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ARTICLE INFO ABSTRACT

Keywords: The temporal structure of the variability of the stride-to-stride time intervals during paced walking is affected by
Fractal: Gait the underlying autocorrelation function (ACF) of the pacing signal. This effect could be accounted for by dif-
Metronome ferences in the underlying probability distribution function (PDF) of the pacing signal. We investigated the
522?:]):/1\:?;“% isolated and combined effect of the ACF and PDF of the pacing signals on the temporal structure of the stride-to-

stride time intervals during visually guided paced overground walking. Ten young, healthy participants
completed four walking trials while synchronizing their footstep to a visual pacing signal with a temporal pattern
of either pink or white noise (different ACF) and either a Gaussian or normal probability distribution (different
PDF). The scaling exponent from the Detrended Fluctuation Analysis was used to quantify the temporal structure
of the stride-to-stride time intervals. The ACF and PDF of the pacing signals had independent effects on the
scaling exponent of the stride-to-stride time intervals. The scaling exponent was higher during the pink noise
pacing trials compared to the white noise pacing trials and higher during the trials with the Gaussian probability
distribution compared to the uniform distribution. The results suggest that the sensorimotor system in healthy
young individuals has an affinity towards external cues with a pink noise pattern and a Gaussian probability

Visual Cues

distribution during paced walking.

1. Introduction

Human movements are inherently variable. This can be easily
observed in the motor performance of multiple repetitions of a task such
as the variations identified in the stride-to-stride time intervals during
locomotion [17,29-31]. Interestingly, when exposed to external visual
or auditory cues, humans can entrain their footsteps to the pacing signal
through the process of sensorimotor synchronization [12,24,28]. This
emphasizes the importance of sensory input integration in the motor
control of walking and has been utilized as a rehabilitation tool to
restore impaired gait function in patients and older adults [2,3,10,25].
Specifically, Hove and colleagues observed that Parkinson’s patients
restored their impaired gait during walking with an interactive auditory
pacing signal which incorporated the dynamics of the patients’ gait to
generate a cue-step entrainment [10]. The gait restoration effect during
the interactive pacing trial was carried over to non-paced walking

* Corresponding author.
E-mail address: alikens@unomaha.edu (A.D. Likens).

https://doi.org/10.1016/j.neulet.2022.136909

immediately after the intervention [10]. Additionally, three-weeks
training of arm-in-arm walking between a younger and older individ-
ual has been observed to improve the gait of the older individual for up
to two weeks post the intervention [2]. Furthermore, it is well estab-
lished that paced walking can alter the temporal structure of the vari-
ability in the stride-to-stride time intervals when exposed to different
types of pacing signals [2,3,10-12,15,25,32,34,37,39].

To assess the effect of different pacing signals on the variability in
stride-to-stride time intervals (their temporal structure), the method of
Detrended Fluctuation Analysis (DFA) has been widely used [7-9]. DFA
returns a scaling exponent. When the value of the exponent is above 0.5,
this indicates statistical persistence in the variability of the stride-to-
stride time intervals. This means that a deviation from the mean of the
stride-to-stride time in one direction is likely to be followed by a devi-
ation in the same direction. A scaling exponent that has a value below
0.5 indicates a statistical anti-persistence in the variability which means
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that a deviation from the mean of the stride-to-stride time intervals in
one direction is likely to be followed by a deviation in the opposite di-
rection. If the scaling exponent is close to 0.5, it indicates that the
variability of the stride-to-stride time intervals have an uncorrelated
structure with no temporal correlation. In healthy individuals, the
scaling exponent of the variability in stride-to-stride time intervals
during un-paced walking has been observed to be close to 1.0, indicating
that a healthy gait pattern demonstrates variability in the stride-to-stride
time intervals with the presence of statistical persistence [8,9,12,33].

