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Abstract

Machine learning potentials enable molecular dynamics simulations to exceed the

size and time scales that can be accessed by first-principles methods like density func-

tional theory, while still maintaining the accuracy of the underlying training dataset.

However, accurate machine learning potentials come with relatively high computa-

tional costs that limit their ability to predict properties requiring extensive sampling,

large simulation cells, or long runs to converge. Here, we have developed and tested a

neuroevolution-potential model for water trained to hybrid dispersion-corrected density

functional calculations. This model exhibits accuracy and transferability comparable

to state-of-the-art machine learning potentials but at a much lower computational

cost. As a result, it enabled us to compute well-converged thermodynamics averages

and fluctuations. This allowed us to assess the ability of our model to reproduce sev-

eral thermodynamic properties of water and ice, as well as the anomalous behavior of
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water density, heat capacity, and compressibility. The e�cient GPU acceleration of

our model and its capability to reproduce water thermodynamics in good agreement

with experiments make it suitable for simulating phase transitions and slow dynamical

processes in aqueous systems.

Introduction

Water is a ubiquitous substance on Earth and plays a crucial role in various fields, in-

cluding energy harvesting,1 biological processes,2 and the evolution of life.3–5 Despite its

simple chemical formula, water is a complex system with multiple anomalies and a rich

phase diagram, attributed to the nature of hydrogen bonding and the structural versatility

of tetrahedral networks.3,6–8 The intricate thermodynamics of water has been the focus of

numerous molecular dynamics (MD) simulations aimed at providing molecular-level insights

into water’s anomalies, the melting and freezing mechanisms of ice, and the features of ice

and water surfaces. These phenomena typically involve extended time and size scales, which

are inaccessible to first-principles molecular dynamics (FPMD) simulations. Therefore, the

thermodynamics of ice and water have been investigated employing less transferable but

computationally e�cient empirical force fields, such as rigid point-charge models9 and even

faster coarse-grained potentials,10 fitted to experimental data. Higher accuracy with good

computational performance can be achieved by training classical polarizable models on a suit-

able combination of experimental data and quantum-chemical calculations.11 Furthermore,

more complex polarizable forcefields fitted on ab initio quantum chemical calculations on wa-

ter clusters demonstrated exceptional accuracy for molecular water systems.12–14 However,

the form of these potentials limits the range of utilization to non-reactive systems, and the

complexity of their functional form hampers their performance. Force-matching and splined

two-body potentials are very e�cient but lack transferability over di↵erent thermodynamic

conditions.15,16

In the past two decades, the development of machine learning potentials (MLPs) fitted
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on first-principles, e.g. density functional theory (DFT), potential energy surfaces17–25 has

enabled the accurate and transferable atomistic modeling of physical phenomena that require

systems up to 105 atoms and simulation times beyond the nanoseconds time scales previ-

ously accessible only to empirical approaches.26,27 For example, the use of Behler-Parrinello

neural network potentials (NNP) made it possible to unravel the role of van der Waals dis-

persion forces on the density anomaly of water,28 the impact of nuclear quantum e↵ects on

the thermodynamic stability of ice and water,29 the phase diagram of water at extreme con-

ditions,30 ice nucleation,31 and the sub-picosecond relaxation dynamics of hydrogen bonds

upon vibrational excitation.32

One major advantage of local MLPs over DFT is that the computational cost to compute

the forces scales linearly with the size of the system. However, the computational e↵ort to

evaluate MLP energies and forces remains much larger than that of empirical forcefields,

and it scales with the desired accuracy, as they both depend on the complexity of the local

atomic descriptors and on the ML engine.33 Some of the applications mentioned above, e.g.

ice nucleation, are at the limit of what is a↵ordable with NNP, and applications requiring

larger models or longer timescales are still precluded, such as ice amorphization, liquid-

liquid phase transitions, and the slow dynamics of interfaces. Aggressive parallelization and

porting on graphic processing units (GPUs) are possible strategies to extend the reach of

accurate MLPs. Neuroevolution-potentials (NEP) are a class of neural network interatomic

potentials optimized to achieve e�cient training and high performance on GPUs.34,35 In

this work, we construct and validate a NEP for water and ice with accuracy comparable to

state-of-the-art neural network potentials and high computational e�ciency comparable to

empirical force fields. While the usual metric to assess the accuracy of MLPs is the error

on energies and forces (either mean absolute error - MAE - or root mean square error -

RMSE), here we provide an extended validation of our NEP water model against a set of

thermodynamic observables for water and ice. Additionally, we test the transferability of

the NEP water model to two systems that were not included in the training set, and we
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assess its performance to reproduce the anomalous behavior of density, heat capacity, and

isothermal compressibility of water.

In the next Section, we outline the formulation of NEP, summarize the processes of

generating the training and testing database, and describe the simulation protocols used to

model water thermodynamics by MD. In the Results Section, we first compare the quality

of the fit of our NEP potential to that of the committee neural network potential(C-NNP)36

over the same training-testing set. We then verify the ability of our model to reproduce the

structure of liquid water with both classical MD and path-integral simulations. We then

show that the NEP potential reproduces the FPMD dynamics of a small water cluster, and

it can be exploited to study systematically the vibrational response as a function of the

water cluster size. Later we present the calculation of a set of thermodynamic properties of

water and ice and we compare it to the results obtained with the TIP4P/2005 forcefield.9

Finally, we address the study of the anomalous behavior of water density, heat capacity,

and isothermal compressibility as a function of temperature at ambient pressure, and we

conclude by discussing the strengths, limitations, and prospective use of this NEP model in

future studies.

Models and Methods

Neuroevolution Potentials

The NEP approach was recently proposed as a straightforward and data-e�cient method

to develop and fit neural network MLPs. Previous works demonstrated that NEP achieves

excellent performance in the study of thermal transport in both crystalline and amorphous

materials.34,37–39 In this work, we used the NEP335 framework to construct our water model.

