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Abstract—Smart home electronic devices invisibly collect, pro-
cess, and exchange information with each other and with remote
services, often without a home occupants’ knowledge or consent.
These devices may be mobile or fixed and may have wireless or
wired network connections. Detecting and identifying all devices
present in a home is a necessary first step to control the flow
of data, but there exists no universal mechanism to detect and
identify all electronic devices in a space.

In this paper we present ICED (Identification and Classi-
fication of Electronic Devices), a system that can (i) identify
devices from a known set of devices, and (ii) detect the presence
of previously unseen devices. ICED, based on harmonic radar
technology, collects measurements at the first harmonic of the
radar’s transmit frequency. We find that the harmonic response
contains enough information to infer the type of device. It works
when the device has no wireless network interface, is powered
off, or attempts to evade detection. We evaluate performance on
a collection of 17 devices and find that by transmitting a range
of frequencies we correctly identify known devices with 97.6%
accuracy and identify previously unseen devices as ‘unknown’
with 69.0% balanced accuracy.

I. INTRODUCTION

Numerous projections assert that billions of Internet of
Things (IoT) devices will be deployed over the next few
years [1]. Many of these devices will collect and share
information about their local environment. Because IoT de-
vices may use invisible wireless networks or hidden wired
connections, devices may collect and share data about people
without the person’s knowledge or consent, raising significant
security and privacy concerns. A critical step towards protect-
ing security and privacy is to detect and identify the set of
devices present in a particular area. A related requirement is
to discover the presence of unknown devices, which may have
appeared after a prior inventory and may represent suspicious
devices added to a personal space.

The literature proposes several methods for identifying
electronic devices, with most of the work focusing on mobile
phones as their target. Rather than relying on the contents
of smartphones for identification (e.g., apps installed, songs
played, sequence of apps used, configuration settings) [2], im-
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Fig. 1: Block diagram of the radar system designed for home
consumer clectronics. ICED uses separate transmit and receive
chains to detect nearby electronic devices.

perfections introduced during the manufacturing process [3],
or the network and other characteristics of a device [4], the
system introduced in this paper uses an unusual type of radar —
harmonic radar — for device detection and identification.

The key insight in our system, ICED (Identification and
Classification of Electronic Devices), is that electronics distort
radio frequencies before reflecting them. As in traditional
radar systems, harmonic radar transmits radio frequency (RF)
signals to obtain information about targets; however, when the
transmitted RF interacts with the components in an electronic
device, it generates a response at integer multiples (harmonics)
of the transmitted signal. ICED leverages this characteristic to
detect and classify devices, even if the devices are powered
off or attempt to evade detection! Figure 1 shows an overview
of the hardware components involved.

Although ICED is currently a prototype, we envision a
handheld or casily portable device capable of detecting the
presence of electronic devices located in an area (typically the
same room). This system might be useful, for example, if a
smart home containing dozens or even hundreds of devices
is sold to a new owner. The new owner would be able to
use ICED to catalog cach device left behind by the previous
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owner, perhaps as part of the pre-purchase home inspection.
A second use case would be in a temporary living area such
as AirBnB or in a shared working area such as Regus. ICED
could alert the tenant to the presence of devices such as hidden
cameras or microphones installed by the property owner.
Detection is different from identification. While prior work
has shown harmonic radar can be used to derect the presence
of electronic devices [5], in this paper we go further and
attempt to not only detect devices, but also to identify the
type of device. This work is also distinct in that it is a
collaboration between electrical engineering and computer
science. The radar theory and applications being developed
within the scope of this work requires signal processing and
machine learning to push our understanding of the technology
further and its application towards commercial use. This work
is novel in electrical engineering through its exploration of
different (more common) targets, unexplored frequencies, and
uncontrolled environments; it is novel in computer science in
that it presents a universal solution to an open problem: the
technology and methods available for the identification and
classification of home electronics, particularly in its attempt
to propose an encompassing solution for all types of devices.
Morcover, these results can only be achieved at the edge
of both disciplines — mathematical modeling and machine
learning to make data usable, while building RF circuits and
experimenting with different components to obtain detectable
signals — then designing experiments to show the potential
of the technology toward the objective. This paper positions
harmonic radars as a serious contender in this space with
promising results and interesting problems still to be explored.

