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Abstract. Motivated by information sharing in online platforms, we study repeated 
persuasion between a sender and a stream of receivers, where, at each time, the sender 
observes a payoff-relevant state drawn independently and identically from an 
unknown distribution and shares state information with the receivers, who each choose 
an action. The sender seeks to persuade the receivers into taking actions aligned with 
the sender’s preference by selectively sharing state information. However, in contrast 
to the standard models, neither the sender nor the receivers know the distribution, and 
the sender has to persuade while learning the distribution on the fly. We study the sen-
der’s learning problem of making persuasive action recommendations to achieve low 
regret against the optimal persuasion mechanism with the knowledge of the distribu-
tion. To do this, we first propose and motivate a persuasiveness criterion for the 
unknown distribution setting that centers robustness as a requirement in the face of 
uncertainty. Our main result is an algorithm that, with high probability, is robustly 
persuasive and achieves O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T log T
p

) regret, where T is the horizon length. Intuitively, 
at each time, our algorithm maintains a set of candidate distribution and chooses a sig-
naling mechanism that is simultaneously persuasive for all of them. Core to our proof 
is a tight analysis about the cost of robust persuasion, which may be of independent 
interest. We further prove that this regret order is optimal (up to logarithmic terms) by 
showing that no algorithm can achieve regret better than Ω(

ffiffiffi

T
√
).
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1. Introduction
Examples of online platforms recommending content 
or products to their users abound in the online econ-
omy. For instance, online retailers like Amazon or Etsy 
recommend products from third-party sellers to users; 
styling services like Stitch Fix recommend clothing 
designs made by custom brands; and online platforms 
like YouTube or Spotify recommend content or playlist 
generated by creators. There are two intrinsic chal-
lenges in such online recommendations, which we 
address simultaneously in this paper. First, the platform 
making such recommendations often needs to balance 
the dual objectives of being persuasive (i.e., making 
obedient recommendations that will be adopted by the 
users (Bergemann and Morris 2016)), as well as further-
ing the platform’s goals, such as increased sales, fewer 

returns, or more engaged users. Second, the platform 
often faces a large volume of new products/contents/ 
services with a priori unknown quality/reward distri-
butions and, thus, has to learn to make good recommen-
dations. We tackle these two challenges by studying 
learning to persuade on the fly.

1.1. Motivating Applications
To motivate the problem we consider, we now describe 
two concrete examples in the domain of two-sided 
platforms.

Example 1 (Content Recommendations by Online Media 
Platforms). Consider a media platform, like YouTube 
or TikTok, that recommends content created by inde-
pendent creators (“channels”) to its users. New chan-
nels regularly join the platform and start producing 
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content, whose quality distribution is unknown to both 
the platform and its users. Here, by content’s quality, 
we refer to how engaging, interesting, or relevant the 
users find the content. Despite this lack of knowledge, 
the platform faces the problem of deciding whether to 
recommend content from such new channels to its 
stream of users. In this context, the users seek to con-
sume fresh and high-quality content, whereas the 
platform itself may have other goals, such as maxi-
mizing user engagement or increasing channel expo-
sure, which are not fully aligned with users’ interests. 
Furthermore, from extensive user-level data, the plat-
form may have good estimates about the utility that a 
user derives from consuming particular content. A 
user encountering a new channel may have a prior 
belief about its quality distribution based on her past 
experiences in the platform and from any information 
provided by the channel itself on its profile. Further-
more, the user may have additional (partial) informa-
tion from any reviews or ratings left by previous users 
(or similar summary statistics). For each new content 
from a channel, the platform observes its quality (per-
haps after an initial exploration or through in-house 
reviewers) and decides whether to recommend the 
content to its users. If the platform and the users 
know a channel’s content quality distribution, the 
platform can reliably make recommendations that 
optimize its own goals, while maintaining user satis-
faction, by consistently mixing high-quality content 
with some mediocre ones. However, given the lack of 
such distributional information, the platform must 
learn to make such recommendations over time, as the 
channel produces more content.

Example 2 (Recommendations on Hiring Platforms). Con-
sider a hiring platform, where employers receive re-
commendations about candidates for recruitment 
(e.g., “recommended matches” in LinkedIn Recruiter). 
These recommendations are typically tailored to the 
employer’s project requirements. However, within the 
set of candidates satisfying the requirements, there 
would be a range of capabilities/fit, whose distribution 
would be unknown to the platform or the employer. 
Nevertheless, for any particular candidate who might 
be interested in the position, the platform may be able 
to assess the candidate’s capability based on various 
candidate features, such as her endorsements, refer-
ences, etc.; by using this information, the platform deci-
des whether to recommend the candidate. Similarly, 
the employer, through the course of interviewing dif-
ferent candidates, may learn about the capability distri-
bution. Although the employer would prefer to be 
matched with few high-capability candidates to inter-
view, the platform may have additional incentives from 
having to cater to the candidates’ side of the market, 
such as increasing the overall number of interviews. 

Once again, if the distribution of the candidates’ capa-
bilities is known to the platform and the employer, 
the platform could reliably recommend candidates to 
optimize its goals, while simultaneously meeting the 
employer’s preferences. But, without such informa-
tion, the platform needs to learn to recommend candi-
dates as they apply over time.

This paper studies the problem faced by such a plat-
form learning to make persuasive recommendations 
to a stream of users. Although previous work has 
studied information design in two-sided markets— 
ranging from recommending products from third- 
party sellers on e-commerce platforms like Amazon 
and eBay (Elliott et al. 2022, Gur et al. 2023), to recom-
mending drivers by sharing demand trend on ride- 
sharing services like Uber and Lyft (Yang et al. 2019), 
to accommodation and rental recommendations in 
Airbnb (Romanyuk and Smolin 2019)—the common 
assumption is that the platform knows the underlying 
state distribution. Our work contributes to this litera-
ture by relaxing this strong assumption.

1.2. Modeling Contributions
Formally, we study a repeated persuasion setting 
between a sender and a stream of receivers, where at 
each time t, the sender shares some information corre-
lated to some payoff-relevant state with the corre-
sponding receiver. The state at each time t is drawn 
independently and identically from an unknown dis-
tribution, and, subsequent to receiving information 
about it, the newly arriving myopic receiver chooses 
an action from a finite set, generates payoffs, and then 
leaves the system forever. The sender seeks to per-
suade this stream of receivers into choosing actions 
that are aligned with her preference by selectively 
sharing information about the state at each round.

To tackle the practical challenge of making recom-
mendations in the absence of distributional data, we 
depart from the standard Bayesian persuasion setting 
and consider situations where neither the sender nor 
the receiver knows the distribution of the payoff rele-
vant state. Instead, the sender learns this distribution 
over time by observing the state realizations. We 
adopt the assumption common in the literature on 
Bayesian persuasion that the sender commits to a sig-
naling mechanism that, at each time step, maps the 
realized state to a possibly random action recommenda-
tion. Such a commitment assumption is well-justified 
for settings of interest to this work because online plat-
forms typically design and implement the information 
sharing policy as software in advance, rendering fre-
quent changes unlikely. This advance design serves as 
a commitment device organically.

Certainly, the sender cannot freely make arbitrary 
recommendations, if the expectation is that these recom-
mendations would influence the receivers’ actions. A 
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natural requirement is for the sender to make re-
commendations that the receiver will find optimal to 
follow—that is, recommendations that are persuasive. 
This incentive compatibility requirement can be easily 
justified by an application of the revelation principle. 
In the case where the sender and the receivers know 
the state distribution, the persuasiveness requirement 
implies that, subsequent to each recommendation, the 
recommended action maximizes the receiver’s expected 
utility under the conditional state distribution (given 
the recommendation). However, in the absence of such 
distributional knowledge, it is not immediately clear 
how to impose persuasiveness.