Hereafter we provide a brief overview of the general features of NEP. The descriptors of

NEP are made up of radial and angular components where the radial component, din, can
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be expressed as:

din =
X

j 6=i

gn (rij) for 0  n  nR
max, (1)

where rij stands for the inter-atomic distances between atom i and atom j. gn (rij) in Eq.

(1) can be expanded on the basis of Chebyshev polynomials:40
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In Eq. (3), Tk stands for the kth order Chebyshev polynomial and has dimension ofNR
bas+1. rRc

is the radial cuto↵, and fcut (rij) in Eq. (3) represents a Terso↵ cuto↵ function.41 Meanwhile,

the angular component can be written using the addition theorem of the spherical harmonics:

din` =
X̀

m=�`

(�1)mAi
n`mA

i
n`(�m). (4)

In Eq. (4), n and ` fulfill the constraints such that 0  n  nA
max and 1  `  `max

3b . Ai
n`m

can be further described as:

Ai
n`m =

X

j 6=i

gn (rij)Y`m (✓ij,�ij) , (5)

where Y`m (✓ij,�ij) are the spherical harmonics of order `,m for the polar and azimuthal

angles ✓ij and �ij formed by the vector rij. The basis functions of gn (rij) in Eq.(5) are in

dimension of NA
bas + 1. After deriving the 3-body angular term din`, 4 and 5-body angular
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terms, din`1,`2,`3 and din`1,`2,`3`4 , can be defined accordingly:
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where

0

B@
`1 `2 `3

m1 m2 m3

1

CA represents Wigner 3j symbols.42 din`, din`1`2`3 and din`1`2`3,`4 are

modified from the atom cluster expansion (ACE) formalism.42–45 To develop our NEP po-

tential, `max
3b = 4, `max

4b = 2 and `max
5b = 1 are employed in computing the angular descriptors.

Once radial and angular components are determined, the descriptors will be constructed as

the input layer of a feed-forward neural network (FFNN).46 The FFNN consists of a sin-

gle hidden layer with Nneu neurons with hyperbolic tangent activation function. Among

di↵erent NN potentials,17,45,47,48 NEP is unique in that its weights are optimized using the

separable natural evolution strategy (SENS).49 Since Virial data are not available from the

training set, the loss function of our NEP potential is represented by the sum of the RMSE

of energy and force, suitably weighted. To avoid overfitting, both norm-1 (�1) and norm-2

(�2) regularizations are imposed upon training.50,51

A comprehensive list of hyperparameters for our NEP potential is reported in Table 1,

which also indicates the size of the population (Npop) and the number of generations (Ngen)

used in the SENS optimization. The hyperparameters are chosen so as to obtain an ideal

balance between accuracy and computational e�ciency. For the radial cuto↵, we have tested

values starting from 6 Å, finding that we need at least rRc = 8 Å to reproduce the structure

of water. At the same time, we verified that increasing the angular cuto↵ does not improve
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the potential. Similar principles guided the choice of the order of the basis functions and of

the order of interactions considered, which is up to 5-body. Specifically, we observed that

increasing NR/A
bas beyond 8 Ådoes not improve significantly the error on the forces but adds

to the computational cost. Finally, we adopt a single-layer feed-forward neural network with

50 neurons, which also optimizes performance maintaining transferability over several water

and ice systems.

Table 1: Hyper-parameters for the water/ice NEP potential.

rRc (Å) rAc (Å) NR
bas NA

bas nR
max

8.0 6.0 8 8 8
nA
max `max

3b � `max
4b � `max

5b Nneu �e �f

8 4 - 2 - 1 50 1.0 1.0
�1 �2 Npop Ngen

0.05 0.05 50 2⇥ 105

For training and testing our NEP model, we use the dataset created by Schran et al.36 to

train their C-NNP. The main body of the training set consists of structures of liquid water

at 300 K from FPMD simulations, in which the dynamics of the nuclei are classical.52–54 The

training set was then expanded at each cycle of C-NNP development to gradually capture the

nuclear quantum e↵ects via path integral molecular dynamics (PIMD) simulations. Upon

the final stage of training the C-NNP, 814 structures were included in the training set, which

encompasses liquid water at 300, 350, and 400 K, high-pressure liquid water at 2 and 4 kbar,

water slab representing the air-water interface,55 and crystalline ice Ih and ice VIII. To

validate the performance of a fully trained C-NNP, a comprehensive testing set comprising

8000 structures was chosen evenly from FPMD and PIMD simulations performed using the

generation 4 C-NNP.

The electronic structure, energy, and forces in these simulations are calculated using the

hybrid revPBE0 functional with D3 dispersion corrections.56–59 This functional combines

two essential features to describe water correctly: on the one hand dispersion corrections

are necessary to reproduce the density anomaly of water and the density di↵erence between

water and ice,28 and, on the other hand, the fractional exact exchange provides an improved
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description of the hydrogen bonding.60 Hence, previous studies have shown that the Behler-

Parrinello neural network potentials and C-NNP fitted on DFT calculations at the level of the

revPBE0-D3 hybrid functional reproduce the structural, thermodynamic, and spectroscopic

properties of liquid water in good agreement with experiments.29,36,61

To verify the transferability of our NEP potential, we compared the dynamics of a 12-

molecule water cluster at the levels of NEP and DFT-based FPMD with the revPBE0-

D3 functional and the same parameters used to generate the training data.62 DFT-based

FPMD simulations were carried out using the Quickstep approach implemented in the CP2K

v8.2 package.63 Valence Kohn–Sham orbitals are expanded on a double-⇣ localized basis

set64 in real space, and core states are treated implicitly using Goedecker–Teter–Hutter

pseudopotentials.65 Plane waves up to a cuto↵ energy of 300 Ry are used to represent the

electron density. The equations of motion were integrated with 0.5 fs timestep and the

temperature was kept at 260 K by stochastic velocity rescaling.66 with a time relaxation

constant of 0.1 ps. The cluster was placed in a cubic simulation box (30 Å). With this

FPMD setup, we computed the vibrational densities of states (vDOS) over a 3 ps trajectory

from the Fourier transform of the velocity auto-correlation function. For the 36, 108 and 324

water molecule clusters that are run using our NEP potential, we used the same protocol

as the simulation runs with the 12-water cluster but these clusters were placed in a cubic

simulation box of 100 Å.

