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Abstract—Many students struggle when they are first learning
to program. Without help, these students can lose confidence and
negatively assess their programming ability, which can ultimately
lead to dropouts. However, detecting the exact moment of student
struggle is still an open question in computing education. In this
work, we conducted a think-aloud study with five high-school
students to investigate the automatic detection of progressing
and struggling moments using a detector algorithm (SPD). SPD
classifies student trace logs into moments of struggle and progress
based on their similarity to prior students’ correct solutions.
We explored the extent to which the SPD-identified moments
of struggle aligned with expert-identified moments based on
novices’ verbalized thoughts and programming actions. Our
analysis results suggest that SPD can catch students’ struggling
and progressing moments with a 72.5% F1-score, but room
remains for improvement in detecting struggle. Moreover, we
conducted an in-depth examination to discover why discrepancies
arose between expert-identified and detector-identified struggle
moments. We conclude with recommendations for future data-
driven struggle detection systems.

Index Terms—CS Education, Struggle, Novice Programming,
Detection Systems

I. INTRODUCTION

It is becoming increasingly important to build systems to
support students in learning computer science, especially for
students from minoritized communities [1], to provide access
to high-paying computing-related careers. Block-based pro-
gramming (BBP) environments like Snap! have been designed
to provide novices with fun, visual activities that support learn-
ing CS, but the nature of programming makes it a challenge for
teachers to support all students, especially those who may be
struggling, in solving BBP problems in a classroom. Following
the definition of Dong et al. [2], we define struggle as the ab-
sence of significant progress toward a valid solution. Struggle
can sometimes be productive and lead to learning, but it can
also be a deeply negative experience for students, affecting
their senses of self-efficacy and impacting their intent to persist
[3]. When a moment of struggle is successfully detected, it
can be addressed with interventions such as iterating between
concepts and procedures [4] and general differentiated learning

tDepartment of Computer Science
YThe University of Alabama
fTuscaloosa, AL, USA
frlqualls@crimson.ua.edu

[5]. Additionally, to better understand student learning, it is
often helpful to focus on these moments of struggle, but
manual identification can be a highly laborious process. Scal-
able, automated interventions may allow instructors to better
allocate limited resources. Several studies have presented new
models (e.g., machine learning classifiers) for detecting student
struggle during programming based on behavioral indicators
[6], [7]. Recently, researchers have developed features that
reflect student struggle in programming [8], and automated
data-driven struggle and progress detectors, i.e. those that use
historical data to build classifiers to detect the occurrence of
progress or struggle during an interaction [2].

In this paper, we sought to assess the performance of a
state-of-the-art struggle and progress detector (SPD) by Dong
et al. [2] with real-time student data and perceptions. SPD
classifies student programming trace log data according to
whether the code demonstrates sufficient progress on a specific
problem in a specific amount of time based on comparisons
to prior correct solutions to the same problem. The paper
introducing Dong’s SPD system evaluated it using expert
decisions about whether a human tutor should intervene to help
a student while programming, using only the trace log data of
student programs. We investigate whether or not the automatic
SPD-identified struggle and progress moments correspond to
human data during and immediately after the programming
process. We triangulate this data using think-aloud protocol
(TAP) audio transcripts, video recordings of the programming
environment, and SPD detectors applied to programming trace
logs. Our two research questions are:

« RQ1: To what extent did students’ programming ac-
tions and verbalized thoughts align with the moments
of struggle and progress identified by an automated
struggle/progress detector (SPD)?

« RQ2: In what scenarios does the SPD fail to recognize
students’ actual struggle and progress moments?
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II. LITERATURE REVIEW

Prior research has shown that learning programming is
challenging for students [9]. The disproportion between the
student population and teaching staff leaves struggling students
more prone to challenges that arise [10]. This suggests that im-
proving resources for students and reducing strain on teaching
staff could improve students’ experiences, and studies have
focused on how to improve novice programmers’ motivation
to program [11].

Modeling important factors in the student programming
experience is a prerequisite for detecting students’ struggles
and providing effective support. Researchers have previously
used such data sources as eye trackers, web cameras, program-
ming log data, biometrics, and surveys to determine students’
cognitive states while programming, finding that performance
is often positively correlated with frustration and negatively
correlated with boredom, cognitive load, and memory load
[12], [13]. However, less research has been done to understand
how to detect these struggling moments and the reasons
underlying them during novice students’ programming.

