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Abstract. Motivated by information sharing in online platforms, we study repeated
persuasion between a sender and a stream of receivers, where, at each time, the sender
observes a payoff-relevant state drawn independently and identically from an
unknown distribution and shares state information with the receivers, who each choose
an action. The sender seeks to persuade the receivers into taking actions aligned with
the sender’s preference by selectively sharing state information. However, in contrast
to the standard models, neither the sender nor the receivers know the distribution, and
the sender has to persuade while learning the distribution on the fly. We study the sen-
der’s learning problem of making persuasive action recommendations to achieve low
regret against the optimal persuasion mechanism with the knowledge of the distribu-
tion. To do this, we first propose and motivate a persuasiveness criterion for the
unknown distribution setting that centers robustness as a requirement in the face of
uncertainty. Our main result is an algorithm that, with high probability, is robustly
persuasive and achieves O(,/T log T) regret, where T is the horizon length. Intuitively,
at each time, our algorithm maintains a set of candidate distribution and chooses a sig-
naling mechanism that is simultaneously persuasive for all of them. Core to our proof
is a tight analysis about the cost of robust persuasion, which may be of independent
interest. We further prove that this regret order is optimal (up to logarithmic terms) by
showing that no algorithm can achieve regret better than Q(VT).
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1. Introduction

returns, or more engaged users. Second, the platform

Examples of online platforms recommending content
or products to their users abound in the online econ-
omy. For instance, online retailers like Amazon or Etsy
recommend products from third-party sellers to users;
styling services like Stitch Fix recommend clothing
designs made by custom brands; and online platforms
like YouTube or Spotify recommend content or playlist
generated by creators. There are two intrinsic chal-
lenges in such online recommendations, which we
address simultaneously in this paper. First, the platform
making such recommendations often needs to balance
the dual objectives of being persuasive (i.e.,, making
obedient recommendations that will be adopted by the
users (Bergemann and Morris 2016)), as well as further-
ing the platform’s goals, such as increased sales, fewer

often faces a large volume of new products/contents/
services with a priori unknown quality /reward distri-
butions and, thus, has to learn to make good recommen-
dations. We tackle these two challenges by studying
learning to persuade on the fly.

1.1. Motivating Applications

To motivate the problem we consider, we now describe
two concrete examples in the domain of two-sided
platforms.

Example 1 (Content Recommendations by Online Media
Platforms). Consider a media platform, like YouTube

or TikTok, that recommends content created by inde-
pendent creators (“channels”) to its users. New chan-
nels regularly join the platform and start producing
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content, whose quality distribution is unknown to both
the platform and its users. Here, by content’s quality,
we refer to how engaging, interesting, or relevant the
users find the content. Despite this lack of knowledge,
the platform faces the problem of deciding whether to
recommend content from such new channels to its
stream of users. In this context, the users seek to con-
sume fresh and high-quality content, whereas the
platform itself may have other goals, such as maxi-
mizing user engagement or increasing channel expo-
sure, which are not fully aligned with users’ interests.
Furthermore, from extensive user-level data, the plat-
form may have good estimates about the utility that a
user derives from consuming particular content. A
user encountering a new channel may have a prior
belief about its quality distribution based on her past
experiences in the platform and from any information
provided by the channel itself on its profile. Further-
more, the user may have additional (partial) informa-
tion from any reviews or ratings left by previous users
(or similar summary statistics). For each new content
from a channel, the platform observes its quality (per-
haps after an initial exploration or through in-house
reviewers) and decides whether to recommend the
content to its users. If the platform and the users
know a channel’s content quality distribution, the
platform can reliably make recommendations that
optimize its own goals, while maintaining user satis-
faction, by consistently mixing high-quality content
with some mediocre ones. However, given the lack of
such distributional information, the platform must
learn to make such recommendations over time, as the
channel produces more content.

Example 2 (Recommendations on Hiring Platforms). Con-
sider a hiring platform, where employers receive re-
commendations about candidates for recruitment
(e.g., “recommended matches” in LinkedIn Recruiter).
These recommendations are typically tailored to the
employer’s project requirements. However, within the
set of candidates satisfying the requirements, there
would be a range of capabilities/fit, whose distribution
would be unknown to the platform or the employer.
Nevertheless, for any particular candidate who might
be interested in the position, the platform may be able
to assess the candidate’s capability based on various
candidate features, such as her endorsements, refer-
ences, etc.; by using this information, the platform deci-
des whether to recommend the candidate. Similarly,
the employer, through the course of interviewing dif-
ferent candidates, may learn about the capability distri-
bution. Although the employer would prefer to be
matched with few high-capability candidates to inter-
view, the platform may have additional incentives from
having to cater to the candidates” side of the market,
such as increasing the overall number of interviews.

Once again, if the distribution of the candidates’ capa-
bilities is known to the platform and the employer,
the platform could reliably recommend candidates to
optimize its goals, while simultaneously meeting the
employer’s preferences. But, without such informa-
tion, the platform needs to learn to recommend candi-
dates as they apply over time.

This paper studies the problem faced by such a plat-
form learning to make persuasive recommendations
to a stream of users. Although previous work has
studied information design in two-sided markets—
ranging from recommending products from third-
party sellers on e-commerce platforms like Amazon
and eBay (Elliott et al. 2022, Gur et al. 2023), to recom-
mending drivers by sharing demand trend on ride-
sharing services like Uber and Lyft (Yang et al. 2019),
to accommodation and rental recommendations in
Airbnb (Romanyuk and Smolin 2019)—the common
assumption is that the platform knows the underlying
state distribution. Our work contributes to this litera-
ture by relaxing this strong assumption.

1.2. Modeling Contributions

Formally, we study a repeated persuasion setting
between a sender and a stream of receivers, where at
each time f, the sender shares some information corre-
lated to some payoff-relevant state with the corre-
sponding receiver. The state at each time ¢ is drawn
independently and identically from an unknown dis-
tribution, and, subsequent to receiving information
about it, the newly arriving myopic receiver chooses
an action from a finite set, generates payoffs, and then
leaves the system forever. The sender seeks to per-
suade this stream of receivers into choosing actions
that are aligned with her preference by selectively
sharing information about the state at each round.

To tackle the practical challenge of making recom-
mendations in the absence of distributional data, we
depart from the standard Bayesian persuasion setting
and consider situations where neither the sender nor
the receiver knows the distribution of the payoff rele-
vant state. Instead, the sender learns this distribution
over time by observing the state realizations. We
adopt the assumption common in the literature on
Bayesian persuasion that the sender commits to a sig-
naling mechanism that, at each time step, maps the
realized state to a possibly random action recommenda-
tion. Such a commitment assumption is well-justified
for settings of interest to this work because online plat-
forms typically design and implement the information
sharing policy as software in advance, rendering fre-
quent changes unlikely. This advance design serves as
a commitment device organically.

Certainly, the sender cannot freely make arbitrary
recommendations, if the expectation is that these recom-
mendations would influence the receivers’ actions. A
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natural requirement is for the sender to make re-
commendations that the receiver will find optimal to
follow—that is, recommendations that are persuasive.
This incentive compatibility requirement can be easily
justified by an application of the revelation principle.
In the case where the sender and the receivers know
the state distribution, the persuasiveness requirement
implies that, subsequent to each recommendation, the
recommended action maximizes the receiver’s expected
utility under the conditional state distribution (given
the recommendation). However, in the absence of such
distributional knowledge, it is not immediately clear
how to impose persuasiveness.