In this paper, we make the following contributions:

« We build a prototype device that uses harmonic radar to
detect and identify clectronic devices from their response.

« We test 17 off-the-shelf consumer devices under four
methods of identification.

« We use supervised classification algorithms and build
models to identity the devices in our testbed, achieving
an accuracy of 97.6%.

« We build a binary classifier that detects ‘unknown’ de-
vices with balanced accuracy 69.0% and precision 65.8%.

II. BACKGROUND

In this section we provide a brief primer on harmonic radars.
We then describe our approach to uniquely fingerprint devices.

A. Harmonic radar primer

Harmonic radars are different from traditional radars. In
a traditional radar, the system sends a pulse of RF energy
toward a target and a portion of the energy reflects from the
target at the same frequency transmitted (plus a small Doppler
shift if the target is moving). A harmonic radar transmits
RF signals that propagate through space like traditional radar
systems, but when the signal strikes a target with nonlinear
semiconductor components, such as the transistors and diodes
found in electronic devices, a portion of the energy incident

on the device is reflected as harmonics [6]. These harmonics
occur at different frequencies from the original transmission.
Naturally-occurring materials and most man-made materials,
such as those found in a residence (e.g., drywall, furniture), are
linear, i.¢., they reflect only those frequencies transmitted to
them. Therefore, reception of harmonics immediately indicates
presence of objects with nonlinear electronic components.
Perez et al. [3] give a description of the mathematics involved.

All electronic devices, from the simplest embedded systems
to the most complex electronics, will respond harmonically
to some (unknown) frequency [5]. Because this technique
leverages reflections from transmitted RF striking nonlinear
components, it detects electronic devices even if the device’s
battery is removed, if it is powered off, or simply idle and
waiting for instructions.

B. Fingerprinting devices

Every type and model of device has a different set of
components, in a different configuration. Consumer devices
are also encased and shielded to limit RF leaks and RF
interference; this shielding affects the way the device will
receive and respond to an incident radar signal. If a device has
an antenna, the natural path for reflecting the harmonics of a
received tone is through the antenna; the geometry and design
of cach circuit determines the radiation pattern of re-radiated
signals. ICED is predicated on the notion that these physical
differences among devices — perhaps even between devices of
identical make and model — lead to distinctive responses to
a harmonic radar, allowing devices to be distinguished by a
classifier trained to recognize these ‘fingerprints’.

III. IMPLEMENTATION

ICED, shown in Figure 1, is a harmonic radar system
built using commercial off-the-shelf components. The trans-
mit chain, shown in blue, begins with a Signal Hound
VSG60A signal generator capable of generating RF signals
from 50 MHz to 6 GHz [7]. We chose this signal generator
for its ability to transmit a broad spectrum. The generated RF
is then passed to a Fairview Microwave SPA-030-3801-SMA-
A power amplifier [8] to boost the signal strength. A series of
low-pass filters remove any unwanted high frequency signals
(i.e., two Mini Circuits SLP-2950 [9] and an HP 8431A)
before the clean output signal is transmitted toward a target
device by a directional Ettus Research LP-0965 log-periodic
antenna [10].