Our main modeling contribution addresses this issue 
by proposing a natural criteria for persuasiveness when 
neither the sender nor the receivers know the state dis-
tribution. The starting point of our approach is the 
observation that any persuasiveness criteria directly 
corresponds to a model of receivers’ response on re-
ceiving a recommendation (just as in the case of known 
state distribution). Thus, by considering reasonable 
behavioral models for the receiver, we develop in 
Section 2.2 a persuasiveness criterion that centers 
robustness as a requirement in the face of uncertainty. 
Specifically, our criterion requires that the sender’s 
recommendations are persuasive under all state distri-
butions in a set of “confidence regions,” which contain 
the true distribution with a given degree of confidence; 
these confidence regions shrink over time as the sender 
observes more state realizations. This is in line with the 
approach in statistics that uses confidence regions to 
address the uncertainty in parameter estimates. Fur-
thermore, this robustness requirement naturally leads 
to conservative recommendations, thereby making it 
likely that the recommendations will be accepted. We 
refer to this notion as β-robustly persuasiveness, where 
1� β�denotes the confidence level.

1.3. Algorithmic Contribution and Regret 
Characterization

A sender who simply recommends the receiver’s best 
action at the realized state will certainly be persuasive 
with complete confidence (β� 0), but may end up with 
a significant loss in her utility when compared with 
her utility had she known the state distribution. How-
ever, because the sender observes the state realizations 
over time, she has the opportunity to make more prof-
itable recommendations with greater confidence in 
their persuasiveness as she obtains more information. 
Thus, the sender’s goal is to carefully manage this tra-
deoff between the confidence in persuasiveness and 
her utility and achieve low regret against the optimal 
signaling mechanism with the knowledge of the state 
distribution.

The primary theoretical contribution of this work is an 
efficient algorithm that, with high probability, makes 

persuasive recommendations and, at the same time, 
achieves vanishing average regret. The algorithm we 
propose proceeds by maintaining at each time a set of 
candidate state distributions, based on the observed 
state realizations in the past. The algorithm then chooses 
a signaling mechanism that is simultaneously persua-
sive for each of the candidate distributions and maxi-
mizes the sender’s utility. Because of this aspect of the 
algorithm, we name it the Robustness Against Ignorance 
(Rai) algorithm.

By a careful choice of the candidate set of distribu-
tions at each time period, we show in Theorem 1 that 
the Rai algorithm satisfies the β-robustly persuasive-
ness criterion for β � o(T), where T is the horizon 
length. Furthermore, exploiting the structure of the 
problem, we show in Proposition 1 that the Rai algo-
rithm involves solving a polynomially sized (in num-
ber of states and actions) linear program at each period. 
Taken together, these results establish our algorithm’s 
persuasiveness and its computational efficiency.

To characterize the regret of the Rai algorithm, we 
next undertake a brief digression, in Section 4, into 
studying the (static) problem of robust persuasion. 
Specifically, we study a static persuasion setting with 
known state distribution, but impose the restriction 
that the signaling mechanism must be persuasive for 
all distributions in the neighborhood of the actual state 
distribution. For this problem, we define and analyze a 
quantity Gap that measures the sender’s cost of robust 
persuasion. Formally, Gap(µ,B) captures the loss in the 
sender’s expected utility (under distribution µ) from 
using a signaling mechanism that is persuasive for 
all distributions in the set B, as opposed to using one 
that is persuasive only for the distribution µ. In Pro-
position 2, we establish that, under some regularity 
conditions, the sender’s cost of robust persuasion 
Gap(µ,B) is at most linear in the radius of the set B. 
This is achieved via an explicit construction of a signal-
ing mechanism that is persuasive for all distributions 
in B and achieves sender’s utility close to the optimum. 
Further, we provide a matching lower bound in Prop-
osition 3 by carefully crafting a persuasion instance 
and using its geometry to prove a linear cost of robust 
persuasion; this instance thus serves as a lower-bound 
example for robust persuasion. The characterization of 
the cost of robust persuasion provides useful insight 
about the problem of robust persuasion, which may be 
of independent interest.

Using this characterization of the cost of robust per-
suasion, we perform a tight regret analysis of persuasion 
under unknown state distribution in Section 5. Our posi-
tive result, Theorem 2, establishes that for any persua-
sion setting satisfying the aforementioned regularity 
conditions, the Rai algorithm achieves O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T log T
p

)
regret with high probability. Furthermore, in Theorem 3, 
we provide a matching lower bound (up to log T terms) 
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for the regret of any algorithm that makes persuasive 
recommendations. In addition to the characterization 
of Gap and the custom persuasion instance from Pro-
positions 2 and 3, the proofs of these theorems rely on 
concentration results for sums of independent random 
vectors in Banach spaces.

Our results contribute to the work on online learning 
that seeks to evaluate the value of knowing the underly-
ing distributional parameters in settings with repeated 
interactions (Kleinberg and Leighton 2003). In particular, 
our results fully characterize the sender’s value of know-
ing the state distribution for repeated persuasion. Our 
well-motivated approach to relax the strong assumption 
of complete distributional knowledge in the standard 
persuasion setting is also aligned with the prior- 
independent mechanism design literature (Chawla et al. 
2013, Dhangwatnotai et al. 2015).

1.4. Literature Survey
Our paper contributes to the burgeoning literature on 
Bayesian persuasion and information design in eco-
nomics, operations research, and computer science. We 
refer readers to Kamenica and Gentzkow (2011) and 
Bergemann and Morris (2019), as well as Candogan 
(2020), for a general overview of the recent develop-
ments and Dughmi (2017) for a survey from algorith-
mic perspective.

1.4.1. Online Learning and Mechanism Design. Our 
work subscribes to the recent line of work that studies 
the interplay of learning and mechanism design in 
incomplete-information settings, in the absence of com-
mon knowledge on the prior. We briefly discuss the 
ones closely related to our work.

Castiglioni et al. (2020) focus on persuasion setting 
with a commonly known prior distribution of the 
state, but unknown receiver types chosen adversarially 
from a finite set. They show that effective learning, in 
this case, is computationally intractable, but does 
admit O(

ffiffiffiffi

T
√
) regret learning algorithm, after relaxing 

the computability constraint. Our model complements 
theirs by focusing on known receiver types, but un-
known state distributions, in a stochastic setup. More-
over, we achieve a similar (and tight) regret bound 
through a computationally efficient algorithm. Also 
relevant to us is the recent line of work on Bayesian 
exploration (Kremer et al. 2014; Mansour et al. 2015, 
2016), which is also motivated by online recommenda-
tion systems. In contrast to our setting, these models 
assume that the prior is commonly known, but the 
realized state is unobservable and, thus, needs to be 
learned during the repeated interactions.

Dispensing with the common prior itself, Camara 
et al. (2020) study an adversarial online learning model, 
where both a mechanism designer and the agent learn 
about the states over time. The agent is long-lived and 

is assumed to minimize her counterfactual (internal) 
regret in response to the mechanism designer’s policy, 
which is assumed to be nonresponsive to the agent’s 
actions. The authors use a reinforcement learning 
approach to mechanism design and characterize the 
policy regret of the mechanism designer, taking into 
account the agents’ responses, relative to the best-in- 
hindsight fixed mechanism. Similar to our work, the 
regret bounds require the characterization of a “cost 
of robustness” of the underlying design problem. 
Although related, the receivers in our model are short- 
lived and myopic. Furthermore, our model is stochas-
tic, rather than adversarial, and, thus, a prior exists 
in our model. More broadly, our model is similar in 
spirit to the prior-independent mechanism design lit-
erature (Chawla et al. 2013, Dhangwatnotai et al. 
2015), though our setup is different. Moreover, our 
algorithm is measured by the regret, whereas approxi-
mation ratios are often adopted for prior-independent 
mechanism design.

