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In many applications such as rationing medical care and supplies, university admissions, and the assignment
of public housing, the decision of who receives an allocation can be justi�ed by various normative criteria
(ethical, �nancial, legal, etc.). Such settings have motivated the following priority-respecting allocation problem:
several categories, each with a quota of interchangeable items, wish to allocate the items among a set of agents.
Each category has a list of eligible agents and a priority ordering over these agents; agents may be eligible in
multiple categories. The goal is to select a valid allocation: one that respects quotas, eligibility, and priorities
and ensures Pareto e�ciency.

We provide a complete algorithmic characterization of all valid allocations, exhibiting a bijection between
sets of agents who can be allocated andmaximum-weightmatchings under carefully chosen rank-basedweights.
While prior work provides a polynomial-time algorithm to locate a valid allocation, our characterization
admits a simpler algorithm that enables two wide-reaching extensions:
1. Selecting valid allocations that satisfy additional criteria: Via three examples — inclusion/exclusion of
some chosen agent; agent-side Pareto e�ciency vs. welfare maximization; and fairness from the perspective
of allocated vs. unallocated agents — we show that �nding priority-respecting allocations subject to some
secondary constraint straddles a complexity knife-edge; in each example, one problem variant can be solved
e�ciently, while a closely related variant is NP-hard.
2. E�ciency-envy tradeo�s in dynamic allocation: In settings where allocations must be made to ) agents
arriving sequentially via some stochastic process, we show that while insisting on zero priority violations
leads to an ¬() ) loss in e�ciency, one can design allocation policies ensuring that the sum of the e�ciency
loss and priority violations in hindsight is $ (1) (under mild regularity conditions on the arrival process).
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1 INTRODUCTION

A core socio-economic question is how to ration scarce resources without money. While not new,
this question has been forcefully reintroduced into public consciousness by COVID-19 [Andrews
et al., 2021, Binkley and Kemp, 2020, Emanuel et al., 2020, Pathak et al., 2021, White and Lo, 2020].
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De�ning “good” allocations is far from straightforward, as legal, �nancial, and ethical considerations
can lead to nuanced, often clashing, requirements. For example, consider the following:

Academic Fellowships: Donors often de�ne quali�cation requirements for named scholarships to
promote students with certain demographics/backgrounds/skills.
Medical Care: The COVAX program set standards for the equitable distribution of vaccines in
developing countries, prioritizing vaccination of groups such as healthcare workers, the elderly,
and individuals with comorbidities [COVAX].
Primary School Enrollment: In Boston, half of a school’s seats are reserved for students in the
neighborhood, and priority is given to siblings [Abdulkadiroğlu et al., 2005]. Chicago requires that
schools allocate roughly 25% of seats to each of four socio-economic tiers [Benabbou et al., 2019].
Chile’s School Inclusion Law de�nes which factors can/cannot be used to prioritize students, and
has quotas for students with economic hardships [Correa et al., 2021].
Public Housing: Singapore’s 1989 Ethnic Integration Policy places quotas on the number of public
housing units that may be allocated to each of three major ethnic groups [Benabbou et al., 2018].

The above settings broadly share the following features: a resource (scholarships, vaccines, school
seats, housing) must be rationed among agents, whose number typically exceeds the available
resource budget. The budget is split into several categories, each of which has a quota the cat-
egory is responsible for distributing — this is sometimes due to physical constraints (di�erent
schools/housing projects), and at other times to implement some social norm (fellowship funds re-
served for local/international/under-represented students; vaccine quotas for countries/states/target
populations). Each category has rules to determine which agents are eligible for allocation. Each
agent wants up to a single unit of the resource, but is indi�erent as to which category allocates that
unit1. Agents may be eligible in multiple categories, so categories must coordinate to maximize
allocations. Finally, categories often de�ne rankings (or priorities) over eligible agents, which are
intended to help choose (and justify) which eligible agents get allocated. These rankings are often
idiosyncratic, so there may be no natural way to compare agents across categories.

To understand how the above features (quotas, eligibility, priorities) restrict allocations, we build
on the framework introduced by Pathak et al. [2021], which has led to a line of work aiming to
understand its properties [Aziz and Brandl, 2021, Biró and Gudmundsson, 2021, Delacrétaz, 2021].
We brie�y summarize the framework below; see Section 2 for a formal model.

The Priority-Respecting Allocation Problem

— @ resource units, split into quotas @2 for categories 2 ∈ C, must be rationed to agents A.
— Each category 2 has a set E2 ¦ A of eligible agents, and a priority order °2 over E2 .
— Agent 0 is allocated G0,2 from each category 2 , with

∑

2∈C G0,2 f 1. (unit demand)
— Category 2 can allocate only to agents in E2 . (eligibility-respecting)
— Category 2 can allocate up to its quota, i.e.,

∑

0∈A G0,2 f @2 . (quota-respecting)
— Category 2 can allocate to agent 0 only once all higher priority agents are allocated

i.e., G02 > 0 =⇒
∑

2′∈C G0′,2′ = 1 for all agents 0′ {2 0. (priority-respecting)

The above problem tries to formalize what policymakers desire when using quotas, eligibility
rules, and priorities, by providing a test for determining whether an allocation “respects” these
requirements or not. The �rst two conditions impose that a category should only allocate from its
quota, and only to eligible agents — these are standard and easily implemented. The third condition

1This may not hold in all settings — for example, families do have preferences between schools and housing units. We return

to this issue in Section 4.2. Nevertheless, it is true up to �rst order that agents prefer being allocated to staying unallocated.
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interprets priorities as a requirement that a category never allocate to an agent if a higher-priority
agent has not been satis�ed. This requirement is trickier to implement (and verify) since the higher-
priority agents may receive allocations from any category. Nevertheless, the axioms are easy to
satisfy — for example, each category can sequentially pick the highest-priority unallocated agent(s)
in its eligibility list (more generally, via serial dictatorship; see Section 3.2).

One issue with the above requirements, however, is that they do not consider the “e�ciency” of
an allocation. For example, allocating to no one satis�es all the requirements. More problematic
are settings with partial eligibility, where even if each category allocates maximally (i.e., until it
exhausts its quota or eligibility list), the allocation may still end up wasting resources (for example,
see Fig. 1). A natural additional requirement, therefore, is for allocations to be Pareto e�cient —
whereby there is no way for agents to exchange allocations such that at least one agent ends up
gaining while no one is worse o�. Ensuring Pareto e�ciency in addition to the above requirements,
however, seems challenging, and prior work [Abdulkadiroğlu and Grigoryan, 2021, Delacrétaz,
2021, Pathak et al., 2021] states this as an open question. More recently, Aziz and Brandl [2021]
provide a scheme for �nding a particular maximum-size (and hence Pareto e�cient) allocation
by solving |A| bipartite matching problems — this result, however, does not give any insight into
general Pareto e�cient valid allocations, and/or how one can select from among such allocations
to satisfy some secondary objective. Figs. 1 and 2 give some intuition into the challenge of �nding
priority-respecting allocation — in particular, Fig. 2 shows that unlike maximum matchings, the set
of priority-respecting allocations is not necessarily convex.

1.1 Our Contributions

Our work aims to characterize the set of valid allocations: those which respect eligibility, quotas,
and priorities, and are Pareto e�cient (see Section 2). Our main result is paraphrased as follows:

A set of agents can be allocated via a valid allocation if (Theorem 1) and only if (Theorem 2)

they are allocated under the maximum matching for a weighted matching instance with

edge weights picked from a certain valid set.

The set of valid weights (De�nition 2) is based on perturbing2 the unweighted matching objective
such that the perturbations are consistent with the priorities, and the total perturbation is small (at
most 1/2). As an immediate consequence, we get that every valid allocation allocates the same number
of units, which moreover equals the size of an optimal matching without priority requirements. We
also show that although the set of valid allocations is non-convex, every fractional valid allocation
is realized as a convex combination of integral valid allocations (Proposition 2).

More importantly, our transformation of the problem of locating valid allocations into cardinal
welfare maximization enables two wide-reaching and practical extensions. First, in Section 4, we
consider how to select valid allocations satisfying additional criteria through three case studies:

(1) Valid allocations with agent inclusion/exclusion: In Section 4.1, given an agent 0 ∈ A,
we ask if one can �nd a valid allocation x that excludes 0 (i.e.,

∑

2∈C G0,2 = 0), or includes 0
(i.e.,

∑

2∈C G0,2 > 0). We show that while the former problem can be e�ciently solved, the
latter is NP-hard (Proposition 4). These results give a glimpse into the strange algorithmic
landscape of valid allocations; note that both of these problems can be e�ciently handled for
maximum matchings and stable matchings (via the LP characterization of Vande Vate [1989]).

(2) Incorporating agent preferences: In Section 4.2, we augment the basic priority-respecting
allocation problem by incorporating agent preferences for categories. We show how to

2Importantly, the perturbations can be local (i.e., the edge weight between agent 0 and category 2 only depends on 0’s

position in 2’s priority order); this is surprising, as we show that no such result is possible for the set of stable matchings

(Proposition 12 in Appendix C).
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e�ciently �nd allocations that respect eligibility, quotas and priorities, and are also Pareto
e�cient under the agents’ preference orders (Theorem 3). On the other hand, we show that
the problem of selecting a valid allocation that maximizes practically any aggregate function
of agents’ utilities is NP-hard (Theorem 4).

(3) Inner/outer allocation thresholds: In Section 4.3, we consider the problem of selecting
valid allocations that optimize some score based on the inner allocation threshold (the lowest-
priority agent allocated in each category) or, alternately, the outer allocation threshold (the
highest-priority agent in each category who remains unallocated). Understanding these
thresholds is important for auditing the “fairness” of an allocation. We show that optimizing
over inner thresholds can be done e�ciently (Propositions 5 and 6), while optimizing over
outer thresholds is NP-hard (Propositions 7 and 8).

Each of these cases demonstrates that selecting valid allocations straddles the line of computa-
tional e�ciency; one possible variant of each case study admits an e�cient algorithm (based on
our main approach in Section 3), while a closely related variant is computationally hard.

Online Priority-Respecting Allocations with Dynamic Arrivals: Finally, we consider an
online variant of the priority-respecting allocation problem. Ours appears to be the �rst work that
develops algorithms and performance guarantees for online settings, even though several of the
original motivations for the priority-respecting allocation model were intrinsically tied to online
allocation (of vaccines/medical supplies) [Pathak et al., 2021]. In the setting we consider, agents
belong to one of a small number of observable types. Agents arrive one at a time over ) rounds via
some (known) underlying stochastic process, and the principal, after observing each agent’s type,
must immediately and irrevocably decide to either allocate this agent a unit from some category or
leave the agent unallocated. We demonstrate that completely forbidding priority violations leads
to ¬() ) regret with all but exponentially small probability. However, by incorporating priority
violations into the objective, our LP formulation of the problem enables the development of a Bayes
selector online algorithm for which the sum of the expected e�ciency loss and priority violations
in hindsight is $ (1) (i.e., independent of the number of arriving agents and the resource budgets,
but depending polynomially on the number of types and categories).
In the interest of space, a discussion of related work can be found in Appendix A. In addition,

many of our formal proofs have been relegated to Appendix B. Finally, a more complete discussion of
the connection of our problem to Scarf’s Lemma and stable matching can be found in Appendix C.

2 MODEL

Resources, Categories, Quotas and Agents: A set A of agents compete for @ units of a resource.
The units are distributed to a set C of categories, through which they are allocated. Each category
2 ∈ C is given an integer quota of @2 units to allocate, such that @ =

∑

2 @2 .
Each agent is unit-demand, i.e., can consume at most one unit of the resource. For the initial part,

we assume that agents are indi�erent as to which category provides their allocation; in Section 4.2,
we discuss how to incorporate agent utilities in this setting.

Eligibility and Priorities: Each category partitions A into a set of eligible and ineligible agents.
The eligible agents are further partitioned into priority tiers.

Formally, each category 2 ∈ C has an associated eligible set of agents E2 ¦ A, and a total preorder
°2 over E2 . Given any two agents 0, 0′ ∈ A, 0 °2 0

′ denotes that 0 has weakly higher priority than
0′ in 2 . We write 0 {2 0

′ when 0 °2 0
′ and 0′ �2 0, so 0 has (strictly) higher priority in 2 . Given

any agent 0 and any category 2 , we de�ne the rank of 0 in 2 , denoted by A2 (0), to be the length ℓ

of the longest chain 01 {2 02 {2 · · · {2 0ℓ = 0 with each 08 ∈ A. Note that 1 f A2 (0) f |A|. We
visualize instances using charts in the style of Fig. 1.
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Allocation 1

U (1) V (1) W (1)

2 0 b , c

b a , 3

Allocation 2

U (1) V (1) W (1)

c 0 b , 2
b a , d

Allocation 3

U (1) V (1) W (1)

2 0 1 , c
b a , d

Allocation 4

U (1) V (1) W (1)

2 a b , c

1 0 , d

Fig. 1. Four (integer) allocations in an instance with C = {U, V,W} with quotas (1, 1, 1), andA = {0, 1, 2, 3}. Each

category 2 lists its eligible agents E2 , where the agents listed in the 8’th row have rank A2 (·) = 8 .