A number of studies have focused mainly on students’
coding log data to investigate and model important aspects
of the student programming experience. Gorson et al. defined
coding patterns of novice programmers based on retrospective
interviews and qualitative analysis, creating detectors based on
these patterns [8]. Their detectors attained F1 scores varying
from 66% to 98% in the evaluation phase. In another study
to understand novice programming behaviors, Dong et al.
defined and classified students’ tinkering behaviors in BBP
assignments [14].

Others have proposed models using coding logs and as-
signment and exam scores of students to predict performance
[7], with some using sequential pattern mining algorithms and
manual inspection to identify code characteristics [15] and
predict student success [16]. Dong et al. [2] proposed SPD,
which is a set of data-driven detectors that used students’ code
similarity to historical, correct student solutions in order to
find struggling and progressing moments. More specifically,
SPD uses “typical time” for achieving “significant progress.”
The threshold for significant progress in each assignment was
calculated using the 25th percentile of absolute progress values
of all the student traces in that assignment. The typical time of
making significant progress in each assignment was obtained
based on the third quartile of the duration of the assignment’s
all progress chunks. If a student’s time to make significant
progress is longer than the 75th percentile of all students’
significant progress times, SPD would consider that student
as struggling. They evaluated SPD using experts’ reviews on
whether an intervention was needed during a random selection
of the periods marked as struggle and progress.

Our work bears two differences from Dong et al.’s original
study using an SPD algorithm. First, we detect struggle and
progress based on novice student TAP data during program-
ming and investigate how students’ actions and verbalized
thoughts align with periods flagged by SPD as struggle and
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progress. Second, we explore the situations where the SPD
labels may not match students’ TAP data and coding actions.

III. STUDY CONTEXT
A. Population

The participants of this study were 9th and 10th-grade
students who attended an in-person introductory programming
camp hosted by an American public university in the summer
of 2022. This one-week camp was designed for students
with no programming background. The camp’s goal was to
familiarize students with Snap/, enabling them to build simple
games and collaborate with each other on a programming
project. This study was performed on the second and third
days of camp. At that point, the students were familiar with
all of the relevant programming concepts that were involved
in this study’s tasks. Participants were required to have both
guardian consent and their own assent. Out of twenty-four
students who attended the camp, five participated in the study.
The demographics of those students are presented in Table I.
The demographic section of the survey did not appear for a
participant, which is denoted as N/A in the table.

TABLE I: Summary of Students’ Demographic Data

Demographic Category Count
Female 1
Male

Prefer not to say

N/A

Black or African American

Two or more races

White

Prefer not to say

N/A

Hispanic, Latinx, or of Spanish origin
Not Hispanic, Latinx, or of Spanish origin
N/A

Gender

Race

2
1
1
1
1
1
1
1
1
Ethnicity 3
1

B. Study Design

This study’s primary data sources were TAP data and
programming recordings, in which participants were asked
to complete two programming tasks while verbalizing their
thoughts. During their programming, students’ actions in the
programming environment were logged, and their screens and
voices were recorded over Zoom.

1) Programming Tasks: Prior to starting the programming
tasks, one of the researchers explained to participants how
to think aloud. TAP is a method in which researchers ask
participants to articulate their thoughts while working on a
task [17], allowing researchers to gain insights into partic-
ipants’ thought processes [18]. Following this introduction,
participants were offered a non-programming question to
practice thinking aloud. They were then presented with the
two programming tasks, Squiral and Guessing Game. Squiral
is a task where students are supposed to make a square spiral
that takes the number of rotations and the side length of the
starting line as inputs. Guessing Game is a task where students
are supposed to welcome the player and ask them to guess a
secret number in a certain range. An advantage of assigning
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these tasks is that previous students at the aforementioned
university had completed them in different semesters, which
created enough data to feed SPD. For each task, participants
were allowed to move on after 25 minutes. However, they
could choose to extend their time by 5 minutes. With each task
prompt, participants were provided with a list of recommended
blocks.

2) Programming Log Data Structure: Participants pro-
grammed in the iSnap environment [19], which logs students’
actions when programming in Snap/. This includes coding
actions, like creating variables, and non-coding actions, such
as running the code. Each of these actions is called a record,
and a set of records belonging to a student in a session of
programming is called a trace.