The receive chain, shown in red in Figure 1, begins with a
matching Ettus Research 1.P-0965 log-periodic antenna placed
outside the transmit antenna’s radiation pattern. The antenna
is followed by high-pass filters (i.e., Mini Circuits VHF-
3800+ [11] and HP 8435A) designed to filter the lower
frequency corresponding to the transmitted signal, leaving only
the higher frequency harmonic signal. Next a Mini Circuits
7X60-V63+ [12] amplifier boosts the faint received signal
before sending it to another Mini Circuits VHF-3800+ for final
filtering. Last, a Signal Hound BB60C [13] spectrum analyzer
processes the received signal.
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Previous work shows that the harmonic response of devices
is likely to be stronger around frequencies at which devices
are designed to operate [14]. We designed our prototype with
Wi-Fi and Bluetooth devices in mind; they tend to operate
around 2.4 GHz. Although the signal generator and spectrum
analyzer together can support frequencies from 50 MHz to
6 GHz, we selected high-pass and low-pass filters to limit the
frequency range for the probe signal to the lower end of the S
band, that is, between 2 and 2.8 GHz. We controlled the signal
generator and spectrum analyzer using their Python API. We
used Python and scikit-learn [15] to process and evaluate the
data.

IV. APPROACHES

We explore three approaches for device identification. The
first approach transmits a single tone (frequency) and listens
for a response at the first harmonic (e.g., two times the
transmitted frequency). The second approach sweeps a single
tone over a range of frequencies while listening at two times
each transmitted frequency. The third approach transmits two
tones simultancously, purposely generating intermodulation
distortion, and listens over a range of frequencies. We briefly
describe each of these approaches in more detail next.

A. Single tone

In this approach ICED transmits a single tone at 2.328 GHz.
We choose this frequency because it is close to the operating
frequency of the Wi-Fi and Bluetooth devices in our collection
(see Table I for a list of devices) and because prior research
suggests devices tend to respond well at this frequency [5].
We measure the response at the first harmonic of 4.656 GHz.

B. Swept range of tones

In this approach ICED steps through a sequence of tones
from 2.0 GHz to 2.8 GHz, in 10 MHz increments. At each step
it transmits a single tone, pauses, then listens for a response at
the corresponding first harmonic (from 4.0 GHz to 5.6 GHz).

C. Simultaneous tones

In this approach ICED transmits two tones simultaneously,
purposefully creating intermodulatation distortion (IMD), that
is, signals with multiple tones on the same wave. Specifically it
creates mixing products (in addition to the normal harmonics)
at 2wy —wy and 2ws — wy. The system measures the response
over the mixing products of the tones. In this way, ICED acts
similarly to an IMD radar [14].

In this approach, we use only two tones a with a com-
monly used spacing of 1 MHz between the two frequencies
to generate the cross-modulated harmonics [16]. Here, the
limiting factor is the Signal-to-Noise Ratio of the response.
Compared to the power of the reflected signal of a single-tone
harmonic, the reflection of each tone in a multi-tone signal is
scaled down by a factor proportional to the number of tones.
In other words, by transmitting more than one tone (but the
same total power) the power of the response of the single-
tone harmonic gets distributed across all transmitted (and thus
received) frequencies.

TABLE I: Device list and manufacturers.

Device Category  Manufacturer Label
Light Control Linkind B
Wi-Fi Smart Plug  D-Link C
Wi-Fi Smart Plug ~ SmartThings D
Smart Tag SmartThings E
Smart Tag Tile F
Smart Tag Samsung Galaxy G
Smart Thermostat ~ Ecobee3 H
Smart Thermostat ~ Govee I
Smart Camera Yi J
Smart Camera SmartThings K
Smart Camera Blink L
Thermometer Kinsa M
Thermometer Kinsa N
Pedometer Polar (0]
Pedometer Polar P
Pedometer Zephyr Q
Oxymeter iHealth R

V. EVALUATION

We collected data at a single residential location in a
metropolitan city with the background RF noise one might
expect in an urban apartment complex. We positioned ICED’s
transmit and receive antennas at a fixed position in front of
the target device at a range of approximately 45 cm and fixed
the power of the transmitted signal.

For an open-air line-of-sight measurement as in this paper,
in the far ficld of the antennas, the received signal strength
at all harmonic and multitone frequencies is proportional to
1/R® where R is the distance between the antennas and the
target.! In other words, less incident power-on-target generates
less baseline power received from that target, but it does not
change its unique pattern of frequencies. At longer distances,
the target’s fingerprint is unchanged but that fingerprint is
simply received at a lower power level.

