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Abstract—Many students struggle when they are first learning
to program. Without help, these students can lose confidence and
negatively assess their programming ability, which can ultimately
lead to dropouts. However, detecting the exact moment of student
struggle is still an open question in computing education. In this
work, we conducted a think-aloud study with five high-school
students to investigate the automatic detection of progressing
and struggling moments using a detector algorithm (SPD). SPD
classifies student trace logs into moments of struggle and progress
based on their similarity to prior students’ correct solutions.
We explored the extent to which the SPD-identified moments
of struggle aligned with expert-identified moments based on
novices’ verbalized thoughts and programming actions. Our
analysis results suggest that SPD can catch students’ struggling
and progressing moments with a 72.5% F1-score, but room
remains for improvement in detecting struggle. Moreover, we
conducted an in-depth examination to discover why discrepancies
arose between expert-identified and detector-identified struggle
moments. We conclude with recommendations for future data-
driven struggle detection systems.

Index Terms—CS Education, Struggle, Novice Programming,
Detection Systems

I. INTRODUCTION

It is becoming increasingly important to build systems to

support students in learning computer science, especially for

students from minoritized communities [1], to provide access

to high-paying computing-related careers. Block-based pro-

gramming (BBP) environments like Snap! have been designed

to provide novices with fun, visual activities that support learn-

ing CS, but the nature of programming makes it a challenge for

teachers to support all students, especially those who may be

struggling, in solving BBP problems in a classroom. Following

the definition of Dong et al. [2], we define struggle as the ab-

sence of significant progress toward a valid solution. Struggle

can sometimes be productive and lead to learning, but it can

also be a deeply negative experience for students, affecting

their senses of self-efficacy and impacting their intent to persist

[3]. When a moment of struggle is successfully detected, it

can be addressed with interventions such as iterating between

concepts and procedures [4] and general differentiated learning

[5]. Additionally, to better understand student learning, it is

often helpful to focus on these moments of struggle, but

manual identification can be a highly laborious process. Scal-

able, automated interventions may allow instructors to better

allocate limited resources. Several studies have presented new

models (e.g., machine learning classifiers) for detecting student

struggle during programming based on behavioral indicators

[6], [7]. Recently, researchers have developed features that

reflect student struggle in programming [8], and automated

data-driven struggle and progress detectors, i.e. those that use

historical data to build classifiers to detect the occurrence of

progress or struggle during an interaction [2].

In this paper, we sought to assess the performance of a

state-of-the-art struggle and progress detector (SPD) by Dong

et al. [2] with real-time student data and perceptions. SPD

classifies student programming trace log data according to

whether the code demonstrates sufficient progress on a specific

problem in a specific amount of time based on comparisons

to prior correct solutions to the same problem. The paper

introducing Dong’s SPD system evaluated it using expert

decisions about whether a human tutor should intervene to help

a student while programming, using only the trace log data of

student programs. We investigate whether or not the automatic

SPD-identified struggle and progress moments correspond to

human data during and immediately after the programming

process. We triangulate this data using think-aloud protocol

(TAP) audio transcripts, video recordings of the programming

environment, and SPD detectors applied to programming trace

logs. Our two research questions are:

• RQ1: To what extent did students’ programming ac-

tions and verbalized thoughts align with the moments

of struggle and progress identified by an automated

struggle/progress detector (SPD)?

• RQ2: In what scenarios does the SPD fail to recognize

students’ actual struggle and progress moments?
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II. LITERATURE REVIEW

Prior research has shown that learning programming is

challenging for students [9]. The disproportion between the

student population and teaching staff leaves struggling students

more prone to challenges that arise [10]. This suggests that im-

proving resources for students and reducing strain on teaching

staff could improve students’ experiences, and studies have

focused on how to improve novice programmers’ motivation

to program [11].

Modeling important factors in the student programming

experience is a prerequisite for detecting students’ struggles

and providing effective support. Researchers have previously

used such data sources as eye trackers, web cameras, program-

ming log data, biometrics, and surveys to determine students’

cognitive states while programming, finding that performance

is often positively correlated with frustration and negatively

correlated with boredom, cognitive load, and memory load

[12], [13]. However, less research has been done to understand

how to detect these struggling moments and the reasons

underlying them during novice students’ programming.

A number of studies have focused mainly on students’

coding log data to investigate and model important aspects

of the student programming experience. Gorson et al. defined

coding patterns of novice programmers based on retrospective

interviews and qualitative analysis, creating detectors based on

these patterns [8]. Their detectors attained F1 scores varying

from 66% to 98% in the evaluation phase. In another study

to understand novice programming behaviors, Dong et al.

defined and classified students’ tinkering behaviors in BBP

assignments [14].