Thermodynamic Properties and Water Anomalies

To assess the performance of the NEP water potential we calculated with classical MD 15

thermodynamic quantities of liquid water, ice Ih, and ice II, listed in Table 2. The table

reports also the size of the simulation systems. Most of the simulations have been performed

on a 522-molecule with periodic boundary conditions, which is large enough to avoid finite-

size artifacts on thermodynamic averages.67 Hereafter we describe the simulation protocol

used to compute these quantities. Well-equilibrated models of water models at the desired
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Table 2: List of calculated thermodynamic properties.

Notation Units Description Size (NH2O)
⇢liquid,298.15K,1bar g/cm3 Density of liquid water at 298.15 K, 1.01325 bar 522
⇢liquid,400.15K,1bar g/cm3 Density of liquid water at 400.15 K, 1.01325 bar 522
⇢ice Ih,250K,1bar g/cm3 Density of hexagonal ice at 250 K and 1 bar 384
⇢ice II,123K,1bar g/cm3 Density of ice II at 123 K and 1 bar 324
⇢liquid,373K,10Kbar g/cm3 Density of liquid water at 373 K, 10 kbar 522
⇢liquid,373K,20Kbar g/cm3 Density of liquid water at 373, 20 kbar 522

T,298K,1bar 1/Mbar Isothermal compressibility of water at 298 K, 1 bar 522
Tmax ⇢ K Temperature at maximum density (TMD) 522
lnD278K Di↵usion coe�cient of liquid water at 278 K 522
lnD298K Di↵usion coe�cient of liquid water at 298 K 522
lnD318K Di↵usion coe�cient of liquid water at 318 K 522
�300K mN/m Surface tension at 300 K 522, 1536
Tmelt K Melting temperature 10368

�Hmelt kcal/mol Enthalpy of melting (l/s) 522 / 384
�Hvap kcal/mol Enthalpy of vaporization (l/g) 522 / 1

thermodynamic conditions were obtained from MD simulations in the isobaric-isothermal

canonical ensemble (NPT) for at least 10 ns and up to 40 ns.68 At deep supercooling, below

250 K, systems were equilibrated until the last 10 ns of simulations did not exhibit any

drift of the potential energy or the density. For ice models, 1 ns equilibration runs were

su�cient. To probe water anomalies, we equilibrated liquid D2O at P =1 atm (1.013 bar)

and at temperatures between 180 and 360 K at intervals of 10 K, starting from the highest

temperature. Thermodynamic averages were computed from production runs of at least

10 ns, also conducted in the NPT ensemble. To determine the temperature of maximum

density (Tmax ⇢) of water, we fitted a quartic polynomial to the average densities computed

between 260 and 360 K and we defined Tmax ⇢ as the location of the analytical maximum of

the polynomial fit.

From these runs, we computed the isothermal compressibility (T ) of liquid water from

the volume fluctuations of the NPT MD production runs:69,70

T = � 1

V

✓
@V

@P

◆

N,T

⇡ hV 2i � hV i2

kBT hV i , (8)
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where kB is the Boltzmann constant and the bracket notation indicates ensemble averages.

The molar heat capacity at constant pressure Cp = (@H/@T )P was also obtained from

these simulations by fitting the enthalpy as a function of the temperature in the temperature

range between 260 and 320 K with a 4th-order polynomial function and taking its first

derivative.

Di↵usion coe�cients (D) of liquid water at three di↵erent temperatures were determined

using the Green-Kubo formula from 1 ns-long microcanonical (NVE) production runs:71

D =
1

3

Z 1

0

hv(t) · v(0)idt. (9)

During these runs, we sampled the velocities every 1 fs and computed the correlation function

up to 1 ps.

To compute the surface tension of water at 300 K (�300K), two bulk water models contain-

ing 522 and 1536 molecules, equilibrated at 300 K at atmospheric pressure, were transformed

into slabs by introducing a vacuum region of 80Å in the z direction. The slabs were further

equilibrated in the canonical NVT ensemble at 300 K. The surface tension (�T ) is calculated

from the average of the pressure normal and parallel to the surface computed in a 10 ns

NVT production run as:72,73

� =
Lz

2

⌧
Pzz �

(Pxx + Pyy)

2

�
, (10)

where Lz indicates the length of the simulation cell along the direction perpendicular to the

surface. Pxx and Pyy are the diagonal components of the pressure parallel to the surface and

Pzz is the perpendicular component.

The melting temperature (Tmelt) is calculated using the two-phase method. In this ap-

proach, a large system (104 water molecules) is prepared by joining an ice Ih model and a

liquid water model. After a short equilibration at a low temperature that allows the water-ice

interface to relax, the system is simulated in the NPT ensemble at di↵erent temperatures.
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Monitoring the dynamics of the solid-liquid interface for a su�ciently long time allows one

to identify the melting temperature: if T < Tmelt then the solid phase grows, otherwise the

liquid phase prevails. The crystal growth/melting is monitored using a local structural order

parameter, such as the Steinhardt local q6.74–76

After determining Tmelt, independent simulations of hexagonal ice and bulk water were

performed to calculate �Hmelt:

�Hmelt = Hl �Hs =
⇣
Ûl � Ûs

⌘
+
⇣
PlV̂l � PsV̂s

⌘
, (11)

where the hat notation in Eq. 11 indicates a molar basis for the respective quantities. Both

solid (s) and liquid (l) phase runs were conducted with 200 ps NPT equilibration, followed

by 1 ns NVT productions. Similarly, �Hvap can be calculated by running independent

simulations of water in gas (g) and liquid (l) phases. �Hvap is defined as:

�Hvap = Hg �Hl =
⇣
Ûg � Ûl

⌘
+RT (12)

where R is the ideal gas constant.