As targets, we experimented with a collection of 17 oft-
the-shelf ‘smart’ devices, listed in Table I. The set includes
both Wi-Fi and Bluetooth devices, with a range in sizes
and capabilitics. In choosing devices, we considered multiple
devices from a category. For example, in the Smart Tags and
Smart Cameras categories we included three models of each.
Smart Tags are similar in size and shape to the pedometers but
have different use (and therefore different components) and we
include two pedometers of the same manufacturer and model
and attempt to differentiate between separate instances of the
device.

We evaluate the success of each method using the average
accuracy, that is, the fraction of cases for which the classifier
correctly identifies a specific device based on its response to
the transmitted frequency. For our collection of 17 devices,
a simple random-guessing classifier would achieve accuracy
0.059 (=1/17), less than 6%.

! Assuming the nonlinear junction(s) activated at the target are not saturated
by incident power, which is a safe assumption for practical targets [14].
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TABLE II: Summary of the metrics obtained for the three
variations of the classification task.

Approach Accuracy Precision Recall F1-Score
Single Tone 0.376 0.266 0.376 0.305
Swept Range 0.976 0973 0.971 0.970

Multiple Tones 0.353 0.342 0.353 0.330

VI. DEVICE IDENTIFICATION

The results for the three approaches described in Section IV
are summarized in Table II. For each approach, we conducted
10 experiments where we transmitted a signal toward a target
device and listened on the first harmonic of the transmitted
signal. We then performed 10-fold cross validation where we
created classifiers repeatedly using 9 experiments as training
data and evaluated the system on the 10th. Importantly, for
these experiments the orientation of the device relative to the
transmit and receive antennas of ICED was fixed. We relax
that restriction in Section VII and consider identification of
devices at different orientations.

Additionally, while we computed results using three classi-
fiers (Random Forests, Support Vector Machines, and Gradient
Boost algorithms), we found that Random Forests provided the
best results for all classification tasks, so we report only the
Random Forest results here. The configuration parameters for
the Random Forest were selected through a grid search and
ultimately, cach forest was comprised of 300 estimators with
a maximum depth of 90 and at least 5 samples per leaf.

A. Single tone

We collected 170 measurements (10 measurements per
device for 17 devices), each comprised of 412 signal strength
readings over a 1 MHz window centered on the first harmonic
of the 2.328 GHz transmitted signal. Figure 2a presents an
illustrative response collected for Device R. Other devices had
similar patterns with a spike at the harmonic frequency, but
different nonlinear electrical components within each device
resulted in different amplitudes.

We use these results as as starting point to explore the
fingerprinting abilities of harmonic radar. Figure 3a shows
the confusion matrix for identifying a specific device us-
ing a Random Forest classifier. The cross-validated accuracy
of this approach is 0.376. Compared to the random-choice
baseline, fingerprinting devices from the harmonic response
is already improving the classification accuracy by a factor
of 6. Grouping devices by the categories indicated in Table 1
(e.g., identifying the device as a Polar Pedometer instead
of identifying it as Polar Pedometer number 2) results in
an accuracy of 0.429. While these results are not definitive,
they build confidence that other approaches might have better
performance.

B. Swept range of tones

In the second approach, we transmit probe signals with
frequencies in steps of 10 MHz from 2-2.8 GHz for a total of
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160 readings. We collect the response, one at a time, at the first
harmonic of the transmitted frequency (i.e., 2fr,). Figure 2b
presents, as an example, the response recorded for Device G.
As expected, however, the exact shape of the plot varied
between devices. The full dataset contains 10 measurements
per device for 17 devices for a total of 170 measurements
each with 160 readings of the amplitude of the monitored
frequencies.