Studies from our research team have also used different signal types
as pacing signals to alter the temporal structure of the variability of the
stride-to-stride time intervals during paced walking and thereby altering
the scaling exponent [11,12,20,37,39]. These types of signals include
different colors of noise with different underlying autocorrelation
functions (ACF) and power spectrum density e.g. white noise which has
a flat power spectrum density and pink noise which has decreasing
power spectrum density (—3.01 dB/octave). The quantification of the
temporal pattern of these pacing signals using DFA reveals that white
noise signal has a scaling exponent of 0.5 and pink noise signal has a
scaling exponent of 1 [11,13]. Our studies have shown that the temporal
structure of the variability of the stride-to-stride time intervals in young
healthy individuals during paced walking follows the temporal pattern
of the pacing signals. Thus, when walking with a pink noise pacing
signal, the scaling exponent of the variability of the stride-to-stride time
intervals is close to 1 which indicates the presence of a strong statistical
persistence in the variability of the stride-to-stride time intervals. When
walking with a white noise pacing signal, the scaling exponent is above
but close to 0.5 which indicates that the variability of the stride-to-stride
time intervals possess a weak statistical persistence tending towards an
uncorrelated structure. Furthermore, if an invariant pacing signal (e.g.
an isochronous metronome) is used, the scaling exponent of the vari-
ability of the stride-to-stride time intervals is below 0.5 indicating that
the variability of the stride-to-stride time intervals possess statistical
anti-persistence [11-13,20,37,39]. This indicates that paced walking
with a specific temporal pattern embedded in the pacing signal offers a
potent manipulator of the temporal structure of stride-to-stride time
intervals. In addition, the use of pink noise as the pacing signals induce
the same statistical persistence in the stride-to-stride time intervals as
during un-paced walking in healthy young individuals.

Recently, we have also observed that paced walking with pink noise
pacing signals can restore the temporal structure of the stride-to-stride
time intervals of older adults towards that of younger adults as the
scaling exponent changed from 0.71 during self-paced walking (SPW) to
0.85 during pink noise paced walking. These restored healthy values
were retained after the paced signal was removed (scaling exponent of
0.86) [38]. Furthermore, we also recently observed that paced walking
with a pink noise pacing signal elicited greater resilience to external
perturbations compared to paced walking with a periodic pacing signal
[13,21]. Thus, paced walking with a pink noise pacing signal seems to be
a promising tool for gait rehabilitation and fall prevention for fall prone
populations [13]. Together, these results also support the Optimal
Movement Variability Hypothesis (OMVH) where healthy human
movements are believed to be characterized by an optimal combination
of moderate predictability and high complexity at which the sensori-
motor system possesses the necessary structure to produce coherent
movements and sufficient flexibility to adapt to an ever-changing
environment [31]. SPW for healthy individuals or paced walking with
pink noise pacing signals reflect this optimal state. On the other hand,
paced walking with white noise or invariant pacing signals or SPW of
older adults and patients, reflect conditions outside this state. It should
be stated that in the framework of OMVH, predictability refers to the
level of repeatable patterns in the behavior of the system in question.
Thus, the investigated behavior can be characterized on the continuum
between a highly repetitive or completely random and various entropy
measures can be used for the quantification of predictability. In contrast,
complexity refers to behavioral characteristic which spans multiple
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spatial and temporal scales which captures the infinitely entangled
components of the system in question. For the quantification of this
entity, single or multiscale fractal measures are often used.

During paced walking with different noise types as pacing signal, the
temporal order in which the cues are provided is determined by the ACF.
However, it could also be influenced by the underlying probability
distribution function (PDF) which determines the likelihood of a given
cue being provided at a given time point. Two distinctly different
probability distributions are Gaussian and uniform. In a pacing signal
with a Gaussian probability distribution, there is a greater likelihood of
obtaining cues with a value close to the mean value of the signal and less
likelihood of receiving cues with a value far from the mean of the signal.
In contrast, in a pacing signal with a uniform probability distribution,
there is an equal likelihood of receiving any of the cues within the signal.
As two frequently used signals for paced walking, white noise and pink
noise represent signals with different ACFs [11,12,21,37,39]. However,
they can also be generated with different PDFs e.g., either a Gaussian or
uniform distribution (Fig. 1).