— Allocation 1 violates [PR]: 3 is allocated in category W , but 1, who has higher priority, remains unallocated.

— Allocation 2 violates [PE], as it is Pareto dominated by Allocation 3; note, however, that it is non-wasteful.

— Allocations 3 and 4 are both valid (De�nition 1) and allocate to the same set of agents.

— Allocation 4 violates [CS] (Section 3.2), as V and W can swap to allocate to higher-priority agents.

Desiderata for Valid Allocations: Our goal is to �nd allocations that respect eligibility, quotas,
and priorities. Formally, a (fractional) allocation is a function x : A × C → [0, 1], with

∑

2 G0,2 f 1

for each 0 ∈ A (since agents are unit-demand). If all G0,2 ∈ {0, 1} (i.e., the matching is integral),
then x coincides with an allocation map i : A → C∪{§} assigning each agent to either a category
(through which they are allocated) or the outside option § (if they remain unallocated).

Moreover, the allocation must satisfy the three desiderata given below. These were proposed for
integral allocations by Pathak et al. [2021]; we state the generalization for fractional matchings due
to Delacrétaz [2021] since they naturally specialize to the integral case.

[QR] Quota Respecting: No category allocates more units than its quota.
∑

0∈A

G0,2 f @2 for all 2 ∈ C.

[ER] Eligibility Respecting: Agents are allocated only through eligible categories.

G0,2 = 0 for all 2 ∈ C, 0 ∉ E2 .

[PR] Priority Respecting: An agent receives any allocation through category 2 only after
all higher-priority agents in 2 are fully allocated.

G0′,2 > 0 ' 0 {2 0
′
=⇒

∑

2′∈C

G0,2′ = 1 for all 0, 0′ ∈ A, 2 ∈ C.

While the above desiderata determine which allocations are invalid due to violating the prescribed
properties, they still admit many allocations that are undesirable. In particular, setting all G0,2 = 0

satis�es the preceding desiderata. A natural additional property is that any chosen allocation be
Pareto e�cient, which we formalize as follows.

[PE] Pareto E�cient: An allocation x satisfying [QR], [ER], and [PR] is Pareto e�cient
if there is no other allocation y satisfying these desiderata in which one agent gets
a strictly greater allocation and no one receives a smaller allocation. Formally, for
every y satisfying [QR],[ER], and [PR],

there is an 0 ∈ A :
∑

2∈C

~0,2 >

∑

2∈C

G0,2 =⇒ there is an 0′ ∈ A :
∑

2∈C

~0′,2 <

∑

2∈C

G0′,2 .

As a special case of this de�nition, an integral allocation is Pareto e�cient if and only if there is no
feasible way to allocate to a strict superset of agents. Although quite natural, Pareto e�ciency has
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not been directly addressed in previous work. Pathak et al. [2021] and Delacrétaz [2021] consider
a weaker non-wastefulness property that stipulates that in any category with unallocated quota,
all eligible agents must be fully allocated. It is easy to construct settings that admit non-wasteful
but Pareto ine�cient allocations; for example, see the Allocation 2 in Fig. 1. Aziz and Brandl
[2021] strengthen non-wastefulness to a maximality property: any selected valid allocation must
maximize the total number of allocated units. While maximality clearly implies Pareto e�ciency,
we show in Proposition 1 that the two properties are in fact equivalent in this setting. We �nd
Pareto e�ciency to be more natural, both in this desideratum and when extending to settings with
agent preferences. Together, our four desiderata provide a notion of a valid allocation:

De�nition 1 (Valid Allocation). An allocation is valid if it satis�es [QR], [ER], [PR], and [PE].

As an illustration, Fig. 1 depicts possible allocations for the same instance: while the �rst violates
[PR] and the second violates [PE], the third and fourth are both valid allocations that, moreover,
allocate to the same set of agents {0, 1, 2}. Note also that {0, 1, 2} is the only set of agents who can
be allocated via a valid allocation; there is no valid allocation in which agent 3 gets allocated. (We
revisit this idea in Section 4.1.)

3 AN ALGORITHMIC CHARACTERIZATION OF VALID ALLOCATIONS

The primary concern of our work is to develop e�cient algorithms that, given an instance with
quotas, eligibility lists, and priorities, select a valid allocation satisfying some additional properties.
To this end, we require an algorithmic way to characterize the set of valid allocations. Note that it is
straightforward to �nd an allocation that satis�es [QR], [ER], and [PR] (and is also non-wasteful
[Delacrétaz, 2021, Pathak et al., 2021]) — for example, via a round-robin policy where each category
sequentially picks their top remaining agent. However, as Allocation 2 in Fig. 1 demonstrates, this
may not ensure [PE]. On the other hand, any maximum-cardinality matching satis�es [QR] and
[PE]. The challenge is to achieve all four desiderata simultaneously.
Our main result shows that there is in fact a bijection between the set of agents selected in valid

allocations, and the set of maximum weight matchings under certain valid weights. In Section 3.1,
we show that in any instance, a valid allocation can be found using a simple weighted bipartite
matching LP. Subsequently, in Section 3.2, we explore some consequences of this LP formulation,
including a complete characterization of all valid allocations and a discussion of their geometry;
we also show that such a characterization is impossible for stable matchings.

3.1 Finding Valid Allocations via Weighted Matchings

As the basis of our formulation, we start with the following LP, which we denote by (%0).

(%0) max + (x)

subject to
∑

0∈A

G0,2 f @2 for all 2 ∈ C

∑

2∈C

G0,2 f 1 for all 0 ∈ A

G0,2 = 0 for all 0 ∈ A, 2 ∈ C with 0 ∉ E2

G0,2 g 0 for all 0 ∈ A, 2 ∈ C.

The decision variables x = (G0,2 )0∈A,2∈C represent the amount allocated to agent 0 through
category 2 . The three sets of constraints enforce [QR], the unit demand of agents, and [ER],
respectively. The objective,+ (x) :=

∑

0∈A

∑

2∈C G0,2 is the total allocation of the agents; maximizing
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x:

U (2) V (2)

0 0

1 1

2 4

3 5

y:

U (2) V (2)

0 0

1 1

2 4

3 5

Fig. 2. Consider the two integral allocations x and y

depicted for the above allocation instance (taken from

[Delacrétaz, 2021]). Both x and y are valid; however, the

fractional allocation z = 1
2 (x + y) does not respect priori-

ties: in particular category U gives agent 3 an allocation

I3,U =
1
2 > 0, but agent 2 °U 3 is not fully allocated.

+ (x) ensures Pareto e�ciency. Note that the constraints of (%0) encode a bipartite 1-matching
polytope. (%0), however, does not incorporate the category’s priorities, so its solutions may not
satisfy [PR]. Adding constraints that enforce respect for priorities appears non-trivial. In particular,
the set of valid allocations is not even closed under convex combinations, as demonstrated in Fig. 2.
The critical observation is that one can perturb the coe�cient of each G0,2 in the objective to

1 − X0,2 in such a way as to ensure that any optimal solution to the perturbed LP satis�es all of the
desiderata. To do so, we introduce the notion of a valid perturbation.

De�nition 2 (Valid Perturbation). A perturbation pro�le (X0,2 ) is valid if it satis�es the

following three properties:

Positivity: X0,2 > 0 for all 0 ∈ A, 2 ∈ C.

Small E�ect:
∑

0∈A

∑

2∈C
X0,2 f

1
2
.

Consistency: 0 °2 0
′ if and only if X0′,2 g X0,2 .

Now, consider the modi�ed objective

+X (x) :=
∑

0∈A

∑

2∈C

G0,2 ·
(

1 − X0,2
)

= + (x) −
∑

0∈A

∑

2∈C

X0,2 · G0,2 .

Let (%X ) be the LP with the same constraint polytope as (%0), but with objective +X (x). The
following theorem shows that the solutions to any such perturbed LP give allocations satisfying all
of our desiderata.

Theorem 1. Let X be any valid perturbation pro�le, and let x∗ be a solution to (%X ). Then, x
∗ is a

valid allocation (i.e., it satis�es [QR], [ER], [PR], and [PE]).

Proof. The constraints immediately ensure that any feasible solution of (%X ) satis�es [QR]
and [ER]. To establish [PR], let x be a feasible solution, 0, 0′ be agents and 2 a category such that
0′ {2 0, G0,2 = Y1 > 0 and

∑

2′ G0′,2′ = 1 − Y2 < 1. Then, we can decrease G0,2 and increase G0′,2
by min(Y1, Y2) without violating any constraints. Since X is consistent, we have X0,2 < X0′,2 , so the
reassignment strictly increases the objective value. Thus, such an x is not optimal, and x∗, being
optimal, satis�es [PR].
It remains to establish [PE]. Note that for any optimal solution x̂ to (%0), we have

+ (x∗) g +X (x
∗) g +X (x̂) = + (x̂) −

∑

0∈A

∑

2∈C

Ĝ0,2X0,2 g + (x̂) −
∑

0∈A

∑

2∈C

X0,2 g + (x̂) −
1
2
.

Here, the �rst inequality follows since each G∗0,2 , X0,2 g 0. The second inequality follows since x∗

is an optimal solution to (%X ). The third inequality follows because the unit demand constraints
ensure that each Ĝ0,2 f 1. Finally, the fourth inequality follows since X has small e�ect.
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Additionally, x̂ maximizes + among all feasible solutions to (%0), which include x∗. Therefore,
+ (x̂) g + (x∗). Combining both inequalities, we �nd that

+ (x̂) g + (x∗) g + (x̂) − 1
2
. (1)

Observe that the constraint matrix of (%0) is totally unimodular, as it encodes a 1-matching polytope.
Consequently, since all of the quotas @2 are integral, every corner point of the constraint polytope
is integral. As the sum of entries (G0,2 ), + (x) is integral at corner points, and therefore at all
maximizers x of + . In particular, since x̂ maximizes + , + (x̂) is integral. If x∗ is a corner point,
then + (x∗) is also integral. However, integral solutions satisfying the bounds in Eq. (1) require
+ (x̂) = + (x∗).

If x∗ is not a corner point, then we write x∗ =
∑

8 _8x
(8 ) as a convex combination of corner points

x(8 ) . Because x∗ maximizes +X , each of the x(8 ) must also maximize +X . By the argument from
the previous paragraph, + (x̂) = + (x(8 ) ) for all 8 . But then, the convex combination x∗ must also
have + (x∗) = + (x̂). Thus, each maximizer x∗ of +X (whether or not it is a corner point) is also a
maximizer of + , and hence satis�es [PE]. □

A surprising consequence of this result is that in any priority-respecting allocation problem,
Pareto e�ciency comes “for free” — the total allocation size under a valid integral allocation remains
the same, irrespective of the priority orderings! The following proposition asserts that this is in
fact true more generally for any valid allocation (integral or fractional).

Proposition 1. Let + ∗ be the size of the allocation returned by (%0) (i.e., satisfying [QR], [ER], and

[PE]). Then, given any priority orders (°2 )2∈C , any valid allocation x has + (x) = + ∗.

In particular, this proposition establishes that all Pareto e�cient allocations are maximal. The
proof of this result follows from a contrapositive argument, wherein we show that given an
allocation x satisfying [QR], [ER], and [PR] with size less than + ∗, we can construct a Pareto
dominating solution. We defer the proof to Appendix B.1.

The fact that there is at least one valid allocation with size+ ∗ was established by Aziz and Brandl
[2021] based on the properties of their Reverse Rejection algorithm. Theorem 1 gives a simple
way to see why this holds, and Proposition 1 shows it to be true for all valid allocations. Moreover,
Theorem 1 provides a much more e�cient algorithm for selecting a valid allocation: compared to
Reverse Rejection, which requires one to solve |A| separate 1-matching problems, our approach
only requires solving a single weighted 1-matching problem, which can be e�ciently solved, for
instance using the Hungarian algorithm [Ramshaw and Tarjan, 2012].

Corollary 1. A valid allocation can be found in $ ( |C| |A| @ + @2 log@) time.