Table I and Figure 3b present near-perfect classification
results for identifying each specific device (including differ-
entiating between Polar Pedometer 1 and Polar Pedometer 2).
These results show, with an accuracy of 0.976, that the use
of a wide range of transmit frequencies generates a distinct
fingerprint across devices in the our collection. Strangely,
this approach resulted in a drop in accuracy for determining
device categories (e.g., identifying Polar Pedometers) com-
pared with identifying device categorics. With eight device
types (Light Control, Wi-Fi Smart Plug, Smart Tag, Smart
Thermostat, Smart Camera, Thermometer, Pedometer, and
Oxymeter from Table I), the classification accuracy declined
to 0.733. We suspect this is due to device orientation, a topic
we explore further in Section VII.

It is worth noting that while this approach is less accurate
when identitying device types compared with its performance
when identifying specific devices, it is still the most successful
of the three approaches.

C. Simultaneous tones

In this approach, we transmitted two simultaneous frequen-
cies at 2.328 GHz +1 MHz. As discussed in Section IV-C,
when two narrow tones are transmitted simultancously, we
expect a response at the harmonic of each tone and the mixing
product of both tones. To capture the finer resolution, the
dataset for this approach contains 10 measurements per device
for 17 devices where each measurement is comprised of 5,336
signal strength readings in a window of 14 MHz. Figure 2c
shows, as an example, Device M.

Table II shows the accuracy for identifying a specific device
for this approach was 0.353. The challenge is that compared to
a single tone, even with more data, devices and device types
are more similar to each other using two tones. Figure 3c
shows the confusion matrix for this approach.

VII. DEVICE ORIENTATION

The experiments above indicate that the most accurate ap-
proach for identification is the response from a swept range of
tones. In a real-world deployment, however, it may not always
be possible to probe a device at the same orientation angle
for which the classifier was trained. Indeed it is unlikely the
device will be in the same orientation in the field. The simplest
solution is to scan a device from multiple angles during
training (building a more robust fingerprint from different
perspectives).

The scientific question of orientation remains: how does
changing the angle of the incident signal alter the harmonic
response of a device? Our hypothesis is that at different
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orientations, the transmitted signal will likely be re-radiated
by a different set of nonlinear device components which
should result in a different received signal. We thus designed
an experiment to test the robustness of the swept range of
tones method to changes in angle of the probe signal. In this
experiment, each device was placed on a graduated turntable
and scanned at intervals of 30°. We captured high-resolution
spectral data around 10 evenly spaced frequencies. Figure 4
shows the example of Device B at 60°.

The final dataset contains 10 measurements per device for
17 devices and each measurement contains 12 observations
for angles in steps of 30°. Using the swept range of tones,
we computed the accuracy of the method by Ieaving out one
angle at a time over all 10 measurements training on 11 angles
of 9 measurements and testing on all 10 measurements of the
removed angle plus the full data of the 10th measurement (i.c.,
the one left out). Figure 5a presents the confusion matrix for
identifying a specific device.

The combined accuracy of all tests (i.e., just over 2,000
experiments: 12 angles, 10 measurements per device, 17 de-
vices) is 0.808. When identifying a device at the same angle
from which it was measured we are successful in choosing the
right device with an accuracy of 0.976. If instead, we receive
a measurement from an angle previously unknown, we can
identify the correct device with an accuracy of 0.808.
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Fig. 4. Spectrum frequency response for Device B from a
single tone at 2.328 GHz.

Taking it one step further, we shift our attention from
identifying the device to determining the type (or category)
of the device; for this task the accuracy increased to 0.853.
Figure 5b presents the confusion matrix for identifying the
device category.