Recent works by Hahn et al. (2020, 2022) study infor-
mation design in online optimization problems, such as 
the secretary problem (Hahn et al. 2022) and the prophet 
inequalities (Hahn et al. 2020), and propose constant- 
approximation persuasive schemes. These online optimi-
zation problems often take the adversarial approach, 
which is different from our stochastic setup and learning- 
focused tasks. Therefore, our results are not comparable.

1.4.2. Robust Persuasion. The algorithm we propose 
relies crucially on robust persuasion due to the igno-
rance of the prior, and, as a part of establishing the 
regret bounds for the algorithm, we quantify the sen-
der’s cost of robustness. Kosterina (2022) studies a per-
suasion setting in the absence of the common prior 
assumption. In particular, the sender has a known 
prior, whereas only the set in which the receiver’s prior 
lies is known to the sender. Furthermore, the sender 
evaluates the expected utility under each signaling 
mechanism with respect to the worst-case prior of the 
receiver. Similarly, Hu and Weng (2021) study the 
problem of the sender persuading a privately informed 
receiver, where the sender seeks to maximize her 
expected payoff under the worst-case information of 
the receiver. Finally, Dworczak and Pavan (2020) study 
a related setting and propose a lexicographic solution 
concept, where the sender first identifies the signal-
ing mechanisms that maximize her worst-case payoff 
and then, among them, chooses the one that maximizes 
the expected utility under her conjectured prior. In con-
trast to these works, our model focuses on a setting 
with a common, but unknown, prior and where the 
receiver has no private information. Instead, our notion 
of robustness is with respect to this unknown (com-
mon) prior.
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1.4.3. Safe Online Learning. Our work also relates to 
safe online learning. The work by Moradipari et al. 
(2021) is the most relevant to our work. They study a 
safe online learning problem, where the linear reward 
and a single linear constraint depend on different 
unknown parameters. The learner has access to both 
the reward and the side information about the safety 
set. In this setting, they propose an algorithm based 
on linear Thompson Sampling and achieve the regret 

O
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T log3 T
q

�

. The key difference is that their analy-
sis relies on the assumption that a known safe action is 
an interior point of the safety set for all possible values 
of the unknown parameter. Under our regularity con-
ditions, it is true that for every distribution, there 
exists a signaling mechanism for which all the persua-
siveness constraints hold strictly (that is, the order of 
the quantifiers from above is interchanged). However, 
it is unclear whether this weaker assumption would 
be sufficient for their setting.

Amani et al. (2019) study a linear stochastic multi-
armed bandit problem, where the linear reward func-
tion and a single linear safety constraint depend on an 
unknown parameter. Their main algorithm and its 
analysis depend on knowing (a lower bound on) the 
safety gap—that is, the slack in the safety constraint for 
the optimal solution under the true parameter. When 
the safety gap is known and positive (i.e., the constraint 
is inactive), they prove a regret of O(log T

ffiffiffiffi

T
√
). On the 

other hand, if the safety gap is known to be zero, they 

only achieve a regret of Õ(T2=3). They provide a sepa-
rate algorithm for the case of an unknown safety gap 
and state a regret bound of Õ(T2=3). In our setting, there 
are multiple persuasiveness constraints, and many of 
these would be active for the true distribution in nontri-
vial settings. Thus, even if their work can be extended 
to multiple constraints, it may only guarantee Õ(T2=3)
regret bound.

Usmanova et al. (2019) seek to minimize a smooth 
convex function over a set of uncertain linear con-
straints, where both the coefficients and constant para-
meters are unknown. Although our problem is a specific 
case of theirs, our model does not meet their central 
assumption of being able to evaluate the constraints at 
any point within a small neighborhood of the feasible 
set.

Recent works by Pacchiano et al. (2021), Khezeli and 
Bitar (2019), and Moradipari et al. (2020, 2021) study a 
similar safe learning problem in different contexts. Pac-
chiano et al. (2021) require that, at each time, the chosen 
action has an expected cost below a certain threshold. 
Khezeli and Bitar (2019) and Moradipari et al. (2020) 
study safe learning, where, in addition to maximizing 
the expected reward, one requires the reward to be 
above a threshold with high probability. In these set-
tings, the objective and the constraint are aligned. Our 

setup is different because the sender’s and the recei-
vers’ preferences, corresponding, respectively, to the 
objective and constraints, need not be aligned with 
each other. Most importantly, all these works impose a 
single constraint at each round, whereas our persua-
siveness condition requires multiple constraints at each 
round.

1.4.4. Online Linear/Convex Optimization. Because the 
persuasion problem can be posed as a linear program, 
our work also relates to the online convex optimization 
problem. Mostly, the focus here is on adversarial set-
ting, where the loss function (objective) is adversarially 
chosen and revealed at the end of each time period. 
Some papers (Mahdavi et al. 2013, Cao et al. 2019) focus 
on the stochastic setting, but either study an uncon-
strained problem (Cao et al. 2019) or study a batch algo-
rithm rather than an online algorithm (Mahdavi et al. 
2013). Focusing on the constraints, and using the termi-
nology of Kim and Lee (2023), these works typically 
consider either a long-term constraint formulation (Mah-
davi et al. 2011, Neely and Yu 2017, Yu et al. 2017, Cao 
and Liu 2018, Yi et al. 2021, Kim and Lee 2023) or con-
sider a cumulative constraint formulation (Yuan and 
Lamperski 2018, Yi et al. 2023, Guo et al. 2024). The 
long-term constraint formulation requires feasibility, on 
average, in the long run. Such constraints are reason-
able in applications where the constraints are on aggre-
gate quantities, such as budgets in online advertising 
(Liakopoulos et al. 2019), covering constraints in sensor 
networks, capacity constraints in online routing (Agra-
wal and Devanur 2014), etc. However, this type of con-
straint is not reasonable in our setting, as it would 
permit the sender to make poor recommendations in 
some rounds, as long as it can be compensated by good 
recommendations in other rounds. In contrast, the 
cumulative constraint formulation focuses on bounding 
the sum of the positive parts of the constraints (which 
require some quantity to be nonpositive). This formula-
tion is equivalent to our formulation if the cumulative 
constraint can be made zero. However, most previous 
work allows for some constraint violation and seeks to 
bound the order of the violations. In the presence of 
such violations, our formulation is stronger.

Finally, by characterizing the persuasion problem as 
a Stackelberg game between the sender’s choice of a 
signaling mechanism and the receiver’s subsequent 
choice of an action, our work is related to the broader 
work on the characterization of regret in repeated 
Stackelberg settings (Balcan et al. 2015, Dong et al. 2018, 
Chen et al. 2020).

2. Model
Consider a persuasion setting with a single long-run 
sender persuading a stream of homogeneous receivers 
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who arrive sequentially over a time horizon of length 
T. At each time t ∈ [T] � {0, ⋯ , T � 1}, a state ωt ∈Ω is 
drawn independently and identically from a state dis-
tribution µ∗ ∈ ∆(Ω). (Here, for any finite set X, ∆(X)
denotes the set of all probability distributions over X.) 
We focus on the setting where Ω is a known finite set; 
however, the distribution µ∗ is unknown to both the 
sender and the receivers. To capture the sender’s ini-
tial knowledge (before time t�0) about the distribu-
tion µ∗, we assume that the sender knows that µ∗ lies 
in the set B0 ⊆ ∆(Ω).

