𝑧 ∫𝒙1∼𝑖 ∫𝒙2∼𝑖
𝒓(𝒙1)𝑇𝑹−1𝒓(𝒙2)

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗
∏

𝑘≠𝑖
𝑝𝑋𝑘

(𝑥2𝑘)𝑑𝑥2𝑘

= −𝜎2𝑧

[

∫𝒙1∼𝑖
𝒓(𝒙1)𝑇

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗

]

𝑹−1

×
[

∫𝒙2∼𝑖
𝒓(𝒙2)

∏

𝑘≠𝑖
𝑝𝑋𝑘

(𝑥2𝑘)𝑑𝑥2𝑘

]

where the integrals in brackets can be solved in closed form as derived
in Appendix A.1. Finally, the third term of Eq. (A.5) is:

−𝜎2𝑧 ∫𝒙1∼𝑖 ∫𝒙2∼𝑖
𝒕(𝒙1)𝑇 (𝑭 𝑇𝑹−1𝑭 )−1𝒕(𝒙2)

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗
∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥2𝑗 )𝑑𝑥2𝑗

= − 𝜎2𝑧

[

∫𝒙1∼𝑖
𝒕(𝒙1)𝑇

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗

]

(𝑭 𝑇𝑹−1𝑭 )−1

×
[

∫𝒙2∼𝑖
𝒕(𝒙2)

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥2𝑗 )𝑑𝑥2𝑗

]

where, 𝜎̂2𝑧 is the variance of the GP,  , and 𝒕(𝒙) = 𝑭 𝑇𝑹−1𝒓(𝒙) − 𝒇 (𝒙)
as defined in Eq. (16). Finally, the integral of 𝒕(𝒙) over the joint
distribution in brackets can be easily obtained from the equations in
Appendix A.1, as follows

∫𝒙1∼𝑖
𝒕(𝒙)𝑇

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

= ∫𝒙1∼𝑖

[

𝑭 𝑇𝑹−1𝒓(𝒙) − 𝒇 (𝒙)
]

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

= 𝑭 𝑇𝑹−1
∫𝒙1∼𝑖

𝒓(𝒙)
∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗 − ∫𝒙1∼𝑖
𝒇 (𝒙)

∏

𝑗≠𝑖
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

= 𝑭 𝑇𝑹−1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑟𝑖(𝑥𝑖, 𝑥
(1)
𝑖 )

∏

𝑗≠𝑖 ∫𝑥𝑗 𝑟𝑗 (𝑥𝑗 , 𝑥
(1)
𝑗 )𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗
𝑟𝑖(𝑥𝑖, 𝑥

(2)
𝑖 )

∏

𝑗≠𝑖 ∫𝑥𝑗 𝑟𝑗 (𝑥𝑗 , 𝑥
(2)
𝑗 )𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗
⋮

𝑟𝑖(𝑥𝑖, 𝑥
(𝑛)
𝑖 )

∏

𝑗≠𝑖 ∫𝑥𝑗 𝑟𝑗 (𝑥𝑗 , 𝑥
(𝑛)
𝑗 )𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐸[𝑋1]
𝐸[𝑋2]

⋮
𝑥𝑖
⋮

𝐸[𝑋𝑑 ]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The above expression can be further simplified for a given uniform
distribution and Gaussian correlation model as: ∫𝒙1∼𝑖 𝒕(𝒙)

𝑇 +
∏

𝑗≠𝑖 𝑝𝑋𝑗
(𝑥𝑗 )
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𝑑𝑥𝑗 is given in Box I o
Thus, the main effect GP, 𝐴(𝑋𝑖), can be completely defined by the
mean function, 𝐸[𝐴(𝑋𝑖)], and covariance function, Cov(𝐴(𝑋1𝑖), 𝐴(𝑋2𝑖)),
derived in Appendices A.1 and A.2.

Again in case of noisy training data, we simply substitute the
orrelation matrix, 𝑹, in the above equation by 𝑹𝒏 as defined below:

𝑛 = ((1 − 𝜏)𝑹 + 𝜏𝑰)

here, 𝜏 = 𝜎2𝜖 ∕𝜎
2
𝑧 and 𝜎2𝜖 is the variance due to the noise in the data

nd 𝜎2𝑧 is the total variance of the GP.