These results suggest that ICED is able to correctly identify
devices with high probability using the swept range of tones
approach, even if the devices are at a different orientation from
which the classifier was trained.
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VIII. DETECTING UNKNOWN DEVICES

We now consider a different, but related problem to identi-
fying unknown devices from a set of devices. There are many
contexts where it may be important to determine whether the
device being tested belongs to the set of ‘known’ devices, i.c.,
to discover the arrival of a new device that needs to be added to
the known inventory, or to determine whether the new device
may have been placed (or replaced) by an adversary. This
is a binary classification task where each device is labeled
either as ‘known’ or ‘unknown’. We test the ability of ICED
to detect unknown devices by creating a two-stage classifier;
in the first stage, our classifier outputs a probability of a
target device being in each one of the N = 17 ‘known’
classes; in the second stage, the classifier outputs ‘known’ if
the probability for the output class is above a predetermined
threshold (ultimately set at 0.35), and ‘unknown’ if no class
achieves that threshold probability.

For this scenario, we train the multi-class classifier by
excluding one device at a time. We use all examples of the
excluded device and four of the ten measurements for the
remaining devices in the testing set. Finally, we repeat this
process for all devices and aggregate the results. Because of
the imbalance of the classes in the testing set, we compute
the balanced accuracy for all test observations rather than
accuracy.

Primary results are presented in Table III. From the com-
bined count of all experiments, we find that the binary clas-
sifier has a sensitivity of 63.6% and a specificity of 74.4%
which results in a balanced accuracy of 69%. The confusion
matrix in Figure 5c shows that 12 of the 17 devices were
correctly labeled (i.e., known and unknown were assigned
appropriately). Most importantly though, both the figure and
the confusion matrix show that the binary classifier had good
performance when classifying known devices (i.c., low false
negative rate) with a failure rate of 7.52%.

Finally, we trained the binary classifier for the task of
assigning ‘known’ and ‘unknown’ to device categories. We
found that while the threshold changed, the balanced accuracy
(not shown) remained the same.

TABLE III: Confusion matrix for the binary classifier. Num-
bers are the count of training observations.

Actual Class

Known | Unknown | Total

Inferred Class | Known 519 87 606
Unknown 297 253 550

Total 816 340 1156

IX. DISCUSSION

The three different approaches in this paper are neither com-
peting nor mutually exclusive. From the confusion matrices
that display the results, we see that devices are more (or less)
recognizable depending on the approach for identification.
Ultimately, a deployed system could potentially integrate all
three approaches.

X. RELATED WORK

Researchers have proposed many methods for discovering
devices present in an area. Solutions tend to fall into one
of several categories: (1) sniffers, (2) discovery protocols,
(3) traditional radar technologies, and (4) other harmonic radar
approaches. We briefly discuss each of these approaches in this
section. None, however, accomplish our goal of detecting all
devices in an area, let alone distinguishing (identifying) them.

A. Sniffers

One of the most basic ways to discover devices is to simply
sniff their communications. With this approach, a sniffer
listens for device communications and attempts to identify the
device based on the characteristics of the transmissions, such
as a MAC address in a packet header.

There are several shortcomings to sniffing. First, the sniffer
must speak the same protocol the device speaks. For example,
a Wi-Fi sniffer would not discover Bluctooth or Zigbee
devices, even though they share the same radio spectrum.
Second, the sniffer must monitor the correct frequencies. Wi-
Fi, for example, has two bands, 2.4 GHz and 5 GHz, with each
band comprising several channels. A sniffer listening on one
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Wi-Fi channel would not discover devices transmitting on an-
other channel. Third, some devices might use analog commu-
nications (such as older cordless phones). These would not be
detected by a digital sniffer, even if the sniffer were capable of
monitoring and decoding all common digital communication
protocols. Comprehensively monitoring all frequencies for all
communication modalities is a tall task indeed. Furthermore,
while sniffers can detect some transmitting devices, they
cannot detect devices that do not transmit (such as a camera
or microphone that stores data on removable media). They
are also incapable of detecting devices that communicate
on wired network connections (such as Etheret or landline
telephone). Finally, by design, some malicious devices may
use communication techniques deliberately designed to evade
detection by sniffers [17].

Sniffers have many serious shortcomings if the goal is to
detect all smart devices. ICED can find and identify devices
regardless of their communication protocol — even if they do
not transmit or are powered off.