Others have proposed models using coding logs and as-

signment and exam scores of students to predict performance

[7], with some using sequential pattern mining algorithms and

manual inspection to identify code characteristics [15] and

predict student success [16]. Dong et al. [2] proposed SPD,

which is a set of data-driven detectors that used students’ code

similarity to historical, correct student solutions in order to

find struggling and progressing moments. More specifically,

SPD uses ”typical time” for achieving ”significant progress.”

The threshold for significant progress in each assignment was

calculated using the 25th percentile of absolute progress values

of all the student traces in that assignment. The typical time of

making significant progress in each assignment was obtained

based on the third quartile of the duration of the assignment’s

all progress chunks. If a student’s time to make significant

progress is longer than the 75th percentile of all students’

significant progress times, SPD would consider that student

as struggling. They evaluated SPD using experts’ reviews on

whether an intervention was needed during a random selection

of the periods marked as struggle and progress.

Our work bears two differences from Dong et al.’s original

study using an SPD algorithm. First, we detect struggle and

progress based on novice student TAP data during program-

ming and investigate how students’ actions and verbalized

thoughts align with periods flagged by SPD as struggle and

progress. Second, we explore the situations where the SPD

labels may not match students’ TAP data and coding actions.

III. STUDY CONTEXT

A. Population

The participants of this study were 9th and 10th-grade

students who attended an in-person introductory programming

camp hosted by an American public university in the summer

of 2022. This one-week camp was designed for students

with no programming background. The camp’s goal was to

familiarize students with Snap!, enabling them to build simple

games and collaborate with each other on a programming

project. This study was performed on the second and third

days of camp. At that point, the students were familiar with

all of the relevant programming concepts that were involved

in this study’s tasks. Participants were required to have both

guardian consent and their own assent. Out of twenty-four

students who attended the camp, five participated in the study.

The demographics of those students are presented in Table I.

The demographic section of the survey did not appear for a

participant, which is denoted as N/A in the table.

TABLE I: Summary of Students’ Demographic Data

Demographic Category Count

Gender
Female 1
Male 2
Prefer not to say 1
N/A 1

Race
Black or African American 1
Two or more races 1
White 1
Prefer not to say 1
N/A 1

Ethnicity
Hispanic, Latinx, or of Spanish origin 1
Not Hispanic, Latinx, or of Spanish origin 3
N/A 1

B. Study Design

This study’s primary data sources were TAP data and

programming recordings, in which participants were asked

to complete two programming tasks while verbalizing their

thoughts. During their programming, students’ actions in the

programming environment were logged, and their screens and

voices were recorded over Zoom.

1) Programming Tasks: Prior to starting the programming

tasks, one of the researchers explained to participants how

to think aloud. TAP is a method in which researchers ask

participants to articulate their thoughts while working on a

task [17], allowing researchers to gain insights into partic-

ipants’ thought processes [18]. Following this introduction,

participants were offered a non-programming question to

practice thinking aloud. They were then presented with the

two programming tasks, Squiral and Guessing Game. Squiral

is a task where students are supposed to make a square spiral

that takes the number of rotations and the side length of the

starting line as inputs. Guessing Game is a task where students

are supposed to welcome the player and ask them to guess a

secret number in a certain range. An advantage of assigning
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these tasks is that previous students at the aforementioned

university had completed them in different semesters, which

created enough data to feed SPD. For each task, participants

were allowed to move on after 25 minutes. However, they

could choose to extend their time by 5 minutes. With each task

prompt, participants were provided with a list of recommended

blocks.

2) Programming Log Data Structure: Participants pro-

grammed in the iSnap environment [19], which logs students’

actions when programming in Snap!. This includes coding

actions, like creating variables, and non-coding actions, such

as running the code. Each of these actions is called a record,

and a set of records belonging to a student in a session of

programming is called a trace.