3.2 The Subtle Geometry of Priority-Respecting Allocations

To conclude this section, we discuss three issues related to our algorithm for locating valid alloca-
tions. First, we introduce an additional property that allows us to completely characterize the set of
valid integer allocations. Next, we consider the geometry of the set of valid allocations. Finally, we
consider whether an analogous LP perturbation can be used for �nding stable matchings.

Characterizing all Valid Integral Allocations

By Theorem 1, we know that solving (%X ) with any valid X locates a valid integral allocation. A
follow-up question is whether all valid integral allocations are solutions of (%X ) for some choice of
X . This turns out not to be the case: for example, consider Allocations 3 and 4 in Fig. 1. While both
are valid, and the former can be realized as a solution to a perturbed LP, for the latter allocation,
under any valid perturbation, swapping from G0,W = G1,V = 1 to G1,W = G0,V = 1 (as in Allocation 3
in Fig. 1) leads to an increase in +X .
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Fortunately, the problem illustrated by this instance is the only obstacle to realizability, as we
show below. To formalize this, we introduce an additional property that we call category stability.

[CS] Category Stability: No group of categories can organize an agreeable trade throughwhich at
least one category transfers allocation to a higher-priority agent. Formally, there do not exist
9 g 2 categories 20, 21, . . . , 2 9 = 20 and agents 00, 01, . . . , 0 9 = 00 such that for all 0 f 8 < 9 ,
G0ğ ,2ğ > 0 and 08+1 °2ğ 08 , and at least one of the priority relations above is strict.

Note that category stability is not an added restriction on agents selected via valid allocations —
in particular, given a valid allocation x that violates [CS], we can modify it to get another valid
allocation y that satis�es [CS] and allocates to each agent to the same extent (i.e.,

∑

2 G0,2 =
∑

2 ~0,2
for all 0). In other words, [CS] only discriminates among valid allocations which are equivalent in
terms of the set of allocated agents. We are ready to state our main equivalence theorem.

Theorem 2. Let x be a valid integral allocation. Then x is a solution to (%X ) for some valid X if and
only if x satis�es [CS].

The forward implication (i.e., x is a solution to (%X ) =⇒ x satis�es [CS]) follows from a
straightforward contradiction argument. For the reverse direction, we introduce the set of serial
dictatorship allocations, which can be realized by iteratively allowing a category to allocate to its
most preferred remaining agent. We argue that every valid and [CS] allocation can be realized
through serial dictatorship, and that the serial dictatorship ordering can be used to construct a
suitable valid perturbation. See Appendix B.2 for the complete proof.

Fractional Valid Allocations

Our perturbed LP procedure gives a way to locate all valid and category stable integral allocations,
as these are corner points of our 1-matching constraint polytope; however, this does not imply
anything about the set of valid fractional allocations. Fig. 2 demonstrates that this set need not be
convex; here, the convex combination of two integral valid allocations is not valid. Thus, there
could exist valid fractional allocations outside the convex hull of valid integral allocations. The
following proposition rules out this possibility.

Proposition 2. Suppose that x is a valid fractional allocation. Then, we can represent x as a convex

combination of valid integer allocations.

We outline a procedure that iteratively constructs this convex combination in Appendix B.2.
The result, however, provides some insight into the geometry of the set of valid allocations — it
consists of a union of convex sets, each with integer corner points. The valid allocations in the
example from Fig. 2 form two non-coplanar triangles with a common edge. It is an interesting open
direction to further characterize the sets of valid allocations that may arise from priority-respecting
allocation instances. For example, are these sets necessarily connected?

LP Perturbations and Stable Matching

As noted in Section 1, a closely related problem to priority-respecting allocation is stable matching.
Both seek bipartite matchings that conform to a set of preferential constraints; moreover, the
existence of solutions in both problems is implied by Scarf’s Lemma (see Appendix C). Central to
this discussion is the observation that unlike for priority-respecting allocation, one cannot realize
stable matchings as the solutions of a perturbed 1-matching polytope under a particular class of
perturbations. This shows that while priority-respecting allocations and stable matchings appear
syntactically similar, they have very di�erent algorithmic properties.
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4 THE COMPLEXITY OF SELECTING VALID ALLOCATIONS

In this section, we consider three possible extensions of the basic problem of selecting valid
allocations. In each extension, we consider the problem of selecting from among valid allocations
subject to a particular class of external objectives. Surprisingly, in each case, we show that the
valid-allocation selection problem straddles the line of computational e�ciency; while one given
selection rule admits an e�cient algorithm, a closely related selection rule is computationally hard.

4.1 Including/Excluding Agents from Valid Allocations

To formalize our �rst set of valid-allocation selection criteria, we �rst de�ne two types of agents

De�nition 3 (Unanimous/Serviceable Agents). Given an instance I =
(

A, C, (@2 ), (E2 ), (°2 )
)

and an agent 0 ∈ A,

— Agent 0 is unanimous in I if it is fully allocated under every valid allocation x (i.e.,
∑

2 G0,2 = 1).

— Agent 0 is serviceable in I if there is some valid allocation x in which 0 is allocated (i.e.,
∑

2 G0,2 > 0).

As an example, consider the instance in Fig. 1; here, one can check that agents {0, 1, 2} are
unanimous (and therefore serviceable), while agent 3 is not serviceable. Note that though we de�ne
serviceability in terms of non-zero allocation, as a consequence of Proposition 2, we have that any
agent who can be partially allocated via a fractional valid allocation can also be fully allocated via
an integral valid allocation. Hence, we can equivalently de�ne an agent to be serviceable if it is
allocated in some integral allocation.
We now show that while there is a polynomial-time algorithm to determine whether an agent

is unanimous, determining whether an agent is serviceable is NP-hard. For the �rst claim, we
establish an equivalent characterization of unanimous agents in terms of a restricted allocation
instance.

De�nition 4 (Restriction). Given an allocation instance I =
(

A, C, (@2 ), (E2 ), (°2 )
)

and an agent

0 ∈ A, the 0-restriction of c, denoted by I\0 , is another allocation instance with the same A, C, and

(@2 ). Its eligible sets (E
′
2 ) are given by

E′2 = E2 \
(

{0} ∪ {0′ ∈ A : 0 {2 0
′}
)

,

and its priorities (°′2 ) are the induced relations of (°2 ) on (E
′
2 ).

Given a subset� ¦ A, the �-restriction of I, denoted by I\�, is de�ned similarly, where the eligible

sets are the intersections of the eligible sets of the 0-restrictions for all 0 ∈ �.

Intuitively, one can think of the 0-restriction as cutting each of the priority lists at agent 0.
Alternatively, one can view the 0-restriction as the instance that would result if we committed to
never allocating to 0 (and therefore, due to the priority constraints, never allocating from a category
2 to anyone ranked below 0 in 2).

Proposition 3. Let + ∗ be the value of (%0) on instance I. For a given agent 0 ∈ A, let + ∗
\0

be the

value of (%0) on I\0 . Then, 0 is unanimous if and only if + ∗ > + ∗
\0
.

The proof of this proposition is provided in Appendix B.3. As immediate corollaries, we can
derive two su�cient conditions for an agent to be unanimous.

Corollary 2. Let + ∗ be the value of (%0). Then an agent 0 is unanimous if either

— the union of all eligible agents in the 0-restriction has cardinality less than + ∗, or

— there is some category 2 with 0 ∈ E2 such that the 0-restriction of 2 has size less than @2 .
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In other words, an agent must be allocated if they are either in the top @2 agents in any category
2 or alternatively if the total (over categories) number of higher-ranked agents is less than the
total number of items available. On the other hand, the problem of deciding whether an agent is
serviceable or not turns out to be NP-hard.

Proposition 4. Given an instance I, deciding whether an agent 0 ∈ A is serviceable is NP-hard.

We show this via a reduction from the Exact Cover By 3-Sets problem or X3C [Karp, 1972].
The details of the reduction are provided in Appendix B.3.

In this context, Saban and Sethuraman [2015] study the complexity of computing selection
probabilities under random serial dictatorship (where agents are ordered uniformly at random, and
then pick their favorite remaining items in turn), and show that while one can e�ciently identify
items which have probability 1 of being selected by some agent, it is NP-hard to identify items
which have selection probability 0. When specialized to this context, our results in this section
recover and generalize this characterization.

4.2 Incorporating Agent Utilities in Selecting Valid Allocations

As a second extension, we consider how we can augment our basic model to incorporate agents’
utilities for allocations from various categories. We relax our assumption of agent indi�erence, and
equip each agent 0 ∈ A with a utility function D0 : C → (0, 1] that expresses the value that they
derive from an allocation in each category. Thus, given an allocation x, the realized utility of agent
0 ∈ � is given by

D0 (x) =
∑

2∈C

D0 (2) · G0,2 .

In this setting, the natural objective is no longer only to allocate to as many agents as possible,
but rather to use the realized utility of the agents to select valid allocations. There are two potential
ways to do so: First, we can select valid allocations that are Pareto e�cient with respect to agent
utility. Alternatively, we can attempt to optimize some aggregate welfare function of the agents’
realized utilities. We next show that while the �rst goal admits an e�cient algorithm, the second
goal is NP-hard for most natural utility aggregation functions.

First, we consider locating an allocation that is Pareto e�cient with respect to agent utilities. To
this end, in this section, we denote our usual notion of category-side Pareto e�ciency (i.e., the [PE]
property de�ned in Section 2) by [C-PE], and formalize Pareto e�ciency from the viewpoint of
agents as follows.

[A-PE] Agent-side Pareto E�cient: An allocation x is Pareto e�cient with respect to
agent utilities if there is no allocation y satisfying [QR], [ER], and [PR] such that:
— Each agent receives at least as much utility through y: D0 (y) g D0 (x) .

— At least one agent receives strictly higher utility through y than through x.

Intuitively, an allocation is agent-side Pareto e�cient if there is no incentive for the agents to
attempt to trade their allocations (from the di�erent categories); any trade would violate one of
the other constraints ([ER] or [PR]), decrease some involved agent’s utility, or leave all utilities
unchanged. We now argue that we can select an agent-side Pareto e�cient allocation via the
following two-stage algorithm (Algorithm 1). At a high level, the �rst stage of the algorithm
determines which agents will be included in the �nal allocation, while the second stage maximizes
the utility realized by these agents.
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Algorithm 1 Valid Allocation Selection with Agent-Side Pareto Efficiency

1: Input: Allocation instance I and agent utilities (D0)0∈A
2: Solve (%X ) for any valid X to pick an integral valid allocation x

3: �←
{

0 ∈ A :
∑

2 G0,2 = 0
}

4:
(

C,A, (@2 ), (E
′
2 ), (°

′
2 )
)

← I\�

5: De�ne* = max
0,2
{D0,2 } and X

′
0,2 =

* −Dė (2 )
2 |A | | C |

(Note: higher D0 (2) =⇒ smaller X ′0,2 )

6: Solve (%X ′ ) for instance I\� to locate an integral allocation y

7: Return: allocation corresponding to y

Theorem 3. Algorithm 1 computes an allocation satisfying [QR], [ER], [PR], and [A-PE].

Proof. The constraints of (%X ′ ) ensure that y satis�es [QR] and [ER] in I\�. Moreover, since the
restriction operation leaves quotas unchanged and reduces the set of eligible agents, this allocation
also satis�es these desiderata in I.
Next, note that y is a [QR], [ER], [PR], and maximal allocation in I\�. By construction,

∑

2∈C

∑

0∈A

X ′0,2 · G0,2 f
∑

2∈C

∑

0∈E′ę

X ′0,2 f
∑

2∈C

∑

0∈E′ę

1
2 |A | | C |

f 1
2
.

Therefore, the objective values satisfy

+ (x) g + (y) g +X ′ (y) g +X ′ (x) = + (x) −
∑

2∈C

∑

0∈A

X ′0,2 · G0,2 g + (x) −
1
2
.

Using the fact that x and y are integral allocations, we �nd that + (x) = + (y). Thus, y allocates to
all agents in the restricted instance, so it satis�es [PR]; the de�nition of the restriction I\� ensures
that no unallocated agent in � has priority over an agent allocated in y.
It remains to argue that y is agent-side Pareto e�cient. The perturbations X ′0,2 are monotone

decreasing in the utilities D0 (2). Therefore, y maximizes the total utility of the allocated agents
within I\�. Therefore, any alternate allocation in which one agent realizes a higher utility must
also include an agent who realizes a lower utility, so the allocation given by y satis�es [A-PE]. □

Note that Algorithm 1 does not admit an analogous realizability result to Theorem 2. As argued
above, the computation of x in the �rst stage ensures that the �nal allocation is maximal. However,
not every utility Pareto e�cient allocation is maximal, as demonstrated by the example in Fig. 3.

x:

U (1) V (1)

0 0

1

y:
U (1) V (1)

0 0

1

Fig. 3. Consider the above instance with D0,U = 1, D0,V = D1,U =
1
3 . The maximal (so [C-PE]) allocation shown on

the left is [A-PE], and will be output by Algorithm 1. However, the allocation shown on the right is also [A-PE],

and moreover utility-maximizing. However, as this allocation is not [C-PE], it cannot be realized by Algorithm 1.

