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A B S T R A C T   

The temporal structure of the variability of the stride-to-stride time intervals during paced walking is affected by 
the underlying autocorrelation function (ACF) of the pacing signal. This effect could be accounted for by dif-
ferences in the underlying probability distribution function (PDF) of the pacing signal. We investigated the 
isolated and combined effect of the ACF and PDF of the pacing signals on the temporal structure of the stride-to- 
stride time intervals during visually guided paced overground walking. Ten young, healthy participants 
completed four walking trials while synchronizing their footstep to a visual pacing signal with a temporal pattern 
of either pink or white noise (different ACF) and either a Gaussian or normal probability distribution (different 
PDF). The scaling exponent from the Detrended Fluctuation Analysis was used to quantify the temporal structure 
of the stride-to-stride time intervals. The ACF and PDF of the pacing signals had independent effects on the 
scaling exponent of the stride-to-stride time intervals. The scaling exponent was higher during the pink noise 
pacing trials compared to the white noise pacing trials and higher during the trials with the Gaussian probability 
distribution compared to the uniform distribution. The results suggest that the sensorimotor system in healthy 
young individuals has an affinity towards external cues with a pink noise pattern and a Gaussian probability 
distribution during paced walking.   

1. Introduction 

Human movements are inherently variable. This can be easily 
observed in the motor performance of multiple repetitions of a task such 
as the variations identified in the stride-to-stride time intervals during 
locomotion [17,29–31]. Interestingly, when exposed to external visual 
or auditory cues, humans can entrain their footsteps to the pacing signal 
through the process of sensorimotor synchronization [12,24,28]. This 
emphasizes the importance of sensory input integration in the motor 
control of walking and has been utilized as a rehabilitation tool to 
restore impaired gait function in patients and older adults [2,3,10,25]. 
Specifically, Hove and colleagues observed that Parkinson’s patients 
restored their impaired gait during walking with an interactive auditory 
pacing signal which incorporated the dynamics of the patients’ gait to 
generate a cue-step entrainment [10]. The gait restoration effect during 
the interactive pacing trial was carried over to non-paced walking 

immediately after the intervention [10]. Additionally, three-weeks 
training of arm-in-arm walking between a younger and older individ-
ual has been observed to improve the gait of the older individual for up 
to two weeks post the intervention [2]. Furthermore, it is well estab-
lished that paced walking can alter the temporal structure of the vari-
ability in the stride-to-stride time intervals when exposed to different 
types of pacing signals [2,3,10–12,15,25,32,34,37,39]. 

To assess the effect of different pacing signals on the variability in 
stride-to-stride time intervals (their temporal structure), the method of 
Detrended Fluctuation Analysis (DFA) has been widely used [7–9]. DFA 
returns a scaling exponent. When the value of the exponent is above 0.5, 
this indicates statistical persistence in the variability of the stride-to- 
stride time intervals. This means that a deviation from the mean of the 
stride-to-stride time in one direction is likely to be followed by a devi-
ation in the same direction. A scaling exponent that has a value below 
0.5 indicates a statistical anti-persistence in the variability which means 
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that a deviation from the mean of the stride-to-stride time intervals in 
one direction is likely to be followed by a deviation in the opposite di-
rection. If the scaling exponent is close to 0.5, it indicates that the 
variability of the stride-to-stride time intervals have an uncorrelated 
structure with no temporal correlation. In healthy individuals, the 
scaling exponent of the variability in stride-to-stride time intervals 
during un-paced walking has been observed to be close to 1.0, indicating 
that a healthy gait pattern demonstrates variability in the stride-to-stride 
time intervals with the presence of statistical persistence [8,9,12,33]. 