At each time t ∈ [T], the sender observes the realized 
state ωt and shares with the arriving receiver an action 
recommendation at ∈ A (chosen according to a signaling 
algorithm, as described below), where A is a finite set 
of actions available to the receivers. The receiver then 
chooses an action ât ∈ A (not necessarily equal to at). 
This results in the receiver obtaining a utility u(ωt, ât)
and the sender obtaining a utility v(ωt, ât). Without 
loss of generality, we assume that v(ω, a) ∈ [0, 1] for 
all ω ∈Ω and a ∈ A. Further, to avoid trivialities, 
we assume |Ω | ≥ 2 and |A | ≥ 2. We refer to the tuple 
I � (Ω, A, u, v,B0) with u : Ω × A→ R and v : Ω × A→
[0, 1] as an instance of our problem.

Before we proceed, we make a few remarks on the 
persuasion instance. First, the preceding description 
does not specify a model of the receivers’ actions ât. As 
we discuss in Section 2.2, this issue is intertwined with 
the persuasiveness constraints that we impose on the sen-
der’s signaling algorithm, and, hence, we postpone the 
discussion until then. Second, and relatedly, although 
we have assumed that that sender shares information 
in the form of action recommendations, under the per-
suasiveness constraints that we consider, it can be 
shown that this is without loss of generality. Third, 
although our definition of an instance assumes that the 
receivers are homogeneous, it can be extended to allow 
for heterogeneity of receivers’ utility; our results con-
tinue to apply in the setting where the receivers’ types 
are observable to the sender. Finally, we assume that 
the sender knows the receivers’ utility. This is justified 
in the context of our applications of interest—namely, 
online platforms, where, given the scale, the platform 
may have good estimates about user utility from exten-
sive user-level data.

Informally, given a persuasion instance I , the sender’s 
goal is to systematically make action recommendations 
such that her long-run total utility is maximized. We 
now describe the formal algorithmic aspects of the sen-
der’s goal.

As each time t, the sender chooses an action recom-
mendation at based on the past state realizations, the 
past action recommendations, and the past actions 
chosen by the receivers. To separate the historical 
information from that about the present, we define the 
history ht at the beginning of time t as follows: ht �

∪τ< t{(τ,ωτ, aτ, âτ)} (with h0 � ∅) and note that the 
sender observes (ht,ωt) prior to making the recom-
mendation at at time t. We also note that, because the 
receivers do not know the state distribution µ∗, neither 
the past actions recommended by the sender nor the 
past actions chosen by the receivers carry any infor-
mation about µ∗ beyond that contained in the state rea-
lizations. Thus, the part of the history that is relevant 
to the sender consists of only the state realizations 
until time t.

A signaling algorithm a ≡ a(I ) for the sender specifies, 
at each time t ∈ [T] and after any history ht and state ωt, 
a probability distribution σa(ht,ωt, ·) ∈ ∆(A) over the set 
of actions. (We sometimes drop the superscript a when 
it is clear from the context.) Specifically, once the state 
ωt is realized, the sender draws the action recommen-
dation at independently, according to the distribution 
σ(ht,ωt, ·) ∈ ∆(A). Thus, the probability that the sender 
recommends an action a ∈ A is given by σ(ht,ωt, a). 
Implicitly, the notion of a signaling algorithm reflects 
the assumption that the sender commits to a mechanism 
for sending recommendations.

Given an instance I and a signaling algorithm a, the 
sender’s total (realized) utility is given by

VI (a, T)¢
X

t∈[T]
v(ωt, ât):

Thus, to evaluate the performance of a signaling algo-
rithm, we need a model of the receivers’ response subse-
quent to receiving the action recommendations. Rather 
than directly specifying such a response model, we 
instead model conditions on the signaling algorithm a, 
which result in obedient responses from the receivers— 
that is, which lead each receiver to choose the action 
recommended: ât � at. Any such condition on the signal-
ing algorithm a implies a model of receivers’ response, 
and the converse can be assumed without loss of gener-
ality by invoking incentive compatibility and the revela-
tion principle. Henceforth, we refer to such a condition 
as a persuasiveness criterion.

To motivate these persuasiveness criteria on the sig-
naling algorithms, we first discuss the setting where the 
sender and the receivers commonly know the state dis-
tributions. This setting will also serve as a benchmark to 
compare the performance of any signaling algorithm 
satisfying certain persuasiveness requirements.

2.1. Benchmark: Known State Distribution
Consider the setting where the sender and the receivers 
commonly know the state distribution µ∗ � µ ∈ ∆(Ω). 
In this setting, each receiver responds by choosing the 
action that maximizes her expected utility under the 
posterior belief about the state, given the action re-
commendation. In particular, the sender’s problem 
decouples across time periods, and standard results 
(Kamenica and Gentzkow 2011, Bergemann and Morris 
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2019, Dughmi and Xu 2021) imply that the sender’s 
problem at each period can be formulated as a linear 
program.

To elaborate, fix a time t ∈ [T] and history ht, and 
consider the persuasion problem between the sender 
and the arriving receiver. Recall that σ(ht,ω, a) denotes 
the probability with which the sender recommends 
action at� a if the realized state is ωt � ω. We refer to 
σ[ht]¢ (σ(ht,ω, a) : ω ∈Ω, a ∈ A) as the signaling mecha-
nism at time t and drop the dependence on ht if the con-
text is clear. Finally, let S � {σ : σ(ω, ·) ∈ ∆(A) for each 
ω ∈Ω} denote the set of all signaling mechanisms.

A signaling mechanism σ ∈ S is persuasive if, condi-
tioned on receiving an action recommendation a ∈ A, 
it is indeed optimal for the receiver to choose action a. 
Let a ∈ A be an action with 

P

ω∈Ωµ(ω)σ(ω, a) > 0. 
Upon receiving the recommendation a, the receiver’s 
posterior belief that the realized state is ω�is given by 
Bayes’ rule as µ(ω)σ(ω, a)=(Pω′∈Ωµ(ω′)σ(ω′, a)), and, hence, 
P

ω∈Ω

�

µ(ω)σ(ω,a)
P

ω′∈Ωµ(ω′)σ(ω′, a)

�

u(ω, a′) denotes her expected util-

ity of choosing action a′ ∈ A conditioned on receiving 
the recommendation a. For the receiver’s expected util-
ity to be maximized from choosing action a, we need 
P

ω∈Ωµ(ω)σ(ω, a)(u(ω, a)� u(ω, a′)) ≥ 0 for all a′ ∈ A. 
(Such an inequality is referred to as an obedience con-
straint on σ�at distribution µ.) Because the inequality is 
trivially satisfied if 

P

ω∈Ωµ(ω)σ(ω, a) � 0, the set of per-
suasive mechanisms Pers(µ) is given by

Pers(µ)¢
(

σ ∈ S :
X

ω∈Ω
µ(ω)σ(ω, a)(u(ω, a)

� u(ω, a′)) ≥ 0, for all a, a′ ∈ A

)

: (1) 

We note that the set Pers(µ) is a convex polytope 
for all µ ∈ ∆(Ω). Furthermore, the set Pers(µ) is non-
empty because it always contains the “full-informa-
tion mechanism,” which recommends the receiver’s 
optimal action at each state.

Given a persuasive signaling mechanism σ ∈ Pers(µ), 
the receiver is incentivized to choose the recommended 
action. Assuming that ties are broken in favor of the 
recommended action, the sender’s expected utility is 
given by

V(µ,σ)¢
X

ω∈Ω

X

a∈A
µ(ω)σ(ω, a)v(ω, a):

Because V(µ,σ) is linear in σ, the problem of selecting 
an optimal persuasive signaling mechanism is given by 
the following linear program:

OPTI (µ)¢ max
σ

V(µ,σ), subject to σ ∈ Pers(µ): (2) 

Finally, letting σ∗ denote an optimal signaling mechanism 
to the preceding optimization problem, the algorithm a 

that sets σa(ht,ωt, a) � σ∗(ωt, a) after any history ht opti-
mizes the sender’s total expected utility when the state 
distribution is known, with total expected utility given 
by T ·OPTI (µ).

