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Abstract-Smart home electronic devices invisibly collect, pro-
cess, and exchange information with each other and with remote 
services, often without a home occupants' knowledge or consent. 
These devices may be mobile or fixed and may have wireless or 
wired network connections. Detecting and identifying all devices 
present in a home is a necessary first step to control the flow 
of data, but there exists no universal mechanism to detect and 
identify all electronic devices in a space. 

In this paper we present ICED (Identification and Classi-
fication of Electronic Devices), a system that can (i) identify 
devices from a known set of devices, and (ii) detect the presence 
of previously unseen devices. ICED, based on harmonic radar 
technology, collects measurements at the first harmonic of the 
radar's transmit frequency. We find that the harmonic response 
contains enough information to infer the type of device. It works 
when the device has no wireless network interface, is powered 
off, or attempts to evade detection. We evaluate performance on 
a collection of 17 devices and find that by transmitting a range 
of frequencies we correctly identify known devices with 97.6% 
accuracy and identify previously unseen devices as 'unknown' 
with 69.0% balanced accuracy. 

I. INTRODUCTION 

Numerous projections assert that billions of Internet of 
Things (IoT) devices will be deployed over the next few 
years [l]. Many of these devices will collect and share 
information about their local environment. Because IoT de-
vices may use invisible wireless networks or hidden wired 
connections, devices may collect and share data about people 
without the person's knowledge or consent, raising significant 
security and privacy concerns. A critical step towards protect-
ing security and privacy is to detect and identify the set of 
devices present in a particular area. A related requirement is 
to discover the presence of unknown devices, which may have 
appeared after a prior inventory and may represent suspicious 
devices added to a personal space. 

The literature proposes several methods for identifying 
electronic devices, with most of the work focusing on mobile 
phones as their target. Rather than relying on the contents 
of smartphones for identification (e.g., apps installed, songs 
played, sequence of apps used, configuration settings) [2], im-
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HP 8435A 

Fig. 1: Block diagram of the radar system designed for home 
consumer electronics. ICED uses separate transmit and receive 
chains to detect nearby electronic devices. 

perfections introduced during the manufacturing process [3], 
or the network and other characteristics of a device [4], the 
system introduced in this paper uses an unusual type of radar -
harmonic radar - for device detection and identification. 

The key insight in our system, ICED (Identification and 
Classification of Electronic Devices), is that electronics distort 
radio frequencies before reflecting them. As in traditional 
radar systems, harmonic radar transmits radio frequency (RF) 
signals to obtain information about targets; however, when the 
transmitted RF interacts with the components in an electronic 
device, it generates a response at integer multiples (harmonics) 
of the transmitted signal. ICED leverages this characteristic to 
detect and classify devices, even if the devices are powered 
off or attempt to evade detection! Figure 1 shows an overview 
of the hardware components involved. 

Although ICED is currently a prototype, we envision a 
handheld or easily portable device capable of detecting the 
presence of electronic devices located in an area (typically the 
same room). This system might be useful, for example, if a 
smart home containing dozens or even hundreds of devices 
is sold to a new owner. The new owner would be able to 
use ICED to catalog each device left behind by the previous 
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owner, perhaps as part of the pre-purchase home inspection. 
A second use case would be in a temporary living area such 
as AirBnB or in a shared working area such as Regus. ICED 
could alert the tenant to the presence of devices such as hidden 
cameras or microphones installed by the property owner. 

Detection is different from identification. While prior work 
has shown harmonic radar can be used to detect the presence 
of electronic devices [5], in this paper we go further and 
attempt to not only detect devices, but also to identify the 
type of device. This work is also distinct in that it is a 
collaboration between electrical engineering and computer 
science. The radar theory and applications being developed 
within the scope of this work requires signal processing and 
machine learning to push our understanding of the technology 
further and its application towards commercial use. This work 
is novel in electrical engineering through its exploration of 
different (more common) targets, unexplored frequencies, and 
uncontrolled environments; it is novel in computer science in 
that it presents a universal solution to an open problem: the 
technology and methods available for the identification and 
classification of home electronics, particularly in its attempt 
to propose an encompassing solution for all types of devices. 
Moreover, these results can only be achieved at the edge 
of both disciplines - mathematical modeling and machine 
learning to make data usable, while building RF circuits and 
experimenting with different components to obtain detectable 
signals - then designing experiments to show the potential 
of the technology toward the objective. This paper positions 
harmonic radars as a serious contender in this space with 
promising results and interesting problems still to be explored. 