Studies from our research team have also used different signal types 
as pacing signals to alter the temporal structure of the variability of the 
stride-to-stride time intervals during paced walking and thereby altering 
the scaling exponent [11,12,20,37,39]. These types of signals include 
different colors of noise with different underlying autocorrelation 
functions (ACF) and power spectrum density e.g. white noise which has 
a flat power spectrum density and pink noise which has decreasing 
power spectrum density (−3.01 dB/octave). The quantification of the 
temporal pattern of these pacing signals using DFA reveals that white 
noise signal has a scaling exponent of 0.5 and pink noise signal has a 
scaling exponent of 1 [11,13]. Our studies have shown that the temporal 
structure of the variability of the stride-to-stride time intervals in young 
healthy individuals during paced walking follows the temporal pattern 
of the pacing signals. Thus, when walking with a pink noise pacing 
signal, the scaling exponent of the variability of the stride-to-stride time 
intervals is close to 1 which indicates the presence of a strong statistical 
persistence in the variability of the stride-to-stride time intervals. When 
walking with a white noise pacing signal, the scaling exponent is above 
but close to 0.5 which indicates that the variability of the stride-to-stride 
time intervals possess a weak statistical persistence tending towards an 
uncorrelated structure. Furthermore, if an invariant pacing signal (e.g. 
an isochronous metronome) is used, the scaling exponent of the vari-
ability of the stride-to-stride time intervals is below 0.5 indicating that 
the variability of the stride-to-stride time intervals possess statistical 
anti-persistence [11–13,20,37,39]. This indicates that paced walking 
with a specific temporal pattern embedded in the pacing signal offers a 
potent manipulator of the temporal structure of stride-to-stride time 
intervals. In addition, the use of pink noise as the pacing signals induce 
the same statistical persistence in the stride-to-stride time intervals as 
during un-paced walking in healthy young individuals. 

Recently, we have also observed that paced walking with pink noise 
pacing signals can restore the temporal structure of the stride-to-stride 
time intervals of older adults towards that of younger adults as the 
scaling exponent changed from 0.71 during self-paced walking (SPW) to 
0.85 during pink noise paced walking. These restored healthy values 
were retained after the paced signal was removed (scaling exponent of 
0.86) [38]. Furthermore, we also recently observed that paced walking 
with a pink noise pacing signal elicited greater resilience to external 
perturbations compared to paced walking with a periodic pacing signal 
[13,21]. Thus, paced walking with a pink noise pacing signal seems to be 
a promising tool for gait rehabilitation and fall prevention for fall prone 
populations [13]. Together, these results also support the Optimal 
Movement Variability Hypothesis (OMVH) where healthy human 
movements are believed to be characterized by an optimal combination 
of moderate predictability and high complexity at which the sensori-
motor system possesses the necessary structure to produce coherent 
movements and sufficient flexibility to adapt to an ever-changing 
environment [31]. SPW for healthy individuals or paced walking with 
pink noise pacing signals reflect this optimal state. On the other hand, 
paced walking with white noise or invariant pacing signals or SPW of 
older adults and patients, reflect conditions outside this state. It should 
be stated that in the framework of OMVH, predictability refers to the 
level of repeatable patterns in the behavior of the system in question. 
Thus, the investigated behavior can be characterized on the continuum 
between a highly repetitive or completely random and various entropy 
measures can be used for the quantification of predictability. In contrast, 
complexity refers to behavioral characteristic which spans multiple 

spatial and temporal scales which captures the infinitely entangled 
components of the system in question. For the quantification of this 
entity, single or multiscale fractal measures are often used. 

During paced walking with different noise types as pacing signal, the 
temporal order in which the cues are provided is determined by the ACF. 
However, it could also be influenced by the underlying probability 
distribution function (PDF) which determines the likelihood of a given 
cue being provided at a given time point. Two distinctly different 
probability distributions are Gaussian and uniform. In a pacing signal 
with a Gaussian probability distribution, there is a greater likelihood of 
obtaining cues with a value close to the mean value of the signal and less 
likelihood of receiving cues with a value far from the mean of the signal. 
In contrast, in a pacing signal with a uniform probability distribution, 
there is an equal likelihood of receiving any of the cues within the signal. 
As two frequently used signals for paced walking, white noise and pink 
noise represent signals with different ACFs [11,12,21,37,39]. However, 
they can also be generated with different PDFs e.g., either a Gaussian or 
uniform distribution (Fig. 1). 