Molecular Dynamics Simulations

Di↵erent properties have been calculated following di↵erent MD protocols. Structural, and

dynamical (e.g. vibrational density of states, self-di↵usion coe�cient) properties of water

were computed from 1 ns production runs in the canonical ensemble at constant-volume

(NVT) using stochastic velocity rescaling66 with a coupling constant ⌧ = 0.05 ps. These

runs are preceded by a 200 ps equilibration in the NPT ensemble with ⌧T = 0.05 ps and

⌧P = 0.5 ps coupling constants for the thermostat and barostat.68 The water model used for

these runs consists of 522 H2O molecules in a cubic box with periodic boundary conditions

in the three dimensions. The equations of motion are integrated with a timestep of 0.5 fs,

which guarantees energy conservation with numerical fluctuations of 10�4 eV/molecule and
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no appreciable drift.

To assess the accuracy of water NEP for quantum simulations, the radial distribution

function (RDF) of water at room temperature was also computed at the quantum mechanical

level using path-integral MD accelerated with a generalized Langevin equation thermostat

(PIGLET), to allow for convergence on the number of beads, such that only 8 beads were

used for the simulation.77 This simulation is performed on a 64-water molecule model in a

cubic box (l = 12.45 Å, ⇢ = 0.99 g/cm3) for 100 ps with the same timestep as the classical

simulations. We use the i-PI driver78 with LAMMPS.79

To compute the density, isothermal compressibility, and heat capacity of water as a

function of temperature, from 180 to 360 K, we equilibrate the 522-molecule model for 10 ns

in the NPT ensemble, and we collect data for at least 10 ns after equilibration. For these

simulations, we use D2O as the larger mass of deuterium enables energy conservation with a

1 fs timestep. The temperature and pressure coupling times used to enforce NPT conditions

are ⌧T = 1 ps and ⌧p = 10 ps during both equilibration and production. For the other

thermodynamic properties reported in Table 2, we adopted the same procedure described

for the structural properties. The uncertainty on the thermodynamic properties is calculated

as the standard error over five blocks of the production runs unless specified otherwise in

the results section.80

The two-phase simulations to determine the melting temperature were performed on a

system of 10,368 water molecules in a cell with dimensions ⇠ 5.4 ⇥ 4.7 ⇥ 12.7 nm3. The

ice/liquid interface is in the plane perpendicular to the z axis and approximately half of the

molecules are in the proton-disordered ice Ih structure while the other half is in the liquid

state. The system is run for at least 1 ns in the NPT ensemble with a timestep of 0.5 fs

and thermostat/barostat relaxation times ⌧T = 0.05 ps and ⌧p = 5 ps. Crystal growth or

melting is monitored using the local q6 order parameter with the same parameters used in

recent work on ice melting.81 The NEP potential development and all MD simulations were

performed using GPUMD-3.6.35
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Runtime Profiling

MD simulations protocols to obtain well-converged thermodynamic properties of water are

enabled by the e�cient GPU implementation of the NEP potential.35 Figure 1 shows the

run-time performance of our NEP water model on parallel CPUs (AMD Ryzen Threadripper

3970X, 4.0 GHz) and on GPUs (GeForce RTX 2080Ti), compared to TIP4P/2005. Bench-

marks were performed on a 32,400-molecule (97,200 atoms) water model in an orthorhombic

box with size 22.5⇥7.0⇥6.6 nm3. MD simulations are run with a 1 fs timestep at an ini-

tial temperature of 290 K. Computational speed is given in ns/day. In its LAMMPS CPU

implementation, NEP is about 20 times slower than TIP4P/2005 but the parallel scaling

remains linear up to 32 CPUs. The GPU implementation of NEP in GPUMD-3.6 exhibits

excellent scaling up to four parallel GPUs. The runtime speed on one GPU is comparable

to TIP4P/2005 on 8 CPUs, and on 4 GPUs it exceeds that of TIP4P/2005 on 32 CPUs.

Figure 1: Computational e�ciency of NEP run on parallel CPUs (LAMMPS imple-
mentation) and on parallel GPUs (GPUMD implementation), compared to TIP4P/2005
(LAMMPS implementation).
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Results & Discussions

Training of the Neuroevolution Potential: comparison with Committee-

Neural Network Potential

Here we compare the ability of the NEP potential and the C-NNP to predict the forces of

the testing database. Figure 2 shows the force distribution of the testing set used to validate

the NEP potential. We have chosen 500 configurations for each system from Newtonian and

PIMD. The force components extend up to 34 eV/Å, with a markedly broader distribution in

PIMD simulations. The training forces RMSE of NEP is 82 meV/Å, slightly larger than 58

meV/Å of C-NNP. These errors are overall similar or better than those reported in previous

works in which NNPs for water were employed, which are in the 70–120 meV/Å range.28,29,47

Figure 3 shows that the error on the forces is fairly homogeneous across the systems

included in the testing data set for both C-NNP and NEP, the former being systematically

more accurate. However, di↵erent from the C-NNP whose testing performance is seemingly

biased towards two phases of ices,36 our NEP potential preserves a more evenly distributed

force RMSE across the whole set of systems. Both machine learning potentials perform better

on configurations sampled by classical mechanics and, at this level, they exhibit a slightly

larger RMSE for the water slab, featuring liquid/vapor interfaces, which are more complex

than bulk systems.55 For configurations extracted from PIMD runs the error is consistent

across the whole system. The larger error obtained for quantum configurations is likely due

to the larger range of forces spanned by quantum dynamics. Overall, both potentials yield

good transferability across a broad range of systems.84

The slightly superior training performance of C-NNP can be attributed to two factors: C-