2.2. Persuasiveness Criterion: Unknown 

Distribution
We now return to the setting with unknown state dis-
tribution and discuss refined persuasiveness conditions 
on the signaling algorithm under which the receivers’ 
response can be reasonably assumed to equal the rec-
ommendation. In particular, we propose and motivate 
a condition on the signaling algorithm—namely, the 
robust persuasiveness criterion, as described in Definition 
2—and provide detailed justification supporting the 
notion.

We begin with the simplest criterion inspired from 
the known distribution setting. As the sender observes 
the past state realizations, the empirical distribution γt, 
with γt(ω)¢ 1

t

P

τ< tI{ωτ � ω}, provides an estimate for 
the unknown distribution µ∗. A natural first idea, which 
we call the naive criterion, simply requires the algorithm 
to act as if this estimate is exact:

Definition 1. A signaling algorithm a satisfies the naive 
criterion if each σa[ht] is persuasive under the empiri-
cal distribution at time t—that is, σa[ht] ∈ Pers(γt) for 
all t ∈ [T].

The naive criterion can be motivated through a par-
ticular behavioral model of the receivers involving 
social learning. Specifically, consider a platform set-
ting, where each receiver (i.e., a user) arrives with an 
uninformative Haldane prior (Haldane 1948, Villegas 
1977, Jaynes 2003) over the state distribution µ∗ and 
observes all the past state realizations. The latter holds 
if we assume there is social learning among the recei-
vers, where each receiver leaves a feedback that is 
read by all subsequent receivers. Then, at each time t, 
the corresponding receiver’s belief about the state 
would be exactly the empirical distribution γt, and, 
thus, the receiver would optimally accept the recom-
mendation made by the platform if it uses a signaling 
algorithm satisfying the naive criterion.

However, from a practical perspective, the preceding 
model makes very restrictive assumptions. First, in a 
platform setting, the users’ prior belief over µ∗, if such 
a prior exists at all, is unlikely to be known to the plat-
form and need not be same across different users 
(let alone be the uninformative Haldane prior). Second, 
even with social learning, the users typically would 
not observe all the past state realizations (or even just 
the empirical distribution); this is because not all users 
leave reviews in a platform, and a user would typically 
read only a subset of available reviews. Thus, under a 
realistic model of social learning, the receivers’ belief 
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about the state would be, in general, different from the 
empirical distribution.

In addition to relying on restrictive behavioral 
assumptions, there are other deficiencies with the 
naive criterion that render it ill-suited as a criterion 
for ensuring persuasiveness. First, the naive criterion 
is especially weak in the initial stages of persuasion 
due to the lack of sufficient data; at these initial 
stages, the constraint based on the empirical distribu-
tion may not constrain the sender’s recommenda-
tions. For instance, if the empirical distribution at the 
beginning happens to be skewed and concentrates on 
very few states, then the naive criterion imposes no 
restriction on the action recommendations at any pre-
viously unseen state because it has zero empirical 
probability. Second, an algorithm satisfying the naive 
criterion may still make inconsistent recommendations 
across time. That is, for such an algorithm, there may 
not exist a single belief µ for which the recommenda-
tions as a whole are persuasive—that is, σa[ht] ∈
Pers(µ) for all t. Any such belief µ, if it exists, pro-
vides a justification for the signaling algorithm, and 
the larger the set of such beliefs, the stronger the justi-
fication. For instance, the “full-information” signaling 
algorithm Full, which always recommends the recei-
vers’ best action at ∈ arg maxa∈Au(ωt, a) after any his-
tory ht, has the strongest justification because all 
beliefs µ ∈ ∆(Ω) satisfy σFull[ht] ∈ Pers(µ). On the other 
hand, one can easily construct examples where an 
algorithm-satisfying naive criterion fails to have even 
a single belief justifying it, due to inconsistencies in 
recommendations across different periods.

Summarizing, the primary reason for the weaknesses 
of the naive criterion is its reliance on the point estimate 
γt in the place of receivers’ inherently uncertain beliefs 
about the state. Even for basic inferential tasks, such 
point estimates are seldom sufficient. Without explicitly 
incorporating this uncertainty into its conditions, an 
algorithm would provide no confidence that the recei-
vers will accept and act according to the recommenda-
tions. To remedy these weaknesses, we propose the 
following criterion that embraces the notion of robust-
ness in its conditions.

Definition 2. Given β ≥ 0, a signaling algorithm a is 
β-robustly persuasive, if there exists (history-dependent) 
sets Ct ⊆ B0 for all time t, such that 

1. Robustness: The signaling mechanism σa[ht] is 
persuasive for all beliefs in the set Ct: for each t ∈ [T], 
we have

σa[ht] ∈ Pers(Ct)¢∩µ∈Ct
Pers(µ):

2. Coverage: The sets Ct all contain the true state dis-
tribution µ∗ with high probability:

Pµ∗ (∩t∈[T]Ct �µ
∗) ≥ 1� β:

(Here, Pµ∗ represents the probability with respect to the 
(unknown) distribution µ∗ and any independent ran-
domization in the algorithm.)

The first condition in the criterion enforces robust-
ness, requiring that the signaling mechanism at time t, 
σa[ht], is persuasive with respect to all beliefs in the 
set Ct. These sets implicitly capture the uncertainties 
regarding the receivers’ beliefs, and, by depending on 
the history, reflect any learning occurring over time. 
(We note that the set Pers(Ct) is indeed nonempty, 
as it contains the full-information mechanism.) The 
second condition in the criterion requires these sets to 
have good coverage properties—that is, these sets 
contain the state distribution µ∗ with high probability.

To further motivate the criterion, we delve a bit 
into the perspective of social learning in a platform 
setting mentioned earlier. Here, although it is a strong 
assumption to require the receivers to know the exact 
empirical distribution, it is fair to assume that the 
receivers observe (summary statistics about) a size-
able proportion of past state realization. In particular, 
many common empirical principles, such as the “90- 
9-1 rule” (van Mierlo 2014, Antelmi et al. 2019), posit 
that a constant fraction of the users leave feedback in 
the platform. In this context, a receiver who starts 
with some sufficiently diffuse prior over µ∗, and who 
learns from past (incomplete) feedback, will have a 
belief about the state that is close enough to the 
empirical distribution. Thus, a signaling algorithm 
that makes recommendations that are persuasive for 
all beliefs close to the empirical distribution would 
ensure that such a receiver would find it optimal to 
follow the recommended action. Our proposed crite-
rion, by using a robustness approach, abstracts away 
from the details of such an explicit model and cap-
tures the receivers’ response through the uncertainty 
sets Ct.

Observe that as long as the sets Ct contain the 
empirical distribution γt, the preceding criterion is 
stronger than the naive criterion. More importantly, 
in addition to capturing more realistic models of 
social learning, the coverage and the robustness con-
ditions together also overcome the other inadequacies 
of the naive criterion that we discussed above. To see 
this, note that, at the initial stages t when the data are 
insufficient, good coverage requires the set Ct to be 
large, and, thus, the action recommendations are 
severely constrained (even at the states that have not 
been realized), unlike the case with the naive crite-
rion. Similarly, the robustness ensures that any belief 
µ ∈ ∩t∈[T]Ct provides a justification for the signaling 
algorithm, thus precluding any inconsistencies across 
time. In particular, with probability at least 1� β, the 
true state distribution µ∗ justifies all the recommenda-
tions made by a β-robustly persuasive signaling algo-
rithm: Pµ∗ (σa[ht] ∈ Pers(µ∗) for all t ∈ [T]) ≥ 1� β.
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The parameter β�in the criterion plays the same role 
as that played by significance level in inference. In 
particular, low values of β�correspond to high level of 
confidence in the uncertainty sets Ct. Finally, it is easy 
to see that β-robustly persuasive algorithms exist for 
any β ≥ 0; in fact, choosing the sets Ct � B0 for all 
t ∈ [T], it follows that the algorithm Full is 0-robustly 
persuasive.