While the aforementioned differences in the temporal structure of 
the stride-to-stride time intervals during paced walking have been 
attributed the differences in the autocorrelation of the pacing signals, we 
recently observed that the probability distribution of the pacing signals 
may also influence the temporal structure [20]. During visually paced 
walking with a Gaussian distributed white noise pacing signal, the DFA 
scaling exponent of the stride-to-stride time intervals were close to 0.5. 
However, when using white noise with a uniform distribution as the 
pacing signal, the scaling exponent decreased further towards 0.5 [20]. 
This suggests that change in the probability distribution by itself can 
affect the scaling exponent of the stride-to-stride time intervals. From an 
OMVH perspective, one possible interpretation of this result is that the 
inclusion of a uniform distribution increases the distributional 
complexity of the pacing signals which challenge the sensorimotor 
synchronization process [20]. The inclusion of a uniform distribution 
instead of a Gaussian distribution in the white noise pacing signal cre-
ates a mismatch between the distributional preference of the sensori-
motor system and the externally provided to-be-coordinated stimulus. 
This mismatch results in the greatest deviation in the scaling exponent of 
the stride-to-stride time intervals during the uniform white noise con-
dition compared to the un-paced condition. To further test this inter-
pretation and to decipher the role of the ACF and PDF of the pacing 
signals for sensorimotor synchronization, the next logical experimental 
step is to include a pacing trial which combines both pink noise and a 
uniform distribution. 

Therefore, the purpose of the present study was to investigate the 
isolated and combined effect of ACF and PDF of the pacing signals on the 
temporal structure of the stride-to-stride time intervals during visually 
guided paced overground walking. To accomplish this purpose, we 
included four paced walking trials with the following pacing signals: 1) 
pink noise with Gaussian distribution (PG), 2) pink noise with uniform 
distribution (PU), 3) white noise with Gaussian distribution (WG) and 4) 
white noise with uniform distribution (WU); in addition to a SPW trial. 
DFA scaling exponent was used to quantify the temporal structure of the 
variability of the stride-to-stride time intervals. We hypothesized that 1) 
the scaling exponent would be highest and close to 1.0 during the PG 
trial, 2) that the inclusion of either white noise pattern (WG and WU 
trial) or uniform distribution (PU and WU trials) in the pacing signals 
would decrease the scaling exponent compared to the PG trial and 3) 
that the scaling exponent during the trial with combined use of white 
noise pattern and uniform distribution (WU) in the pacing signal would 
be lower than the three other trials and close to 0.5. 

2. Methods 

2.1. Participants 

Ten healthy young adults (3 females, 7 males; age = 25 ± 3.8 years; 
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body mass = 80.2 ± 16.1 kg; height = 1.78 ± 0.12 m) with no neuro-
logical or musculoskeletal disorders participated in this study. All par-
ticipants provided informed written consent prior to participation. The 
study protocol was approved by the University of Nebraska Medical 
Center Institutional Review Board, and the study was carried out in 
accordance with the approved guidelines. 

2.2. Experimental protocol 

Upon arrival to the laboratory, the participants were informed of the 
experimental protocol and footswitch sensors sampling at 1500 Hz 
(Noraxon, Scottsdale, AZ, USA) were placed under both heels for heel 
strike identification. This sampling frequency ensured a heel strike event 
detection precision of more than 1 ms. 

The participants completed five overground walking trials on an 
indoor 1/8th mile long track separated by at least 5 min of rest between 
the trials and where each trial included a minimum of 700 strides 
(approximately 13 min duration). First, the participants completed a 
SPW trial followed by the four paced trials PG, PU, WG and WU in 
randomized order. During the paced trials, the participants received 
visual cues through worn non-prescription glasses with an attached mini 
HDMI screen (Vufine+, Sunnyvale, CA, USA). The visual cue was a 
horizontal bar which moved vertically between two stationary bars 

(Fig. 2). The participants were instructed to synchronize their right heel 
strike to the moving bar reaching the stationary top bar and their left 
heel strike to the moving bar reaching the bottom stationary bar (Fig. 2). 
The timing of the moving bar was scaled to the mean and standard de-
viation of the stride-to-stride time intervals recorded during the SPW 
trial for each participant. The four pacing signals displayed to the par-
ticipants were generated in using custom made scripts in MATLAB 
(MathWorks Inc. Natrick, MA). The PG signal was created in an iterative 
fashion by first simulating PG from an algorithm documented in Sup-
plementary Material in a file named ‘pinkNoise.m’). Next, the noise was 
checked using DFA to ensure it had an α close to 1. If not, then the 
process repeated until convergence was met (0.996 < α < 1.004). WG 
was also created in an iterative fashion by randomly permuting the PG 
signal until DFA measured 0.496 < α < 0.504. In this way, the two 
signals contained the exact same values – and consequently identical 
PDF – but differed in ACF. WU was generated using the ‘rand’ function in 
MATLAB but also in an iterative fashion, checking for the same 
convergence criteria as WG. Lastly, PU signal was constructed by re- 
ordering WU to have the same rank ordering as the PG signal. This 
process is documented in Supplementary Material in a file named 
‘GeneratedNoiseTS.m’. The maximal and minimum of the DFA alpha 
values of each pacing signals are presented in Table 1. The present study 
used visual cues following the conclusion based on previous 