Our main modeling contribution addresses this issue
by proposing a natural criteria for persuasiveness when
neither the sender nor the receivers know the state dis-
tribution. The starting point of our approach is the
observation that any persuasiveness criteria directly
corresponds to a model of receivers’ response on re-
ceiving a recommendation (just as in the case of known
state distribution). Thus, by considering reasonable
behavioral models for the receiver, we develop in
Section 2.2 a persuasiveness criterion that centers
robustness as a requirement in the face of uncertainty.
Specifically, our criterion requires that the sender’s
recommendations are persuasive under all state distri-
butions in a set of “confidence regions,” which contain
the true distribution with a given degree of confidence;
these confidence regions shrink over time as the sender
observes more state realizations. This is in line with the
approach in statistics that uses confidence regions to
address the uncertainty in parameter estimates. Fur-
thermore, this robustness requirement naturally leads
to conservative recommendations, thereby making it
likely that the recommendations will be accepted. We
refer to this notion as f-robustly persuasiveness, where
1 — B denotes the confidence level.

1.3. Algorithmic Contribution and Regret
Characterization

A sender who simply recommends the receiver’s best
action at the realized state will certainly be persuasive
with complete confidence (8 = 0), but may end up with
a significant loss in her utility when compared with
her utility had she known the state distribution. How-
ever, because the sender observes the state realizations
over time, she has the opportunity to make more prof-
itable recommendations with greater confidence in
their persuasiveness as she obtains more information.
Thus, the sender’s goal is to carefully manage this tra-
deoff between the confidence in persuasiveness and
her utility and achieve low regret against the optimal
signaling mechanism with the knowledge of the state
distribution.

The primary theoretical contribution of this work is an
efficient algorithm that, with high probability, makes

persuasive recommendations and, at the same time,
achieves vanishing average regret. The algorithm we
propose proceeds by maintaining at each time a set of
candidate state distributions, based on the observed
state realizations in the past. The algorithm then chooses
a signaling mechanism that is simultaneously persua-
sive for each of the candidate distributions and maxi-
mizes the sender’s utility. Because of this aspect of the
algorithm, we name it the Robustness Against Ignorance
(Rat) algorithm.

By a careful choice of the candidate set of distribu-
tions at each time period, we show in Theorem 1 that
the Rai algorithm satisfies the p-robustly persuasive-
ness criterion for f=0(T), where T is the horizon
length. Furthermore, exploiting the structure of the
problem, we show in Proposition 1 that the Rai algo-
rithm involves solving a polynomially sized (in num-
ber of states and actions) linear program at each period.
Taken together, these results establish our algorithm’s
persuasiveness and its computational efficiency.

To characterize the regret of the Rai algorithm, we
next undertake a brief digression, in Section 4, into
studying the (static) problem of robust persuasion.
Specifically, we study a static persuasion setting with
known state distribution, but impose the restriction
that the signaling mechanism must be persuasive for
all distributions in the neighborhood of the actual state
distribution. For this problem, we define and analyze a
quantity Gap that measures the sender’s cost of robust
persuasion. Formally, Gap(u, B) captures the loss in the
sender’s expected utility (under distribution y) from
using a signaling mechanism that is persuasive for
all distributions in the set B, as opposed to using one
that is persuasive only for the distribution u. In Pro-
position 2, we establish that, under some regularity
conditions, the sender’s cost of robust persuasion
Gap(y, B) is at most linear in the radius of the set B.
This is achieved via an explicit construction of a signal-
ing mechanism that is persuasive for all distributions
in Band achieves sender’s utility close to the optimum.
Further, we provide a matching lower bound in Prop-
osition 3 by carefully crafting a persuasion instance
and using its geometry to prove a linear cost of robust
persuasion; this instance thus serves as a lower-bound
example for robust persuasion. The characterization of
the cost of robust persuasion provides useful insight
about the problem of robust persuasion, which may be
of independent interest.

Using this characterization of the cost of robust per-
suasion, we perform a tight regret analysis of persuasion
under unknown state distribution in Section 5. Our posi-
tive result, Theorem 2, establishes that for any persua-
sion setting satisfying the aforementioned regularity
conditions, the Rai algorithm achieves O(y/T log T)
regret with high probability. Furthermore, in Theorem 3,
we provide a matching lower bound (up to log T terms)
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for the regret of any algorithm that makes persuasive
recommendations. In addition to the characterization
of Gap and the custom persuasion instance from Pro-
positions 2 and 3, the proofs of these theorems rely on
concentration results for sums of independent random
vectors in Banach spaces.

Our results contribute to the work on online learning
that seeks to evaluate the value of knowing the underly-
ing distributional parameters in settings with repeated
interactions (Kleinberg and Leighton 2003). In particular,
our results fully characterize the sender’s value of know-
ing the state distribution for repeated persuasion. Our
well-motivated approach to relax the strong assumption
of complete distributional knowledge in the standard
persuasion setting is also aligned with the prior-
independent mechanism design literature (Chawla et al.
2013, Dhangwatnotai et al. 2015).

1.4. Literature Survey

Our paper contributes to the burgeoning literature on
Bayesian persuasion and information design in eco-
nomics, operations research, and computer science. We
refer readers to Kamenica and Gentzkow (2011) and
Bergemann and Morris (2019), as well as Candogan
(2020), for a general overview of the recent develop-
ments and Dughmi (2017) for a survey from algorith-
mic perspective.

1.4.1. Online Learning and Mechanism Design. Our
work subscribes to the recent line of work that studies
the interplay of learning and mechanism design in
incomplete-information settings, in the absence of com-
mon knowledge on the prior. We briefly discuss the
ones closely related to our work.

Castiglioni et al. (2020) focus on persuasion setting
with a commonly known prior distribution of the
state, but unknown receiver types chosen adversarially
from a finite set. They show that effective learning, in
this case, is computationally intractable, but does
admit O(VT) regret learning algorithm, after relaxing
the computability constraint. Our model complements
theirs by focusing on known receiver types, but un-
known state distributions, in a stochastic setup. More-
over, we achieve a similar (and tight) regret bound
through a computationally efficient algorithm. Also
relevant to us is the recent line of work on Bayesian
exploration (Kremer et al. 2014; Mansour et al. 2015,
2016), which is also motivated by online recommenda-
tion systems. In contrast to our setting, these models
assume that the prior is commonly known, but the
realized state is unobservable and, thus, needs to be
learned during the repeated interactions.

Dispensing with the common prior itself, Camara
et al. (2020) study an adversarial online learning model,
where both a mechanism designer and the agent learn
about the states over time. The agent is long-lived and

is assumed to minimize her counterfactual (internal)
regret in response to the mechanism designer’s policy,
which is assumed to be nonresponsive to the agent’s
actions. The authors use a reinforcement learning
approach to mechanism design and characterize the
policy regret of the mechanism designer, taking into
account the agents’ responses, relative to the best-in-
hindsight fixed mechanism. Similar to our work, the
regret bounds require the characterization of a “cost
of robustness” of the underlying design problem.
Although related, the receivers in our model are short-
lived and myopic. Furthermore, our model is stochas-
tic, rather than adversarial, and, thus, a prior exists
in our model. More broadly, our model is similar in
spirit to the prior-independent mechanism design lit-
erature (Chawla et al. 2013, Dhangwatnotai et al.
2015), though our setup is different. Moreover, our
algorithm is measured by the regret, whereas approxi-
mation ratios are often adopted for prior-independent
mechanism design.