.3. Closed-form integration of the Gaussian correlation model

Let 𝑥1 and 𝑥2 be univariate sample points drawn from a uniform
istribution over the range (𝑎, 𝑏), 𝑋1, 𝑋2 ∼ 𝑈 (𝑎, 𝑏), having Gaussian
orrelation (from Eq. (11)) given by:

(𝑥1, 𝑥2|𝜃) = exp{−𝜃(𝑥1 − 𝑥2)2}

ote that, without loss of generality, the arbitrary sample points can
e transformed to a uniform distribution through a suitable isoproba-
ilistic transformation (e.g. Nataf [53]). As discussed in the previous
ppendices, we need to integrate this correlation model over the pdf
𝑋1

(𝑥1) as follows:
∞

−∞
𝑟(𝜃, 𝑥1, 𝑥2)𝑝𝑋1

(𝑥1)𝑑𝑥1 =∫

𝑏

𝑎
exp{−𝜃(𝑥1 − 𝑥2)2}

1
𝑏 − 𝑎

𝑑𝑥1

= 1
𝑏 − 𝑎 ∫

𝑏

𝑎
exp{−𝜃(𝑥1 − 𝑥2)2}𝑑𝑥1

= 1
𝑏 − 𝑎

√

2𝜋(1∕2𝜃)∫

𝑏

𝑎

1
√

2𝜋(1∕2𝜃)

× exp
{

−1
2
(𝑥1 − 𝑥2)2

(1∕2𝜃)

}

𝑑𝑥1

= 1
𝑏 − 𝑎

√

𝜋
𝜃

[

𝛷
(

√

2𝜃(𝑏 − 𝑥2)
)

−𝛷
(

√

2𝜃(𝑎 − 𝑥2)
)]

here, 𝛷(⋅) is the standard normal cumulative distribution function.
urther, we need the integrate the above result with respect to 𝑥2 as
∞

−∞ ∫

∞

−∞
𝑟(𝜃, 𝑥1, 𝑥2)𝑝𝑋1

(𝑥1)𝑝𝑋2
(𝑥2)𝑑𝑥1𝑑𝑥2

=∫

∞

−∞

[

1
𝑏 − 𝑎

√

𝜋
𝜃

[

𝛷
(

√

2𝜃(𝑏 − 𝑥2)
)

−𝛷
(

√

2𝜃(𝑎 − 𝑥2)
)]]

𝑝𝑋2
(𝑥2)𝑑𝑥2

=
(

1
𝑏 − 𝑎

)2√𝜋
𝜃 ∫

𝑏

𝑎

[

𝛷
(

√

2𝜃(𝑏 − 𝑥2)
)

−𝛷
(

√

2𝜃(𝑎 − 𝑥2)
)]

𝑑𝑥2

(A.6)

e see that the above integral has two identical components that differ
nly by the constant 𝑎 or 𝑏. Let us introduce a dummy variable, 𝑧, which
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can take values 𝑎 or 𝑏. Integration by parts yields

∫

𝑏

𝑎
(1) ×𝛷

(

√

2𝜃(𝑧 − 𝑥2)
)

𝑑𝑥2

= 𝛷
(

√

2𝜃(𝑧 − 𝑠)
)

𝑥2
|

|

|

|

𝑏

𝑎
− ∫

𝑏

𝑎
𝑥2𝜙

(

√

2𝜃(𝑧 − 𝑥2)
)

(−
√

2𝜃)𝑑𝑥2

here, 𝜙(.) is the standard normal probability density function. In this
ntegration by parts and with the use of a change of variables as 𝑡 =
2𝜃(𝑧 − 𝑥2)2, the second term can be expressed as:

∫

𝑏

𝑎
𝑥2𝜙

(

√

2𝜃(𝑧 − 𝑥2)
)

(−
√

2𝜃)𝑑𝑥2

=∫

𝑏

𝑎
[𝑧 − (𝑧 − 𝑥2)](−

√

2𝜃) 1
√

2𝜋
exp

{

−1
2
(𝑧 − 𝑥2)2

(1∕2𝜃)

}

𝑑𝑥2

= − 𝑧∫

𝑏

𝑎

1
√

2𝜋(1∕2𝜃)
exp

{

−1
2
(𝑧 − 𝑥2)2

(1∕2𝜃)

}

𝑑𝑥2

+ ∫

𝑏

𝑎

(𝑧 − 𝑥2)

(1∕
√

2𝜃)

1
√

2𝜋
exp

{

−1
2
(𝑧 − 𝑥2)2

(1∕2𝜃)

}

𝑑𝑥2

= − 𝑧𝛷
(

√

2𝜃(𝑥2 − 𝑧)
)

|

|

|

|

𝑏

𝑎
+ ∫

2𝜃(𝑧−𝑏)2

2𝜃(𝑧−𝑎)2

√

𝑡 1
√

2𝜋
exp

{

−1
2
𝑡
}

× 𝑑𝑡

2
√

𝑡(−
√

2𝜃)