Fig. 1. Examples of the four pacing signals Gaussian pink noise (top row), uniform pink noise (second row), Gaussian white noise (third row) and uniform white 
noise (bottom row) with corresponding power spectral density (second column) and probability distribution (third column). 
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observations from our lab of visual cues being superior to auditory cues 
during paced treadmill walking [39]. 

2.3. Data analysis 

Stride-to-stride time intervals were calculated as the time between 
two consecutive heel strikes of the same foot. The initial and final 50 
strides were discarded from the stride-to-stride time intervals time series 
from the paced walking trials prior to further analysis to avoid any 
transient effect related to visual stimulus familiarization. The length of 
the analyzed time series (n = 600 strides) were in agreement with pre-
vious recommendations for DFA calculations [5]. 

DFA was used to quantify the temporal structure of the stride-to- 
stride time interval variability during the five trials [9]. DFA includes 
several calculation steps. First, the time series is integrated by calcu-
lating the cumulative sum of the deviations around the mean (Equation 
(1)). 

y(k) =
∑k

i
[x(i) − xave] (1) 

Second, the time series is divided into windows of equal length, n and 
a least square line is fitted to each window. Third, the y coordinate of the 
straight-line segments, yn(k), is used to detrend the time series, y(k), 
after which the root mean square fluctuation is calculated (equation 
(2)). 

F(n) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑Nn

k=1[y(k) − yn(k)]2
√

(2) 

This procedure is repeated across the entire time series to assess the 
relationship between the average fluctuation, F(n), as a function of 
window size n. To characterize the fluctuations, a scaling exponent is 
calculated as the slope of the linear relationship between logF(n) and 
logn [18]. The present study used an average evenly-spaced DFA algo-
rithm as recommended by Almurad and Deligniéres [1]. A box size range 

of [16, N/9] and a scaling region of 10–30 were used for the DFA in the 
present study. 

2.4. Statistics 

To test if the stride-to-stride time intervals deviated from a Gaussian 
distribution, a one-sample Kolmogorov-Smirnov test was applied. A 
potential limitation of comparing distributions with KS test is that it only 
compares the one value, the maximum distance between respective 
cumulative distributions. In search of convergent validity, we also fit a 
normal distribution to each time series using a maximum likelihood 
approach. Subsequently, we compared the deviances (deviance = -2 ×
loglikelihood) to determine if normality depended on experimental 
conditions. 

To investigate if the probability distributions of the stride-to-stride 
time intervals and the corresponding visual cues during each trial 
were similar, a two-sample Kolmogorov-Smirnov test was applied. This 
test quantifies the difference in probability distribution between the two 
investigated signals and returns a D-value. D-values below the critical D- 
limit (with a level of significance set at 0.05) indicate that the two sig-
nals had similar probability distribution. Additionally, the D-value was 
used as a proxy measure of the cue-matching performance i.e., how well 
the footsteps were timed to the visual cues. Greater cue-matching per-
formance was characterized by low D-values. 