While the aforementioned differences in the temporal structure of
the stride-to-stride time intervals during paced walking have been
attributed the differences in the autocorrelation of the pacing signals, we
recently observed that the probability distribution of the pacing signals
may also influence the temporal structure [20]. During visually paced
walking with a Gaussian distributed white noise pacing signal, the DFA
scaling exponent of the stride-to-stride time intervals were close to 0.5.
However, when using white noise with a uniform distribution as the
pacing signal, the scaling exponent decreased further towards 0.5 [20].
This suggests that change in the probability distribution by itself can
affect the scaling exponent of the stride-to-stride time intervals. From an
OMVH perspective, one possible interpretation of this result is that the
inclusion of a uniform distribution increases the distributional
complexity of the pacing signals which challenge the sensorimotor
synchronization process [20]. The inclusion of a uniform distribution
instead of a Gaussian distribution in the white noise pacing signal cre-
ates a mismatch between the distributional preference of the sensori-
motor system and the externally provided to-be-coordinated stimulus.
This mismatch results in the greatest deviation in the scaling exponent of
the stride-to-stride time intervals during the uniform white noise con-
dition compared to the un-paced condition. To further test this inter-
pretation and to decipher the role of the ACF and PDF of the pacing
signals for sensorimotor synchronization, the next logical experimental
step is to include a pacing trial which combines both pink noise and a
uniform distribution.

Therefore, the purpose of the present study was to investigate the
isolated and combined effect of ACF and PDF of the pacing signals on the
temporal structure of the stride-to-stride time intervals during visually
guided paced overground walking. To accomplish this purpose, we
included four paced walking trials with the following pacing signals: 1)
pink noise with Gaussian distribution (PG), 2) pink noise with uniform
distribution (PU), 3) white noise with Gaussian distribution (WG) and 4)
white noise with uniform distribution (WU); in addition to a SPW trial.
DFA scaling exponent was used to quantify the temporal structure of the
variability of the stride-to-stride time intervals. We hypothesized that 1)
the scaling exponent would be highest and close to 1.0 during the PG
trial, 2) that the inclusion of either white noise pattern (WG and WU
trial) or uniform distribution (PU and WU trials) in the pacing signals
would decrease the scaling exponent compared to the PG trial and 3)
that the scaling exponent during the trial with combined use of white
noise pattern and uniform distribution (WU) in the pacing signal would
be lower than the three other trials and close to 0.5.

2. Methods
2.1. Participants

Ten healthy young adults (3 females, 7 males; age = 25 + 3.8 years;
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Fig. 1. Examples of the four pacing signals Gaussian pink noise (top row), uniform pink noise (second row), Gaussian white noise (third row) and uniform white
noise (bottom row) with corresponding power spectral density (second column) and probability distribution (third column).

body mass = 80.2 + 16.1 kg; height = 1.78 + 0.12 m) with no neuro-
logical or musculoskeletal disorders participated in this study. All par-
ticipants provided informed written consent prior to participation. The
study protocol was approved by the University of Nebraska Medical
Center Institutional Review Board, and the study was carried out in
accordance with the approved guidelines.

2.2. Experimental protocol

Upon arrival to the laboratory, the participants were informed of the
experimental protocol and footswitch sensors sampling at 1500 Hz
(Noraxon, Scottsdale, AZ, USA) were placed under both heels for heel
strike identification. This sampling frequency ensured a heel strike event
detection precision of more than 1 ms.

The participants completed five overground walking trials on an
indoor 1/8th mile long track separated by at least 5 min of rest between
the trials and where each trial included a minimum of 700 strides
(approximately 13 min duration). First, the participants completed a
SPW trial followed by the four paced trials PG, PU, WG and WU in
randomized order. During the paced trials, the participants received
visual cues through worn non-prescription glasses with an attached mini
HDMI screen (Vufine+, Sunnyvale, CA, USA). The visual cue was a
horizontal bar which moved vertically between two stationary bars