In this paper, we make the following contributions: 

• We build a prototype device that uses harmonic radar to 
detect and identify electronic devices from their response. 

• We test 17 off-the-shelf consumer devices under four 
methods of identification. 

• We use supervised classification algorithms and build 
models to identify the devices in our testbed, achieving 
an accuracy of 97.6%. 

• We build a binary classifier that detects 'unknown' de-
vices with balanced accuracy 69.0% and precision 65.8%. 

II. BACKGROUND 

In this section we provide a brief primer on harmonic radars. 
We then describe our approach to uniquely fingerprint devices. 

A. Harmonic radar primer 

Harmonic radars are different from traditional radars. In 
a traditional radar, the system sends a pulse of RF energy 
toward a target and a portion of the energy reflects from the 
target at the same frequency transmitted (plus a small Doppler 
shift if the target is moving). A harmonic radar transmits 
RF signals that propagate through space like traditional radar 
systems, but when the signal strikes a target with nonlinear 
semiconductor components, such as the transistors and diodes 
found in electronic devices, a portion of the energy incident 

on the device is reflected as harmonics [6]. These harmonics 
occur at different frequencies from the original transmission. 
Naturally-occurring materials and most man-made materials, 
such as those found in a residence ( e.g., drywall, furniture), are 
linear, i.e., they reflect only those frequencies transmitted to 
them. Therefore, reception of harmonics immediately indicates 
presence of objects with nonlinear electronic components. 
Perez et al. [3] give a description of the mathematics involved. 

All electronic devices, from the simplest embedded systems 
to the most complex electronics, will respond harmonically 
to some (unknown) frequency [5]. Because this technique 
leverages reflections from transmitted RF striking nonlinear 
components, it detects electronic devices even if the device's 
battery is removed, if it is powered off, or simply idle and 
waiting for instructions. 

B. Fingerprinting devices 

Every type and model of device has a different set of 
components, in a different configuration. Consumer devices 
are also encased and shielded to limit RF leaks and RF 
interference; this shielding affects the way the device will 
receive and respond to an incident radar signal. If a device has 
an antenna, the natural path for reflecting the harmonics of a 
received tone is through the antenna; the geometry and design 
of each circuit determines the radiation pattern of re-radiated 
signals. ICED is predicated on the notion that these physical 
differences among devices - perhaps even between devices of 
identical make and model - lead to distinctive responses to 
a harmonic radar, allowing devices to be distinguished by a 
classifier trained to recognize these 'fingerprints'. 

III. IMPLEMENTATION 

ICED, shown in Figure 1, is a harmonic radar system 
built using commercial off-the-shelf components. The trans-
mit chain, shown in blue, begins with a Signal Hound 
VSG60A signal generator capable of generating RF signals 
from 50 MHz to 6 GHz [7]. We chose this signal generator 
for its ability to transmit a broad spectrum. The generated RF 
is then passed to a Fairview Microwave SPA-030-3801-SMA-
A power amplifier [8] to boost the signal strength. A series of 
low-pass filters remove any unwanted high frequency signals 
(i.e., two Mini Circuits SLP-2950 [9] and an HP 8431A) 
before the clean output signal is transmitted toward a target 
device by a directional Ettus Research LP-0965 log-periodic 
antenna [10]. 