NNP is constructed using a high-dimensional neural network (HDNN) and contains multiple

hidden layers, which capture finer details within the training set. Additionally, the force

predictions from the C-NNP are achieved by ensemble-averaging the force predictions from

each of the eight committee member NNPs, thus resulting in lower RMSE compared to the
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Figure 2: Force distributions of ice Ih, ice VIII, air-water slab, and liquid water at 2k bar
(top graph), liquid water at 4k bar and at 300 K, 350 K, and 400 K (bottom graph). �
represents the standard deviation of the force distributions. Forces from classical dynamics
(green) and PIMD (red) are shown in the top and bottom rows of each panel. It is worth
noting that the exact target pressure used to sample the ice VIII configurations are not
specified in ref.36 Further details of the MD settings and the thermodynamic conditions
used in sampling configurations for those force distributions can be found in ref.36,82,83

individual models.36,85–87 Hence, the accuracy of C-NNP comes at a higher computational

cost. Despite a slightly higher error on the forces, the simpler formulation of NEP makes it

suitable to address problems where large-scale models and long simulation times are necessary
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Figure 3: Testing performance of force from C-NNP (a) and NEP potentials (b). For each sys-
tem, 500 structures are sampled from the FPMD and PIMD simulations using the generation-
4 CNNP.36

to get well-converged results.

Structural Properties of Liquid Water

Since MLPs are designed to replace the expensive force calculations during DFT-based MD

simulations, the quality assessment of the MLPs should go beyond error metrics on ener-

gies and forces.43,90–93 Here, we assess the performance of NEP in reproducing the RDF of

liquid water at 300 K (gOO(r), gOH(r), gHH(r)). We compare the NEP RDFs from classical

MD to those obtained using C-NNP, which was formerly validated by Schran et al. against

FPMD.36 Figure 4 shows that three RDFs are indistinguishable between the two MLPs. The

classical gOO(r) is also very similar to the experimental one obtained by X-ray di↵raction.88

In turn, to compare the OH and the HH RDFs to experiments, it is necessary to consider

nuclear quantum e↵ects.16,28,61,77,89,94–97 Figure 4 shows that PIMD with the NEP potential

accurately reproduces the broadening of the first peak of both gOH(r) and gHH(r), as well as

the variations in the structure of water due to nuclear quantum e↵ects, leading to an excel-
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Figure 4: Radial distribution functions for liquid water at 300 K. Black-dotted RDFs rep-
resent experimental reference.88,89 Blue RDFs are computed from path-integral simulations
with the PIGLET algorithm.77

lent agreement with the RDFs inferred from X-ray di↵raction. Overall, the NEP potential

accurately reproduces the experimental structure of water at the quantum mechanical level

and it is in good agreement with former MD results with either MLPs or FPMD.

Dynamics of Water Clusters

In addition to replicating the properties of known systems, proficient MLPs should predict

the properties of systems not present in the training dataset, as long as they exhibit su�cient

similarity to those included in the training data. Here we probe the transferability of our

NEP potential, by testing the dynamics of a small water cluster against FPMD. Figure 5

(a) shows the vDOS of a 12-molecule water cluster at 260 K obtained from FPMD and an

MD run with NEP. It can be seen that the positions and overall shapes of the main peaks

are consistent between the two approaches. In particular, NEP can reproduce the merging

of the two low-frequency bands (which can usually be distinguished in bulk water) into a

single broad band between 0 and 1000 cm�1 that corresponds to hindered translations and
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librations. The overall features of this band, as well as those of the high-frequency stretching

band, including the free-OH peak at 4000 cm�1, are well reproduced by NEP. The di↵erences

in the peak intensities could be due not only to di↵erences in the potential energy surface

but also to the di↵erent lengths of the simulations. Additionally, in the NEP simulation, the

bending peak at ⇠ 1550 cm�1 appears to split, and its main component shifts to slightly

lower frequencies.

The good agreement between FPMD and NEP vDOS allows us to assess the e↵ect of

varying the water cluster size on the vibrational spectrum. Using the same MD parameters

as for the 12-molecule water cluster, we simulated the hydrogen-vDOS with water-cluster

systems that are three, nine, and twenty-seven times larger in size with NEP (Fig. 5(b)). The

recognizable di↵erences in the vDOS for the varying-sized water clusters can be attributed to

finite-size e↵ects. The most obvious change is that the surface-to-volume ratio decreases as

the size of the cluster increases. This changes the relative intensity of the free-OH stretching

peak at 4000 cm�1. We notice that the shoulder at a higher frequency than the free-OH peak,

which is probably an artifact of the NEP model for very small clusters, disappears in the

spectrum of the 36-water cluster. Concurrently, the relative intensity of the hydrogen-bonded

OH stretching band increases and the band becomes smoother. No significant changes occur

in either the intensity or the position of the bending peak. The low-frequency broad band

which includes molecular librations and hindered translations evolves toward resembling the

vibrational DOS of bulk water. In the 36-water cluster, this band still exhibits separate

features, which are completely erased at larger sizes.

Thermodynamic and Response Properties

While the quality of MLPs is often evaluated by estimating the errors on the energies and

forces of a test set and testing structural and vibrational properties,62 the low computational

cost of NEP provides us with easy access to equilibrium thermodynamics and response func-

tions that can be computed by MD. To attain statistically well-converged thermodynamic
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Figure 5: Hydrogen-vDOS for water clusters modeled with the NEP potential in comparison
to vDOS modeled with DFT at the level of revPEB0-D3 (a) and water clusters of varying
sizes modeled with the NEP potential (b). Three vertical dashed lines correspond to the OH
stretching (3406 cm�1), bending (1646 cm�1), and librational modes (615 cm�1).98

properties of liquids, long MD simulations of large systems are often required.9,67,69,100 Even

though these simulations can be feasible with accurate MLPs, such as C-NNP or the Gaus-

sian approximation potential (GAP), they involve very high computational costs which may