B. Device discovery protocols

Numerous device-detection protocols have been proposed
by researchers. Cabrera et al. provide a survey of many of these
types of discovery protocols [18]. Discovery protocols, how-
ever, typically require devices to cooperate. They expect that,
given some query by a discovery device, other target devices
will respond to the query with truthful information about their
identity and capabilities. Two problems prevent this approach
from meeting our goal of discovering all devices in an area.
First, devices must be aware of the discovery protocol; legacy
devices may not be aware of the new discovery protocols.
Second, malicious devices may attempt to evade detection by
ignoring discovery queries, or perhaps worse, may masquerade
as legitimate devices.

Our harmonic radar approach does not suffer from these
drawbacks. It can discover and identify devices without their
cooperation.

C. Traditional radar

In an application of traditional radars, ultra-high frequencies
(UHF), generally in the range of 300 MHz to 3 GHz, propagate
efficiently through ground and walls. The upper part of this
spectrum corresponds to wavelengths narrow enough to form
visible images of environments inside of which disturbances
are discemible [19]. Ground-penetrating radars use UHF to
find landmines, pipes, and other targets which are buried or
otherwise obscured [20]. Typically, these responses are not
recognized by the naked eye; feature extraction and target
recognition are accomplished in post-processing [21] using
signal-processing techniques. Over short ranges (less than
10 m) and with minimal penetration (under 1 cm), higher
frequencies may be used to form images with resolution fine
enough for a trained operator to recognize particular classes
of targets [22]. An example of this sensor is the millimeter-
wave technology implemented in airports to detect hazards
carried by travelers, either hidden in luggage or carried under

clothing [23]. These approaches, however, rely on detecting
known shapes and do not generalize well to detecting elec-
tronic devices that may take any form. In contrast, ICED, can
detect devices by comparing against the background noise and,
if the task is identification, it matches devices to a library of
known fingerprints.

D. Harmonic radar

Literature in the topic of harmonic radars can be grouped
into one of three categories: the design of the radar and its
components [6], [24]-[28], the detection of non-linear circuits
and the mathematical modeling and analysis of this behav-
ior [6], [29]-[33], and applications in which this technology
is useful [34]-[39].

Our work most closely resembles the second area: the detec-
tion of non-linear targets. The relevant literature is focused on
countersurveillance applications. This arca is exactly where
our work fits: we are detecting unwanted electronics in a
space. Our main contribution is that we focus on identifving
electronics rather than simply defecting them. Like some
detection approaches [5], [6], our identification technique
probes devices using frequencies to which they are likely to
respond with harmonics. Most published work, in terms of
identification, detects individual semiconductors (e.g., a PCB,
integrated circuit, RFID tag); in reality these are components
of more complex electronics. One gap in the literature, which
we begin to address, is demonstrating the effectiveness of non-
linear responses when the devices are shielded and when the
signal is passing through multiple (i.e., millions) non-linear
junctions, as is the case in out-of-the-box electronics [40].

XI. CONCLUSION

A robust method for detection and identification of elec-
tronic devices is a difficult, open problem, especially when
requiring (as we do) the solution to detect unpowered, non-
communicating devices. In this paper we leverage the non-
linear response that electronics exhibit to radio waves as a
means to produce a device fingerprint. Our main challenge is
to develop and test the boundaries technology in tandem with
the methods for analysis and classification. The paper uses
a collection of 17 devices and three different fingerprinting
methods to verify the identity of a device among a sct of
devices known’ to the classifier. We also measure the ability
of the system to detect an unknown device, that is, to determine
that a target device is not one of the devices known to the
classifier. Our results show that using a wide-range frequency
sweep we were able to classify devices with an accuracy of
0.976 and, in the binary problem of flagging unknown devices,
the number of false negatives was only 7.5%.

We view these results as a first step toward accurately
identifying all electronic devices in an environment, ¢ven if
the devices are powered off or try to evade detection!
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