The receive chain, shown in red in Figure 1, begins with a 
matching Ettus Research LP-0965 log-periodic antenna placed 
outside the transmit antenna's radiation pattern. The antenna 
is followed by high-pass filters (i.e., Mini Circuits VHF-
3800+ [11] and HP 8435A) designed to filter the lower 
frequency corresponding to the transmitted signal, leaving only 
the higher frequency harmonic signal. Next a Mini Circuits 
ZX60-V63+ [12] amplifier boosts the faint received signal 
before sending it to another Mini Circuits VHF-3800+ for final 
filtering. Last, a Signal Hound BB60C [13] spectrum analyzer 
processes the received signal. 
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Previous work shows that the harmonic response of devices 
is likely to be stronger around frequencies at which devices 
are designed to operate [14]. We designed our prototype with 
Wi-Fi and Bluetooth devices in mind; they tend to operate 
around 2.4 GHz. Although the signal generator and spectrum 
analyzer together can support frequencies from 50 MHz to 
6 GHz, we selected high-pass and low-pass filters to limit the 
frequency range for the probe signal to the lower end of the S 
band, that is, between 2 and 2.8 GHz. We controlled the signal 
generator and spectrum analyzer using their Python APL We 
used Python and scikit-learn [15] to process and evaluate the 
data. 

IV. APPROACHES 

We explore three approaches for device identification. The 
first approach transmits a single tone (frequency) and listens 
for a response at the first harmonic (e.g., two times the 
transmitted frequency). The second approach sweeps a single 
tone over a range of frequencies while listening at two times 
each transmitted frequency. The third approach transmits two 
tones simultaneously, purposely generating intermodulation 
distortion, and listens over a range of frequencies. We briefly 
describe each of these approaches in more detail next. 

A. Single tone 

In this approach ICED transmits a single tone at 2.328 GHz. 
We choose this frequency because it is close to the operating 
frequency of the Wi-Fi and Bluetooth devices in our collection 
(see Table I for a list of devices) and because prior research 
suggests devices tend to respond well at this frequency [5]. 
We measure the response at the first harmonic of 4.656 GHz. 

B. Swept range of tones 

In this approach ICED steps through a sequence of tones 
from 2.0 GHz to 2.8 GHz, in 10 MHz increments. At each step 
it transmits a single tone, pauses, then listens for a response at 
the corresponding first harmonic (from 4.0 GHz to 5.6 GHz). 

C. Simultaneous tones 

In this approach ICED transmits two tones simultaneously, 
purposefully creating intermodulatation distortion (IMD), that 
is, signals with multiple tones on the same wave. Specifically it 
creates mixing products (in addition to the normal harmonics) 
at 2w1 - w2 and 2w2 - w1. The system measures the response 
over the mixing products of the tones. In this way, ICED acts 
similarly to an IMD radar [14]. 

In this approach, we use only two tones a with a com-
monly used spacing of 1 MHz between the two frequencies 
to generate the cross-modulated harmonics [16]. Here, the 
limiting factor is the Signal-to-Noise Ratio of the response. 
Compared to the power of the reflected signal of a single-tone 
harmonic, the reflection of each tone in a multi-tone signal is 
scaled down by a factor proportional to the number of tones. 
In other words, by transmitting more than one tone (but the 
same total power) the power of the response of the single-
tone harmonic gets distributed across all transmitted (and thus 
received) frequencies. 

TABLE I: Device list and manufacturers. 

Device Category Manufacturer Label 

Light Control Linkind B 
Wi-Fi Smart Plug D-Link C 
Wi-Fi Smart Plug SmartThings D 
Smart Tag SmartThings E 
Smart Tag Tile F 
Smart Tag Samsung Galaxy G 
Smart Thermostat Ecobee3 H 
Smart Thermostat Govee I 
Smart Camera Yi J 
Smart Camera SmartThings K 
Smart Camera Blink L 
Thermometer Kinsa M 
Thermometer Kinsa N 
Pedometer Polar 0 
Pedometer Polar p 
Pedometer Zephyr Q 
Oxymeter iHealth R 

V. EVALUATION 

We collected data at a single residential location in a 
metropolitan city with the background RF noise one might 
expect in an urban apartment complex. We positioned ICED's 
transmit and receive antennas at a fixed position in front of 
the target device at a range of approximately 45 cm and fixed 
the power of the transmitted signal. 

For an open-air line-of-sight measurement as in this paper, 
in the far field of the antennas, the received signal strength 
at all harmonic and multitone frequencies is proportional to 
1 / R 6 where R is the distance between the antennas and the 
target.1 In other words, less incident power-on-target generates 
less baseline power received from that target, but it does not 
change its unique pattern of frequencies. At longer distances, 
the target's fingerprint is unchanged but that fingerprint is 
simply received at a lower power level. 