Next, we turn our attention to the hardness of maximizing aggregate functions of the agents’
realized utilities. Our main result in this setting is captured by the following theorem:

Theorem 4. Let (�= : [0, 1]= → R)∞==1 be a family of aggregation functions that are all continuous

and strictly increasing in each of their arguments. Then, the following problem is NP-hard: Given an
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allocation instance I withA = {01, . . . , 0=}, select a valid allocation maximizing the aggregate agent

utility under �= , i.e., �nd

x∗ ∈ argmax
x valid

{

�=

(

D01 (x) , . . . , D0Ĥ (x)
)}

.

Proof. We restrict attention to utilities of the following form:

D01 (2) = 1 for all 2 ∈ C

D0 Ġ
(2) = D for all 2 ∈ C for all 9 g 2

for some D ∈ (0, 1]; in other words, all agents are indi�erent regarding which category they are
allocated through, and there is (weakly) higher utility for allocating agent 01. We write Cx ∈ [0, 1]

|A |

for the vector of total agent allocations with (Cx) 9 =
∑

2 G0 Ġ ,2 . We then de�ne

5 : (0, 1] × [0, 1]= → R 5 (D, Cx) = �= ((Cx)1, D · (Cx)2, . . . , D · (Cx)=)

as the aggregate agent utility for a given parameter D and agent allocation x. Inheriting properties
of �= , 5 is continuous and strictly increasing in D, and strictly increasing in each (Cx) 9 when D > 0.

Now, suppose that there is some valid allocation x with (Cx)1 = g > 0 (i.e., x allocates to 01) and
another valid allocation y with (Cy)1 = 0 (i.e., y does not allocate to 01). Let e1 denote the �rst

standard basis vector and 1 denote the all ones vector, both in R |A | . Since 5 (0, g · e1) > 5 (0, 0) =

5 (0, 1 − e1) and 5 is continuous in its �rst argument, then we can choose some su�ciently small
Y > 0 such that

5 (Y, g · e1) > 5 (Y, 1 − e1).

Since 5 is strictly increasing in each agent’s total allocation, the two allocations x, y have aggregate
utilities

5 (Y, Cy) f 5 (Y, 1 − e1) < 5 (Y, g · e1) f 5 (Y, Cx).

Therefore, we can reduce the problem of deciding whether 01 is serviceable to determining whether
the �=-maximizing valid allocation x∗ (under the utilities de�ned above) has value greater than
5 (Y, 1 − e1). From Proposition 4 we know that checking whether an agent is serviceable is NP-hard
— hence, so is the problem of selecting a valid allocation that maximizes aggregate utility. □

Note that this theorem relies on the fact that agents have cardinal utilities for categories. We can
use this theorem to conclude that many natural welfare optimization problems are computationally
hard in the reserve allocation setting. We record two such results below.

Corollary 3. Given an instance I equipped with a utility function D0 for each agent 0 ∈ A, it is

NP-hard to �nd a valid allocation x∗ that maximizes total agent utility
∑

0∈A

∑

2∈C

D0 (2) · G0,2 .

This corollary provides a stark contrast to our original setting (concerned with the number of
allocated agents), where maximizing total allocation and ensuring Pareto e�ciency were equivalent
(see Proposition 1).

Corollary 4. Given an instance I equipped with a utility function D0 for each agent 0 ∈ A, it is

NP-hard to �nd a valid allocation x∗ that maximizes Nash social welfare

NSW(x) :=

(
∏

0∈A

∑

2∈C

D0 (2) · G0,2

) 1
|A|

.
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4.3 Auditing Valid Allocations via Optimizing Cuto�s

Thus far, we have considered the quality of allocations only through the formal desiderata that we
have introduced. While theoretically satisfying, such an approach fails to acknowledge their impact
on agents a�ected by these algorithms in practice. How can we convince the recipients (or, more
aptly, non-recipients) of medical care, school seats, or other resources that decisions have been
made fairly? This is discussed in great detail by Pathak et al. [2021], who suggest that one way
addressing this issue is via the notion of auditability: revealing extra information to agents to help
satisfy them that their allocation is appropriate. In particular, a natural way to audit allocations is
by revealing allocation thresholds (or cuto� vectors Pathak et al. [2021]) in each category. In this
section, we study how to select valid allocations to optimize some metric related to these thresholds.

For notational ease, throughout this case study, we restrict our attention to integral allocations ,
realized as maps i : A → C∪{§} (where i (0) = 2 if and only if G0,2 = 1, and i (0) =§ corresponds
to 0 being unallocated, i.e.,

∑

2 G0,2 = 0.). This is natural for de�ning cuto�s, and also is without
loss of generality since our approach in Theorem 1 naturally returns integral allocations.

De�nition 5 (Allocation Thresholds). Thresholds \ : C → N corresponding to allocation i satisfy:

— Every agent allocated in category 2 ∈ C has rank equal to or less than 2’s threshold, i.e.

. i (0) = 2 =⇒ A2 (0) f \ (2) for all 0 ∈ A .

— Every unallocated agent has rank equal to or greater than the threshold in each eligible category

. i (0) =§ and 0 ∈ E2 =⇒ A2 (0) g \ (2) for all 0 ∈ A .

There are two natural thresholds associated with any allocation i (see Fig. 4 for a visualization):
— The inner threshold of i , denoted by \ , has \ (2) = max{A2 (0) : i (0) = 2}, the maximum

rank over all agents allocated in each category.

— The outer threshold of i , denoted by \ , has \ (2) = min{A2 (0) : i (0) =§, 0 ∈ E2 }, the
minimum rank over all unallocated eligible agents in each category. If all agents in category 2

are allocated, we set \ (2) equal to one more than the maximum eligible rank in the category.

U (3) V (2) W (2)

01 05 06

02 03 , 08 03

03 04 01
04 00 , 09 08

09 01 07
08 00

Fig. 4. In this allocation instance (where the boxed agents form a valid

allocation), the inner threshold \ = (4, 2, 4) corresponds to the rank of the

highest red-shaded tier in each column; all allocated agents occur at that

priority level or higher. The lowest red-shaded tier corresponds to the outer

threshold \ = (5, 4, 5); the three unallocated agents (00, 07 and 09) are at

or below this level in each category. Any mapping from the categories to

one of the red-shaded tiers gives a valid threshold function.

Auditing Allocated Agents by Optimizing Inner Thresholds: One way to audit a valid allo-
cation is by the quality of allocated agents. Allocations with large inner threshold are the “most”
respectful of priorities in the sense that each category allocates only to agents in high priority tiers.
There are two natural ways to quantify this: we can minimize the sum of ranks of allocated agents,
or we can minimize the maximum rank of an allocated agent. Both of these objectives are handled
by our approach by carefully choosing the valid perturbation X (proofs provided in Appendix B.4.).

Proposition 5. Given an instance I, de�ne perturbations X0,2 =
Aę (0)

2 | C | |A |2
. Then any (integral)

allocation x returned by (%X ) is a valid allocation that minimizes the sum of allocated agents’ ranks.

Proposition 6. Given an instance I, de�ne perturbations X0,2 =
1

2 | C | |A |
·
(

1
|A |+1

) |A |−Aę (0)

. Then

any (integral) allocation x returned by (%X ) is a valid allocation that minimizes the maximum rank

over all allocated agents (i.e., maximum inner threshold over all categories).
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Auditing Unallocated Agents by Optimizing Outer Thresholds: Suppose instead that from
the perspective of categories, what matters is that highly-ranked agents are allocated from some

category. A natural way to audit this is via the outer threshold, which marks the rank of the �rst
unallocated agent in a category; one may thus want to select valid allocations that have larger
values for these outer thresholds. Again, there are two natural realizations of this objective: we can
maximize the minimum outer threshold, or the sum of the outer thresholds over categories. Unlike
the inner threshold, however, optimizing both of these objectives is NP-hard.

Proposition 7. Given an instance I, selecting a valid allocation i∗ that maximizes the minimum

over all categories of the outer threshold is NP-hard.

Proposition 8. Given an instance I, selecting a valid allocation i∗ that maximizes the sum over all

categories of the outer threshold is NP-hard.

The proofs for the above results are based on a reduction from X3C in a similar vein as the proof
of Proposition 4; for details, refer to Appendix B.4. More surprisingly, there is a sense in which the
second objective is strictly harder: suppose we de-reserve units from the categories by removing the
quota constraints, and instead impose a single global constraint that the total number of allocations
across all categories is at most @. Now, maximizing the �rst objective becomes trivial (one can
iteratively assign to the highest-ranked unallocated agent over all categories), but the objective of
maximizing the sum of outer thresholds remains hard.

Proposition 9. Given an instance I, selecting an allocation i∗ giving to at most @ agents that

maximizes the sum over all categories of the outer threshold is NP-hard.

5 ONLINE PRIORITY-RESPECTING ALLOCATION

The second broad application we consider is allocating resources to agents who arrive online, while
still respecting priority and quota considerations. Our results here again critically depend on the
equivalence between valid matchings and perturbed maximum-weight matchings, demonstrating
the importance of our characterization in Theorem 1.

5.1 Online Allocation with Priorities: Preliminaries

Our model is as follows: Agents arrive one at a time over ) rounds C = 1, . . . ,) ; we refer to the
agent arriving in round C simply as agent C . Each arriving agent has an observable type \ [C] ∈ Θ;
here, Θ is a discrete and typically small set. For example, each category could give each agent a
priority level in {1, 2, . . . , ℓ, ineligible} for some small ℓ ; in this case, an agent’s type is their vector
of priority levels. Categories now have eligibility criteria and priorities over these types; that is,
the eligible set is E2 ¦ Θ, and the total pre-order ¯2 is de�ned over E2 . By distinguishing between
agents and their types, our model allows us to separate out two parameters: the number of types
(which is typically small), and the number of agents (which may be large). Indeed, our main goal
is to achieve online algorithms whose costs can be bounded in terms of the “small” parameters
(number of types and number of categories), independent of the total number of agents ) .

In each round C , the type \ [C] of the arriving agent is drawn randomly from some known
probability distribution; for simplicity3, we assume that \ [C] = \ i.i.d. with probability ?\ . We use
p = (?\ )\ ∈Θ for the vector of all these probabilities. Under this arrival model, the number of agents
(#\ )\ ∈Θ of each type on a given sample path follows a Multinomial(), p) distribution.
After observing the type \ [C] of agent C , the principal must irrevocably decide to either allocate a

reserved unit from one of the categories to agent C or leave C unallocated forever. Given the online

3Under suitable technical assumptions, our results can be generalized to non-stationary arrival probabilities. However, the

added notational overhead outweighs the mild added generalization.
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nature of the problem and uncertainty due to randomness, it is impossible to satisfy all of the
axioms we considered earlier; Pareto e�ciency stands in obvious con�ict with respecting priorities.
To see this, notice that when an algorithm early on considers allocating to an agent of a particular
type, there are two possible extreme scenarios that could occur with positive probability: if all
subsequent agents have lower priority, then not allocating to the agent may result in a drastic loss
in e�ciency. Conversely, if all subsequent agents have higher priority, then allocating to the agent
would deprive one of the future agents of an allocation, violating priorities. Thus, it is important to
decide how to quantitatively trade o� the violated axioms.

One natural option is to treat the priorities as a hard constraint, and maximize the expected num-
ber of allocations subject to this constraint. Doing so leads to a straightforward MDP; unfortunately,
treating priorities as a hard constraint can lead to very poor performance.

Proposition 10. Even with a single category and three priority levels (types), there exist instances in

which any online allocation algorithm guaranteeing no priority violations must incur ¬() ) e�ciency

loss in hindsight, with all but at most exponentially small probability.

While we defer the formal proof to Appendix B.5, the intuition behind Proposition 10 is simple.
Consider a single category with quota @ =

)
2
and three eligible types: 0 { 1 { 2 with ?0 = ?1 =

?2 =
1
3
. By the law of large numbers, the optimal allocation in hindsight accepts roughly half of the

arriving type-1 agents (and no type-2 agent). However, to deterministically guarantee no priority
violations, an algorithm is forced to allocate only to type-0 agents until it can be sure that there is
room to accommodate all potential future type-0 agents. However, at that point, the number of
type-1 agents who can be allocated is ¬() ) less than the optimal solution with hindsight.