The present study adopted a Bayesian analytical approach which is 
briefly described below (for details see references [16,26,27,40]). A 
two-way Bayesian repeated measure ANOVA was applied to investigate 
the effect of the different cue signals on the D-values from the one-sample 
and two-sample Kolmogorov-Smirnov tests and the scaling exponent of 
the stride-to-stride time intervals. The present study used an objective 
Bayesian ANOVA with default Cauchy priors which entailed the 
computing and interpreting the Bayes Factor (BF10) as an alternative to 
the traditional p-value often reported in frequentist statistics. The BF10 is 
a ratio representing the information in favor of the alternative hypoth-
esis relative to the null hypothesis. To interpret the BF10, the following 
intervals were related to the strength of the evidence in favor of the 
alternative hypothesis: BF10 = 1 – 3 represents anecdotal evidence (i.e. 
weak or limited evidence), BF10 = 3 – 10 represents substantial evi-
dence, BF10 = 10 – 30 represents strong evidence, BF10 = 30 – 100 
represents very strong evidence and BF10 greater than 100 represents 
decisive evidence. The following intervals of the BF10 were related to the 
strength of the evidence in favor of the null hypothesis: BF10 = 1/3 – 1 
represents anecdotal evidence (i.e. weak or limited evidence), BF10 = 1/ 
10 – 1/3 represents substantial evidence, BF10 = 1/30 – 1/10 represents 
strong evidence, BF10 = 1/100 – 1/30 represents very strong evidence 
and BF10 < 1/100 represents decisive evidence [42]. BF10 = 1 represent 
no evidence in favor of either of the two hypothesis. We do note that the 
above categories are not to be taken as absolute, nor are they to be used 
to make dichotomous decisions or absence about an effect. Instead, the 
above categories are meant to provide researchers with a vocabulary to 
describe the strength of empirical results. Between-trial differences in D- 
values and scaling exponents were investigated using post hoc tests with 
the posterior odds corrected for multiple comparisons [41]. All statis-
tical analyses were performed in JASP (JASP Team, 2021). 

3. Results 

The data from the PU trial of two participants were excluded due to 
equipment failures. 

3.1. Scaling exponent of the visual cues 

The scaling exponents of the four pacing signals PG, PU, WG and WU 
were 0.97 ± 0.03, 0.93 ± 0.06, 0.45 ± 0.16 and 0.43 ± 0.15, 
respectively. 

Fig. 2. The participants wore glasses with an HDMI display attachment (right 
picture). This display was placed only on the right side and allowed participants 
to view the visual pacing signal while simultaneously being unobtrusive to their 
normal vision. The continuous visual stimulus viewed by participants consisted 
of a grey bar moved from top to bottom (left picture). The participants were 
instructed to match the heel strikes of their right foot to the top and left heel 
strikes with the bottom of the bar’s path. The blue arrows present on the figure 
are only illustrative of the bar’s movement direction. 

Table 1 
Maximum and Minimum values of α for all pacing signal conditions.   

PG PU WG WU 

Max α Value  1.03  0.99  0.51  0.52 
Min α Value  0.92  0.77  0.42  0.45  
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3.2. Scaling exponent of the stride-to-stride time intervals 

There was substantial evidence for including both main effects of 
ACF and PDF (BF10 = 4.72) on the scaling exponent of the stride-to- 
stride time intervals and there was anecdotal evidence against 
including an interaction (BF10 = 0.431; Fig. 3). There was decisive ev-
idence (BF10 = 3.99 × 105) suggesting that the stride-to-stride time in-
tervals during trials with pink noise as pacing signal returned higher 
scaling exponents compared to the white noise trials regardless of the 
PDF. There was limited evidence (BF10 = 2.12) suggesting that the 
stride-to-stride time intervals during trial with a Gaussian distribution of 
the cues returned higher scaling exponent compared to the uniform 
distribution trials regardless of the ACF. 

The scaling exponent stride-to-stride time intervals was 10.15 % 
lower compared to the scaling exponent of the corresponding pacing 
signal during the PG trial, 9.13 % lower during the PU trial, 24.96 % 
higher during the WG trial and 13.41 % higher during the WU trial. 

3.3. Normality distribution of stride-to-stride time intervals 

There was substantial evidence for including both main effects for 
ACF and PDF as well as their interaction effect (BF10 = 7.71) on the D- 
value from the one-sample KS test (Fig. 4). The interaction revealed that 
there was strong evidence (BF10 = 10.12) suggesting a higher D-value 
during the WU trial compared to the PU trial. The was not enough evi-
dence (BF10 = 1.53) to make conclusions about the difference between 
the PG and WG trials. 

Based on maximum likelihood estimation, there was substantial ev-
idence for only including effect of ACF on deviances (BF10 = 3.26). That 
is, regardless of PDF, results from maximum likelihood estimation sug-
gested that stride intervals produced during white noise conditions were 
better fit by Gaussian distribution than a uniform distribution (BF10 =
2201.98). 