As targets, we experimented with a collection of 17 off-
the-shelf 'smart' devices, listed in Table I. The set includes 
both Wi-Fi and Bluetooth devices, with a range in sizes 
and capabilities. In choosing devices, we considered multiple 
devices from a category. For example, in the Smart Tags and 
Smart Cameras categories we included three models of each. 
Smart Tags are similar in size and shape to the pedometers but 
have different use (and therefore different components) and we 
include two pedometers of the same manufacturer and model 
and attempt to differentiate between separate instances of the 
device. 

We evaluate the success of each method using the average 
accuracy, that is, the fraction of cases for which the classifier 
correctly identifies a specific device based on its response to 
the transmitted frequency. For our collection of 17 devices, 
a simple random-guessing classifier would achieve accuracy 
0.059 (= 1/17), less than 6%. 

1 Assuming the nonlinear junction(s) activated at the target are not saturated 
by incident power. which is a safe assumption for practical targets [14]. 
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TABLE II: Summary of the metrics obtained for the three 
variations of the classification task. 

Approach Accuracy Precision Recall Fl-Score 

Single Tone 0.376 0.266 0.376 0.305 
Swept Range 0.976 0.973 0.971 0.970 

Multiple Tones 0.353 0.342 0.353 0.330 

VI. DEVICE IDENTIFICATION 

The results for the three approaches described in Section IV 
are summarized in Table II. For each approach, we conducted 
10 experiments where we transmitted a signal toward a target 
device and listened on the first harmonic of the transmitted 
signal. We then performed IO-fold cross validation where we 
created classifiers repeatedly using 9 experiments as training 
data and evaluated the system on the 10th. Importantly, for 
these experiments the orientation of the device relative to the 
transmit and receive antennas of ICED was fixed. We relax 
that restriction in Section VII and consider identification of 
devices at different orientations. 

Additionally, while we computed results using three classi-
fiers (Random Forests, Support Vector Machines, and Gradient 
Boost algorithms), we found that Random Forests provided the 
best results for all classification tasks, so we report only the 
Random Forest results here. The configuration parameters for 
the Random Forest were selected through a grid search and 
ultimately, each forest was comprised of 300 estimators with 
a maximum depth of 90 and at least 5 samples per leaf. 

A. Single tone 

We collected 170 measurements (10 measurements per 
device for 17 devices), each comprised of 412 signal strength 
readings over a 1 MHz window centered on the first harmonic 
of the 2.328 GHz transmitted signal. Figure 2a presents an 
illustrative response collected for Device R. Other devices had 
similar patterns with a spike at the harmonic frequency, but 
different nonlinear electrical components within each device 
resulted in different amplitudes. 

We use these results as as starting point to explore the 
fingerprinting abilities of harmonic radar. Figure 3a shows 
the confusion matrix for identifying a specific device us-
ing a Random Forest classifier. The cross-validated accuracy 
of this approach is 0.376. Compared to the random-choice 
baseline, fingerprinting devices from the harmonic response 
is already improving the classification accuracy by a factor 
of 6. Grouping devices by the categories indicated in Table I 
(e.g., identifying the device as a Polar Pedometer instead 
of identifying it as Polar Pedometer number 2) results in 
an accuracy of 0.429. While these results are not definitive, 
they build confidence that other approaches might have better 
performance. 

B. Swept range of tones 

In the second approach, we transmit probe signals with 
frequencies in steps of 10 MHz from 2-2.8 GHz for a total of 
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160 readings. We collect the response, one at a time, at the first 
harmonic of the transmitted frequency (i.e., 2frx). Figure 2b 
presents, as an example, the response recorded for Device G. 
As expected, however, the exact shape of the plot varied 
between devices. The full dataset contains 10 measurements 
per device for 17 devices for a total of 170 measurements 
each with 160 readings of the amplitude of the monitored 
frequencies. 