be a serious limitation for research groups who do not have access to high-performance com-

puting resources. Owing to the optimized implementation on the modern GPUs,35,101 NEP

enables the calculations of thermodynamic and response properties at a computational cost

comparable to classical force fields. Here, we apply our NEP potential to model 15 thermo-

dynamic and response quantities, among those previously used to score rigid fixed-charge

models.9

In Table 3, the results obtained from NEP simulations are compared to the corresponding

experimental values, and to those obtained with TIP4P/2005, which is the overall best-

scoring forcefield in the class of rigid fixed-charge models. Before comparing the results,

however, it is important to note that the TIP4P/2005 parameters were fitted to reproduce
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Table 3: Thermodynamic quantities and their uncertainty (�) modeled with the NEP poten-
tial, compared to experiments and to the TIP4P/2005 empirical forcefield.9,99 � corresponds
to the 63% confidence interval. Uncertainties on experimental data and TIP4P/2005 are not
available. ?For TIP4P/2005 the errors on Tmelt and Tmax ⇢ are referred to the corresponding
values for H2O, 273.15 and 277.1 K, respectively.

Properties Experiment NEP � Error (%) TIP4P/2005 Error (%)
⇢liquid,298.15K,1bar(g/cm3) 0.999 1.001 0.002 0.2 0.993 0.601
⇢liquid,400.15K,1bar(g/cm3) 0.9375 0.967 0.005 3.2 0.93 0.8
⇢ice Ih,250K,1bar(g/cm3) 0.92 0.915 0.002 0.5 0.921 0.11
⇢ice II,123K,1bar(g/cm3) 1.19 1.13 0.003 5.0 1.199 0.76
⇢liquid,373K,10Kbar(g/cm3) 1.201 1.165 0.004 3.0 1.204 0.25
⇢liquid,373K,20Kbar(g/cm3) 1.322 1.277 0.004 3.4 1.321 0.076
Tmax ⇢ (K) 284.75 (D2O) 292.2 0.4 2.6 278 0.325?

Tmelt (K) 276.97 (D2O) 290.5 0.5 4.0 252 9.01?

�Hmelt(meV /H2O) 62.44 57.92 1.74 6.9 50.30 24.1
�Hvap(meV /H2O) 456.2 517.7 1.92 13.5 519.9 14.0
�300K(mN/m) 71.73 53.4 1.6 25.5 69.3 3.38
T,298K,1bar(Mbar�1) 45.3 28.6 0.4 36.8 41 9.5
lnD278K -11.24 -11.04 0.16 1.8 -11.27 0.267
lnD298K -10.68 -10.66 0.13 0.2 -10.79 1.03
lnD318K -10.24 -10.28 0.085 0.4 -10.39 1.46

a set of thermodynamic properties of water and ice: the temperature of maximum density

(Tmax ⇢) of water the enthalpy of vaporization, the densities of water at ambient conditions,

of ice II and ice V, and the range of temperature stability of ice III at a pressure of 3 kbar.99

However, the TIP4P family of models has very few parameters, thus some properties cannot

be fitted concurrently: for example a good Tmax ⇢ comes at the expense of the ice Ih melting

temperature (Tmelt). The NEP scheme o↵ers more parameters and flexibility, but it is not

fitted to experiments. Hence, the origin of the deviations from measured thermodynamic

properties lies, in the underlying DFT functional, in the chosen hyperparameters, and in

the fitting procedure. Additionally, some of the properties are a↵ected by nuclear quantum

e↵ects, which are not accounted for in our MD simulations, whereas, since TIP4P/2005 is

fitted to experiments, it may be considered an e↵ective quantum model.

Table 3 shows that the equilibrium densities of water and ice Ih obtained by NEP are

within 2% of the experimental references at temperatures below 300 K and within ⇠ 3.5%
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at T = 373 K and p = 2 kbar. Our model reproduces very accurately the density di↵erence

between ice Ih and water. This is an important property of the underlying hybrid van der

Waals corrected DFT functional to which NEP was trained.29,36 However, we note that the

equilibrium density of water at room temperature of the NEP model is higher and closer to

the experimental density than that reported in Ref.,29 possibly because we train the NEP

model on a richer dataset. The lower accuracy of NEP at high temperatures and high pres-

sures as well as for ice II may stem from the fact that no data at these conditions are included

in the training set. In particular, the error on the equilibrium density of ice II, a system

that does not appear in the training set, is within 5%, which is usually considered acceptable

for DFT. This is further evidence of the transferability of neural network potentials across

di↵erent ice phases.102

Rescaling the molecular masses, we can compare the equilibrium density at 298 K to that

of D2O where we get 1.113 g/cm3 with NEP, which is within 0.7% of the experimental value

of 1.105 g/cm3. Since we estimate the melting temperature from classical MD simulations,

for properties that are severely a↵ected by nuclear quantum e↵ects, it is more compelling

to compare our results to D2O data. This is the case, for example, of the temperature of

maximum density and the melting temperature. The Tmax⇢ of heavy water is well repro-

duced by the NEP model, yet not as close as TIP4P/2005 reproduces the Tmax⇢ of H2O as

it was fitted to this property. The NEP Tmelt is within 4% of that of liquid D2O: this is a

major improvement over the large systematic underestimate of TIP4P models. At the same

time, the enthalpy of melting and vaporization are modeled with good accuracy. The overall

performance of the NEP model on the thermodynamic properties of water and ice suggests

that it is suitable for investigating phase transitions at the molecular level, including ice

melting and crystallization, ice nucleation, and the condensation of droplets from the vapor

phase. However, the surface energy of the liquid/vapor interface may raise some concerns,

as it is underestimated by about 25%. This may be due to the lack of explicit long-range

electrostatics in the NEP model.103 Additionally, the NEP model fails to reproduce accu-
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rately the isothermal compressibility of water, which is underestimated by more than 30%.

This is not entirely unexpected, given the reduced accuracy of our model at high pressures.