3.4. Cue-matching performance 

There was substantial evidence (BF10 = 7.1) that the effect on the D- 
value from the two-sample KS test was attributable to the ACF alone. 
That is, there was substantial evidence against a main effect of PDF 
(BF10 = 0.39), but there was insufficient evidence to determine the 
presence of an interaction (BF10 = 0.18; Fig. 5), potentially suggesting 
the need for a larger data set. There was very strong evidence (BF10 =
61.51) suggesting that the D-value was larger during trials with white 

noise as the pacing signal compared to pink noise trials regardless of the 
PDF. 

4. Discussion 

The purpose of the present study was to investigate the isolated and 
combined effect of ACF and PDF of the pacing signals on the temporal 
structure of the stride-to-stride time intervals during visually guided 
paced overground walking. This was achieved by including four pacing 
trials where the pacing signals were combinations 1) of pink and white 
noise signals which represent two qualitatively different ACFs, and 2) 
Gaussian and uniform distributions, which represent two qualitatively 
different PDFs. Temporal structure of the stride-to-stride time intervals 
was quantified by the DFA scaling exponent. We hypothesized that 1) 
the scaling exponent would be highest and close to 1.0 during the PG 
trial, 2) that the inclusion of either white noise pattern (WG and WU 
trial) or uniform distribution (PU and WU trials) in the pacing signals 
would decrease the scaling exponent compared to the PG trial and 3) 
that the scaling exponent during the trial with combined use of white 
noise pattern and uniform distribution (WU) in the pacing signal would 

Fig. 3. Mean ± SD of scaling exponent of the stride-to-stride time intervals for 
the four pacing trials with the two noise types (pink and white) and two 
probability distributions (Gaussian and uniform). The scaling exponent 
increased as a function of both noise type and probability distribution with pink 
noise and Gaussian distribution having higher scaling exponents. 

Fig. 4. Mean ± SD of the D-value from the one-sample KS test for normality 
distribution in the stride-to-stride time intervals for the four pacing trials with 
the two noise types (pink and white) and two probability distributions 
(Gaussian and uniform). The D-value was higher during the WU trial compared 
to the PU trial. 

Fig. 5. Mean ± SD of the D-value from the two-sample KS test for cue-matching 
performance during the four pacing trials with the two noise types (pink and 
white) and two probability distributions (Gaussian and uniform). The D-value 
was higher during the white noise trials compared to the pink noise trials. 
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be lower than the three other trials and close to 0.5. 

4.1. Hypothesis 1: Scaling exponent close to 1 during the PG trial 

The first hypothesis was supported as the scaling exponent of the 
stride-to-stride time intervals during the PG trial was 0.90 and higher 
than the three other pacing trials. This is in line with several previous 
studies from our laboratory using both visual and auditory cues as 
pacing signals [11–13,20,37,39]. It suggests that paced walking with a 
pink noise signal with a Gaussian distribution results in statistical 
persistence, consistent with the natural variability of the stride-to-stride 
time intervals. 

It is well-established in the literature that the DFA scaling exponent 
of the variability of the stride-to-stride time intervals is close to 1 during 
SPW in healthy young individuals [8,9,33,34]. Furthermore, the scaling 
exponent of the stride-to-stride time intervals is reduced towards 0.5 in 
older individuals and patients of various disorders [7,10,22]. This in-
dicates that the healthy natural variability of the stride-to-stride time 
intervals possesses strong statistical persistence, but that age and dis-
orders can alter the temporal structure of the stride-to-stride time in-
tervals towards uncorrelated noise. According to the OMVH, the 
movement of healthy individuals are characterized by an optimal 
combination of moderate predictability and high complexity. Changes 
to the sensorimotor system following aging or disorders are believed to 
move the individuals away from the optimal state towards either a state 
of low predictability and low complexity or high predictability and low 
complexity [30,31]. Equally, walking at speeds above or below the SPW 
constitutes non-optimal conditions where stride-to-stride time intervals 
fluctuations and lower limb segment movements have different tempo-
ral structure compared to that during SPW [4,19]. Hence, the SPW in 
healthy young individuals constitutes an optimal condition, where the 
stride-to-stride intervals produce high complexity and moderate level of 
predictability as predicted by OMVH. The results of the present study 
suggest that paced walking to a Gaussian distributed pink noise signal 
constituted an equally optimal walking condition as SPW. Interestingly, 
we recently provided evidence suggesting that paced walking with pink 
noise signals can restore the temporal structure of the stride-to-stride 
time intervals of older adults and retain the restored values after the 
paced signal was removed [13,21]. This indicates that paced walking 
with pink noise as the pacing signals could have a strong impact as a gait 
rehabilitation tool. 