(Fig. 2). The participants were instructed to synchronize their right heel
strike to the moving bar reaching the stationary top bar and their left
heel strike to the moving bar reaching the bottom stationary bar (Fig. 2).
The timing of the moving bar was scaled to the mean and standard de-
viation of the stride-to-stride time intervals recorded during the SPW
trial for each participant. The four pacing signals displayed to the par-
ticipants were generated in using custom made scripts in MATLAB
(MathWorks Inc. Natrick, MA). The PG signal was created in an iterative
fashion by first simulating PG from an algorithm documented in Sup-
plementary Material in a file named ‘pinkNoise.m”). Next, the noise was
checked using DFA to ensure it had an « close to 1. If not, then the
process repeated until convergence was met (0.996 < o < 1.004). WG
was also created in an iterative fashion by randomly permuting the PG
signal until DFA measured 0.496 < o < 0.504. In this way, the two
signals contained the exact same values — and consequently identical
PDF - but differed in ACF. WU was generated using the ‘rand’ function in
MATLAB but also in an iterative fashion, checking for the same
convergence criteria as WG. Lastly, PU signal was constructed by re-
ordering WU to have the same rank ordering as the PG signal. This
process is documented in Supplementary Material in a file named
‘GeneratedNoiseTS.m’. The maximal and minimum of the DFA alpha
values of each pacing signals are presented in Table 1. The present study
used visual cues following the conclusion based on previous
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Fig. 2. The participants wore glasses with an HDMI display attachment (right
picture). This display was placed only on the right side and allowed participants
to view the visual pacing signal while simultaneously being unobtrusive to their
normal vision. The continuous visual stimulus viewed by participants consisted
of a grey bar moved from top to bottom (left picture). The participants were
instructed to match the heel strikes of their right foot to the top and left heel
strikes with the bottom of the bar’s path. The blue arrows present on the figure
are only illustrative of the bar’s movement direction.

Table 1
Maximum and Minimum values of « for all pacing signal conditions.
PG PU WG WU
Max o Value 1.03 0.99 0.51 0.52
Min « Value 0.92 0.77 0.42 0.45

observations from our lab of visual cues being superior to auditory cues
during paced treadmill walking [39].

2.3. Data analysis

Stride-to-stride time intervals were calculated as the time between
two consecutive heel strikes of the same foot. The initial and final 50
strides were discarded from the stride-to-stride time intervals time series
from the paced walking trials prior to further analysis to avoid any
transient effect related to visual stimulus familiarization. The length of
the analyzed time series (n = 600 strides) were in agreement with pre-
vious recommendations for DFA calculations [5].

DFA was used to quantify the temporal structure of the stride-to-
stride time interval variability during the five trials [9]. DFA includes
several calculation steps. First, the time series is integrated by calcu-
lating the cumulative sum of the deviations around the mean (Equation

(1).
¥y = 7 (E) — xe] &)

Second, the time series is divided into windows of equal length, n and
a least square line is fitted to each window. Third, the y coordinate of the
straight-line segments, y,(k), is used to detrend the time series, y(k),
after which the root mean square fluctuation is calculated (equation
().

Pl = 530 b0 — w07 @

This procedure is repeated across the entire time series to assess the
relationship between the average fluctuation, F(n), as a function of
window size n. To characterize the fluctuations, a scaling exponent is
calculated as the slope of the linear relationship between logF(n) and
logn [18]. The present study used an average evenly-spaced DFA algo-
rithm as recommended by Almurad and Deligniéres [1]. A box size range
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of [16, N/9] and a scaling region of 10-30 were used for the DFA in the
present study.

2.4. Statistics

To test if the stride-to-stride time intervals deviated from a Gaussian
distribution, a one-sample Kolmogorov-Smirnov test was applied. A
potential limitation of comparing distributions with KS test is that it only
compares the one value, the maximum distance between respective
cumulative distributions. In search of convergent validity, we also fit a
normal distribution to each time series using a maximum likelihood
approach. Subsequently, we compared the deviances (deviance = -2 x
loglikelihood) to determine if normality depended on experimental
conditions.

To investigate if the probability distributions of the stride-to-stride
time intervals and the corresponding visual cues during each trial
were similar, a two-sample Kolmogorov-Smirnov test was applied. This
test quantifies the difference in probability distribution between the two
investigated signals and returns a p-value. p-values below the critical p-
limit (with a level of significance set at 0.05) indicate that the two sig-
nals had similar probability distribution. Additionally, the p-value was
used as a proxy measure of the cue-matching performance i.e., how well
the footsteps were timed to the visual cues. Greater cue-matching per-
formance was characterized by low p-values.