Table II and Figure 3b present near-perfect classification 
results for identifying each specific device (including differ-
entiating between Polar Pedometer 1 and Polar Pedometer 2). 
These results show, with an accuracy of 0.976, that the use 
of a wide range of transmit frequencies generates a distinct 
fingerprint across devices in the our collection. Strangely, 
this approach resulted in a drop in accuracy for determining 
device categories (e.g., identifying Polar Pedometers) com-
pared with identifying device categories. With eight device 
types (Light Control, Wi-Fi Smart Plug, Smart Tag, Smart 
Thermostat, Smart Camera, Thermometer, Pedometer, and 
Oxymeter from Table I), the classification accuracy declined 
to 0.733. We suspect this is due to device orientation, a topic 
we explore further in Section VII. 

It is worth noting that while this approach is less accurate 
when identifying device types compared with its performance 
when identifying specific devices, it is still the most successful 
of the three approaches. 

C. Simultaneous tones 

In this approach, we transmitted two simultaneous frequen-
cies at 2.328 GHz ±1 MHz. As discussed in Section IV-C, 
when two narrow tones are transmitted simultaneously, we 
expect a response at the harmonic of each tone and the mixing 
product of both tones. To capture the finer resolution, the 
dataset for this approach contains 10 measurements per device 
for 17 devices where each measurement is comprised of 5,336 
signal strength readings in a window of 14 MHz. Figure 2c 
shows, as an example, Device M. 

Table II shows the accuracy for identifying a specific device 
for this approach was 0.353. The challenge is that compared to 
a single tone, even with more data, devices and device types 
are more similar to each other using two tones. Figure 3c 
shows the confusion matrix for this approach. 

VII. DEVICE ORIENTATION 

The experiments above indicate that the most accurate ap-
proach for identification is the response from a swept range of 
tones. In a real-world deployment, however, it may not always 
be possible to probe a device at the same orientation angle 
for which the classifier was trained. Indeed it is unlikely the 
device will be in the same orientation in the field. The simplest 
solution is to scan a device from multiple angles during 
training (building a more robust fingerprint from different 
perspectives). 

The scientific question of orientation remains: how does 
changing the angle of the incident signal alter the harmonic 
response of a device? Our hypothesis is that at different 
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orientations, the transmitted signal will likely be re-radiated 
by a different set of nonlinear device components which 
should result in a different received signal. We thus designed 
an experiment to test the robustness of the swept range of 
tones method to changes in angle of the probe signal. In this 
experiment, each device was placed on a graduated turntable 
and scanned at intervals of 30°. We captured high-resolution 
spectral data around 10 evenly spaced frequencies. Figure 4 
shows the example of Device B at 60°. 

The final dataset contains 10 measurements per device for 
17 devices and each measurement contains 12 observations 
for angles in steps of 30°. Using the swept range of tones, 
we computed the accuracy of the method by leaving out one 
angle at a time over all 10 measurements training on 11 angles 
of 9 measurements and testing on all 10 measurements of the 
removed angle plus the full data of the 10th measurement (i.e., 
the one left out). Figure 5a presents the confusion matrix for 
identifying a specific device. 

The combined accuracy of all tests (i.e., just over 2,000 
experiments: 12 angles, 10 measurements per device, 17 de-
vices) is 0.808. When identifying a device at the same angle 
from which it was measured we are successful in choosing the 
right device with an accuracy of 0.976. If instead, we receive 
a measurement from an angle previously unknown, we can 
identify the correct device with an accuracy of 0.808. 
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Fig. 4: Spectrum frequency response for Device B from a 
single tone at 2.328 GHz. 

Taking it one step further, we shift our attention from 
identifying the device to determining the type (or category) 
of the device; for this task the accuracy increased to 0.853. 
Figure 5b presents the confusion matrix for identifying the 
device category. 