Recent works by Hahn et al. (2020, 2022) study infor-
mation design in online optimization problems, such as
the secretary problem (Hahn et al. 2022) and the prophet
inequalities (Hahn et al. 2020), and propose constant-
approximation persuasive schemes. These online optimi-
zation problems often take the adversarial approach,
which is different from our stochastic setup and learning-
focused tasks. Therefore, our results are not comparable.

1.4.2. Robust Persuasion. The algorithm we propose
relies crucially on robust persuasion due to the igno-
rance of the prior, and, as a part of establishing the
regret bounds for the algorithm, we quantify the sen-
der’s cost of robustness. Kosterina (2022) studies a per-
suasion setting in the absence of the common prior
assumption. In particular, the sender has a known
prior, whereas only the set in which the receiver’s prior
lies is known to the sender. Furthermore, the sender
evaluates the expected utility under each signaling
mechanism with respect to the worst-case prior of the
receiver. Similarly, Hu and Weng (2021) study the
problem of the sender persuading a privately informed
receiver, where the sender seeks to maximize her
expected payoff under the worst-case information of
the receiver. Finally, Dworczak and Pavan (2020) study
a related setting and propose a lexicographic solution
concept, where the sender first identifies the signal-
ing mechanisms that maximize her worst-case payoff
and then, among them, chooses the one that maximizes
the expected utility under her conjectured prior. In con-
trast to these works, our model focuses on a setting
with a common, but unknown, prior and where the
receiver has no private information. Instead, our notion
of robustness is with respect to this unknown (com-
mon) prior.
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1.4.3. Safe Online Learning. Our work also relates to
safe online learning. The work by Moradipari et al.
(2021) is the most relevant to our work. They study a
safe online learning problem, where the linear reward
and a single linear constraint depend on different
unknown parameters. The learner has access to both
the reward and the side information about the safety
set. In this setting, they propose an algorithm based
on linear Thompson Sampling and achieve the regret

O(1/Tlog’ T). The key difference is that their analy-
sis relies on the assumption that a known safe action is
an interior point of the safety set for all possible values
of the unknown parameter. Under our regularity con-
ditions, it is true that for every distribution, there
exists a signaling mechanism for which all the persua-
siveness constraints hold strictly (that is, the order of
the quantifiers from above is interchanged). However,
it is unclear whether this weaker assumption would
be sufficient for their setting.

Amani et al. (2019) study a linear stochastic multi-
armed bandit problem, where the linear reward func-
tion and a single linear safety constraint depend on an
unknown parameter. Their main algorithm and its
analysis depend on knowing (a lower bound on) the
safety gap—that is, the slack in the safety constraint for
the optimal solution under the true parameter. When
the safety gap is known and positive (i.e., the constraint
is inactive), they prove a regret of O(log TVT). On the
other hand, if the safety gap is known to be zero, they
only achieve a regret of O(T??). They provide a sepa-
rate algorithm for the case of an unknown safety gap
and state a regret bound of O(T?/%). In our setting, there
are multiple persuasiveness constraints, and many of
these would be active for the true distribution in nontri-
vial settings. Thus, even if their work can be extended
to multiple constraints, it may only guarantee O(T%/?)
regret bound.

Usmanova et al. (2019) seek to minimize a smooth
convex function over a set of uncertain linear con-
straints, where both the coefficients and constant para-
meters are unknown. Although our problem is a specific
case of theirs, our model does not meet their central
assumption of being able to evaluate the constraints at
any point within a small neighborhood of the feasible
set.

Recent works by Pacchiano et al. (2021), Khezeli and
Bitar (2019), and Moradipari et al. (2020, 2021) study a
similar safe learning problem in different contexts. Pac-
chiano et al. (2021) require that, at each time, the chosen
action has an expected cost below a certain threshold.
Khezeli and Bitar (2019) and Moradipari et al. (2020)
study safe learning, where, in addition to maximizing
the expected reward, one requires the reward to be
above a threshold with high probability. In these set-
tings, the objective and the constraint are aligned. Our

setup is different because the sender’s and the recei-
vers’ preferences, corresponding, respectively, to the
objective and constraints, need not be aligned with
each other. Most importantly, all these works impose a
single constraint at each round, whereas our persua-
siveness condition requires multiple constraints at each
round.

1.4.4. Online Linear/Convex Optimization. Because the
persuasion problem can be posed as a linear program,
our work also relates to the online convex optimization
problem. Mostly, the focus here is on adversarial set-
ting, where the loss function (objective) is adversarially
chosen and revealed at the end of each time period.
Some papers (Mahdavi et al. 2013, Cao et al. 2019) focus
on the stochastic setting, but either study an uncon-
strained problem (Cao et al. 2019) or study a batch algo-
rithm rather than an online algorithm (Mahdavi et al.
2013). Focusing on the constraints, and using the termi-
nology of Kim and Lee (2023), these works typically
consider either a long-term constraint formulation (Mah-
davi et al. 2011, Neely and Yu 2017, Yu et al. 2017, Cao
and Liu 2018, Yi et al. 2021, Kim and Lee 2023) or con-
sider a cumulative constraint formulation (Yuan and
Lamperski 2018, Yi et al. 2023, Guo et al. 2024). The
long-term constraint formulation requires feasibility, on
average, in the long run. Such constraints are reason-
able in applications where the constraints are on aggre-
gate quantities, such as budgets in online advertising
(Liakopoulos et al. 2019), covering constraints in sensor
networks, capacity constraints in online routing (Agra-
wal and Devanur 2014), etc. However, this type of con-
straint is not reasonable in our setting, as it would
permit the sender to make poor recommendations in
some rounds, as long as it can be compensated by good
recommendations in other rounds. In contrast, the
cumulative constraint formulation focuses on bounding
the sum of the positive parts of the constraints (which
require some quantity to be nonpositive). This formula-
tion is equivalent to our formulation if the cumulative
constraint can be made zero. However, most previous
work allows for some constraint violation and seeks to
bound the order of the violations. In the presence of
such violations, our formulation is stronger.

Finally, by characterizing the persuasion problem as
a Stackelberg game between the sender’s choice of a
signaling mechanism and the receiver’s subsequent
choice of an action, our work is related to the broader
work on the characterization of regret in repeated
Stackelberg settings (Balcan et al. 2015, Dong et al. 2018,
Chen et al. 2020).

2. Model

Consider a persuasion setting with a single long-run
sender persuading a stream of homogeneous receivers
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who arrive sequentially over a time horizon of length
T. Ateach time t € [T] =40, ---,T — 1}, a state w; € Q is
drawn independently and identically from a state dis-
tribution u* € A(Q). (Here, for any finite set X, A(X)
denotes the set of all probability distributions over X.)
We focus on the setting where Q is a known finite set;
however, the distribution u* is unknown to both the
sender and the receivers. To capture the sender’s ini-
tial knowledge (before time =0) about the distribu-
tion p*, we assume that the sender knows that u* lies
in the set By € A(Q).

Ateach time f € [T], the sender observes the realized
state w; and shares with the arriving receiver an action
recommendation a; € A (chosen according to a signaling
algorithm, as described below), where A is a finite set
of actions available to the receivers. The receiver then
chooses an action 4; € A (not necessarily equal to a;).
This results in the receiver obtaining a utility u(wy,d;)
and the sender obtaining a utility v(wy,4;). Without
loss of generality, we assume that v(w,a) € [0,1] for
all weQ and ae€A. Further, to avoid trivialities,
we assume [Q| >2 and |A| >2. We refer to the tuple
Z=(Q,AuuB)withu:QxA—>Randv:QXA—
[0,1] as an instance of our problem.