There may be several di↵erent reasons for this shortcoming: First of all, acceptable errors

in the thermodynamic properties turn into large errors in response functions. Secondarily,

the training dataset may not contain enough high-pressure data. Another reason, as in the

case of the surface tension, could be the absence of long-range tails in the NEP model. Fi-

nally, it may be a shortcoming of the underlying density functional framework. As for the

dynamical response of water, the NEP model reproduces very well di↵usivity over the range

of temperatures between 278 and 318 K.

Water Anomalies

Figure 6: Density of heavy water as a function of temperature computed using NEP (blue
dots) and compared to two sets of experimental data: Ref.104 (black squares) and Ref.105

(black diamonds). Error bars correspond to a 63% confidence interval. Experimental uncer-
tainties are smaller than the symbols size. The blue line corresponds to a quartic polynomial
fit of the NEP data, used to determine the temperature of maximum density.

Here we further assess the accuracy of the NEP model to reproduce water thermody-
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Figure 7: Density of water as a function of temperature computed using NEP (blue dots)
and compared to experiments on confined water extending to the supercooled region Ref.106

(black squares) Error bars correspond to a 63% confidence interval. Experimental uncertain-
ties are smaller than the symbols size.

namics by probing the anomalous behavior of the density, the isothermal compressibility,

and the molar constant-pressure heat capacity of D2O. These properties were studied for the

TIP4P/2005 model, which was proven to capture the anomalous behavior of water over a

broad range of pressure and temperature.67 We mostly compare to heavy water experiments

because our MD simulations are classical and nuclear quantum e↵ects are mitigated in D2O.

All the simulations are carried out in the NPT ensemble with p = 1 atm on a 522-molecule

periodic water model. Figure 6 shows the density of NEP water between 250 and 360 K

compared to available measurements.104,105 The simulation data are systematically higher

but they exhibit the same anomalous trend as the experiments, with a maximum density

at 292 K. This is 7.5 K higher than the experimental reference, but we should remember

that the melting point of the model is also overestimated, and the two quantities are inter-

related.99 Below 290 K, the theoretical and experimental data exhibit parallel trends, but

the simulated densities deviate further at higher temperatures, indicating that the positive
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thermal expansion coe�cient of water is underestimated. Figure 7 extends the comparison

between simulated and experimental density to the supercooled regime. At deep supercool-

ing, we do not have experimental data for D2O, hence we rescaled the molecular mass of

our simulations to that of H2O. Experiments revealed that upon deep supercooling water,

density exhibits a minimum, occurring at 202 K.106 This trend is well reproduced by the

NEP model, for which the minimum density is observed at ⇠ 210 K. However, the minimum

density in the simulations is shallower than in experiments and the system does not expand

significantly upon lowering the temperature. This may be due to di�culties in equilibrating

water models at low temperatures as the di↵usivity is extremely low. A similar trend was

observed in simulations using the TIP4P/2005 forcefield.67,69

Figure 8: Isothermal compressibility of D2O as a function of the temperature: comparison
between MD simulations using NEP (blue dots) and experimental measurements (black
squares).107 Error bars are calculated as the semi-di↵erence between the results of two 5 ns
runs. Uncertainties of experimental measurements were not reported in Ref.107

In addition to the density anomalies, water displays an anomalous behavior in its isother-

mal compressibility, which in experiments has a minimum at 319.65 K for H2O and at 322.5
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K for D2O. As discussed in the previous section, the NEP model underestimates T , but Fig-

ure 8 shows that it reproduces qualitatively the anomalous trend. The simulated compress-

ibility curve is shallower than experiments and its minimum occurs at a lower temperature

(307±5 K). It is nevertheless remarkable that the NEP model captures the correct physi-

cal behavior of water compressibility, even though, in general, non-polarizable point-charge

models, such as TIP4P and SPC/E, provide T closer in value to experiments.

Figure 9: Isobaric heat capacity of D2O computed from the derivative of a polynomial fit
of the average enthalpy in the low- and high-temperature range (dashed and solid blue
lines), compared to measurements D2O (green triangles),108 and supercooled H2O (black
diamonds).109,110

The isobaric heat capacity of water presents an anomalous non-monotonic behavior with

both a maximum at deep supercooling ⇠ 230 K, and a shallow minimum at 309 K for H2O

at ambient pressure. For D2O the minimum shifts to ⇠ 370 K, close to the boiling point,

which is out of the temperature range of the simulations in this work. For this reason, we

focus on the maximum. The existence of a low-temperature maximum of Cp is related to

the second critical point of water and the liquid-liquid phase transition, and it has been
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recently observed by calorimetric measurements.109–111 Figure 9 shows Cp computed as the

derivative of the average enthalpy from the NPT simulations at di↵erent temperatures. To

obtain the derivative across the whole temperature range, we have divided the data into

low-temperature (T<260 K) and high-temperature (T�260 K) and fitted the two separate

data sets to di↵erent third-order polynomials. At temperatures above 260 K, the NEP model

largely overestimates Cp, which is more than 60% higher than the experimental references.

However, as the temperature increases, the slope of Cp decreases compatibly with the exis-

tence of a minimum at T > 360 K. More importantly, our simulations capture the presence

of a maximum of Cp in the supercooled region. The location of the maximum at 233± 5 K

is compatible with the latest measurements (230 K), and the maximum value of Cp is in the

same ballpark. However, the Cp peak in the experiment is very narrow, possibly indicating a

singularity related to the phase behavior of supercooled water. If this is the case, finite-size

e↵ects may add up to the coarse temperature sampling of our simulations leading to an

apparently broader Cp maximum.