Given the preceding discussion, we hereafter assume 
that for any signaling algorithm a that is β-robustly per-
suasive for some (small) β ≥ 0, the receivers’ response 
ât equals the action recommendation at at each time t. 
Thus, for any such algorithm a, the sender’s total utility 
reduces to VI (a, T) �Pt∈[T]v(ωt, at).

2.3. Sender’s Learning Problem
Finally, we describe the evaluation metric for the per-
formance of any algorithm satisfying the preceding 
persuasiveness criterion by comparing the sender’s 
utility VI (a, T) against the known-distribution bench-
mark given by T ·OPT(µ∗). Specifically, we measure 
the sender’s regret from using a β-robustly persuasive 
algorithm a by

RegI (a, T,µ∗)¢T ·OPTI (µ∗)�VI (a, T)
� T ·OPTI (µ∗)�

X

t∈[T]
v(ωt, at): (3) 

We are now ready to formalize the sender’s learning 
problem. Begin by noticing that one must require the 
signaling algorithm a to be β-robustly persuasive for 
some small β�in order for the second equality above to 
hold—that is, for the receivers’ responses to match the 
recommendations. At the same time, 0-robustly per-
suasiveness is an excessive requirement, with no hope 
of resulting in a sublinear regret. (In Appendix A2 of 
the e-companion, we present an example instance 
where any 0-robustly persuasive algorithm necessar-
ily obtains a linear regret.) Thus, the central problem 
is to design, for any given instance I , an algorithm a 

that is β-robustly persuasive for small (vanishing) β�
and simultaneously achieves sublinear regret with 
high probability.

3. The Robustness Against 
Ignorance Algorithm

Having described the learning problem faced by the 
sender, in this section, we present a signaling algo-
rithm that we call the Robustness Against Ignorance 
(Rai) algorithm. Here, we show that the Rai algorithm 
is β-robustly persuasive with β � o(1), relegating the 
regret analysis to Section 5.

Before describing our proposed algorithm, we briefly 
motivate our design approach. Observe that if the state 
distribution µ∗ is known, then the sender’s problem is 
given by the Linear Program (2), and, thus, the optimal 

signaling mechanism can be efficiently computed. 
Thus, a natural learning approach is to solve at each 
time t the estimated version of the LP (2), where the 
unknown distribution µ∗ is replaced by the empirical 
distribution γt, and use the corresponding optimal sig-
naling mechanism for that time period. However, this 
alone is not sufficient to obtain an algorithm that is 
β-robustly persuasive, which requires the signaling 
mechanisms to be persuasive for all distributions in 
some small neighborhood of µ∗. To elaborate, simply 
solving the estimated LP may yield solutions that are 
only ɛ-feasible for distributions close to the empirical 
distribution—that is, some of the persuasiveness con-
straints for such nearby distributions may get violated. 
In fact, optimizing the estimated LP may result in a 
mechanism that is not persuasive for any other distri-
bution close to the empirical distribution. Thus, an 
immediate challenge is in determining how to use the 
empirical distribution estimate to find well-performing 
signaling mechanisms that are persuasive (with high 
probability) for all distributions in a small neighbor-
hood around the unknown state distribution. Part of 
this challenge is to carefully choose the corresponding 
neighborhoods without significantly sacrificing the per-
formance of the mechanism.

The algorithm we propose is adaptive. An alternative 
is to adopt an “explore-then-commit” design (Latti-
more and Szepesvári 2020), where the algorithm uses 
the state realizations in the first t periods (for some 
carefully chosen t) to estimate the unknown distribu-
tion and subsequently commits to a single signaling 
mechanism for the remaining time periods. However, 
it is unlikely that such a algorithmic design can achieve 
strong regret guarantees in our setting because it is 
known that such an approach yields the suboptimal 
O(T2=3) regret in simple multiarmed bandit problems 
(Lattimore and Szepesvári 2020). This observation illus-
trates the need for adaptivity to obtain order-wise opti-
mal regret.

To meet these challenges, our algorithm Rai pro-
ceeds by adaptively maintaining, at each time t ≥ 0, a 
set Bt of candidates for the (unknown) distribution µ∗. 
This set is a (closed) ℓ1-ball of radius ɛt at the empirical 
distribution γt. It then selects a signaling mechanism 
that maximizes the sender expected utility with respect 
to the empirical estimate γt among mechanisms that 
are persuasive for all distributions µ ∈ Bt. Finally, it 
makes an action recommendation at using this signal-
ing mechanism, given the state realization ωt. The Rai 

algorithm is formally described in Algorithm 1. Here, 
we use the notation Pers(B) to denote the set of signal-
ing mechanisms that are simultaneously persuasive 
under all distributions µ in the set B ⊆ ∆(Ω): Pers(B) �
∩µ∈BPers(µ). We remark that for any nonempty set 
B ⊆ ∆(Ω), the set Pers(B) is convex because it is an 
intersection of convex sets Pers(µ) and is nonempty 
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because it contains the full-information signaling 
mechanism. Furthermore, we let B1(µ,ɛ)¢ {µ′ ∈ ∆(Ω) :
‖µ′�µ‖1 ≤ ɛ} denote the (closed) ℓ1-ball of radius ɛ > 0 
at µ ∈ ∆(Ω).
Algorithm 1 (The Robustness Against Ignorance (Rai) 
Algorithm)

Input: Instance I , Time horizon T
Parameters: γ0 ∈ B0, {ɛt > 0 : t ∈ [T]}
Output: at ∈ A for each t ∈ [T]
for t� 0 to T� 1 do

Choose any σ[ht] ∈ arg maxσ{V(γt,σ) : σ ∈ Pers 

(Bt)};
Recommend at � a ∈ A with probability σ(ωt, a;
ht);
Update γt+1(ω) ← 1

t+1

Pt
τ�0 I{ωτ � ω} for each 

ω ∈Ω;
Set Bt+1← B1(γt+1,ɛt+1);

end

From the intuitive description, it follows that the sets 
Bt � B1(γt,ɛt) naturally play the role of the covering 
sets Ct in the definition of β-robustly persuasiveness. 
Specifically, the parameters {ɛt : t ∈ [T]} control the 
degree of persuasiveness of the algorithm: larger values 
of ɛt imply that the algorithm is β-robustly persuasive 
for smaller values of β. (In particular, if all ɛt are larger 
than two, the algorithm reduces to the full-information 
algorithm Full and is 0-robustly persuasive.) Unsur-
prisingly, larger values of ɛt also lead to larger regret, 
and, hence, the sender must choose ɛt to optimally 
trade off the persuasiveness of the algorithm against its 
regret.

Our first main result characterizes Rai’s persuasive-
ness for a particular choice of parameter values, which 
we show in Section 5 to be regret-optimal.

Theorem 1. For each t ∈ [T], let ɛt �min
n

ffiffiffiffiffiffiffi

|Ω |
t

q

(1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ log T
p

), 2
o

with Φ > 0. Then, the Rai algorithm is 

β-robustly persuasive with

β � sup
µ∗∈B0

Pµ∗(∩t∈[T]Bt�µ∗) ≤ T1�3Φ
ffiffi

Ω
√

56 :

In particular, for Φ > 20, we have β ≤ T�0:5.

The proof of the persuasiveness of Rai follows by 
showing that the empirical distribution γt concentrates 
around the unknown state distribution µ∗ with high 
probability. Because, after any history ht, the signaling 
mechanism σ[ht] chosen by the algorithm is persuasive 
for all distributions in an ℓ1-ball around γt, we deduce 
that it is persuasive under µ∗ as well. To show the con-
centration result, we use a concentration inequality for 
independent random vectors in a Banach space (Fou-
cart and Rauhut 2013); the full proof is provided in 
Appendix B of the e-companion.