Before we proceed, we make a few remarks on the
persuasion instance. First, the preceding description
does not specify a model of the receivers’ actions d;. As
we discuss in Section 2.2, this issue is intertwined with
the persuasiveness constraints that we impose on the sen-
der’s signaling algorithm, and, hence, we postpone the
discussion until then. Second, and relatedly, although
we have assumed that that sender shares information
in the form of action recommendations, under the per-
suasiveness constraints that we consider, it can be
shown that this is without loss of generality. Third,
although our definition of an instance assumes that the
receivers are homogeneous, it can be extended to allow
for heterogeneity of receivers’ utility; our results con-
tinue to apply in the setting where the receivers’ types
are observable to the sender. Finally, we assume that
the sender knows the receivers’ utility. This is justified
in the context of our applications of interest—namely,
online platforms, where, given the scale, the platform
may have good estimates about user utility from exten-
sive user-level data.

Informally, given a persuasion instance 7, the sender’s
goal is to systematically make action recommendations
such that her long-run total utility is maximized. We
now describe the formal algorithmic aspects of the sen-
der’s goal.

As each time t, the sender chooses an action recom-
mendation a; based on the past state realizations, the
past action recommendations, and the past actions
chosen by the receivers. To separate the historical
information from that about the present, we define the
history h; at the beginning of time t as follows: h; =

Ur<{(T, w¢,a;,d;)} (with hy=0) and note that the
sender observes (h;, w;) prior to making the recom-
mendation a4; at time t. We also note that, because the
receivers do not know the state distribution y*, neither
the past actions recommended by the sender nor the
past actions chosen by the receivers carry any infor-
mation about " beyond that contained in the state rea-
lizations. Thus, the part of the history that is relevant
to the sender consists of only the state realizations
until time .

A signaling algorithm a = a(Z) for the sender specifies,
at each time t € [T] and after any history /; and state wy,
a probability distribution 6*(h, @, -) € A(A) over the set
of actions. (We sometimes drop the superscript a when
it is clear from the context.) Specifically, once the state
w; is realized, the sender draws the action recommen-
dation a; independently, according to the distribution
o(hy, wy, ) € A(A). Thus, the probability that the sender
recommends an action a € A is given by o(h;, wy,a).
Implicitly, the notion of a signaling algorithm reflects
the assumption that the sender commits to a mechanism
for sending recommendations.

Given an instance 7 and a signaling algorithm a, the
sender’s total (realized) utility is given by

VI(G, T) & Z U(wt,ﬁ[).

te[T]

Thus, to evaluate the performance of a signaling algo-
rithm, we need a model of the receivers’ response subse-
quent to receiving the action recommendations. Rather
than directly specifying such a response model, we
instead model conditions on the signaling algorithm a,
which result in obedient responses from the receivers—
that is, which lead each receiver to choose the action
recommended: 4; = a;. Any such condition on the signal-
ing algorithm a implies a model of receivers’ response,
and the converse can be assumed without loss of gener-
ality by invoking incentive compatibility and the revela-
tion principle. Henceforth, we refer to such a condition
as a persuasiveness criterion.

To motivate these persuasiveness criteria on the sig-
naling algorithms, we first discuss the setting where the
sender and the receivers commonly know the state dis-
tributions. This setting will also serve as a benchmark to
compare the performance of any signaling algorithm
satisfying certain persuasiveness requirements.

2.1. Benchmark: Known State Distribution

Consider the setting where the sender and the receivers
commonly know the state distribution u* = u € A(Q).
In this setting, each receiver responds by choosing the
action that maximizes her expected utility under the
posterior belief about the state, given the action re-
commendation. In particular, the sender’s problem
decouples across time periods, and standard results
(Kamenica and Gentzkow 2011, Bergemann and Morris
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2019, Dughmi and Xu 2021) imply that the sender’s
problem at each period can be formulated as a linear
program.

To elaborate, fix a time t € [T] and history h;, and
consider the persuasion problem between the sender
and the arriving receiver. Recall that o(h;, w,a) denotes
the probability with which the sender recommends
action a,=a if the realized state is w; = w. We refer to
o[h] £ (o(hi,w,a) : w € Q,a € A) as the signaling mecha-
nism at time t and drop the dependence on /; if the con-
text is clear. Finally, let S ={0: o(w, ") € A(A)for each
w € Q} denote the set of all signaling mechanisms.

A signaling mechanism o € S is persuasive if, condi-
tioned on receiving an action recommendation a € A4,
it is indeed optimal for the receiver to choose action a.
Let a€ A be an action with > _qu(w)o(w,a)>0.
Upon receiving the recommendation 4, the receiver’s
posterior belief that the realized state is w is given by
Bayes’ ruleas p(w)o(w, ) /(S cou(@”)o(w’, a)), and, hence,

Y et (ZHM&) u(w,a’) denotes her expected util-

Sat(@ o’ a)

ity of choosing action 4’ € A conditioned on receiving
the recommendation a. For the receiver’s expected util-
ity to be maximized from choosing action a, we need
Y weot(w)o(w,a)(u(w,a) —u(w,a’)) >0 for all a’€A.
(Such an inequality is referred to as an obedience con-
straint on o at distribution 1.) Because the inequality is
trivially satisfied if ), u(w)o(w,a) = 0, the set of per-
suasive mechanisms Pers(u) is given by

Pers(u) £ {o €8> u(w)o(w,a)(u(w,a)

weQ)

—u(w,a’)) >0, foralla,a’ € A}. (1)

We note that the set Pers(u) is a convex polytope
for all p € A(Q). Furthermore, the set Pers(u) is non-
empty because it always contains the “full-informa-
tion mechanism,” which recommends the receiver’s
optimal action at each state.

Given a persuasive signaling mechanism ¢ € Pers(u),
the receiver is incentivized to choose the recommended
action. Assuming that ties are broken in favor of the
recommended action, the sender’s expected utility is
given by

V(g,0) 2 ) pw)o(w,a)o(w,a).
weQ) aeA
Because V(u,0) is linear in o, the problem of selecting
an optimal persuasive signaling mechanism is given by
the following linear program:

OPTz(u) £ max V(u,0), subject to o € Pers(u). (2)

Finally, letting 0* denote an optimal signaling mechanism
to the preceding optimization problem, the algorithm a

that sets 0°(hy, wy, a) = 0*(wy, a) after any history h; opti-
mizes the sender’s total expected utility when the state
distribution is known, with total expected utility given
by T-OPTz(u).

2.2. Persuasiveness Criterion: Unknown
Distribution

We now return to the setting with unknown state dis-
tribution and discuss refined persuasiveness conditions
on the signaling algorithm under which the receivers’
response can be reasonably assumed to equal the rec-
ommendation. In particular, we propose and motivate
a condition on the signaling algorithm—namely, the
robust persuasiveness criterion, as described in Definition
2—and provide detailed justification supporting the
notion.

We begin with the simplest criterion inspired from
the known distribution setting. As the sender observes
the past state realizations, the empirical distribution y,,
with y,(w) & 13" H{w, = w}, provides an estimate for
the unknown distribution p*. A natural first idea, which
we call the naive criterion, simply requires the algorithm
to act as if this estimate is exact:

Definition 1. A signaling algorithm a satisfies the naive
criterion if each ¢°[h;] is persuasive under the empiri-
cal distribution at time t—that is, o®[h;] € Pers(y,) for
all te[T].