The present study adopted a Bayesian analytical approach which is
briefly described below (for details see references [16,26,27,40]). A
two-way Bayesian repeated measure ANOVA was applied to investigate
the effect of the different cue signals on the p-values from the one-sample
and two-sample Kolmogorov-Smirnov tests and the scaling exponent of
the stride-to-stride time intervals. The present study used an objective
Bayesian ANOVA with default Cauchy priors which entailed the
computing and interpreting the Bayes Factor (BF;() as an alternative to
the traditional p-value often reported in frequentist statistics. The BFqq is
a ratio representing the information in favor of the alternative hypoth-
esis relative to the null hypothesis. To interpret the BF;, the following
intervals were related to the strength of the evidence in favor of the
alternative hypothesis: BF;o = 1 — 3 represents anecdotal evidence (i.e.
weak or limited evidence), BFjg = 3 — 10 represents substantial evi-
dence, BFjp = 10 - 30 represents strong evidence, BF;o = 30 — 100
represents very strong evidence and BF; greater than 100 represents
decisive evidence. The following intervals of the BF;( were related to the
strength of the evidence in favor of the null hypothesis: BF1g = 1/3 -1
represents anecdotal evidence (i.e. weak or limited evidence), BFjo = 1/
10 - 1/3 represents substantial evidence, BF19 = 1/30 — 1/10 represents
strong evidence, BF1g = 1/100 — 1/30 represents very strong evidence
and BFj¢ < 1/100 represents decisive evidence [42]. BF1o = 1 represent
no evidence in favor of either of the two hypothesis. We do note that the
above categories are not to be taken as absolute, nor are they to be used
to make dichotomous decisions or absence about an effect. Instead, the
above categories are meant to provide researchers with a vocabulary to
describe the strength of empirical results. Between-trial differences in p-
values and scaling exponents were investigated using post hoc tests with
the posterior odds corrected for multiple comparisons [41]. All statis-
tical analyses were performed in JASP (JASP Team, 2021).

3. Results

The data from the PU trial of two participants were excluded due to
equipment failures.

3.1. Scaling exponent of the visual cues

The scaling exponents of the four pacing signals PG, PU, WG and WU
were 0.97 + 0.03, 0.93 + 0.06, 0.45 + 0.16 and 0.43 + 0.15,
respectively.
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3.2. Scaling exponent of the stride-to-stride time intervals

There was substantial evidence for including both main effects of
ACF and PDF (BFjp = 4.72) on the scaling exponent of the stride-to-
stride time intervals and there was anecdotal evidence against
including an interaction (BF;o = 0.431; Fig. 3). There was decisive ev-
idence (BF1o = 3.99 x 10°) suggesting that the stride-to-stride time in-
tervals during trials with pink noise as pacing signal returned higher
scaling exponents compared to the white noise trials regardless of the
PDF. There was limited evidence (BF;y = 2.12) suggesting that the
stride-to-stride time intervals during trial with a Gaussian distribution of
the cues returned higher scaling exponent compared to the uniform
distribution trials regardless of the ACF.

The scaling exponent stride-to-stride time intervals was 10.15 %
lower compared to the scaling exponent of the corresponding pacing
signal during the PG trial, 9.13 % lower during the PU trial, 24.96 %
higher during the WG trial and 13.41 % higher during the WU trial.

3.3. Normality distribution of stride-to-stride time intervals

There was substantial evidence for including both main effects for
ACF and PDF as well as their interaction effect (BF1o = 7.71) on the p-
value from the one-sample KS test (Fig. 4). The interaction revealed that
there was strong evidence (BF;o = 10.12) suggesting a higher p-value
during the WU trial compared to the PU trial. The was not enough evi-
dence (BFp¢ = 1.53) to make conclusions about the difference between
the PG and WG trials.

Based on maximum likelihood estimation, there was substantial ev-
idence for only including effect of ACF on deviances (BF1o = 3.26). That
is, regardless of PDF, results from maximum likelihood estimation sug-
gested that stride intervals produced during white noise conditions were
better fit by Gaussian distribution than a uniform distribution (BF;¢ =
2201.98).