In light of Proposition 10, it is necessary to relax the [PR] axiom to achievemeaningful guarantees.
We therefore consider the tradeo� between the following two metrics:

E�ciency loss �4 : The di�erence between the maximum cardinality of any allocation and
the number of allocations made by the algorithm.
Priority loss �? : The number of unallocated agents with some type \ eligible in some
category 2 that allocated one or more slots to lower-priority agents (i.e., with type \ ′ z2 \ ).

We henceforth refer to unallocated agents contributing to the priority loss as priority violations.
Note that both �4 and �? are random variables, computed in hindsight on each sample path.
Moreover, the optimal o�ine (i.e., hindsight) allocation simultaneously makes both losses 0. Our
goal is to understand how online algorithms can trade o� between these losses.

5.2 E�iciency-Priority Tradeo�s for Online Allocation

We now present our main result in this section: we design an online allocation policy that guarantees
that the sum of the e�ciency loss and priority loss is independent of ) and @ (i.e., of the number of
agents/allocations). Formally, we have the following guarantee.

Theorem 5. Let ?min = min
\ ∈Θ

?\ . For any valid X , the allocation returned by the Online Priority-

Respecting Allocation with Restrictions Policy (Algorithm 2) satis�es

E[�4 + �? ] f
|Θ |5 ( |� |+1)4

?4
min

.

The dependence of this bound on each of these three parameters (Θ, C, and ?min) is unavoidable.
Note that given any problem instance, we can duplicate each category with distinct types in each
copy, leading to at least linear dependence on |� | and |Θ|. In addition, note that the problem of
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selecting the top : elements of a random stream is a special case of our setting. For this problem,
it is known that linear dependence on 1

?min
is unavoidable (see Figure 1 in [Arlotto and Gurvich,

2019]). Getting the optimal dependence on |Θ|, ?min and |� | is left open for future work.
The central idea behind our algorithm is to solve the perturbed LP on the expected number of

future arrivals and use the solution to select an action that is least likely to cause priority violations
or e�ciency loss. The guarantee follows by using the compensated coupling technique of Vera
and Banerjee [2021] (see also Banerjee and Freund [2020]), which essentially allows us to leverage
smoothness properties of linear programs to obtain sample-path regret bounds. Our characterization
in Theorem 1 is essential for using this approach. We note also that since our objective (in particular,
�? ) has a Lipschitz constant that grows with ) , we cannot directly adopt existing uniform-regret
results [Banerjee and Freund, 2020]; rather, we must carefully use restrictions (De�nition 4) to
control the Lipschitz constant and obtain our results.

Our algorithm uses as a subroutine the following Interim LP relaxation %X

(

C,N[C], E[C], q[C]
)

:

max
∑

2∈C

∑

\ ∈Θ

G\,2 [C] · (1 − X\,2 )

subject to G\,§ [C] +
∑

2∈C

G\,2 [C] = #\ [C] for all \ ∈ Θ

∑

\ ∈Θ

G\,2 [C] f @2 [C] for all 2 ∈ C

G\,2 [C] = 0 for all 2 ∈ C, \ ∉ E2 [C]

G\,2 [C] g 0 for all 2 ∈ C ∪ {§}, \ ∈ Θ

The interim LP can be viewed as a proxy solution to the perturbed LP (%X ) in Theorem 1, given
past allocation decisions. C indexes the current arrival, the parameters N[C] = (#\ [C])\ ∈Θ represent
the number of future arrivals of each type \ ∈ Θ over rounds C, . . . ,) , the parameters E[C] =
(E2 [C])2∈C represent the restricted eligibility sets (see Algorithm 2) at time C , and the parameters
q[C] = (@2 [C])2∈C represent the available quotas at the start of round C . The decision variables
x[C] = (G\,2 [C])2∈C∪{§},\ ∈Θ represent the number of agents of type \ who will be allocated in
category 2 (or remain unallocated, for 2 =§) from among the arrivals C, . . . ,) . The objective
function, as before, accrues one unit for each allocated agent minus some chosen perturbation X\,2 .
The �rst constraint accounts for future arrivals of type \ ; the second ensures that the combination
of past and future allocations does not exceed the reserved quota for any category; the third
ensures that the solution respects eligibility. Note that the interim LP does not ensure respect for
priorities, as it does not account for which agent types were allocated in the past. In fact, as shown
in Proposition 4, it is NP-hard to compute whether there is a valid allocation that includes these
agents. Given this LP family, we are ready to state our algorithm.

For each arriving agent C , the algorithm solves the LP using its current quotas q[C] and eligible
sets E[C], the current arrival \ [C], and the expected number of future arrivals of each type. It
allocates to agent C through a category (including the “no allocation” category §) maximizing the
expected allocation under the optimal LP solution. When an agent is not allocated, the algorithm
takes a restriction of the allocation instance to prevent future priority violations.

Proof of Theorem 5. To bound the expected loss of Algorithm 2, we use a variant of the
compensated coupling argument of Vera and Banerjee [2021]. In each round C , we consider two
random variables, with the randomness taken over the future arrivals \ [C + 1], . . . , \ [) ].
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Algorithm 2 Online Priority-Respecting Allocation with Restrictions

Input: Allocation Instance
(

C,Θ, q, E, (¯2 )2∈C, p
)

, Online Arrivals (\ [C])C ∈[) ]
Output: Allocations (~ [C])C ∈[) ] , ~ [C] ∈ C ∪ {§}

1: Select a valid perturbation X ; Initialize E[1] ← E, q[1] ← q

2: for each C = 1, . . . ,) do

3: x∗ [C] ← solution to %X

(

C,
(

1(\ = \ [C]) + () − C) · ?\
)

\ ∈Θ, E[C], q[C]
)

4: ~ [C] ← argmax
2∈C∪{§}

(

G∗
\ [C ],2
[C]

)

, @2 [C + 1] ← @2 [C] − 1(~ [C] = 2) for each 2 ∈ C

5: if ~ [C] =§ then

6: E2 [C + 1] ← E2 [C] \
(

{\ [C]} ∪ {\ ∈ Θ : \ z2 \ [C]}
)

for each 2 ∈ C
7: else

8: E2 [C + 1] ← E2 [C] for each 2 ∈ C

— �4 [C] represents the e�ciency loss due to the algorithm’s decision at time C . Using our notation,

�4 [C] = %0

(

C,N[C], E[C], q[C]
)

︸                      ︷︷                      ︸

Optimal o�ine allocation given
decisions made before round C

−
(

1(~ [C] ≠§) + %0

(

C + 1,N[C + 1], E[C + 1], q[C + 1]
)

︸                                          ︷︷                                          ︸

Optimal o�ine allocation given
decisions made through round C

)

.

— �? [C] represents the priority loss due to the algorithm’s decision at time C , i.e., the number of
additional unallocated and envious agents that arise as a result of the allocation of \ [C].

We denote the value of the decision variables at an optimum of the o�ine LP at time C by x∗ [C].
We separately reason about these two sources of loss in two cases: when agent C is allocated through
some category, vs. when C remains unallocated.
If agent C is allocated, then ~ [C] = 2 for some 2 ∈ C. If G∗

\ [C ],2
[C] > 0, then the optimal solution

along this sample path allocates to an agent of type \ [C] in category 2 . Thus, the allocation to
agent C has not deviated from this optimal allocation, so no loss needs to be compensated for. If
G∗
\ [C ],2
[C] = 0, meaning that the optimal solution does not allocate to any agents of type \ [C] from

time C onwards, the algorithm’s choice of allocation may reduce the e�ciency by at most one.
This is because the optimal solution can introduce at most one augmenting path into the bipartite
allocation graph. In addition to the e�ciency loss, the allocation to C may prevent some agents
with higher priority in 2 from receiving an allocation, leading to priority violations. A crude upper
bound on the increase in the number of priority violations is) − C , i.e., all remaining agents. Hence,
we obtain the upper bound �4 [C] + �? [C] f 1(G

∗
\ [C ],2
[C] = 0) · (1 +) − C).

Next, we consider the case in which agent \ [C] remains unallocated, so ~ [C] =§. Again, if
G∗
\ [C ],§

[C] > 0, i.e., the optimum solution also leaves at least one agent of type \ [C] unallocated,

the failure to allocate to agent C does not cause any loss in e�ciency or priority. Therefore, we
assume that G∗

\ [C ],§
[C] = 0. The non-allocation to \ [C] causes the algorithm to restrict the allocation

instance: in the future, it will never be able to allocate to agents whose types have lower priority
than \ [C]. Even so, the e�ciency loss can be safely upper-bounded by ) − C + 1, i.e., all agents after
and including agent \ [C]. In addition to the e�ciency loss, the failure to allocate to agent C may
lead to a priority violation at the expense of C ; however, this can be the only resulting priority
violation. Thus, we obtain the upper bound �4 [C] + �? [C] f 1(G

∗
\ [C ],§

[C] = 0) · () − C + 1 + 1).
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Combining the above, we get that the sum of the losses in round C can be upper-bounded as

�4 [C] + �? [C] f 1(G
∗
\ [C ],~ [C ] [C] = 0) · () − C + 2),

and summing over all rounds, and taking expectations, we get

E[�4 + �? ] f

)∑

C=1

P[G∗\ [C ],~ [C ] [C] = 0] · () − C + 2) . (2)

Next, we establish a bound on the probability P[G∗
\ [C ],~ [C ]

[C] = 0]. Recall that in each round, ~ [C] is

selected as an argmax over 2 ∈ C ∪ {§} of G\,2 [C]. That is, ~ [C] is a most frequent assignment of
the future arriving agents of type \ [C] when the expected number of agents of each type arrive.
In expectation, the number of arrivals of type \ [C] in rounds C, . . . ,) is 1 + () − C) · ?\ [C ] . Thus,

G\ [C ],~ [C ] g
1+()−C )?ĉ [Ī ]
| C |+1

; this implies a lower bound on the in�nity norm of the di�erence between

the LP solution x[C] and the optimal o�ine solution x∗ [C], i.e.,



x[C] − x∗ [C]





∞
g

1+()−C ) ·?ĉ [Ī ]
| C |+1

.

On the other hand, using the (1,∞)-Lipschitz property of maximum-weight matchings with
respect to budgets [Vera and Banerjee, 2021, Proposition 4], we have that




x∗ [C] − x[C]





∞
f



N[C + 1] − () − C − 1) · p





1
.

Thus, the (bad) eventG∗
~ [C ],\ [C ]

[C] = 0 implies that



N[C+1]−()−C−1)·p





1
g

1+()−C ) ·?ĉ [Ī ]
| C |+1

, i.e., that

the actual type counts di�er a lot from their expectations. A large deviation of the ∥ · ∥1-norm implies
that at least one coordinate must di�er by at least the average, so this event implies that the actual

number of arrivals for at least one type di�ers from its expectation by at least an additive
1+()−C ) ·?ĉ [Ī ]
|Θ | · ( | C |+1)

.

Because arrival counts for any type \ follow the distribution #\ [C] ∼ Binomial() − C, ?\ ), the
Hoe�ding bound gives us that the probability of a large deviation for any one type \ is

P

[�
�#\ [C + 1] − E

[

#\ [C + 1]
] �
� g

1+()−C ) ·?ĉ
|Θ | · ( | C |+1)

]

f 2 · exp
(
−2()−C ) ·?2

ĉ

|Θ |2 · ( | C |+1)2

)

f 24−^ ()−C ) ,

where ^ =
2?2

min

|Θ |2 ( | C |+1)2
f 1

2
. Taking a union bound over the |Θ| types \ and substituting the resulting

upper bound into (2), the expected loss is upper-bounded by

E[�4 + �? ] f

)∑

C=1

() − C + 2) · 2|Θ| · 4−^ · ()−C )

f 2|Θ| ·

∫ ∞

0

(I + 2) · 4−^I 3I = |Θ| · 4^+2
^2

^f 1
2

f |Θ| · 4
^2 =

|Θ |5 ( | C |+1)4

?min
4 . □

6 CONCLUSION

We studied allocation settings where units of some public resource are to be divided between
multiple categories, each with a quota of items, and a priority ordering over eligible agents. The goal
is to �nd a valid allocation — one which respects the quotas, eligibility, and priority requirements,
while still being Pareto optimal. Our main result demonstrates a bijection between valid integral
allocations and maximum-weight matchings under a set of valid weights. This approach allowed us
to e�ciently locate and select valid allocations, despite the set of valid allocations being non-convex.
On the other hand, our hardness results demonstrate the strange geometry of this set, due to which
optimizing over it remains challenging. We hope our work can help guide the use of priorities
and quotas in a wide variety of settings. Extending our approach to models involving two-sided
preferences and/or complementarities provide interesting avenues for future research.
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A RELATEDWORK

As mentioned, we build on the framework of Pathak et al. [2021], which has inspired several follow-
up papers. Delacrétaz [2021] notes that since the axioms do not uniquely identify an allocation,
di�erent choices can induce biases; to allay this, he introduces a water�lling-style simultaneous

allocation procedure that leads to a unique (fractional) outcome. On the other hand, Aziz and
Brandl [2021] introduce a procedure that results in a maximum-size allocation. Aziz and Sun [2021]
describe how to incorporate diversity goals as an optimization objective in these settings. Finally,
Abdulkadiroğlu and Grigoryan [2021] consider lower bounds on categories, and develop a choice
rule that minimizes the number of priority violations in this setting.
A closely related problem to reserve allocation is fair division, where agents have preferences

over (non-identical) items, and we seek a Pareto e�cient division. The key distinction between
these problems is that in fair division, agents’ preferences determine the stability of an allocation,
while in our setting, the justi�cation for an allocation is dictated by category preferences, while
its utility may depend on agent preferences. Nevertheless, the structures of desired allocations
in both turn out to be quite similar. Our results provide some intuition as to why this is the case,
as when viewed as an ordinal welfare maximization problem, it is clear that the two sides of the
market are symmetric. Consequently, our techniques and results share commonalities with this
literature. For example, our case study in Section 4.1 recovers results of Saban and Sethuraman
[2015] on computing match probabilities under random serial dictatorship. On the other hand, our
perturbation approach is foreshadowed by Biró and Gudmundsson [2021]’s, who propose using
(pseudo)welfare maximization for computing Pareto e�cient fair division solutions.