The naive criterion can be motivated through a par-
ticular behavioral model of the receivers involving
social learning. Specifically, consider a platform set-
ting, where each receiver (i.e., a user) arrives with an
uninformative Haldane prior (Haldane 1948, Villegas
1977, Jaynes 2003) over the state distribution p* and
observes all the past state realizations. The latter holds
if we assume there is social learning among the recei-
vers, where each receiver leaves a feedback that is
read by all subsequent receivers. Then, at each time ¢,
the corresponding receiver’s belief about the state
would be exactly the empirical distribution y;, and,
thus, the receiver would optimally accept the recom-
mendation made by the platform if it uses a signaling
algorithm satisfying the naive criterion.

However, from a practical perspective, the preceding
model makes very restrictive assumptions. First, in a
platform setting, the users’ prior belief over u*, if such
a prior exists at all, is unlikely to be known to the plat-
form and need not be same across different users
(let alone be the uninformative Haldane prior). Second,
even with social learning, the users typically would
not observe all the past state realizations (or even just
the empirical distribution); this is because not all users
leave reviews in a platform, and a user would typically
read only a subset of available reviews. Thus, under a
realistic model of social learning, the receivers’ belief
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about the state would be, in general, different from the
empirical distribution.

In addition to relying on restrictive behavioral
assumptions, there are other deficiencies with the
naive criterion that render it ill-suited as a criterion
for ensuring persuasiveness. First, the naive criterion
is especially weak in the initial stages of persuasion
due to the lack of sufficient data; at these initial
stages, the constraint based on the empirical distribu-
tion may not constrain the sender’s recommenda-
tions. For instance, if the empirical distribution at the
beginning happens to be skewed and concentrates on
very few states, then the naive criterion imposes no
restriction on the action recommendations at any pre-
viously unseen state because it has zero empirical
probability. Second, an algorithm satisfying the naive
criterion may still make inconsistent recommendations
across time. That is, for such an algorithm, there may
not exist a single belief u for which the recommenda-
tions as a whole are persuasive—that is, o"[h] €
Pers(u) for all t. Any such belief y, if it exists, pro-
vides a justification for the signaling algorithm, and
the larger the set of such beliefs, the stronger the justi-
fication. For instance, the “full-information” signaling
algorithm Full, which always recommends the recei-
vers’ best action a; € arg max,_,u(wy,a) after any his-
tory h;, has the strongest justification because all
beliefs 1 € A(Q) satisfy 05"[;] € Pers(u). On the other
hand, one can easily construct examples where an
algorithm-satisfying naive criterion fails to have even
a single belief justifying it, due to inconsistencies in
recommendations across different periods.

Summarizing, the primary reason for the weaknesses
of the naive criterion is its reliance on the point estimate
7t in the place of receivers’ inherently uncertain beliefs
about the state. Even for basic inferential tasks, such
point estimates are seldom sufficient. Without explicitly
incorporating this uncertainty into its conditions, an
algorithm would provide no confidence that the recei-
vers will accept and act according to the recommenda-
tions. To remedy these weaknesses, we propose the
following criterion that embraces the notion of robust-
ness in its conditions.

Definition 2. Given >0, a signaling algorithm a is
B-robustly persuasive, if there exists (history-dependent)
sets C; C By for all time t, such that

1. Robustness: The signaling mechanism o°[};] is
persuasive for all beliefs in the set C;: for each t € [T],
we have

0[] € Pers(Cy) £ Nyec,Pers(u).

2. Coverage: The sets C; all contain the true state dis-
tribution y* with high probability:

Py*(nte[T]Ct > [J*) >1-p.

(Here, P, represents the probability with respect to the
(unknown) distribution y* and any independent ran-
domization in the algorithm.)

The first condition in the criterion enforces robust-
ness, requiring that the signaling mechanism at time ¢,
o°[h], is persuasive with respect to all beliefs in the
set C;. These sets implicitly capture the uncertainties
regarding the receivers’ beliefs, and, by depending on
the history, reflect any learning occurring over time.
(We note that the set Pers(C;) is indeed nonempty,
as it contains the full-information mechanism.) The
second condition in the criterion requires these sets to
have good coverage properties—that is, these sets
contain the state distribution p* with high probability.

To further motivate the criterion, we delve a bit
into the perspective of social learning in a platform
setting mentioned earlier. Here, although it is a strong
assumption to require the receivers to know the exact
empirical distribution, it is fair to assume that the
receivers observe (summary statistics about) a size-
able proportion of past state realization. In particular,
many common empirical principles, such as the “90-
9-1 rule” (van Mierlo 2014, Antelmi et al. 2019), posit
that a constant fraction of the users leave feedback in
the platform. In this context, a receiver who starts
with some sufficiently diffuse prior over y*, and who
learns from past (incomplete) feedback, will have a
belief about the state that is close enough to the
empirical distribution. Thus, a signaling algorithm
that makes recommendations that are persuasive for
all beliefs close to the empirical distribution would
ensure that such a receiver would find it optimal to
follow the recommended action. Our proposed crite-
rion, by using a robustness approach, abstracts away
from the details of such an explicit model and cap-
tures the receivers’ response through the uncertainty
sets C;.

Observe that as long as the sets C; contain the
empirical distribution y;, the preceding criterion is
stronger than the naive criterion. More importantly,
in addition to capturing more realistic models of
social learning, the coverage and the robustness con-
ditions together also overcome the other inadequacies
of the naive criterion that we discussed above. To see
this, note that, at the initial stages t when the data are
insufficient, good coverage requires the set C; to be
large, and, thus, the action recommendations are
severely constrained (even at the states that have not
been realized), unlike the case with the naive crite-
rion. Similarly, the robustness ensures that any belief
€ Niepr1Cr provides a justification for the signaling
algorithm, thus precluding any inconsistencies across
time. In particular, with probability at least 1 — 5, the
true state distribution p* justifies all the recommenda-
tions made by a p-robustly persuasive signaling algo-
rithm: P (0°[ ;] € Pers(u*) for all t € [T]) > 1 — .
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The parameter f8 in the criterion plays the same role
as that played by significance level in inference. In
particular, low values of  correspond to high level of
confidence in the uncertainty sets C;. Finally, it is easy
to see that f-robustly persuasive algorithms exist for
any >0; in fact, choosing the sets C; =B, for all
t € [T], it follows that the algorithm Full is O-robustly
persuasive.

Given the preceding discussion, we hereafter assume
that for any signaling algorithm a that is f-robustly per-
suasive for some (small) > 0, the receivers’ response
d¢ equals the action recommendation 4; at each time ¢.
Thus, for any such algorithm a, the sender’s total utility
reduces to Vz(a,T) = Ztemv(what).

2.3. Sender’s Learning Problem

Finally, we describe the evaluation metric for the per-
formance of any algorithm satisfying the preceding
persuasiveness criterion by comparing the sender’s
utility Vz(a, T) against the known-distribution bench-
mark given by T-OPT(u*). Specifically, we measure
the sender’s regret from using a S-robustly persuasive
algorithm a by

Reg; (o, T, i) £ T-OPT1 (i) — Vi (o, T)
=T-OPTz(u") — Z v(ws, ). (3)

te[T]

We are now ready to formalize the sender’s learning
problem. Begin by noticing that one must require the
signaling algorithm a to be f-robustly persuasive for
some small g in order for the second equality above to
hold—that is, for the receivers’ responses to match the
recommendations. At the same time, O-robustly per-
suasiveness is an excessive requirement, with no hope
of resulting in a sublinear regret. (In Appendix A2 of
the e-companion, we present an example instance
where any O-robustly persuasive algorithm necessar-
ily obtains a linear regret.) Thus, the central problem
is to design, for any given instance Z, an algorithm a
that is f-robustly persuasive for small (vanishing) 8
and simultaneously achieves sublinear regret with
high probability.