We observe that to get strong persuasiveness guaran-
tees, the choice of ɛt in the preceding theorem requires 
the knowledge of the time horizon T. However, apply-
ing the standard doubling tricks (Besson and Kauf-
mann 2018), one can convert our algorithm to an 
anytime version that has the same regret upper bound 
guarantee, at the cost of a weakened persuasiveness 
guarantee, where the persuasiveness β�is weakened to 
a constant arbitrarily close to zero.

Next, note that the Rai algorithm requires finding at 
each time t a signaling mechanism that is persuasive 
for all distributions in a neighborhood around the 
empirical distribution. The following result shows that 
this is a simple computational task requiring a polyno-
mial running time. Thus, the result establishes the Rai 

algorithm’s computational efficiency.

Proposition 1. The Rai algorithm requires solving at each 
time a linear program with size polynomial in |Ω | and 
|A | .
Proof. To see the efficiency of the Rai algorithm, note 
that at each time t, the algorithm has to solve the opti-
mization problem maxσ{V(γt,σ) : σ ∈ Pers(Bt)}. Be-
cause Bt � B1(γt,ɛt) is an ℓ1-ball of radius ɛt, it is a 
convex polyhedron with at most |Ω | · ( |Ω | � 1) verti-
ces. (These vertices are all of the form γt + ɛt

2 (eω� eω′), 
where eω�is the belief that puts all its weight on ω.) By 
the linearity of the obedience constraints and the con-
vexity of Bt, it follows that Pers(Bt) is obtained by 
imposing the obedience constraints at distributions 
corresponding to each of these vertices. Because there 
are O( |Ω | + |A | 2) obedience constraints for each dis-
tribution, we obtain that the optimization problem is 
a polynomially sized linear program and, hence, can 
be solved efficiently. w

Having addressed the persuasiveness and the com-
putational efficiency of the Rai algorithm, we devote 
the rest of the paper to analyzing its regret. To do this, 
we first take a digression to define (and bound) the cost 
of robust persuasion in static persuasion problems. 
Armed with this result, we then characterize the algo-
rithm’s regret in Section 5.

4. Digression: Cost of Robust Persuasion
In this section, we consider the static persuasion prob-
lem with known state distribution (discussed in Section 
2.1) and study the loss in the sender’s expected utility 
from requiring the signaling mechanism to be persua-
sive for all distributions in a neighborhood around the 
state distribution. To measure this loss, we first define 
the notion of the cost of robust persuasion, a quantity that 
depends on the neighborhood, and provide upper and 
lower bounds under some minor regularity conditions.

Fix a persuasion instance I . In the static setting with 
known state distribution µ, the sender’s optimal expected 
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payoff is given by OPTI (µ) � supσ∈Pers(µ)V(µ,σ). Next, 
for any set of distributions B ⊆ B0, the set of signaling 
mechanisms that are simultaneously persuasive for all 
distributions in B is given by Pers(B) � ∩µ′∈BPers(µ′). 
Hence, the sender’s optimal expected utility among all 
such mechanisms is given by supσ∈Pers(B)V(µ,σ). Thus, 
we define the cost of robust persuasion as

Gap(µ,B)¢ sup
σ∈Pers(µ)

V(µ,σ)� sup
σ∈Pers(B)

V(µ,σ): (4) 

Thus, Gap(µ,B) captures the difference in the sender’s 
expected utility (under µ) between using the optimal 
persuasive signaling mechanism for the distribution µ
and using the optimal signaling mechanism that is per-
suasive for all distributions µ′ ∈ B.

For general persuasion instances, one can show that 
the cost of robust persuasion can be severe: in Appen-
dix A1 of the e-companion, we present a persuasion 
instance and a distribution µ such that for any ɛ > 0, the 
cost of being robustly persuasive for the set B1(µ,ɛ) of 
distributions satisfies Gap(µ, B1(µ,ɛ)) � 1

2. The instance 
we present there is pathological, with an action that is 
optimal for the receiver at a single unique distribution. 
To obtain meaningful insights on the cost of robust per-
suasion, we seek to exclude such instances by imposing 
some regularity condition on the instances.

To state these regularity conditions, we need some 
notation. For each action a ∈ A, let Pa denote the set of 
state distributions for which action a is optimal for a 
receiver:

Pa¢ {µ ∈ ∆(Ω) : Eµ[u(ω, a)]
≥ Eµ[u(ω, a′)], for all a′ ∈ A}:

It is without loss of generality to assume that for each 
a ∈ A, the set Pa is nonempty. (This is because a receiver 
can never be persuaded to play an action a ∈ A for 
which Pa is empty, and, hence, such an action can be 
dropped from A.)

We consider the following regularity conditions on 
the persuasion instances:

Assumption 1 (Regularity Conditions). The instance I 

satisfies the following conditions: 
1. There exists d> 0 such that for each a ∈ A, the set Pa 

contains an ℓ1-ball of size d. Let D>0 denote the largest 
value of d for which the preceding is true, and let ηa ∈ Pa be 
such that B1(ηa, D) ⊆ Pa.

2. There exists a p0 > 0 such that for all µ ∈ B0, we have 
minωµ(ω) ≥ p0 > 0.

The first condition requires that each such set Pa has 
a nonempty relative interior; this excludes the patho-
logical instances like that in the e-companion (Appen-
dix A1), for which there exists an action a with Pa a 
singleton. We note that this condition is analogous to 
the Slater condition in convex optimization, imposing 

nonempty interior on the feasibility region to obtain 
strong duality. The second condition is technical and 
is made primarily to ensure the potency of the first 
condition: without it, the sets {Pa}a∈A may satisfy the 
first condition in ∆(Ω), while failing to satisfy it rela-
tive to the subset ∆({ω : µ(ω) > 0}) for some µ ∈ B0. 
Taken together, these regularity conditions serve to 
avoid pathologies, and, henceforth, we restrict our 
attention only to those instances satisfying these regu-
larity conditions.

Under the regularity conditions, our first result shows 
that the cost of robust persuasion Gap(µ,B) is at most 
linear in the size of the set B.

Proposition 2. For any instance that satisfies the regular-
ity conditions, for all µ ∈ B0 and for all ɛ ≥ 0, we have 
Gap(µ, B1(µ,ɛ)) ≤

�

4
p2

0
D

�

ɛ.

The proof of the upper bound is obtained through an 
explicit construction of a signaling mechanism σ̂�that is 
persuasive for all distributions in the set B1(µ, ɛ) and by 
showing that the sender’s expected payoff under σ̂�is 
close to that under the optimal signaling mechanism in 
Pers(µ). For this construction, we first use the geometry 
of the instance to split the distribution µ into a convex 
combination of distributions that either fully reveal the 
state or are well-situated in the interior of the sets Pa. (It 
is here that we make use of the two regularity assump-
tions.) We then construct the mechanism σ̂�to induce, 
under prior µ, the aforementioned beliefs as posteriors. 
Finally, we show that for any prior µ′ close enough to 
µ, the posteriors induced by σ̂�are close to the posteriors 
induced under prior µ, implying that these posteriors 
lie within the sets Pa. This proves the persuasiveness of 
σ̂�for all distributions µ′ close to µ. We provide the com-
plete proof in Appendix C of the e-companion.