4.2. Hypothesis 2: Reduced scaling exponents during the PU, WG and WU 
trials 

The second hypothesis was supported for the WG and WU trials as 
there was decisive evidence of a lower scaling exponent during the trials 
with white noise when compared to the trials with pink noise as pacing 
signals. Furthermore, it was partly supported for the PU trial, as there 
was limited evidence of lower scaling exponent during trials with uni-
form distributed pacing signals compared to the trials with Gaussian 
distributed pacing signals. These results support our recent study, where 
we observed that walking paced with either shuffled pink noise with a 
Gaussian distribution, white noise with a Gaussian distribution, or white 
noise with a uniform distribution resulted in lower scaling exponent of 
the stride-to-stride time intervals when compared to paced walking with 
pink noise with a Gaussian distribution as pacing signal and SPW [20]. 
Taken together, the present and previous studies provide compelling 
evidence that both the ACF and the PDF of the pacing signal affect the 
temporal structure of the stride-to-stride time intervals [20]. The effect 
of the ACF on the temporal structure of the stride-to-stride time intervals 
has been presented previously in studies using either auditory or visual 
pacing cues [11,12,15,24,28,32,37,39]; however, the observed effect of 
the PDF has to our knowledge not been reported previously. Note-
worthy, the results of the present study favored an exclusion of the 
interaction between the two independent parameters suggesting that 

ACF and PDF have independent effects on the scaling exponent of the 
stride-to-stride time intervals. 

From the initial OMVH perspective, the pink noise pacing signal 
represents sensory input with high complexity and moderate predict-
ability and the white noise pacing signal represents sensory input with 
low complexity and low predictability [30,31]. Our previous findings in 
combination with the current results suggest the need to reevaluate 
these assumptions [20]. In pacing signals with a uniform distribution, all 
values are equally likely to occur which increases the complexity of the 
signals due to higher distributional entropy compared to the signals with 
a Gaussian distribution. Thus, the pacing signal used in the PG trial has 
lower complexity compared to the pacing signal used in the PU trial but 
the same moderate predictability. The pacing signal in the WG trial has 
also lower complexity compared to the pacing signal in the WU trial but 
the same low predictability. The altered complexity and predictability of 
the pacing signal in the PU, WG and WU trials compared to the PG trial 
led to a reduction in the scaling exponent of the stride-to-stride time 
intervals suggesting an impaired sensorimotor synchronization process. 
Thus, the sensorimotor system appears to have an affinity towards 
sensory input with temporal structure similar to pink noise and a 
Gaussian probability distribution. Based on the results of the present 
study, gait rehabilitation with paced walking should use pink noise 
signals with a Gaussian distribution compared to alternative signals. 

It is noteworthy that the present study only included Gaussian and 
uniform distributions for the pacing signals. These were chosen as they 
represent two distinctly different distributions with different distribu-
tional entropy. The effect of other distributions with more similar 
distributional entropy should be investigated in future studies. 
Furthermore, future studies should aim at establishing reliable and valid 
methods for quantifying this distributional entropy. 

4.3. Hypothesis 3: Scaling exponent close to 0.5 during the WU trial 

The third hypothesis was also supported as the scaling exponent of 
the stride-to-stride time intervals during the WU trial was, on average, 
0.54 and lower than during the three other trials. This indicates that the 
temporal structure of the stride-to-stride time intervals during the WU 
trial resembled uncorrelated noise where each stride time was uncor-
related to the stride time of previously completed strides. This bolsters 
our previous observations and suggests that the combination of white 
noise and uniform distribution in the pacing signals challenge the 
sensorimotor synchronization process and removes the temporal corre-
lation which normally exists in the natural variability of stride-to-stride 
time intervals [20]. Thus, the presence of temporal structure in the 
sensory input during paced walking is crucial for the generation of the 
temporal structure of the variability of the stride-to-stride time intervals. 