3.4. Cue-matching performance

There was substantial evidence (BF1o = 7.1) that the effect on the p-
value from the two-sample KS test was attributable to the ACF alone.
That is, there was substantial evidence against a main effect of PDF
(BF19 = 0.39), but there was insufficient evidence to determine the
presence of an interaction (BFo = 0.18; Fig. 5), potentially suggesting
the need for a larger data set. There was very strong evidence (BFjg =
61.51) suggesting that the p-value was larger during trials with white

Stride-to-stride time interval scaling exponent

—e— Pink noise
—O0— White noise

0.6

Scaling exponent

0.4

0.2

0.0 T T
Gaussian distribution  Uniform distribution

Fig. 3. Mean + SD of scaling exponent of the stride-to-stride time intervals for
the four pacing trials with the two noise types (pink and white) and two
probability distributions (Gaussian and uniform). The scaling exponent
increased as a function of both noise type and probability distribution with pink
noise and Gaussian distribution having higher scaling exponents.
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Fig. 4. Mean + SD of the p-value from the one-sample KS test for normality
distribution in the stride-to-stride time intervals for the four pacing trials with
the two noise types (pink and white) and two probability distributions
(Gaussian and uniform). The p-value was higher during the WU trial compared
to the PU trial.

Cue-matching performance
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Fig. 5. Mean =+ SD of the p-value from the two-sample KS test for cue-matching
performance during the four pacing trials with the two noise types (pink and
white) and two probability distributions (Gaussian and uniform). The p-value
was higher during the white noise trials compared to the pink noise trials.

noise as the pacing signal compared to pink noise trials regardless of the
PDF.

4. Discussion

The purpose of the present study was to investigate the isolated and
combined effect of ACF and PDF of the pacing signals on the temporal
structure of the stride-to-stride time intervals during visually guided
paced overground walking. This was achieved by including four pacing
trials where the pacing signals were combinations 1) of pink and white
noise signals which represent two qualitatively different ACFs, and 2)
Gaussian and uniform distributions, which represent two qualitatively
different PDFs. Temporal structure of the stride-to-stride time intervals
was quantified by the DFA scaling exponent. We hypothesized that 1)
the scaling exponent would be highest and close to 1.0 during the PG
trial, 2) that the inclusion of either white noise pattern (WG and WU
trial) or uniform distribution (PU and WU trials) in the pacing signals
would decrease the scaling exponent compared to the PG trial and 3)
that the scaling exponent during the trial with combined use of white
noise pattern and uniform distribution (WU) in the pacing signal would
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be lower than the three other trials and close to 0.5.
4.1. Hypothesis 1: Scaling exponent close to 1 during the PG trial

The first hypothesis was supported as the scaling exponent of the
stride-to-stride time intervals during the PG trial was 0.90 and higher
than the three other pacing trials. This is in line with several previous
studies from our laboratory using both visual and auditory cues as
pacing signals [11-13,20,37,39]. It suggests that paced walking with a
pink noise signal with a Gaussian distribution results in statistical
persistence, consistent with the natural variability of the stride-to-stride
time intervals.

It is well-established in the literature that the DFA scaling exponent
of the variability of the stride-to-stride time intervals is close to 1 during
SPW in healthy young individuals [8,9,33,34]. Furthermore, the scaling
exponent of the stride-to-stride time intervals is reduced towards 0.5 in
older individuals and patients of various disorders [7,10,22]. This in-
dicates that the healthy natural variability of the stride-to-stride time
intervals possesses strong statistical persistence, but that age and dis-
orders can alter the temporal structure of the stride-to-stride time in-
tervals towards uncorrelated noise. According to the OMVH, the
movement of healthy individuals are characterized by an optimal
combination of moderate predictability and high complexity. Changes
to the sensorimotor system following aging or disorders are believed to
move the individuals away from the optimal state towards either a state
of low predictability and low complexity or high predictability and low
complexity [30,31]. Equally, walking at speeds above or below the SPW
constitutes non-optimal conditions where stride-to-stride time intervals
fluctuations and lower limb segment movements have different tempo-
ral structure compared to that during SPW [4,19]. Hence, the SPW in
healthy young individuals constitutes an optimal condition, where the
stride-to-stride intervals produce high complexity and moderate level of
predictability as predicted by OMVH. The results of the present study
suggest that paced walking to a Gaussian distributed pink noise signal
constituted an equally optimal walking condition as SPW. Interestingly,
we recently provided evidence suggesting that paced walking with pink
noise signals can restore the temporal structure of the stride-to-stride
time intervals of older adults and retain the restored values after the
paced signal was removed [13,21]. This indicates that paced walking
with pink noise as the pacing signals could have a strong impact as a gait
rehabilitation tool.