These results suggest that ICED is able to correctly identify 
devices with high probability using the swept range of tones 
approach, even if the devices are at a different orientation from 
which the classifier was trained. 
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VIII. DETECTING UNKNOWN DEVICES 

We now consider a different, but related problem to identi-
fying unknown devices from a set of devices. There are many 
contexts where it may be important to determine whether the 
device being tested belongs to the set of 'known' devices, i.e., 
to discover the arrival of a new device that needs to be added to 
the known inventory, or to determine whether the new device 
may have been placed ( or replaced) by an adversary. This 
is a binary classification task where each device is labeled 
either as 'known' or 'unknown'. We test the ability of ICED 
to detect unknown devices by creating a two-stage classifier; 
in the first stage, our classifier outputs a probability of a 
target device being in each one of the N = 1 7 'known' 
classes; in the second stage, the classifier outputs 'known' if 
the probability for the output class is above a predetermined 
threshold (ultimately set at 0.35), and 'unknown' if no class 
achieves that threshold probability. 

For this scenario, we train the multi-class classifier by 
excluding one device at a time. We use all examples of the 
excluded device and four of the ten measurements for the 
remaining devices in the testing set. Finally, we repeat this 
process for all devices and aggregate the results. Because of 
the imbalance of the classes in the testing set, we compute 
the balanced accuracy for all test observations rather than 
accuracy. 

Primary results are presented in Table III. From the com-
bined count of all experiments, we find that the binary clas-
sifier has a sensitivity of 63.6% and a specificity of 74.4% 
which results in a balanced accuracy of 69%. The confusion 
matrix in Figure 5c shows that 12 of the 17 devices were 
correctly labeled (i.e., known and unknown were assigned 
appropriately). Most importantly though, both the figure and 
the confusion matrix show that the binary classifier had good 
performance when classifying known devices (i.e., low false 
negative rate) with a failure rate of 7.52%. 

Finally, we trained the binary classifier for the task of 
assigning 'known' and 'unknown' to device categories. We 
found that while the threshold changed, the balanced accuracy 
(not shown) remained the same. 

TABLE III: Confusion matrix for the binary classifier. Num-
bers are the count of training observations. 

Actual Class 
Known Un own Total 

Inferred Class Known 519 87 606 
Unknown 297 253 550 

Total 816 340 1156 

IX. DISCUSSION 

The three different approaches in this paper are neither com-
peting nor mutually exclusive. From the confusion matrices 
that display the results, we see that devices are more ( or less) 
recognizable depending on the approach for identification. 
Ultimately, a deployed system could potentially integrate all 
three approaches. 

X. RELATED WORK 

Researchers have proposed many methods for discovering 
devices present in an area. Solutions tend to fall into one 
of several categories: (1) sniffers, (2) discovery protocols, 
(3) traditional radar technologies, and (4) other harmonic radar 
approaches. We briefly discuss each of these approaches in this 
section. None, however, accomplish our goal of detecting all 
devices in an area, let alone distinguishing (identifying) them. 

A. Sniffers 

One of the most basic ways to discover devices is to simply 
sniff their communications. With this approach, a sniffer 
listens for device communications and attempts to identify the 
device based on the characteristics of the transmissions, such 
as a MAC address in a packet header. 

There are several shortcomings to sniffing. First, the sniffer 
must speak the same protocol the device speaks. For example, 
a Wi-Fi sniffer would not discover Bluetooth or Zigbee 
devices, even though they share the same radio spectrum. 
Second, the sniffer must monitor the correct frequencies. Wi-
Fi, for example, has two bands, 2.4 GHz and 5 GHz, with each 
band comprising several channels. A sniffer listening on one 
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Wi-Fi channel would not discover devices transmitting on an-
other channel. Third, some devices might use analog commu-
nications (such as older cordless phones). These would not be 
detected by a digital sniffer, even if the sniffer were capable of 
monitoring and decoding all common digital communication 
protocols. Comprehensively monitoring all frequencies for all 
communication modalities is a tall task indeed. Furthermore, 
while sniffers can detect some transmitting devices, they 
cannot detect devices that do not transmit (such as a camera 
or microphone that stores data on removable media). They 
are also incapable of detecting devices that communicate 
on wired network connections (such as Ethernet or landline 
telephone). Finally, by design, some malicious devices may 
use communication techniques deliberately designed to evade 
detection by sniffers [17]. 

Sniffers have many serious shortcomings if the goal is to 
detect all smart devices. ICED can find and identify devices 
regardless of their communication protocol - even if they do 
not transmit or are powered off. 