= − 𝑧𝛷
(

√

2𝜃(𝑥2 − 𝑧)
)

|

|

|

|

𝑏

𝑎
− 1

4
√

𝜋𝜃 ∫

2𝜃(𝑧−𝑏)2

2𝜃(𝑧−𝑎)2
exp

{

−1
2
𝑡
}

𝑑𝑡

= − 𝑧𝛷
(

√

2𝜃(𝑥2 − 𝑧)
)

|

|

|

|

𝑏

𝑎
+ 1

2
√

𝜋𝜃
exp

{

−1
2
𝑡
}

|

|

|

|

2𝜃(𝑧−𝑏)2

2𝜃(𝑧−𝑎)2

Using this expression the integral in Eq. (A.6), can be evaluate as:

∫

𝑏

𝑎
𝛷
(

√

2𝜃(𝑏 − 𝑥2)
)

𝑑𝑥2 − ∫

𝑏

𝑎
𝛷
(

√

2𝜃(𝑎 − 𝑥2)
)

𝑑𝑥2

= 𝑎 + 𝑏 − 2[𝑎𝛷(
√

2𝜃(𝑏 − 𝑎)) + 𝑏𝛷(
√

2𝜃(𝑎 − 𝑏))]

− 1
√

𝜋𝜃
[1 − exp{−𝜃(𝑏 − 𝑎)2}]

Finally, we can compute the double integration of the correlation
function in closed form as:

∫

∞

−∞ ∫

∞

−∞
𝑟(𝜃, 𝑥1, 𝑥2)𝑝𝑋1

(𝑥1)𝑝𝑋2
(𝑥2)𝑑𝑥1𝑑𝑥2

=
(

1
𝑏 − 𝑎

)2√𝜋
𝜃

[

𝑎 + 𝑏 − 2[𝑎𝛷(
√

2𝜃(𝑏 − 𝑎)) + 𝑏𝛷(
√

2𝜃(𝑎 − 𝑏))]

− 1
√

𝜋𝜃
[1 − exp{−𝜃(𝑏 − 𝑎)2}]

]

(A.7)

Appendix B. Interaction sensitivities

The interaction sensitivities are computed using a similar procedure
as the main effect sensitivities. These indices can be expressed using
following equation

𝑆̃𝒑(𝜔) =
Var𝑋𝒑

(𝐸𝑋∼𝒑
[(𝑋,𝜔)|𝑋𝒑])

𝐸[Var((𝑋,𝜔))]
(B.1)

where, 𝒑 is a subset of indices of the input dimensions(i.e. 𝒑 ∈
{1, 2,… , 𝑑}).

To compute the interaction Sobol indices, we start by taking the
expectation of the GP (𝑋,𝜔) over all the inputs except ‘𝑋𝒑’ and denote
his as

(𝑋𝒑, 𝜔) = 𝐸𝑋∼𝒑
[(𝑋,𝜔)|𝑋𝒑] (B.2)

ince, (𝑋,𝜔) is a Gaussian process and expectation is a linear opera-
or, 𝐴(𝑋𝒑, 𝜔) is also a GP referred to as the interaction effect GP.

The mean and covariance function of the interaction effect GP can
e determined by integrating the original GP with respect to the joint
17
robability measure over all inputs except 𝑋𝒑. Considering independent
nputs, the mean function is given by [45]:

𝐴𝒑
(𝑥𝒑) = E[𝐴(𝑋𝒑)] = ∫𝒙∼𝒑

𝑦̂(𝒙)
∏

𝑗∉𝒑
𝑝𝑋𝑗

(𝑥𝑗 )𝑑𝑥𝑗 (B.3)

hich is easily computed as a product of one-dimensional integrals.
gain considering independent inputs, the covariance function of the
nteraction effect GP is given by [45]:

ov(𝐴(𝑋1𝒑), 𝐴(𝑋2𝒑))

=∫𝒙1∼𝒑 ∫𝒙2∼𝒑
Cov((𝒙1),(𝒙2))

∏

𝑗∉𝒑
𝑝𝑋𝑗

(𝑥1𝑗 )𝑑𝑥1𝑗
∏

𝑗∉𝒑
𝑝𝑋𝑗

(𝑥2𝑗 )𝑑𝑥2𝑗 (B.4)

hich can be expressed as a product of 2-dimensional integrals. After
btaining the mean and covariance function of the interaction effect
P, the estimates for sensitivities indices are obtained in a similar
rocedure as main effect sensitivities. Note that the contributions of
he interaction sensitivities are not used during the learning process.
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