4.2. Hypothesis 2: Reduced scaling exponents during the PU, WG and WU
trials

The second hypothesis was supported for the WG and WU trials as
there was decisive evidence of a lower scaling exponent during the trials
with white noise when compared to the trials with pink noise as pacing
signals. Furthermore, it was partly supported for the PU trial, as there
was limited evidence of lower scaling exponent during trials with uni-
form distributed pacing signals compared to the trials with Gaussian
distributed pacing signals. These results support our recent study, where
we observed that walking paced with either shuffled pink noise with a
Gaussian distribution, white noise with a Gaussian distribution, or white
noise with a uniform distribution resulted in lower scaling exponent of
the stride-to-stride time intervals when compared to paced walking with
pink noise with a Gaussian distribution as pacing signal and SPW [20].
Taken together, the present and previous studies provide compelling
evidence that both the ACF and the PDF of the pacing signal affect the
temporal structure of the stride-to-stride time intervals [20]. The effect
of the ACF on the temporal structure of the stride-to-stride time intervals
has been presented previously in studies using either auditory or visual
pacing cues [11,12,15,24,28,32,37,39]; however, the observed effect of
the PDF has to our knowledge not been reported previously. Note-
worthy, the results of the present study favored an exclusion of the
interaction between the two independent parameters suggesting that
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ACF and PDF have independent effects on the scaling exponent of the
stride-to-stride time intervals.

From the initial OMVH perspective, the pink noise pacing signal
represents sensory input with high complexity and moderate predict-
ability and the white noise pacing signal represents sensory input with
low complexity and low predictability [30,31]. Our previous findings in
combination with the current results suggest the need to reevaluate
these assumptions [20]. In pacing signals with a uniform distribution, all
values are equally likely to occur which increases the complexity of the
signals due to higher distributional entropy compared to the signals with
a Gaussian distribution. Thus, the pacing signal used in the PG trial has
lower complexity compared to the pacing signal used in the PU trial but
the same moderate predictability. The pacing signal in the WG trial has
also lower complexity compared to the pacing signal in the WU trial but
the same low predictability. The altered complexity and predictability of
the pacing signal in the PU, WG and WU trials compared to the PG trial
led to a reduction in the scaling exponent of the stride-to-stride time
intervals suggesting an impaired sensorimotor synchronization process.
Thus, the sensorimotor system appears to have an affinity towards
sensory input with temporal structure similar to pink noise and a
Gaussian probability distribution. Based on the results of the present
study, gait rehabilitation with paced walking should use pink noise
signals with a Gaussian distribution compared to alternative signals.

It is noteworthy that the present study only included Gaussian and
uniform distributions for the pacing signals. These were chosen as they
represent two distinctly different distributions with different distribu-
tional entropy. The effect of other distributions with more similar
distributional entropy should be investigated in future studies.
Furthermore, future studies should aim at establishing reliable and valid
methods for quantifying this distributional entropy.

4.3. Hypothesis 3: Scaling exponent close to 0.5 during the WU trial

The third hypothesis was also supported as the scaling exponent of
the stride-to-stride time intervals during the WU trial was, on average,
0.54 and lower than during the three other trials. This indicates that the
temporal structure of the stride-to-stride time intervals during the WU
trial resembled uncorrelated noise where each stride time was uncor-
related to the stride time of previously completed strides. This bolsters
our previous observations and suggests that the combination of white
noise and uniform distribution in the pacing signals challenge the
sensorimotor synchronization process and removes the temporal corre-
lation which normally exists in the natural variability of stride-to-stride
time intervals [20]. Thus, the presence of temporal structure in the
sensory input during paced walking is crucial for the generation of the
temporal structure of the variability of the stride-to-stride time intervals.