Humans can walk energetically favorable and stable (i.e., without 
falling) in many surroundings and on different surfaces, and while 
performing competing cognitive tasks (e.g., mobile phone talking or 
texting) [14,36]. This is only possible due to a flexible motor control 
system which is capable of solving the task of walking in a number of 
ways, while still being energy efficient, stable and adaptive [36]. Thus, 
several internal and external sensory systems can be used to control 
walking including the vision, hearing, proprioception and vestibular 
system [6,35]. Excluding one of the sensory inputs does not hinder the 
motor control of stable walking. For example, the flexibility of the motor 
control system enables walking with eyes closed, without falling – 
walkers simply adopt a more cautious strategy [23]. In the present 
study, the visual input was manipulated by altering the temporal pattern 
of the cues which affected the temporal structure of the variability of the 
stride-to-stride time intervals. This suggests that not only spatial infor-
mation about obstacles, distances to obstacles, or different surfaces in-
fluences the stride-to-stride time but also the temporal rate and order of 
the visual information. 
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4.4. Stride-to-stride time interval normality distribution and cue-matching 
performance 

The use of pacing signals with Gaussian distribution did not affect the 
normality of the stride-to-stride time intervals quantified by the one- 
sample KS test regardless of the noise type. However, the D-value dur-
ing the PU trial was lower compared to during the WU trials, indicating 
that the stride-to-stride time interval deviated more from a normal dis-
tribution compared when the participants were instructed to synchro-
nize their steps to a pacing signal with white noise pattern and uniform 
distribution. Thus, the present study replicate the results of our previous 
study and suggests that the effect of the different noise types on the 
normality of the stride-to-stride time intervals were only evident when 
combined with a uniform distribution of the pacing signals [20]. In 
contrast, the somewhat conflicting evidence from distribution fits based 
on maximum likelihood suggests that white noise pacing signals were 
generally better fit by a Gaussian distribution than a uniform distribu-
tion. However, we also note that, in most cases, a Gaussian distribution 
as a better fit for stride intervals produced with white noise pacing 
signals than those produced with uniform distributions. Clearly, more 
research will be needed to fully distinguish causal influences of ACFs 
and PDFs on stride interval distributions. 

Interestingly, the results of the cue-matching performance indicated 
that it was easier for the participants to match their footsteps to the 
pacing signals with a pink noise pattern compared to a white noise 
pattern. This was also observed in our previous study and suggests an 
affinity to the temporal pattern of the pink noise pacing signals for 
sensorimotor synchronization [20]. The results did not indicate that the 
underlying probability distribution influenced the cue-matching per-
formance. This could suggest that the ability to match movement to an 
external visual cue relies on the temporal structure of the cues and not 
on the likelihood of receiving a given cue. 

5. Conclusion 

In the present study, we observed that the ACF and PDF of pacing 
signals have individual effects on the temporal structure of the stride-to- 
stride time intervals during visual guided paced walking. The temporal 
structure of the stride-to-stride time intervals was quantified by the DFA 
scaling exponent and resembled the temporal pattern of the pacing 
signal. Thus, pacing signals with a pink noise pattern resulted in a 
scaling exponent of the stride-to-stride time intervals close to 1 which 
corresponds to that observed when young healthy adults walk un-paced 
at a self-selected speed. Pacing signals with a white noise pattern 
resulted in a scaling exponent close to 0.5, which is often observed in 
older adults and individuals with impaired gait. Changing the proba-
bility distribution of the pacing signals from Gaussian to uniform also 
reduced the scaling exponent of the stride-to-stride time intervals. 
Together, these results suggest that the sensorimotor system in healthy 
young individuals has an affinity towards external cues with a pink noise 
pattern and a Gaussian probability distribution during paced walking. 
Furthermore, the pacing signals with low predictability (e.g. white 
noise) or high distributional complexity (uniform distribution) chal-
lenged the sensorimotor system which led to a deviations from a normal 
distribution of the stride-to-stride time intervals and poorer footstep- 
visual cue matching performance compared to the trials with the pink 
noise and Gaussian distributed (high complexity and moderate pre-
dictability) pacing signal. The results of the present study should be 
taking into consideration when using paced walking as a rehabilitation 
tool. 
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