Conclusions

In summary, we have assessed the quality of a neuroevolution potential trained on a database

of water and ice models treated at the level of hybrid DFT with van der Waals dispersion

corrections. The performance of the NEP model is comparable to that of state-of-the-

art committee neural network potentials both in terms of the ability to fit the forces of a

diverse training/testing dataset and to reproduce the structure of water at both classical

and quantum levels. The e�cient implementation of NEP on GPUs allows us to compute

and assess several thermodynamic properties of water and ice systems, which turn out to be

reasonably close to the corresponding experimental measurements. In particular, the NEP

model gives a reasonably good estimate of the melting point of ice Ih at ambient pressure,

and reproduces very well the density of both water and ice near the phase transition.
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Finally, by examining the water anomalies at ambient pressure, we obtain density trends

in remarkably good agreement with experiments, while properties related to the thermo-

dynamic fluctuations display the correct physical trends, but can be o↵ in absolute value.

We cannot fully ascertain whether the observed discrepancies with experiments depend on

the chosen DFT flavor or on how the NEP model was constructed and parameterized. A

possible shortcoming of our NEP model is that it is local in nature, with an 8 Å cuto↵ for

two-body and 6 Å for three-body interactions, thus lacking the contribution of long-range

electrostatics. As opposed to the molecular structure and the vibrational response, which are

controlled by hydrogen bonding, volume fluctuations, compressibility, and properties that

depend critically on the contribution of the tail of the potential to the Virial, are considerably

a↵ected by neglecting long-range interactions.

Since our NEP potential reproduces accurately the thermodynamics of water and ice, and

its computational e�ciency on GPUs is comparable to that of simple all-atom potentials,

we envisage its use to address problems that require long simulations of large systems, from

thousands to several tens of thousand molecules, such as homogeneous and heterogeneous ice

nucleation at mild supercooling and in confined geometries, and crystal growth. Additionally,

this model can serve as a starting point to study more complex solutions or mineral/water

interfaces, as more elements can be added to the fit through transfer learning.

Data Availability

The training data set, GPUMD input files of MD simulations, i-PI input and parameter files

for the PIMD simulations, as well as the post-processing scripts that support our study are

publicly accessible at https://github.com/nanotheorygroup/water ice nep.
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(67) González, M. A.; Valeriani, C.; Caupin, F.; Abascal, J. L. F. A comprehensive scenario

of the thermodynamic anomalies of water using the TIP4P/2005 model. J. Chem.

Phys. 2016, 145, 054505.

(68) Bernetti, M.; Bussi, G. Pressure control using stochastic cell rescaling. J. Chem. Phys.

2020, 153, 114107.

(69) Pi, H. L.; Aragones, J. L.; Vega, C.; Noya, E. G.; Abascal, J. L.; Gonzalez, M. A.;

McBride, C. Anomalies in water as obtained from computer simulations of the

TIP4P/2005 model: density maxima, and density, isothermal compressibility and heat

capacity minima. Molecular Physics 2009, 107, 365–374.

(70) Allen, M. P.; Tildesley, D. J. In Computer Simulation of Liquids ; Press, O. C., Ed.;

1987.

35



(71) Guevara-Carrion, G.; Vrabec, J.; Hasse, H. Prediction of self-di↵usion coe�cient and

shear viscosity of water and its binary mixtures with methanol and ethanol by molec-

ular simulation. J. Chem. Phys. 2011, 134, 074508.

(72) Alejandre, J.; Tildesley, D. J.; Chapela, G. A. Molecular dynamics simulation of the

orthobaric densities and surface tension of water. J. Chem. Phys. 1995, 102, 4574–

4583.

(73) Vega, C.; de Miguel, E. Surface tension of the most popular models of water by using

the test-area simulation method. J. Chem. Phys. 2007, 126, 154707.

(74) Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M. Bond-orientational order in liquids and

glasses. Phys. Rev. B 1983, 28, 784–805.

(75) Moroni, D.; ten Wolde, P. R.; Bolhuis, P. G. Interplay between Structure and Size in

a Critical Crystal Nucleus. Phys. Rev. Lett. 2005, 94, 235703.

(76) Li, T.; Donadio, D.; Galli, G. Nucleation of tetrahedral solids: A molecular dynamics

study of supercooled liquid silicon. J. Chem. Phys. 2009, 131, 224519.

(77) Ceriotti, M.; Manolopoulos, D. E.; Parrinello, M. Accelerating the convergence of path

integral dynamics with a generalized Langevin equation. J. Chem. Phys. 2011, 134,

084104.

(78) Kapil, V.; Rossi, M.; Ondrej, M.; Petraglia, R.; Litman, Y. T.; Spura, T.; Cheng, B.;

Cuzzocrea, A.; Meißner, R. H.; Wilkins, D. M.; Helfrecht, B. A.; Juda, P.; Bienv-

enue, S. P.; et. al, i-PI 2.0: A universal force engine for advanced molecular simula-

tions. Comput Phys Commun 2019, 236, 214–223.

(79) Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.;

Crozier, P. S.; in ’t Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; Shan, R.;

36



Stevens, M. J.; Tranchida, J.; Trott, C.; Plimpton, S. J. LAMMPS - a flexible simu-

lation tool for particle-based materials modeling at the atomic, meso, and continuum

scales. Comp. Phys. Comm. 2022, 271, 108171.

(80) Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Ap-

plications, 2nd ed.; Computational Science Series; Academic Press: San Diego, 2002;

Vol. 1.

(81) Berrens, M. L.; Bononi, F. C.; Donadio, D. E↵ect of sodium chloride adsorption on

the surface premelting of ice. Phys. Chem. Chem. Phys. 2022, 24, 20932–20940.

(82) Vacha, R.; Marsalek, O.; Willard, A. P.; Bonthuis, D. J.; Netz, R. R.; Jungwirth, P.

Charge transfer between water molecules as the possible origin of the observed charging

at the surface of pure water. J. Phys. Chem. Lett. 2012, 3, 107–111.

(83) Schran, C.; Marx, D. Quantum nature of the hydrogen bond from ambient conditions

down to ultra-low temperatures. Phys. Chem. Chem. Phys. 2019, 21, 24967–24975.
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