IV. METHODOLOGY

Prior to looking at the results of the automatic detectors, two
researchers watched the recordings of students’ programming
sessions. While watching the recordings of students’ pro-
gramming screens and listening to their verbalized thoughts,
the researchers had the log data of students’ programming
assignments open. The researchers then tagged periods when
they perceived students struggling and progressing. Their tags
consisted of a short description of why it was tagged as
struggle or progress, along with the ID of the trace log record
showing that specific observation. For example, one student’s
moment of struggle was tagged as “Changing categories while
not knowing where the desired block is. ID72”, representing
that the student was unhelpfully clicking around in search
of a block around trace log ID 72. The researchers then
collected and compared their tags to each other’s. All tags
were discussed, following which a single set of complete
and agreed-upon tags was produced for each participant’s
transcript for each of the two assignments. During times
of disagreement or ambiguity, the researchers reassessed the
students’ log data and videos. As the researchers discussed and
re-watched recordings and all disagreements were resolved, no
similarity coefficients were calculated.

Finally, the researchers examined how the human-identified
struggle and progress moments aligned with SPD results.
SPD returns dichotomous periods of struggle and progress
defined by beginning and ending trace log IDs—for example,
a section from 0 to 150 may be labeled as progress. Accord-
ingly, researchers compared the trace log IDs of their own
observations against SPD’s identified trace log IDs. Specific
emphasis was placed on noting where and why moments of
disagreement with SPD happened. Also, some SPD-identified
periods of struggle or progress included experts’ both struggle
and progress labels, which made experts add the “mixed”
category to the analysis confusion matrices. SPD’s confusion
matrices, demonstrating the comparison between researcher
tags and SPD predictions, are presented in Tables IIla and IIIb,
which are in the appendix.
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V. RESULTS
A. RQI: The Performance of Data-Driven Detectors (SPD)

Tables Ila and IIb show SPD’s performance metrics for
Squiral and Guessing Game tasks. Based on Table Ila, the
precision of SPD is above 75% for both struggle and progress
detection, which means SPD’s decisions on struggle and
progress are reliable for the Squiral assignment. However, the
56% recall of struggle detection indicates that many struggle
moments were flagged as progress, which underscores the
necessity for SPD’s refinement. Overall, the macro-averaged
F1-score for Squiral is 76%, which is favorable.!

SPD results for Guessing Game progress have the same
attributes but recall and precision of struggle detection reveal
room for improvement. The current precision suggests that
in the 60% of moments flagged as struggle, students were
actually struggling, but the recall implies that nearly half of
the struggle moments were labeled as progress. The macro-
averaged F1-score for Guessing Game is 70%. Hence, SPD’s
overall Fl-score was 72.5%.

TABLE II: Performance Metrics
(a) Squiral

Precision | Recall | F1-Score
Struggle | 0.75 0.56 0.64
Progress | 0.81 0.94 0.87

(b) Guessing Game

Precision | Recall | F1-Score
Struggle | 0.6 0.52 0.56
Progress | 0.78 0.9 0.84

B. RQ2: Scenarios of SPD Misclassifications

1) Incorrect Struggle:

a) Atypical programming strategies.: Since the notions
of progress are rooted in previous students’ implementations of
problems, certain unique programming strategies that resulted
in correct (albeit unorthodox) solutions were treated as a
struggle. For example, a participant’s (P1) mental model and
implementation of the Guessing Game was correct. However,
their usage of the broadcast block, which was atypical but not
incorrect for this assignment, caused SPD to label their work
as “struggle.”

b) Slow progress: Due to SPD’s data-driven nature,
students who attain the same progress over a longer period
of time, in spite of their correct mental models and steady
progress, may be labeled as struggling. For example, a stu-
dent’s (P2) Guessing Game implementation was considered
by both researchers to be full of progress periods, but SPD
labeled that entire session as a struggle.

2) Incorrect Progress:

a) Suggested code: In many cases, SPD was confused
by the addition of the recommended starting blocks featured
in the assignments. As the correct blocks were added to the
coding workspace, SPD noted that all students demonstrated

The mixed class is excluded from macro-averaged F1, as it was not a class
that SPD predicted.
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progress at first. However, students’ TAP data, as well as their
actions, revealed that they often did not have a strong mental
model or strategy for approaching the problem. For instance,
P1, immediately after receiving and skimming the prompt
for Squiral, began copying recommended blocks. While SPD
saw this as a period of progress, the experts recognized P1
was struggling conceptually. Similarly, there is an issue when
blocks are placed on the screen but not connected together.
This often comes from students tinkering, as seen in P2, but
does not indicate conceptual understanding or future progress.