IV. METHODOLOGY

Prior to looking at the results of the automatic detectors, two

researchers watched the recordings of students’ programming

sessions. While watching the recordings of students’ pro-

gramming screens and listening to their verbalized thoughts,

the researchers had the log data of students’ programming

assignments open. The researchers then tagged periods when

they perceived students struggling and progressing. Their tags

consisted of a short description of why it was tagged as

struggle or progress, along with the ID of the trace log record

showing that specific observation. For example, one student’s

moment of struggle was tagged as “Changing categories while

not knowing where the desired block is. ID72”, representing

that the student was unhelpfully clicking around in search

of a block around trace log ID 72. The researchers then

collected and compared their tags to each other’s. All tags

were discussed, following which a single set of complete

and agreed-upon tags was produced for each participant’s

transcript for each of the two assignments. During times

of disagreement or ambiguity, the researchers reassessed the

students’ log data and videos. As the researchers discussed and

re-watched recordings and all disagreements were resolved, no

similarity coefficients were calculated.

Finally, the researchers examined how the human-identified

struggle and progress moments aligned with SPD results.

SPD returns dichotomous periods of struggle and progress

defined by beginning and ending trace log IDs–for example,

a section from 0 to 150 may be labeled as progress. Accord-

ingly, researchers compared the trace log IDs of their own

observations against SPD’s identified trace log IDs. Specific

emphasis was placed on noting where and why moments of

disagreement with SPD happened. Also, some SPD-identified

periods of struggle or progress included experts’ both struggle

and progress labels, which made experts add the ”mixed”

category to the analysis confusion matrices. SPD’s confusion

matrices, demonstrating the comparison between researcher

tags and SPD predictions, are presented in Tables IIIa and IIIb,

which are in the appendix.

V. RESULTS

A. RQ1: The Performance of Data-Driven Detectors (SPD)

Tables IIa and IIb show SPD’s performance metrics for

Squiral and Guessing Game tasks. Based on Table IIa, the

precision of SPD is above 75% for both struggle and progress

detection, which means SPD’s decisions on struggle and

progress are reliable for the Squiral assignment. However, the

56% recall of struggle detection indicates that many struggle

moments were flagged as progress, which underscores the

necessity for SPD’s refinement. Overall, the macro-averaged

F1-score for Squiral is 76%, which is favorable.1

SPD results for Guessing Game progress have the same

attributes but recall and precision of struggle detection reveal

room for improvement. The current precision suggests that

in the 60% of moments flagged as struggle, students were

actually struggling, but the recall implies that nearly half of

the struggle moments were labeled as progress. The macro-

averaged F1-score for Guessing Game is 70%. Hence, SPD’s

overall F1-score was 72.5%.

TABLE II: Performance Metrics

(a) Squiral

Precision Recall F1-Score
Struggle 0.75 0.56 0.64
Progress 0.81 0.94 0.87

(b) Guessing Game

Precision Recall F1-Score
Struggle 0.6 0.52 0.56
Progress 0.78 0.9 0.84

B. RQ2: Scenarios of SPD Misclassifications

1) Incorrect Struggle:
a) Atypical programming strategies.: Since the notions

of progress are rooted in previous students’ implementations of

problems, certain unique programming strategies that resulted

in correct (albeit unorthodox) solutions were treated as a

struggle. For example, a participant’s (P1) mental model and

implementation of the Guessing Game was correct. However,

their usage of the broadcast block, which was atypical but not

incorrect for this assignment, caused SPD to label their work

as “struggle.”

b) Slow progress: Due to SPD’s data-driven nature,

students who attain the same progress over a longer period

of time, in spite of their correct mental models and steady

progress, may be labeled as struggling. For example, a stu-

dent’s (P2) Guessing Game implementation was considered

by both researchers to be full of progress periods, but SPD

labeled that entire session as a struggle.

2) Incorrect Progress:
a) Suggested code: In many cases, SPD was confused

by the addition of the recommended starting blocks featured

in the assignments. As the correct blocks were added to the

coding workspace, SPD noted that all students demonstrated

1The mixed class is excluded from macro-averaged F1, as it was not a class
that SPD predicted.
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progress at first. However, students’ TAP data, as well as their

actions, revealed that they often did not have a strong mental

model or strategy for approaching the problem. For instance,

P1, immediately after receiving and skimming the prompt

for Squiral, began copying recommended blocks. While SPD

saw this as a period of progress, the experts recognized P1

was struggling conceptually. Similarly, there is an issue when

blocks are placed on the screen but not connected together.

This often comes from students tinkering, as seen in P2, but

does not indicate conceptual understanding or future progress.

3) Mixed: The mixed category was created when there was

some, but not total, disagreement with the results of SPD,

predominantly relating to conceptual progress. For example,

during Guessing Game, there was a period during which P2’s

efforts were labeled as a struggle, but the student’s actions (re-

checking the instructions, slowly exploring available blocks,

and noting they “[j]ust needed to put it all together,” in refer-

ence to their multiple stacks of if statement blocks) suggested

an improved understanding of the problem, although their

programming did not indicate progress. While programming

for Squiral, P2 recognized that they needed to use an editor

block, which was more progress than what other students in

the study had made, but the period was still labeled as a

struggle.