3. The Robustness Against

Ignorance Algorithm
Having described the learning problem faced by the
sender, in this section, we present a signaling algo-
rithm that we call the Robustness Against Ignorance
(Rai) algorithm. Here, we show that the Rai algorithm
is p-robustly persuasive with = o0(1), relegating the
regret analysis to Section 5.

Before describing our proposed algorithm, we briefly
motivate our design approach. Observe that if the state
distribution u* is known, then the sender’s problem is
given by the Linear Program (2), and, thus, the optimal

signaling mechanism can be efficiently computed.
Thus, a natural learning approach is to solve at each
time ¢t the estimated version of the LP (2), where the
unknown distribution y* is replaced by the empirical
distribution y;, and use the corresponding optimal sig-
naling mechanism for that time period. However, this
alone is not sufficient to obtain an algorithm that is
p-robustly persuasive, which requires the signaling
mechanisms to be persuasive for all distributions in
some small neighborhood of y*. To elaborate, simply
solving the estimated LP may yield solutions that are
only e-feasible for distributions close to the empirical
distribution—that is, some of the persuasiveness con-
straints for such nearby distributions may get violated.
In fact, optimizing the estimated LP may result in a
mechanism that is not persuasive for any other distri-
bution close to the empirical distribution. Thus, an
immediate challenge is in determining how to use the
empirical distribution estimate to find well-performing
signaling mechanisms that are persuasive (with high
probability) for all distributions in a small neighbor-
hood around the unknown state distribution. Part of
this challenge is to carefully choose the corresponding
neighborhoods without significantly sacrificing the per-
formance of the mechanism.

The algorithm we propose is adaptive. An alternative
is to adopt an “explore-then-commit” design (Latti-
more and Szepesvari 2020), where the algorithm uses
the state realizations in the first ¢ periods (for some
carefully chosen t) to estimate the unknown distribu-
tion and subsequently commits to a single signaling
mechanism for the remaining time periods. However,
it is unlikely that such a algorithmic design can achieve
strong regret guarantees in our setting because it is
known that such an approach yields the suboptimal
O(T??) regret in simple multiarmed bandit problems
(Lattimore and Szepesvari 2020). This observation illus-
trates the need for adaptivity to obtain order-wise opti-
mal regret.

To meet these challenges, our algorithm Rai pro-
ceeds by adaptively maintaining, at each time ¢t >0, a
set B; of candidates for the (unknown) distribution u*.
This set is a (closed) ¢1-ball of radius €, at the empirical
distribution ;. It then selects a signaling mechanism
that maximizes the sender expected utility with respect
to the empirical estimate y; among mechanisms that
are persuasive for all distributions p € B;. Finally, it
makes an action recommendation 4, using this signal-
ing mechanism, given the state realization w;. The Rai
algorithm is formally described in Algorithm 1. Here,
we use the notation Pers(B) to denote the set of signal-
ing mechanisms that are simultaneously persuasive
under all distributions u in the set B C A(Q): Pers(B) =
NuesPers(u). We remark that for any nonempty set
BC A(Q), the set Pers(B) is convex because it is an
intersection of convex sets Pers(u) and is nonempty
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because it contains the full-information signaling
mechanism. Furthermore, we let By (u, €) 2 {u’ € A(Q) :
l" — pll; < e} denote the (closed) £;1-ball of radius € > 0
atu € A(Q).

Algorithm 1 (The Robustness Against Ignorance (Rai)
Algorithm)
Input: Instance Z, Time horizon T
Parameters: y, € By, {e; >0:t € [T]}
Output: a; € A for each t € [T]
fort=0toT—1do
Choose any o[h] € arg max,{V(y,,0): 0 € Pers
(B}
Recommend a; =a € A with probability o(wy, a;
hy);
Update y,,,(0) « 53 _Hw.=w} for each
we Q)
Set Bt+1 — Bl(yH.l/ €t+1);
end

From the intuitive description, it follows that the sets
B; = Bi(y,,€;) naturally play the role of the covering
sets C; in the definition of S-robustly persuasiveness.
Specifically, the parameters {e;:t€[T]} control the
degree of persuasiveness of the algorithm: larger values
of €; imply that the algorithm is S-robustly persuasive
for smaller values of . (In particular, if all €, are larger
than two, the algorithm reduces to the full-information
algorithm Full and is O-robustly persuasive.) Unsur-
prisingly, larger values of €; also lead to larger regret,
and, hence, the sender must choose €, to optimally
trade off the persuasiveness of the algorithm against its
regret.

Our first main result characterizes Rai’s persuasive-
ness for a particular choice of parameter values, which
we show in Section 5 to be regret-optimal.

Theorem 1. For each te|[T], let etzmin{ ‘—(3|(1+
/P log T),Z} with ® > 0. Then, the Rai algorithm is

B-robustly persuasive with

VO
ﬁ = sup PH*(me[T]BtEB‘u*) < T1,31560.
u€By

In particular, for ® > 20, we have B < T~%7.

The proof of the persuasiveness of Rai follows by
showing that the empirical distribution y; concentrates
around the unknown state distribution y* with high
probability. Because, after any history #,, the signaling
mechanism o[/;] chosen by the algorithm is persuasive
for all distributions in an ¢;-ball around y;, we deduce
that it is persuasive under u* as well. To show the con-
centration result, we use a concentration inequality for
independent random vectors in a Banach space (Fou-
cart and Rauhut 2013); the full proof is provided in
Appendix B of the e-companion.

We observe that to get strong persuasiveness guaran-
tees, the choice of ¢, in the preceding theorem requires
the knowledge of the time horizon T. However, apply-
ing the standard doubling tricks (Besson and Kauf-
mann 2018), one can convert our algorithm to an
anytime version that has the same regret upper bound
guarantee, at the cost of a weakened persuasiveness
guarantee, where the persuasiveness f3 is weakened to
a constant arbitrarily close to zero.

Next, note that the Rai algorithm requires finding at
each time t a signaling mechanism that is persuasive
for all distributions in a neighborhood around the
empirical distribution. The following result shows that
this is a simple computational task requiring a polyno-
mial running time. Thus, the result establishes the Rai
algorithm’s computational efficiency.

Proposition 1. The Rai algorithm requires solving at each
time a linear program with size polynomial in |Q| and
Al

Proof. To see the efficiency of the Rai algorithm, note
that at each time ¢, the algorithm has to solve the opti-
mization problem max,{V(y,,0):0€Pers(5;)}. Be-
cause B; =Bi(y, €;) is an {;-ball of radius €, it is a
convex polyhedron with at most |Q] - (|QQ| —1) verti-
ces. (These vertices are all of the form y, +3 (e, — €ur),
where ¢, is the belief that puts all its weight on w.) By
the linearity of the obedience constraints and the con-
vexity of By, it follows that Pers(B;) is obtained by
imposing the obedience constraints at distributions
corresponding to each of these vertices. Because there
are O(|Q| + |A|?) obedience constraints for each dis-
tribution, we obtain that the optimization problem is
a polynomially sized linear program and, hence, can
be solved efficiently. O

Having addressed the persuasiveness and the com-
putational efficiency of the Rai algorithm, we devote
the rest of the paper to analyzing its regret. To do this,
we first take a digression to define (and bound) the cost
of robust persuasion in static persuasion problems.
Armed with this result, we then characterize the algo-
rithm’s regret in Section 5.