Finally, settings with two-sided preferences have a long history, stemming from Gale and Shap-
ley’s seminal work on the deferred acceptance (DA) algorithm [Gale and Shapley, 1962]. While
a fairly robust algorithm, DA can fail to compute a Pareto e�cient allocation in the case of in-
di�erences, as pointed out by Erdil and Ergin [2017]. They describe an iterative procedure to
Pareto improve an allocation while preserving its stability, illustrating that notions of stability
and e�ciency can be simultaneously realized. The �ow-augmentation ideas in their improvement
procedure share commonalities with our arguments in Section 3.

229



EC ’23, July 9–12, 2023, London, United Kingdom Siddhartha Banerjee, Ma�hew Eichhorn, and David Kempe

B DEFERRED PROOFS

B.1 Proofs from Section 3.1

Proof of Proposition 1. We will argue the contrapositive — i.e., any x that does not maximize + (x)
is not [PE]. Consider the �ow network representation of the allocation problem shown in Fig. 5.
The nodes on the left side correspond to the agents 0 ∈ A, and the nodes on the right to categories
2 ∈ C. Edges are drawn between each eligible agent-category pair. Finally, given an allocation x,
for every category 2 that has an eligible agent 0 ∈ E2 who is not fully allocated in x, we color all its
eligible agents (i.e., all 0′ ∈ E2 ) red, whether or not they are fully allocated.

A C

B C

...

...
...

...

1

1 @21

@2ģ

1

1

08 °2 Ġ
\ 9

08

01

0=

2 9

21

2<

Fig. 5. A �ow network representation of an allocation instance. The source node B has a unit-capacity edge to

each agent node. Each category node has an edge to the sink node C with capacity equal to that category’s quota.

There are unit-capacity edges from each agent node to the nodes of categories in which the agent is eligible.

If x is not a maximal allocation, then there is an augmenting path % = (B, 01, 21, . . . , 0: , 2: , C) in
this �ow network. We record the following observations.

(1) 01 is red: The in-weight of each agent node is its allocation. Augmenting along % will increase
the in-weight of its �rst agent node, so this agent node must not have been fully allocated.

(2) 2: has not exhausted its quota: The out-weight of each category node is its allocated quota.
Augmenting along % will increase the out-weight of its last category node, so this category
must not have exhausted its quota.

(3) Given any red agent 0, there is a path of the form B → 00 → 20 → 0 in the residual graph for
x, where 00 is a highest-priority agent in 20 that is not fully allocated: this follows from the
de�nition of red agent nodes.

Let 08 be the last red node in % (there must be such a node by Observation 1), and consider the
alternate augmenting path % ′ = (B, 00, 20, 08 , 28 , . . . , 0: , 2: , C) using the “shortcut” from Observation
3. Augmenting along % ′ will strictly increase the allocation to 00 and conserves the allocations of
08 , . . . , 0: . Let y be the allocation after this augmentation. By the construction of the �ow network,
y still satis�es [ER] and [QR]. Moreover, every agent 0 °20 00 is fully allocated, and every agent
08 , . . . , 0: maintains its allocation in y, so y also satis�es [PR]. Thus, y is a Pareto improvement to
x, meaning x did not satisfy [PE]. □
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B.2 Proofs from Section 3.2

The main tool we use to show the reverse implication of Theorem 2 is an alternate characterization
of the valid allocations that additionally satisfy [CS] as those realizable through serial dictatorship.
Let Σ be the collection of all multi-set orderings of

{

2@ę
}

2∈C
(i.e., the set of all sequences of length

@ wherein each category 2 ∈ C appears @2 times). We refer to Σ as the set of choice orders
for our system. For a given choice order f ∈ Σ, we de�ne the serial dictatorship allocation xf
to be the (integral) allocation obtained by cycling through categories in the order given by f ,
and allocating to the highest-priority unallocated agent in the chosen category. This process is
formalized in Algorithm 34.

Algorithm 3 Serial Dictatorship Allocation

Input: Choice order f ∈ Σ

1: for each f8 = 2 in f in order do
2: if 2 has remaining quota and an eligible unallocated agent then
3: 2 allocates to its highest-priority unallocated agent.

Serial dictatorship allocations Gf generalize the sequential reserve allocations of Pathak et al.
[2021]. It is straightforward to see that they (by de�nition) satisfy [QR], [ER] and [PR]. Note,
however, that xf may not be Pareto e�cient (for example, consider allocation 2 in Fig. 1 — it can
be realized as a serial dictatorship allocation xf with f = (V,W, U).) The following lemma fully
characterizes the allocations obtained via serial dictatorship and generalizes a main result of Pathak
et al. [2021].

Lemma 1. For all f ∈ Σ, the serial dictatorship allocation xf satis�es [QR], [ER], [PR], and [CS].

Conversely, every valid integral allocation (i.e., obeying [QR], [ER], [PR], and [PE]) that additionally

satis�es [CS] corresponds to a serial dictatorship allocation xf under some choice order f ∈ Σ.

Proof. For the �rst claim, it is immediate from the de�nition of serial dictatorship that xf
satis�es [QR] (since f contains @2 copies of 2), [ER] (since each category 2 only allocates to eligible
agents), and [PR] (since a category always allocates to a highest-priority unallocated agent). To
see that x is stable, for any subset ( of allocated agents consider the �rst time that agent 0 ∈ ( is
allocated by a category 2 . By de�nition, 2 selects a highest-priority unallocated agent, so 0 °2 B for
all B ∈ ( . Thus, ( cannot form an unstable cycle.
To show the second claim (that every valid integral allocation satisfying [CS] can be generated

via a serial dictatorship allocation), we perform an induction on @. The base case @ = 1 is trivial: if 2
is the category with @2 = 1, then any valid allocation that also satis�es [CS] must give this unit to
a highest-priority eligible agent in 2 , if one exists.

Suppose that the claim holds for all instances with @ = : − 1, and consider an instance with quota
@ = : . We �rst show that in any valid and [CS] allocation x (with + (x) > 0), a highest-priority
agent in some category is allocated from that category. Suppose that this were not the case, and
consider an agent 0 who is allocated from category 2 . By assumption, there is some highest-priority
agent 0′ who is not allocated from 2 . If 0′ is unallocated, then x would violate [PR]. Hence, 0′

must be allocated in some other category 2′. By assumption, 0′ does not have highest priority in 2′,
meaning that the highest-priority agent 0′′ of 2′ is not allocated in 2′. Continuing this reasoning,

4For ease of presentation, we ignore ties in Algorithm 3. This assumption corresponds to each category having a total

ordering over eligible agents; in case there are multiple unallocated agents in the same highest-priority tier, we can use any

�xed tie-breaking rule (alternately, any �xed extension of the total preorder °ę ).
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we will (by �niteness) eventually revisit an agent and discover an unstable cycle, contradicting that
x satis�es [CS].

Now, let 2∗ be a category allocating to its highest-priority agent, and 0∗ the highest-priority
agent in 2∗. We can realize this allocation by having 2∗ be the �rst category in the ordering f . What
remains is an allocation problem for agents A \ {0∗} to categories C, where the quota of 2∗ has
been reduced by 1. Let y be the restriction of x to this problem. It is immediate that y is a valid and
[CS] allocation. By our inductive hypothesis, y can be realized as a serial dictatorship allocation
yf ′ in this sub-problem. Then, x(2∗,f ′ ) realizes x. □

Using this lemma, we can complete the proof of Theorem 2.

Proof of Theorem 2. For the forward direction, we argue the contrapositive. Suppose that x is
feasible for (%X ) for some valid X . Suppose that x violates [CS], so there are 00, 01, . . . , 0 9 = 00 ∈ A

and 20, 21, . . . , 2 9 = 20 ∈ C for which G0ğ ,2ğ = 1, G0ğ+1,2ğ = 0, and 08+1 {2ğ 08 for each 0 f 8 < 9 . We
construct an alternate solution x′ with G ′0ğ ,2ğ = 0 and G0ğ+1,2ğ = 1 for each 0 f 8 < 9 and all other
variables the same as x. Note that x′ is also feasible since 0′ {2 0 =⇒ 0′ ∈ E2 , and all categories
and agents have the same total allocation. Since X is consistent, we have X0ğ+1,2ğ < X0ğ ,2ğ for each
0 f 8 < 9 , so the reassignment strictly increases the objective value. Thus, x is not optimal, so it is
not a solution to (%X ).
For the reverse direction, we must construct an assignment of perturbations X that realize the

allocation x as a solution. It will be convenient to argue using positive perturbations (i.e., a bonus
rather than a penalty). That is, for every 0 ∈ A, 2 ∈ C, we set the coe�cient of G0,2 in the objective
as 1 + d0,2 , such that d0,2 ∈ [0, dmax] for all eligible (0, 2), and d0,2 g d0′,2 for all 0 °2 0

′. To convert
the d0,2 to valid perturbations X0,2 (De�nition 2), we can simply re-scale them by 1

1+dmax
to get

X0,2 =
dmax−dė,ę
1+dmax

. Then, it is easy to check that these perturbations satisfy Positivity and Consistency.

Also, by choosing dmax =
1

2 | C | |A |
, we ensure that

∑

0,2 X0,2 f |C||A| · dmax/(1 + dmax) f 1/2; thus,

the X0,2 constitute a valid perturbation.
Let E := + (x). By Lemma 1, x = xf for some ordering f = (f1, . . . , f@) ∈ Σ. We may also, without

loss of generality, assume that the �rst E entries of f result in the allocation of an agent: note that
any entry f8 corresponding to a depleted category can be moved to the end of the ordering without
a�ecting the agents available to any later entry.
Now, we set the perturbations as follows:

(1) Let 0 be the top-ranked agent in the category f1. We set d0,f1 = dmax.
(2) In stage 8 , let A f 8 be the lowest rank of an unallocated agent in category f8 . Let A

′
< A

be the rank of the agent most recently allocated in f8 , with A ′ = 0 if no agent has yet been
allocated through f8 . For 9 = A ′ + 1, A ′ + 2, . . . , A , let 0 9 be the agent with rank 9 in f8 , and
de�ne �8 = {0A ′+1, 0A ′+2, . . . , 0A }. We set d0 Ġ ,fğ = dmax/(|A| + 1)

8−1 + (A − 9) · Y, for some

Y j dmax/(|A| + 1)
|A | .

The main invariant maintained by the above construction is that at any stage 8 , the smallest
perturbation d0,2 for 2 = f8 and any 0 ∈ �8 is greater than the sum of all perturbations of (0, 2) pairs
set in rounds 8′ > 8 . As a result, the optimal matching among pairs (0, 2) considered in rounds 8
and greater must include at least one pair (0 9 , f8 ) for some 0 9 ∈ �8 . Moreover, since the agents
0A ′+1, 0A ′+2, . . . , 0A−1 were allocated in rounds prior to 8 , any optimal matching with respect to the
d0,2 must have G0Ĩ ,fğ = 1. This exactly corresponds to the outcome Gf realized via Serial Dictatorship
with order f . Thus, Gf is realized as a solution to (%X ). □
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The following lemma will be useful in our proof of Proposition 2.