3) Mixed: The mixed category was created when there was
some, but not total, disagreement with the results of SPD,
predominantly relating to conceptual progress. For example,
during Guessing Game, there was a period during which P2’s
efforts were labeled as a struggle, but the student’s actions (re-
checking the instructions, slowly exploring available blocks,
and noting they “[jlust needed to put it all together,” in refer-
ence to their multiple stacks of if statement blocks) suggested
an improved understanding of the problem, although their
programming did not indicate progress. While programming
for Squiral, P2 recognized that they needed to use an editor
block, which was more progress than what other students in
the study had made, but the period was still labeled as a
struggle.

VI. DISCUSSION
A. RQI: The Performance of Data-Driven Detectors (SPD)

Although our results are not entirely in line with the
SPD’s original evaluation [2], both analyses indicated the
great potential of this type of detector. Still, SPD’s recall
and precision are lower in struggle detection than in progress
detection. Since SPD’s initial goal was to find moments of
struggle, the number of instances in the progress classes is
higher. This imbalance, as shown in Tables IIla and IIIb, may
be a reason why the struggle detection is weaker. Additionally,
of six mixed moments, five were labeled as a struggle by SPD,
which were mainly due to SPD’s time and progress thresholds.
In our analysis, we observed that students’ minor progress
periods sometimes took longer than SPD’s threshold, but they
were not recognized as they would not meet the minimum
progress metric or maximum time for progress. Although these
numbers are chosen based on a data set of 104 instances in
the original work, they may not work for students of other
ages or learning paces. Being adaptive is an important factor
to include in the future implementation of struggle detectors.

B. RQ2: Scenarios of SPD Misclassification

Some of SPD’s misclassifications were inherent to being
data-driven, like being unable to assess the progress of unique
programming strategies, but some cases, like students making
slow progress, may be remedied. In general, SPD was better
at assessing struggle in Guessing Game compared to Squiral,
which might be due to the better performance of students in
the Guessing Game. In Squiral, most students never moved
past the tinkering phase.
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C. Design Implications for Data-Driven Detectors

In some cases, the training data used for data-driven detec-
tors (such as SPD) may not align with the actual classroom
context for a number of reasons. For instance, our participants
were 9th and 10th-grade students, whereas the SPD values for
determining progress were based on an introductory program-
ming course for university students. Also, there was a slight
difference in the study’s suggested blocks for Squiral from
the conventional instructions, which made the problem more
challenging. These are limitations of data-driven methods
that may be alleviated by using fully comparable data and
populations. Additionally, detectors may benefit from ignoring
blocks that are not connected to block chunks. This would
rule out misclassifications related to tinkering or using starter
blocks. Finally, we propose a modification in which detectors’
progress parameters are tuned based on the individual students.
For example, a student’s programming rate (as measured by
blocks per minute) may reveal whether a student is a fast or
slow programmer, which can help personalize the model.

VII. FUTURE WORK AND LIMITATIONS

This study was limited in several respects. First, it utilized
an extremely small sample of very novice programmers. To
validate results, an assessment of more students’ TAP data
would be beneficial. Second, due to the study’s exploratory
nature, inter-rater reliability was not calculated, which will
be addressed in future studies. Third, due to space and time
limitations and IRB considerations for minors attending a
summer camp, participants had to complete their tasks while
some other participants were also being studied. Researchers
tried to handle this issue by seating participants at a distance
from each other. However, overhearing others thinking aloud
could happen and might have caused the distraction.

For future research, one avenue is to build hybrid detec-
tors that capture students’ struggles and progress in both
assignment-specific activities and fully open-ended projects.
Additionally, creating a system identifying struggle and
progress moments in real-time could help instructors provide
targeted, timely interventions.

VIII. CONCLUSION

In this study, we conducted a small-scale assessment of an
existing struggle-progress detection system, which we called
SPD. SPD measured students’ codes against their similarity
with previously identified correct solutions. To evaluate SPD,
we asked novice programmers to verbalize their thoughts as
they attempted two programming tasks. We then assessed
their struggling and progressing moments and compared our
results to SPD. We found that, while SPD was generally
accurate, there is still room for improvement, particularly in
detecting struggle. We ended with a few recommendations for
potentially improving data-driven detectors, such as designing
assignment-agnostic detectors and differentiating according to
a student’s demonstrated speed of programming. We intend
to use these results to further refine and improve struggle
detection and feedback systems for real-time implementation.
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APPENDIX

TABLE III: The Confusion Matrix
(a) Squiral

Actual
Struggle | Progress | Mixed
Struggle 9 2 1
Predicted | Progress 7 34 1
Mixed 0 0 0
(b) Guessing Game
Actual
Struggle | Progress | Mixed
Struggle 12 4 4
Predicted | Progress 11 40 0
Mixed 0 0 0