B. Device discovery protocols 

Numerous device-detection protocols have been proposed 
by researchers. Cabrera et al. provide a survey of many of these 
types of discovery protocols [18]. Discovery protocols, how-
ever, typically require devices to cooperate. They expect that, 
given some query by a discovery device, other target devices 
will respond to the query with truthful information about their 
identity and capabilities. Two problems prevent this approach 
from meeting our goal of discovering all devices in an area. 
First, devices must be aware of the discovery protocol; legacy 
devices may not be aware of the new discovery protocols. 
Second, malicious devices may attempt to evade detection by 
ignoring discovery queries, or perhaps worse, may masquerade 
as legitimate devices. 

Our harmonic radar approach does not suffer from these 
drawbacks. It can discover and identify devices without their 
cooperation. 

C. Traditional radar 

In an application of traditional radars, ultra-high frequencies 
(UHF), generally in the range of 300 MHz to 3 GHz, propagate 
efficiently through ground and walls. The upper part of this 
spectrum corresponds to wavelengths narrow enough to form 
visible images of environments inside of which disturbances 
are discernible [19]. Ground-penetrating radars use UHF to 
find landmines, pipes, and other targets which are buried or 
otherwise obscured [20]. Typically, these responses are not 
recognized by the naked eye; feature extraction and target 
recognition are accomplished in post-processing [21] using 
signal-processing techniques. Over short ranges (less than 
10 m) and with minimal penetration (under 1 cm), higher 
frequencies may be used to form images with resolution fine 
enough for a trained operator to recognize particular classes 
of targets [22]. An example of this sensor is the millimeter-
wave technology implemented in airports to detect hazards 
carried by travelers, either hidden in luggage or carried under 

clothing [23]. These approaches, however, rely on detecting 
known shapes and do not generalize well to detecting elec-
tronic devices that may take any form. In contrast, ICED, can 
detect devices by comparing against the background noise and, 
if the task is identification, it matches devices to a library of 
known fingerprints. 

D. Harmonic radar 

Literature in the topic of harmonic radars can be grouped 
into one of three categories: the design of the radar and its 
components [6], [24]-[28], the detection of non-linear circuits 
and the mathematical modeling and analysis of this behav-
ior [6], [29]-[33], and applications in which this technology 
is useful [34]-[39]. 

Our work most closely resembles the second area: the detec-
tion of non-linear targets. The relevant literature is focused on 
countersurveillance applications. This area is exactly where 
our work fits: we are detecting unwanted electronics in a 
space. Our main contribution is that we focus on identifying 
electronics rather than simply detecting them. Like some 
detection approaches [5], [6], our identification technique 
probes devices using frequencies to which they are likely to 
respond with harmonics. Most published work, in terms of 
identification, detects individual semiconductors (e.g., a PCB, 
integrated circuit, RFID tag); in reality these are components 
of more complex electronics. One gap in the literature, which 
we begin to address, is demonstrating the effectiveness of non-
linear responses when the devices are shielded and when the 
signal is passing through multiple (i.e., millions) non-linear 
junctions, as is the case in out-of-the-box electronics [40]. 

XI. CONCLUSION 

A robust method for detection and identification of elec-
tronic devices is a difficult, open problem, especially when 
requiring (as we do) the solution to detect unpowered, non-
communicating devices. In this paper we leverage the non-
linear response that electronics exhibit to radio waves as a 
means to produce a device fingerprint. Our main challenge is 
to develop and test the boundaries technology in tandem with 
the methods for analysis and classification. The paper uses 
a collection of 17 devices and three different fingerprinting 
methods to verify the identity of a device among a set of 
devices 'known' to the classifier. We also measure the ability 
of the system to detect an unknown device, that is, to determine 
that a target device is not one of the devices known to the 
classifier. Our results show that using a wide-range frequency 
sweep we were able to classify devices with an accuracy of 
0.976 and, in the binary problem of flagging unknown devices, 
the number of false negatives was only 7.5%. 

We view these results as a first step toward accurately 
identifying all electronic devices in an environment, even if 
the devices are powered off or try to evade detection! 
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