Lemma 2. Consider any valid allocation x with allocated agents AG = {0 ∈ A :
∑

2 G0,2 > 0}. Then,

for any agent 0∗ ∈ AG who is partially allocated (i.e., 0 <

∑

2 G0∗,2 < 1), there exists a valid allocation

y with A~ ¦ AG and in which 0∗ is fully allocated (i.e.,
∑

2 ~0∗,2 = 1).

Proof. Let 2∗ ∈ C be any category with 0 < G0∗,2∗ < 1. We argue that there is a way to modify x

which maintains validity, strictly increases G0∗,2∗ , and strictly decreases the number of non-integral
allocation variables. Since the number of eligible category-agent pairs (and therefore, the number
of non-integral allocations) is �nite, we can repeatedly apply this modi�cation until 0∗ is fully
allocated.
To describe the modi�cation, we �rst construct an undirected graph as follows.

— The nodes of the graph will correspond to (0, 2) pairs with 0 < G0,2 < 1.
— We color an agent 0, and all its associated nodes, red if it is not fully allocated (i.e.

∑

2′∈C G0,2′ <

1), otherwise white.
— We add an edge between any two nodes that share a category.
— We add an edge between any two white nodes that share an agent.

Note that the third bullet implies that the connected components of this graph describe a partition
of the categories. We argue that the red node (0∗, 2∗) is in the same connected component as
another red node. For sake of contradiction, suppose not. Note that the total quota of all categories
associated with this component is an integer. In addition, the total allocation to all of the agents
associated with this component is not an integer: the white agents each have allocation 1, and the
singular red agent has a non-integral allocation. However, all of the quotas must be exhausted by
the allocation. If not, a path from (0∗, 2∗) to a node (0, 2) where 2 has not exhausted its capacity
describes a way to adjust the allocation to increase the total allocation to 0∗ and leave all other
agents’ total allocations unchanged, violating Pareto e�ciency. However, this is a contradiction:
the total quota of these categories cannot be both integral and non-integral.

Suppose that (0̂, 2̂) is another red node in (0∗, 2∗)’s connected component. By de�nition, there is
a path between these two nodes. Moreover, the structure of the graph allows us to assume (without
loss of generality) that the edges in this graph alternate between connecting nodes that share an
agent and nodes that share a category. Since red nodes are only connected to nodes with which they
share a category, this path has an odd length. We modify the allocation by following the path from
(0̂, 2̂) to (0∗, 2∗). First, we subtract Y > 0 from G0̂,2̂ . Then, we add Y to the variable corresponding to
the next node on the path, repeating this process until we add Y to (0∗, 2∗): the �rst bullet point
allows us to choose Y such that one of these modi�cations results in a variable assuming value in
{0, 1}.
To �nish the proof, we must argue that this modi�cation results in another valid allocation,

which we denote by x′. First, note that the modi�cation did not change the total allocation of any
category; it only transferred quota from one agent to another. Thus, x′ satis�es [QR]. In addition,
we conclude by Proposition 1 that x′ satis�es [PE]: it is also a maximal allocation. Next, note that
the modi�cation does not transfer any quota to an (0, 2) node with G0,2 = 0, so x′ satis�es [ER].
Finally, note that the only agent whose total allocation can decrease from the modi�cation is 0̂,
who is red. Therefore, x′ maintains [PR]. □

We are ready to prove Proposition 2.

Proof of Proposition 2. We argue this claim in two stages. First, we argue that x can be represented
as a convex combination of valid allocations in which each agent has an integer total allocation. This
follows from Lemma 2. In this proof, we obtained an alternate allocation x′ from x by perturbing
nodes along a path by Y. Similarly, add Y′ > 0 to G0̂,2̂ , subtract Y

′ from the next node, repeating until
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we subtract Y′ from (0∗, 2∗) to obtain an alternate valid allocation x′′: the �rst bullet point allows
us to choose Y′ such that one of these modi�cations results in a variable assuming value in {0, 1}.
But then we can express x as the convex combination

x =
Y′

Y+Y′
· x′ + Y

Y+Y′
· x′′ .

We can repeat this process with x′ and x′′, just as in the proof of Lemma 2. Since each step
strictly decreases the number of non-integral variables, eventually, we will be left with a convex
combination of valid allocations {y(1) , . . . , y(ℓ ) } in which each agent has an integer total allocation.
(This is the termination condition of the procedure from Lemma 2.) To conclude, we must further
represent each y(8 ) as a convex combination of valid integral allocations (i.e., allocations in which
each allocated agent receives an entire unit from exactly one category). This is an application
of the Birkho�-von Neumann theorem: since each agent is fully allocated, we can interpret y(8 )

as fractional matchings between the agents and categories in the subgraph of edges (0, 2) with

y
(8 )
0,2 > 0. Validity is preserved since these integer matchings preserve the total allocation to each

agent and category. □

B.3 Proofs from Section 4.1

Proof of Proposition 3. We argue the forward direction by its contrapositive. Suppose that+ ∗ = + ∗
\0
,

and let x be a solution to (%0) for the restricted instance I\0 . By Proposition 1, there must be
another solution y that additionally respects priorities (i.e., is valid). Note that 0 is not eligible in
any category in I\0 , so ~0,2 = 0 for every 2 ∈ C. However, y is also a valid allocation for the original
instance I: eligibility in I\0 implies eligibility in I; quota constraints are the same in I and I\0 ;
priorities are respected since the de�nition of restriction ensures that any eligible agent in I who is
not fully allocated in y must be ranked below fully allocated agents in I\0 , and hence in I; �nally,
y returns a matching of maximum size in I, and so is Pareto e�cient in I. Thus we have located a
valid allocation that does not include 0, and hence 0 is not unanimous.

We also argue the reverse direction by its contrapositive. Suppose 0 is not unanimous — then,
there is a valid allocation x in which 0 is not allocated. By de�nition, this allocation has value + ∗.
Since x satis�es [PR], no category can allocate to an agent with lower priority than 0. Thus, x is
feasible for I\0 , so +

∗
= + ∗
\0
. □

Proof of Proposition 4. We show this via a reduction from the X3C problem [Karp, 1972], which is
de�ned as follows.

De�nition 6 (X3C). Given a ground set � of 3= elements and a collection of< subsetsS = {(1, . . . , (<},

with each |(8 | = 3, the X3C problem asks whether there are = subsets (81 , . . . , (8Ĥ whose union is �.

We consider the following reduction from X3C, which is visualized in Fig. 6.

— A consists of the following 5< − = + 1 agents:
– 3= agents representing the ground set elements 4 ∈ �
– < agents B1, . . . , B< representing the subsets (8 ∈ S
– 4(< − =) �ller agents, labeled 51, . . . , 54(<−=)
– the distinguished agent 0

— C consists of |C| =< + 1 categories: a set category U8 for each (8 ∈ S and a category V .
— Each set category has quota 4, and V has quota 1.
— Each set category U8 has 4(< − = + 1) eligible agents: the 4(< − =) �ller agents, who have

priority over agent B8 , who has priority over the 3 element agents in (8 .
— The category V has 3= + 1 eligible agents: the 3= element agents, who have priority over

agent 0.
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� = {41, 42, 43, 44, 45, 46}

S =

{

{41, 43, 46},

{41, 44, 45},

{42, 44, 45}
}

−→

U1 (4) U2 (4) U3 (4) V (1)

51 51 51 41
52 52 52 42
53 53 53 43
54 54 54 44
B1 B2 B3 45
41 41 42 46
43 44 44 0

46 45 45

Fig. 6. An example reduction from an X3C instance (with = = 2,< = 3) to a reserve allocation instance. This
is a “yes” instance of X3C: the first and third sets form a partition of �. Accordingly, the reserve allocation
instance on the right admits a valid allocation, visualized in red, that gives to 0.

This reserve allocation instance has size which is polynomial in< and=, and it can be constructed
in polynomial time. It remains to argue the correctness of the reduction. First, suppose that we
are given a “yes” instance to the X3C problem; that is, there are (81 , . . . , (8Ĥ that disjointly cover �.
Then, consider the following allocation:

— In each category U8 Ġ corresponding to a set (8 Ġ , allocate to agent B8 Ġ and the three element
agents.

— In the remaining< − = set categories, allocate to four (distinct) �ller agents arbitrarily.
— In category V , allocate to agent 0.

Note that this is a valid allocation. It satis�es [QR] and [ER] by construction, and it exhausts all
quotas, so it is [PE]. It allocates to all �ller and element agents, and to element agents only through
categories whose set element is also allocated, so it is [PR]. This establishes that 0 is serviceable.

Conversely, suppose that we reduce to an allocation instance in which 0 is serviceable, so there
is a valid integral (by Lemma 2) allocation i in which i (0) ≠§. By construction, 0 is eligible only
in category V , so 0 must receive the only unit of V . For i to respect priorities in V , it must allocate
to each element agent, which must happen within the set categories. But then, to respect priorities
in any set category, i must allocate to all �ller agents as well. In total, these required allocations
comprise 4< − = + 1 units, leaving = units to allocate to the set agents {B8 }. Since the allocation
to one set agent permits the allocation to at most three additional element agents, to allocate to
all 3= element agents, i must allocate to exactly = set agents, and their corresponding sets must
be pairwise disjoint. In summary, the = set agents allocated in i , B81 , . . . , B8Ĥ , correspond to = sets
(81 , . . . , (8Ĥ that disjointly cover �, so we have reduced from a “yes” instance of X3C. □

B.4 Proofs from Section 4.3

Proof of Proposition 5. To see that x is a valid allocation, it su�ces (by Theorem 1) to argue that X
is a valid perturbation. By construction, each X0,2 is positive, and X is consistent as A2 (0) f A2 (0

′) if
and only if 0 °2 0

′. Finally, to see that X� has small e�ect, note that each A2 (0) f |A|, and hence
∑

0∈A

∑

2∈C

X0,2 f
∑

0∈A

∑

2∈C

1
2 | C | |A |

=
1
2
.

To conclude that x minimizes the sum of allocated agents’ ranks (among all valid allocations), we
consider the objective +X (x). We have

+X (x) = + (x) −
∑

0∈A

∑

2∈C

X0,2 · G0,2 = + (x) − 1

2 | C | |A |2
·
( ∑

0∈A

∑

2∈C

A2 (0) · G0,2

)

.
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+ (x) is the same for all valid (and thus maximal) allocations. The parenthesized expression is
exactly the sum of allocated agents’ ranks. Thus, allocations returned by (%X ) minimize this sum.
□

Proof of Proposition 6. To see that x is a valid allocation, it su�ces (by Theorem 1) to argue that
X is a valid perturbation. As before, by construction, each X0,2 is positive, and X is consistent as
A2 (0) f A2 (0

′) if and only if 0 °2 0
′, and X0,2 is an increasing function in A2 (0). Finally, X has small

e�ect since each A2 (0) f |A|, and so we have that
(

1
|A |+1

) |A |−Aę (0) f 1. Thus,
∑

0∈A

∑

2∈C

X0,2 f
∑

0∈A

∑

2∈C

1
2 | C | |A |

=
1
2
.

Let '(x) = max
(0,2 ) :Gė,ę=1

{

A2 (0)
}

be the maximum rank over all allocated agents. To conclude that x

minimizes '(x) (among all valid allocations), consider the objective +X (x). We have

+X (x) = + (x) −
∑

0∈A

∑

2∈C

X0,2 · G0,2 = + (x) −
1

2|C| |A| · ( |A| + 1) |A |
·

∑

(0,2 ) :Gė,ę=1

( |A| + 1)Aę (0) .

By the de�nition of'(x), the sum in the last expression falls in the interval
[

( |A|+1)' (x) , |A|· ( |A|+

1)' (x)
]

. Since these intervals are non-overlapping, choosing an integral allocation maximizing +X

is equivalent to minimizing this sum, and hence minimizing '(x). □

Proof of Proposition 7. This result follows from an X3C reduction that is similar to that from Propo-
sition 4. In particular, when 4(< − =) g 3= + 1, the same reduction works, as 0 is serviceable in the
reduced instance if and only if the outer threshold of all categories is at least 3= + 1.
If 4(< − =) < 3= + 1, we need to add more �ller agents to the U categories to push the tier of

the last 5 agents past the 0 agent in category V . In category U8 , we add agents 68,1, . . . , 68,(7=−4<+1) ,
each in a separate rank tier above 51. We also increase the category’s quota to 7= − 4< + 5. Again,
we have that 0 is serviceable in the reduced instance (so the X3C instance has a partition by a
straightforward modi�cation of the proof of Proposition 4 to account for the 68, 9 agents) if and only
if the outer threshold of all categories is at least 3= + 1. □

Proof of Proposition 8. This result again follows from an X3C reduction that is almost identical to
that from Proposition 4. To the reduced instance, we add 4< additional �ller agents {61, . . . , 64<}
and an additional category W with quota 4< and all of these 6 agents in its �rst priority tier. In
addition, we add all of these 6 agents below 0 in category V , each in a separate priority tier.
Note that if 0 remains unallocated, then the maximum possible sum of outer thresholds is
(4< − 4= + 5) ·< + 3= + 1, where the �rst term comes from the< set categories, the second term
comes from V , and the third term from W . On the other hand, if 0 is allocated, then the sum of outer
thresholds is at least (4< − 4= + 1) ·< + (3= + 1 + 4<) + 1. Thus, 0 is serviceable in the reduced
instance (so the X3C instance has a partition by the proof of Proposition 4) if and only if the sum
over categories of the outer thresholds is at least (4< − 4= + 1) ·< + (3= + 1 + 4<) + 1. □

Proof of Proposition 9. We perform a reduction from Cliqe. Given an undirected graph � and
clique size : as input, construct an allocation instance I� with A = + , @ = : , and a category 24 for
each edge 4 ∈ � whose only two eligible agents are the endpoints of 4 (in the same priority tier).