Humans can walk energetically favorable and stable (i.e., without
falling) in many surroundings and on different surfaces, and while
performing competing cognitive tasks (e.g., mobile phone talking or
texting) [14,36]. This is only possible due to a flexible motor control
system which is capable of solving the task of walking in a number of
ways, while still being energy efficient, stable and adaptive [36]. Thus,
several internal and external sensory systems can be used to control
walking including the vision, hearing, proprioception and vestibular
system [6,35]. Excluding one of the sensory inputs does not hinder the
motor control of stable walking. For example, the flexibility of the motor
control system enables walking with eyes closed, without falling —
walkers simply adopt a more cautious strategy [23]. In the present
study, the visual input was manipulated by altering the temporal pattern
of the cues which affected the temporal structure of the variability of the
stride-to-stride time intervals. This suggests that not only spatial infor-
mation about obstacles, distances to obstacles, or different surfaces in-
fluences the stride-to-stride time but also the temporal rate and order of
the visual information.
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4.4. Stride-to-stride time interval normality distribution and cue-matching
performance

The use of pacing signals with Gaussian distribution did not affect the
normality of the stride-to-stride time intervals quantified by the one-
sample KS test regardless of the noise type. However, the p-value dur-
ing the PU trial was lower compared to during the WU trials, indicating
that the stride-to-stride time interval deviated more from a normal dis-
tribution compared when the participants were instructed to synchro-
nize their steps to a pacing signal with white noise pattern and uniform
distribution. Thus, the present study replicate the results of our previous
study and suggests that the effect of the different noise types on the
normality of the stride-to-stride time intervals were only evident when
combined with a uniform distribution of the pacing signals [20]. In
contrast, the somewhat conflicting evidence from distribution fits based
on maximum likelihood suggests that white noise pacing signals were
generally better fit by a Gaussian distribution than a uniform distribu-
tion. However, we also note that, in most cases, a Gaussian distribution
as a better fit for stride intervals produced with white noise pacing
signals than those produced with uniform distributions. Clearly, more
research will be needed to fully distinguish causal influences of ACFs
and PDFs on stride interval distributions.

Interestingly, the results of the cue-matching performance indicated
that it was easier for the participants to match their footsteps to the
pacing signals with a pink noise pattern compared to a white noise
pattern. This was also observed in our previous study and suggests an
affinity to the temporal pattern of the pink noise pacing signals for
sensorimotor synchronization [20]. The results did not indicate that the
underlying probability distribution influenced the cue-matching per-
formance. This could suggest that the ability to match movement to an
external visual cue relies on the temporal structure of the cues and not
on the likelihood of receiving a given cue.

5. Conclusion

In the present study, we observed that the ACF and PDF of pacing
signals have individual effects on the temporal structure of the stride-to-
stride time intervals during visual guided paced walking. The temporal
structure of the stride-to-stride time intervals was quantified by the DFA
scaling exponent and resembled the temporal pattern of the pacing
signal. Thus, pacing signals with a pink noise pattern resulted in a
scaling exponent of the stride-to-stride time intervals close to 1 which
corresponds to that observed when young healthy adults walk un-paced
at a self-selected speed. Pacing signals with a white noise pattern
resulted in a scaling exponent close to 0.5, which is often observed in
older adults and individuals with impaired gait. Changing the proba-
bility distribution of the pacing signals from Gaussian to uniform also
reduced the scaling exponent of the stride-to-stride time intervals.
Together, these results suggest that the sensorimotor system in healthy
young individuals has an affinity towards external cues with a pink noise
pattern and a Gaussian probability distribution during paced walking.
Furthermore, the pacing signals with low predictability (e.g. white
noise) or high distributional complexity (uniform distribution) chal-
lenged the sensorimotor system which led to a deviations from a normal
distribution of the stride-to-stride time intervals and poorer footstep-
visual cue matching performance compared to the trials with the pink
noise and Gaussian distributed (high complexity and moderate pre-
dictability) pacing signal. The results of the present study should be
taking into consideration when using paced walking as a rehabilitation
tool.
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