4. Digression: Cost of Robust Persuasion
In this section, we consider the static persuasion prob-
lem with known state distribution (discussed in Section
2.1) and study the loss in the sender’s expected utility
from requiring the signaling mechanism to be persua-
sive for all distributions in a neighborhood around the
state distribution. To measure this loss, we first define
the notion of the cost of robust persuasion, a quantity that
depends on the neighborhood, and provide upper and
lower bounds under some minor regularity conditions.

Fix a persuasion instance Z. In the static setting with
known state distribution 1, the sender’s optimal expected
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payoff is given by OPTz () = sup, cpers(,) V (1, 0)- Next,
for any set of distributions B C By, the set of signaling
mechanisms that are simultaneously persuasive for all
distributions in B is given by Pers(B) = Ny esPers(u’).
Hence, the sender’s optimal expected utility among all
such mechanisms is given by sup,pe,s5 V (14, 0)- Thus,
we define the cost of robust persuasion as

Gap(u,B) 2 sup V(u,0)— sup V(y,o0). @)
oePers(u) oePers(B)

Thus, Gap(u, B) captures the difference in the sender’s
expected utility (under u) between using the optimal
persuasive signaling mechanism for the distribution u
and using the optimal signaling mechanism that is per-
suasive for all distributions p’ € B.

For general persuasion instances, one can show that
the cost of robust persuasion can be severe: in Appen-
dix Al of the e-companion, we present a persuasion
instance and a distribution y such that for any € > 0, the
cost of being robustly persuasive for the set B1(u,€) of
distributions satisfies Gap(u, B1(y, €)) = 1. The instance
we present there is pathological, with an action that is
optimal for the receiver at a single unique distribution.
To obtain meaningful insights on the cost of robust per-
suasion, we seek to exclude such instances by imposing
some regularity condition on the instances.

To state these regularity conditions, we need some
notation. For each action a € A, let P, denote the set of
state distributions for which action a is optimal for a
receiver:

Pa & {ueANQ): Ey[u(w,a)]
> Ey[u(w,a’)], foralla’ € A}.

It is without loss of generality to assume that for each
a € A, the set P, is nonempty. (This is because a receiver
can never be persuaded to play an action a€ A for
which P, is empty, and, hence, such an action can be
dropped from A.)

We consider the following regularity conditions on
the persuasion instances:

Assumption 1 (Regularity Conditions). The instance 7
satisfies the following conditions:

1. There exists d >0 such that for each a € A, the set P,
contains an €1-ball of size d. Let D>0 denote the largest
value of d for which the preceding is true, and let 1, € P, be
such that By(n,, D) C P,.

2. There exists a po > 0 such that for all u € By, we have
min,, ((w) > po > 0.

The first condition requires that each such set P, has
a nonempty relative interior; this excludes the patho-
logical instances like that in the e-companion (Appen-
dix Al), for which there exists an action a with P, a
singleton. We note that this condition is analogous to
the Slater condition in convex optimization, imposing

nonempty interior on the feasibility region to obtain
strong duality. The second condition is technical and
is made primarily to ensure the potency of the first
condition: without it, the sets {P,},c.4 may satisfy the
first condition in A(L2), while failing to satisfy it rela-
tive to the subset A({w : u(w) >0}) for some u € By.
Taken together, these regularity conditions serve to
avoid pathologies, and, henceforth, we restrict our
attention only to those instances satisfying these regu-
larity conditions.

Under the regularity conditions, our first result shows
that the cost of robust persuasion Gap(u, B) is at most
linear in the size of the set 3.

Proposition 2. For any instance that satisfies the reqular-
ity conditions, for all y € By and for all € >0, we have

Gap(u, Bi(w,€)) < (5)e.

The proof of the upper bound is obtained through an
explicit construction of a signaling mechanism & that is
persuasive for all distributions in the set B1(u, €) and by
showing that the sender’s expected payoff under ¢ is
close to that under the optimal signaling mechanism in
Pers(u). For this construction, we first use the geometry
of the instance to split the distribution u into a convex
combination of distributions that either fully reveal the
state or are well-situated in the interior of the sets P,. (It
is here that we make use of the two regularity assump-
tions.) We then construct the mechanism & to induce,
under prior y, the aforementioned beliefs as posteriors.
Finally, we show that for any prior p’ close enough to
U, the posteriors induced by ¢ are close to the posteriors
induced under prior p, implying that these posteriors
lie within the sets P,. This proves the persuasiveness of
¢ for all distributions p1” close to p1. We provide the com-
plete proof in Appendix C of the e-companion.

Next, we provide a (worst-case) lower bound on
Gap. We accomplish this by carefully constructing a
persuasion instance 7, where being robustly persua-
sive leads to a substantial loss to the sender. The
instance Z, has three states, Q = {wy, w1, w>}, and five
actions, A = {ag,a1,a,,a3,a4}, for the receiver. At a high
level, the receiver’s preference can be illustrated as in
Figure 1(a), which depicts the receiver’s optimal action
for any belief in the simplex. The regions P; in the
figure correspond to the set of beliefs that induce action
a; € A as the receiver’s best response. The instance is
crafted so that the sets P; and P, that induce actions 4,
and a,, respectively, are symmetric and extremely nar-
row with the width controlled by an ¢;-ball of radius D
contained within, as depicted in Figure 1(b). (Because
|QQ| =3, the {1-ball here is a hexagon.) For complete-
ness, the receiver’s utility is listed explicitly in Table 1.
The sender seeks to persuade the receiver into choosing
one of actions a; and a, (regardless of the state); all other
actions are strictly worse for the sender. Formally, we
set v(w,a) =1 if a € {a1,a,} and 0 otherwise, for all w.
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Figure 1. (Color online) The Persuasion Instance Z

(a)

wo

P3 ! Py

w1 T w2

Notes. (a) Receiver’s preferences. (b) Prior y*.

The sender’s initial knowledge regarding the state dis-
tribution is captured by the set By = {¢ € A(Q) : min,,
{1 > po}, while the distribution of interest is u* = (py,
i 1o corresponding to the midpoint of the tips of
the sets P;, as shown in Figure 1(b). We focus on the set-
ting where the instance parameters D and p, satisfy
Dpy < 1/64. The following proposition shows that in
the instance Z,, it is costly to require the signaling
mechanism to be robustly persuasive for a set of distri-
butions around p*. The result also implies that the
bound on Gap(-) obtained in Proposition 2 is almost
tight, except for a factor of 1/py.

Proposition 3. For the instance Z, we have OPT(u*) = 1.
Furthermore, for all € € (0, D), we have
€
* * —  — >
Gap(# 7 {‘U 7 ‘Lll/ ‘Uz}) = 8Dp0 7
where {1, = u* +5(e1 —e2), [, = u* +5(ex — e1), where the
belief e; puts all its weight on w;.

We defer the rigorous algebraic proof of the lower
bound to Appendix C of the e-companion and present
a brief sketch using a geometric argument here. In the
instance 7, the distribution y* can be written as a con-
vex combination u* = (u, + u,)/2, where u; and u, are
the tips of regions P; and P, respectively (see Figure
1(b)). Thus, by the splitting lemma (Aumann et al.
1995), it follows that the optimal signaling mechanism
sends signals that induce posterior beliefs 1y and ps,
leading to the receiver’s choice of 4; and a,, respec-
tively. Because the sender can always persuade the
receiver to choose one of her preferred actions, we

M1 12

obtain OPT(u*) = 1. On the other hand, for a signaling
mechanism to be robustly persuasive for all distribu-
tions e-close to the distribution u* for sufficiently small
€, the posteriors for the sender’s preferred actions a;, a»
induced by the signaling mechanism have to be shifted
up significantly in the narrow region. Such a large dis-
crepancy ultimately forces the sender to suffer a sub-
stantial loss in the expected payoff.