Now � contains a :-clique if and only if the sum of outer thresholds in I� equals
(:
2

)

+ |� |. □

B.5 Proofs from Section 5

Proof of Proposition 10. We consider a family of allocation instances parameterized by ) . There is
a single category with quota @ =

)
2
and three eligible types: 0 { 1 { 2 with ?0 = ?1 = ?2 =

1
3
.
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Consider the arrival of an agent of type 1 “early in the sequence”. Although it is almost certain
that the hindsight-optimal allocation will accept roughly half of the arriving type-1 agents, an
online algorithm must reject this agent. To ensure that the hindsight allocation always respects
priorities, the algorithm must guard against a future (which occurs with positive probability) in
which all remaining agents are of type 0. The algorithm can therefore never exhaust the quota
in a way that would leave some of these agents unallocated and envious. By this reasoning, the
algorithm must continue to reject all arriving agents of types 1 and 2 until the (random) stopping
time g at which

)
2
−

g∑

C=1

1
(

\C = 0
)

g ) − g .

Here, the left-hand side is the number of remaining units that can be allocated, and the right-hand
side is the number of agents to arrive after time g . We can rearrange this inequality to get

g∑

C=1

1
(

\C ≠ 0
)

g )
2
.

If at most 3)
8
agents among the �rst 7)

8
arrivals have type 0, then this inequality holds for g =

7)
8
,

so applying Hoe�ding’s Inequality, we obtain that

P[g f 7)
8
] g 1 − P

[

Binom( 7)
8
, 1
3
) > 3)

8

]

g 1 − exp
(
−)
63

)

.

After arrival g , an algorithm can begin to accept agents of type 1 (and possibly 2). However, if
the algorithm has rejected any agents of type 1 before time g , it cannot accept any type-2 agents.
Since all agents of types other than 0 must have been rejected before time g , the event that no
type-1 agents have been rejected before time g coincides with the event that no such agents arrived.
Because g g )

2
, the probability of no type-1 rejections is therefore at most ( 2

3
)
Đ/2. By a union bound,

with probability at least

1 − exp
(
−)
63

)

−
(
2
3

)−Đ/2
= 1 − exp(−¬() )),

the algorithm rejects all type-2 agents arriving after time g f 7)
8
. Again by Hoe�ding’s Inequality,

with probability at least 1− exp(−¬() )), there are at least
(
1
24
−n

)

·) such agents (for any constant

n <
1
24
, e.g., n =

1
100

), resulting in ¬() ) loss in e�ciency with all but exponentially small probability.
□
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C SCARF’S LEMMA AND STABLE MATCHING

Here, we compare the priority-respecting allocations problem and the stable matching problem
through the lens of Scarf’s lemma. To begin, we recall Scarf’s Lemma, following the treatment of
Nguyen and Vohra [2022].
Scarf’s lemma considers an allocation setting with = agents and < coalitions; both of these

descriptors apply rather abstractly, as our examples will illustrate. In this setting, coalitions comprise
agents and the principal must decide how to allocate coalitions. There are budgetary constraints
that ensure that no agent is over-allocated and agents may express preferences over the coalitions
to which they belong. Formally, we have:

— A matrix A ∈ R=×<+ has a row for each agent and a columns for each coalition.We interpret
entry A8 9 as a cost to agent 8 if (one unit of) coalition 9 is allocated. We assume that each row
includes at least one positive entry.

— A vector q ∈ R=+ denotes the budget of each agent.
— Each agent 8 has a total preference order °8 over its coalitions { 9 ∈ [<] : A8 9 > 0}.
— A vector x ∈ R<+ stipulates to what extent each coalition is realized.

Thus, the principal must select x subject to the budgetary constraints Ax f q. Within this set of
feasible x, we wish to further choose coalitions that enforce some notion of stability with respect
to the agent preferences. For this, we introduce the notion of the domination of a coalition.

De�nition 7. Given an instance
(

A, q, (°8 )8∈[=]
)

, an allocation x g 0 satisfying Ax f q dominates
coalition 9 ∈ [<] if there is some fully-allocated agent 8 for which every allocated coalition to which 8

belongs is weakly preferred by 8 to 9 .

More formally, there is 8 ∈ [=] such that
∑<

:=1 A8:x: = q8 and for each 9 ′ ∈ [<],

A8 9 ′ > 0 and x9 ′ > 0 =⇒ 9 ′ °8 9 .

Domination expresses an inability to adjust x in a way that assigns more weight to coalition 9

without upsetting some agent 8 . Simply increasing x9 would violate 8’s budgetary constraint, and
any shift in weight from any other coalition 9 ′ to which 8 belongs would come from a coalition
preferable to 9 . Through this interpretation, if an allocation were to dominate all coalitions, it would
exhibit a notion of stability; any adjustment of the coalition allocations would be either ine�cient
or disagreeable to some agent. The ensured existence of such stable allocations is the content of
Scarf’s Lemma.

Proposition 11 (Scarf [1967], Theorem 1). Given any allocation instance
(

A, q, (°8 )8∈[=]
)

, there is

an extreme point of {x : Ax f q} that dominates every coalition.

Scarf’s Lemma can be proven via a reduction to the existence of Nash Equilibria in two-person
games. While the statement of this result is clean, allowing it to be specialized to many problems
(as we discuss below), there is no assurance that this dominating extreme point can be easily
computed. In fact, Kintali [2008] showed that a computational version of Scarf’s Lemma is complete
for the PPAD class. This implies that there is no polynomial-time algorithm to locate these extreme
points unless PPAD ¦ P. Despite this, there are many special cases of Scarf’s Lemma that admit
polynomial algorithms.
One special case of Scarf’s Lemma is the stable matching problem; it can be used to recover

the result of Gale and Shapley [1962] that a stable matching exists in every instance. Using the
context of = residents being matched to = hospitals, we take the set of agents to be the union of the
residents and hospitals. The coalitions consist of each (resident, hospital) pair, and A is the {0, 1}
incidence matrix. The budget vector q ∈ R2=+ is the all-ones vector, which ensures that each agent
is matched at most once. The agent rankings (°8 ) order an agents incident pairs corresponding to
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their preference list. In this construction, an undominated coalition corresponds to an instability.
Note that the Birkho�-von Neumann theorem ensures the integrality of the extreme points.
The priority-respecting allocation problem can also be interpreted as a special case of Scarf’s

lemma. However, the construction is less straightforward, as we must account for the lack of
preferences of the agents. Here, the set of agents consists of all of the categories along with a copy
of each of the agent for each possible ordering of their eligible categories. The set of coalitions
consists of all eligible (agent, category) pairs, and A is again a {0, 1} incidence matrix. The budget
of each category is its quota, and the budget of each agent is 1. The preference order of a category
2 is any linear extension of °2 . The preference order of each agent row corresponds to its ordering
over its eligible categories.

C.1 LP Perturbations and Stable Matchings.

One problem with using Scarf’s Lemma is that while it guarantees the existence of a dominating
solution, it does not give an e�cient algorithm for �nding it. Apart from priority-respecting
allocation, the other setting where the dominating solution was known to be e�ciently computable
was for stable matchings. The underlying reason behind the existence of an e�cient algorithm in
the two settings, however, appears to be very di�erent. On one hand, stable matchings are known to
form a convex set (and indeed, are realized as corner points of a natural modi�cation of the matching
LP [Vande Vate, 1989]), while as we show in Fig. 2, this is not the case for priority-respecting
matchings. On the other hand, we show that the perturbation techniques we develop for locating
priority-respecting allocations does not work for stable matchings.

A naïve way to locate stable matchings via LPs is to �rst compute a stable matching (which can be
done e�ciently via the Deferred-Acceptance procedure of Gale and Shapley [1962]), and then design
edge weights to recover the same matching as a maximum-weight matching. More surprisingly,
the work of Vande Vate [Vande Vate, 1989] shows that one can modify the matching polytope by
adding additional linear constraints to get an LP whose corner points exactly correspond to all
the stable matchings, and one can use the corresponding optimal dual variables to get perturbed
objectives. The problem with these procedures, however, is that they compute perturbations that
are global, i.e., based on the entire instance. This is in contrast to our technique for �nding priority-
respecting allocations, which is based on local perturbations: the objective coe�cient on edges G<F

are functions only of the rank of< onF ’s preference list and the rank ofF on<’s preference list.
Thus, a more re�ned question is if given a stable matching instance with = men and = women,

one can �nd a perturbation function � : [=] × [=] → R such that the resulting matching " that
maximizes+� (") =

∑

(<,F ) ∈" � (AF (<), A< (F)) is necessarily stable. Unfortunately, we can answer
this question in the negative.

Proposition 12. For= g 6, for any local perturbation function � : [=]× [=] → R, there exist instances

such that any matching" maximizing +� (") =
∑

(<,F ) ∈" � (AF (<), A< (F)) is unstable.

Proof. We consider two stable matching instances with = = 6. In both instances, the women are
indexed by Roman letters {0, 1, 2, 3, 4, 5 } and the men are indexed by Greek letters {U, V,W, X, n, Z }.
The �rst instance has the following preference lists:
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0 1 2 3 4 5

U V W U U U

∗ ∗ ∗ X V n

∗ ∗ ∗ Z n V

∗ ∗ ∗ ∗ X Z

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

U V W X n Z

0 1 2 0 0 0

∗ ∗ ∗ 4 1 5

∗ ∗ ∗ 1 4 3

∗ ∗ ∗ 2 5 ∗

∗ ∗ ∗ 3 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

Here, the ∗ elements can be assigned arbitrarily to complete the matching instance. Note that in
this instance, there is a unique stable matching, " = {(0, U), (1, V), (2,W), (3, X), (4, n), (5 , Z )}. An
alternate (non-stable) matching is" ′ = {(0, U), (1, V), (2,W).(3, Z ), (4, X), (5 , n)}; note the presence
of instability (4, n). For our function � to assign a higher value to matching" than" ′, we must
have

+� (") = � (1, 1) + � (1, 1) + � (1, 1) + � (2, 5) + � (3, 3) + � (4, 2)

>+� ("
′) = � (1, 1) + � (1, 1) + � (1, 1) + � (3, 3) + � (4, 2) + � (2, 4),

which simpli�es to the condition � (2, 5) < � (2, 4).
We similarly consider our second stable matching instance.

0 1 2 3 4 5

U V W U U U

∗ ∗ ∗ X V n

∗ ∗ ∗ Z n V

∗ ∗ ∗ ∗ X Z

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

U V W X n Z

0 1 2 0 0 0

∗ ∗ ∗ 4 1 5

∗ ∗ ∗ 1 4 3

∗ ∗ ∗ 3 2 ∗

∗ ∗ ∗ ∗ 5 ∗

∗ ∗ ∗ ∗ ∗ ∗

In this instance," = {(0, U), (1, V), (2,W), (3, X), (4, n), (5 , Z )} is again the unique stable matching.
The alternate matching " ′ = {(0, U), (1, V), (2,W).(3, Z ), (4, X), (5 , n)} is again unstable; note the
presence of instability (4, n). For our function � to assign a higher value to matching" than" ′,
we must have

+� (") = � (1, 1) + � (1, 1) + � (1, 1) + � (2, 4) + � (3, 3) + � (4, 2)

>+� ("
′) = � (1, 1) + � (1, 1) + � (1, 1) + � (3, 3) + � (4, 2) + � (2, 5),

which simpli�es to the condition � (2, 4) < � (2, 5). Our two derived inequalities cannot be simulta-
neously satis�ed. Hence, such a local perturbation function � cannot exist. □
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