VI. DISCUSSION

A. RQ1: The Performance of Data-Driven Detectors (SPD)

Although our results are not entirely in line with the

SPD’s original evaluation [2], both analyses indicated the

great potential of this type of detector. Still, SPD’s recall

and precision are lower in struggle detection than in progress

detection. Since SPD’s initial goal was to find moments of

struggle, the number of instances in the progress classes is

higher. This imbalance, as shown in Tables IIIa and IIIb, may

be a reason why the struggle detection is weaker. Additionally,

of six mixed moments, five were labeled as a struggle by SPD,

which were mainly due to SPD’s time and progress thresholds.

In our analysis, we observed that students’ minor progress

periods sometimes took longer than SPD’s threshold, but they

were not recognized as they would not meet the minimum

progress metric or maximum time for progress. Although these

numbers are chosen based on a data set of 104 instances in

the original work, they may not work for students of other

ages or learning paces. Being adaptive is an important factor

to include in the future implementation of struggle detectors.

B. RQ2: Scenarios of SPD Misclassification

Some of SPD’s misclassifications were inherent to being

data-driven, like being unable to assess the progress of unique

programming strategies, but some cases, like students making

slow progress, may be remedied. In general, SPD was better

at assessing struggle in Guessing Game compared to Squiral,

which might be due to the better performance of students in

the Guessing Game. In Squiral, most students never moved

past the tinkering phase.

C. Design Implications for Data-Driven Detectors

In some cases, the training data used for data-driven detec-

tors (such as SPD) may not align with the actual classroom

context for a number of reasons. For instance, our participants

were 9th and 10th-grade students, whereas the SPD values for

determining progress were based on an introductory program-

ming course for university students. Also, there was a slight

difference in the study’s suggested blocks for Squiral from

the conventional instructions, which made the problem more

challenging. These are limitations of data-driven methods

that may be alleviated by using fully comparable data and

populations. Additionally, detectors may benefit from ignoring

blocks that are not connected to block chunks. This would

rule out misclassifications related to tinkering or using starter

blocks. Finally, we propose a modification in which detectors’

progress parameters are tuned based on the individual students.

For example, a student’s programming rate (as measured by

blocks per minute) may reveal whether a student is a fast or

slow programmer, which can help personalize the model.

VII. FUTURE WORK AND LIMITATIONS

This study was limited in several respects. First, it utilized

an extremely small sample of very novice programmers. To

validate results, an assessment of more students’ TAP data

would be beneficial. Second, due to the study’s exploratory

nature, inter-rater reliability was not calculated, which will

be addressed in future studies. Third, due to space and time

limitations and IRB considerations for minors attending a

summer camp, participants had to complete their tasks while

some other participants were also being studied. Researchers

tried to handle this issue by seating participants at a distance

from each other. However, overhearing others thinking aloud

could happen and might have caused the distraction.

For future research, one avenue is to build hybrid detec-

tors that capture students’ struggles and progress in both

assignment-specific activities and fully open-ended projects.

Additionally, creating a system identifying struggle and

progress moments in real-time could help instructors provide

targeted, timely interventions.

VIII. CONCLUSION

In this study, we conducted a small-scale assessment of an

existing struggle-progress detection system, which we called

SPD. SPD measured students’ codes against their similarity

with previously identified correct solutions. To evaluate SPD,

we asked novice programmers to verbalize their thoughts as

they attempted two programming tasks. We then assessed

their struggling and progressing moments and compared our

results to SPD. We found that, while SPD was generally

accurate, there is still room for improvement, particularly in

detecting struggle. We ended with a few recommendations for

potentially improving data-driven detectors, such as designing

assignment-agnostic detectors and differentiating according to

a student’s demonstrated speed of programming. We intend

to use these results to further refine and improve struggle

detection and feedback systems for real-time implementation.
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APPENDIX

TABLE III: The Confusion Matrix

(a) Squiral

Actual
Struggle Progress Mixed

Predicted
Struggle 9 2 1
Progress 7 34 1
Mixed 0 0 0

(b) Guessing Game

Actual
Struggle Progress Mixed

Predicted
Struggle 12 4 4
Progress 11 40 0
Mixed 0 0 0
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