5. Regret Analysis
We now return to the regret analysis of the online per-
suasion setting. The regret bounds we establish in this
section make critical use of the characterization of the
cost of robust persuasion from the preceding section.
Our main result establishes a upper bound on the
regret of the Rai algorithm in instances satisfying the
regularity conditions. Although py appears in our regret
bound, it is not required by the Rai algorithm for its
operation.

Theorem 2. Suppose the instance T satisfies the reqularity con-

dition. For t€[T], let € = mjn{\/@(l + /@ log T),Z}

with ®© > Q Then, for all u* € By, with probability at least
1—T75%" — T-8%1Q1 the Rai algorithm satisfies

Reg;(Rai, u*, T)
< 2(20+1> (1 +/1Q|T(1 +2,/Dlog T)>‘
<2( 55

0

In particular, the regret is of order O (l% /T log T) with
high probability. ‘

Table 1. Receiver’s Utility in Instance 7, with u(w, ay) Normalized to Zero for All w € Q

State a a az ay
wo 2D? 2D? —2D(1 —po —2D) —2D(1 —po —2D)
w1 (1-2D)(1-D)—po (D+1)2D—-1)+po 2(1 —po—2D)(1-D) —2(1—po—2D)(D+1)

w> (D+1)2D—-1)+po

(1-2D)1-D)—po

—2(1—py—2D)D+1)  2(1—po—2D)(1-D)
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The central step in the proof is the following decom-
position of the regret, established in Lemma EC2 in
Appendix D1 of the e-companion:

Reg;(Rai, ', T) < > Gap(u’, Bi(u, lu* — y,1h)
te[T]

+ Z Gap(y,, Bi(y,, €1))

te[T]

3w =l

te[T]

+ > (B [o(wr, ar) 1] — v(wr, ap)).

te[T]

Observe that on the event {u*€ NyrB;}, we have
l* —y,ll; < €. Thus, on this event, the first two terms
on the right-hand side of the preceding inequality cap-
ture the cost of persuading robustly for all distributions
in an ¢;-ball of radius €; around the distribution p* and
its estimate y;. Moreover, the third term represents the
estimation error between u* and y; Together with
Proposition 2, we thus obtain that the first three terms
are of order } €t = O(/T log T). Finally, the last
term, which captures the randomness in the sender’s
payoff, is also of the same order due to a simple appli-
cation of the Azuma-Hoeffding inequality. The details
are provided in Appendix D1 of the e-companion.

5.1. Lower Bound

In this section, we show that our regret upper bound in
Theorem 2 is essentially tight with respect to the para-
meters D, T (up to a lower order ,/log T factor). We
also show that the inverse polynomial dependence
on po, the smallest probability of states, is necessary,
though the exact order of the dependence on p is left as
an interesting open question.

Theorem 3. For the instance Ty and distribution u* € By
considered in Proposition 3, there exists a Ty > 0 such that
for any T > Tg and any Br-robustly persuasive algorithm a,
the following holds with probability at least 1 — 2B,

VT
Reg,/(a,T,u*)=T-OPT(u*) — v(wy, ap) = ———.
gz ( w) (1) tez[:ﬂ (wy,ar) 32Dpo

We provide a sketch here. First the regret can be split
into two terms:

Regr(a, T, u") = T-OPT(u) — Y V(u',0'[Iu])
te[T]
+ 3V, o)) = > vlws ).

te[T] te[T]

Let £7(u) be the event under which the signaling mech-
anism o°[;] chosen by the algorithm a after any history

hy € Er(u) is persuasive for the distribution . Hence,
on the event &r(u") N Er(;) N Er(i,), the signaling
mechanism ¢%[l;] is persuasive for all three distri-
butions u*, 1r; = u* +5(e1 —e2) and @, = u* +5(e2 —e1).
From Proposition 3, we have that on this event, the first
term, which is the sender’s expected loss, is no less than
T-Gap(u', {1, 1y, i,}). We lower-bound the second
term using the Azuma-Hoeffding inequality. The re-
maining step is to show that the probability of the event
Er(uw) N Er(iry) N Er(ir,) does not vanish as T goes to
infinity, which follows from robust persuasiveness of
the algorithm a and careful choice of €. The details are
provided in Appendix D2 of the e-companion.

6. Conclusion

We studied a repeated Bayesian persuasion problem,
where the distribution of payoff-relevant states is
unknown to the sender. The sender learns this distri-
bution from observing state realizations while making
recommendations to the receiver. We propose the Rai
algorithm, which persuades robustly and achieves
O(y/T log T) regret against the optimal signaling
mechanism under the knowledge of the state distribu-
tion. To match this upper bound, we construct a per-
suasion instance for which no persuasive algorithm
achieves regret better than Q(VT). Taken together, our
work precisely characterizes the value of knowing the
state distribution in repeated persuasion.

Although social learning is a strong motivation for
our robust persuasiveness criterion, there are other moti-
vations as well. For instance, a platform concerned about
its long-run reputation may want to design a recommen-
dation algorithm that guarantees verifiably good-quality
recommendations, not just with respect to currently
available state realization data, but also with respect to
any additional data obtained in the future. An algorithm
satisfying our robust persuasiveness criterion enables
such a platform to meet its goals.

Although in our analysis, we have assumed that the
receiver’s utility is fixed across time periods, our
model and the analysis can be easily extended to
accommodate heterogeneous receivers, as long as the
sender observes the receiver’s type prior to making
the recommendation and the cost of robustness Gap
can be uniformly bounded across different receiver
types. More interesting is the setting where the sender
must persuade a receiver with an unknown type. In
such a setting, assuming that the sender cannot elicit
the receiver’s type prior to making the recommenda-
tion, the sender makes a menu of action recommenda-
tions (one for each receiver type). It can be shown that
the complete information problem in this setting cor-
responds to public persuasion of a group of receivers
with no externality, which is known to be a computa-
tionally hard linear program with exponentially many
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constraints (Dughmi and Xu 2017). Consequently, our
algorithm ceases to be computationally efficient. Nev-
ertheless, our results imply that the algorithm con-
tinues to maintain the O(,/T log T) regret bound.

Our characterization of the cost of robust persuasion
may be of independent interest. For instance, one can
derive the sample complexity bounds for the static per-
suasion problem when the sender only has access to the
samples from the underlying distribution. To obtain a
signaling mechanism that is persuasive with probability
atleast 1 — f and is e-optimal, our characterization yields
a sample complexity of @(%). Note that for
large enough €, one can simply use the full-information
mechanism with no need for any samples.

Our analysis highlights two main technical contri-
butions. One is the characterization of the cost of robust
persuasion for the underlying linear program and using
this characterization to perform a tight regret analysis
for the online learning problem. The former result
heavily uses the specifics of the persuasion problem (for
instance, the use of the splitting lemma to construct a
feasible robust solution), whereas the latter result is
more agnostic to the setting. Given this, we believe our
approach can be extended to other online linear pro-
gramming settings, as long as one can obtain a charac-
terization of the corresponding cost of robustness. Note
that even in our persuasion setting, we had to impose
the regularity conditions to obtain the linear bounds on
the cost of robustness, without which the cost could be
O(1) and the regret would be linear. Whether these reg-
ularity conditions can be generalized to other linear set-
tings is an interesting question for further investigation.
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