Next, we provide a (worst-case) lower bound on 
Gap. We accomplish this by carefully constructing a 
persuasion instance I0, where being robustly persua-
sive leads to a substantial loss to the sender. The 
instance I 0 has three states, Ω � {ω0,ω1,ω2}, and five 
actions, A � {a0, a1, a2, a3, a4}, for the receiver. At a high 
level, the receiver’s preference can be illustrated as in 
Figure 1(a), which depicts the receiver’s optimal action 
for any belief in the simplex. The regions Pi in the 
figure correspond to the set of beliefs that induce action 
ai ∈ A as the receiver’s best response. The instance is 
crafted so that the sets P1 and P2 that induce actions a1 

and a2, respectively, are symmetric and extremely nar-
row with the width controlled by an ℓ1-ball of radius D 
contained within, as depicted in Figure 1(b). (Because 
|Ω | � 3, the ℓ1-ball here is a hexagon.) For complete-
ness, the receiver’s utility is listed explicitly in Table 1. 
The sender seeks to persuade the receiver into choosing 
one of actions a1 and a2 (regardless of the state); all other 
actions are strictly worse for the sender. Formally, we 
set v(ω, a) � 1 if a ∈ {a1, a2} and 0 otherwise, for all ω. 
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The sender’s initial knowledge regarding the state dis-
tribution is captured by the set B0 � {µ ∈ ∆(Ω) : minω�
µ ≥ p0}, while the distribution of interest is µ∗ �

�

p0, 
1�p0

2 , 1�p0

2

�

, corresponding to the midpoint of the tips of 
the sets Pi, as shown in Figure 1(b). We focus on the set-
ting where the instance parameters D and p0 satisfy 
Dp0 < 1=64. The following proposition shows that in 
the instance I0, it is costly to require the signaling 
mechanism to be robustly persuasive for a set of distri-
butions around µ∗. The result also implies that the 
bound on Gap(·) obtained in Proposition 2 is almost 
tight, except for a factor of 1=p0.

Proposition 3. For the instance I 0, we have OPT(µ∗) � 1. 
Furthermore, for all ɛ ∈ (0, D), we have

Gap(µ∗, {µ∗,µ1,µ2}) ≥
ɛ

8Dp0
, 

where µ1 � µ∗ + ɛ
2 (e1 � e2), µ2 � µ∗ + ɛ

2 (e2 � e1), where the 
belief ei puts all its weight on ωi.

We defer the rigorous algebraic proof of the lower 
bound to Appendix C of the e-companion and present 
a brief sketch using a geometric argument here. In the 
instance I 0, the distribution µ∗ can be written as a con-
vex combination µ∗ � (µ1 +µ2)=2, where µ1 and µ2 are 
the tips of regions P1 and P2, respectively (see Figure 
1(b)). Thus, by the splitting lemma (Aumann et al. 
1995), it follows that the optimal signaling mechanism 
sends signals that induce posterior beliefs µ1 and µ2, 
leading to the receiver’s choice of a1 and a2, respec-
tively. Because the sender can always persuade the 
receiver to choose one of her preferred actions, we 

obtain OPT(µ∗) � 1. On the other hand, for a signaling 
mechanism to be robustly persuasive for all distribu-
tions ɛ-close to the distribution µ∗ for sufficiently small 
ɛ, the posteriors for the sender’s preferred actions a1, a2 

induced by the signaling mechanism have to be shifted 
up significantly in the narrow region. Such a large dis-
crepancy ultimately forces the sender to suffer a sub-
stantial loss in the expected payoff.

5. Regret Analysis
We now return to the regret analysis of the online per-
suasion setting. The regret bounds we establish in this 
section make critical use of the characterization of the 
cost of robust persuasion from the preceding section.

Our main result establishes a upper bound on the 
regret of the Rai algorithm in instances satisfying the 
regularity conditions. Although p0 appears in our regret 
bound, it is not required by the Rai algorithm for its 
operation.

Theorem 2. Suppose the instance I satisfies the regularity con-

dition. For t ∈ [T], let ɛt �min
n

ffiffiffiffiffiffiffi

|Ω |
t

q

(1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ log T
p

), 2
o

with Φ > 0. Then, for all µ∗ ∈ B0, with probability at least 
1�T1�3Φ

ffiffi

Ω
√

56 �T�8Φ |Ω | , the Rai algorithm satisfies

RegI (Rai,µ∗, T)

≤ 2
20

p2
0D
+ 1

� �

�

1+
ffiffiffiffiffiffiffiffiffiffiffi

|Ω |T
p

(1+ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φlog T
p

)
�

:

In particular, the regret is of order O
ffiffiffi

Ω
√

p2
0
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T log T
p

� �

with 
high probability.

Figure 1. (Color online) The Persuasion Instance I0 

(a) (b)

Notes. (a) Receiver’s preferences. (b) Prior µ∗.

Table 1. Receiver’s Utility in Instance I0, with u(ω, a0) Normalized to Zero for All ω ∈Ω

State a1 a2 a3 a4

ω0 2D2 2D2
�2D(1� p0 � 2D) �2D(1� p0 � 2D)

ω1 (1� 2D)(1�D)� p0 (D+ 1)(2D� 1) + p0 2(1� p0 � 2D)(1�D) �2(1� p0 � 2D)(D+ 1)
ω2 (D+ 1)(2D� 1) + p0 (1� 2D)(1�D)� p0 �2(1� p0 � 2D)(D+ 1) 2(1� p0 � 2D)(1�D)
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The central step in the proof is the following decom-
position of the regret, established in Lemma EC2 in 
Appendix D1 of the e-companion:

RegI (Rai,µ∗, T) ≤
X

t∈[T]
Gap(µ∗, B1(µ∗, ‖µ∗ � γt‖1))

+
X

t∈[T]
Gap(γt, B1(γt, ɛt))

+
X

t∈[T]
‖µ∗ � γt‖1

+
X

t∈[T]
(Eµ∗[v(ωt, at) |ht]� v(ωt, at)):

Observe that on the event {µ∗ ∈ ∩t∈[T]Bt}, we have 
‖µ∗� γt‖1 ≤ ɛt. Thus, on this event, the first two terms 
on the right-hand side of the preceding inequality cap-
ture the cost of persuading robustly for all distributions 
in an ℓ1-ball of radius ɛt around the distribution µ∗ and 
its estimate γt. Moreover, the third term represents the 
estimation error between µ∗ and γt. Together with 
Proposition 2, we thus obtain that the first three terms 
are of order 

P

t∈[T]ɛt �O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T log T
p

). Finally, the last 
term, which captures the randomness in the sender’s 
payoff, is also of the same order due to a simple appli-
cation of the Azuma-Hoeffding inequality. The details 
are provided in Appendix D1 of the e-companion.

5.1. Lower Bound
In this section, we show that our regret upper bound in 
Theorem 2 is essentially tight with respect to the para-
meters D, T (up to a lower order 

ffiffiffiffiffiffiffiffiffiffiffi

log T
p

factor). We 
also show that the inverse polynomial dependence 
on p0, the smallest probability of states, is necessary, 
though the exact order of the dependence on p0 is left as 
an interesting open question.

Theorem 3. For the instance I 0 and distribution µ∗ ∈ B0 

considered in Proposition 3, there exists a T0 > 0 such that 
for any T ≥ T0 and any βT-robustly persuasive algorithm a, 
the following holds with probability at least 13 � 2βT:

RegI (a, T,µ∗) � T ·OPT(µ∗)�
X

t∈[T]
v(ωt, at) ≥

ffiffiffiffi

T
√

32Dp0
:

We provide a sketch here. First the regret can be split 
into two terms:

RegI (a, T,µ∗) � T ·OPT(µ∗)�
X

t∈[T]
V(µ∗,σa[ht])

+
X

t∈[T]
V(µ∗,σa[ht])�

X

t∈[T]
v(ωt, at):

Let ET(µ) be the event under which the signaling mech-
anism σa[ht] chosen by the algorithm a after any history 

ht ∈ ET(µ) is persuasive for the distribution µ. Hence, 
on the event ET(µ∗) ∩ ET(µ1) ∩ ET(µ2), the signaling 
mechanism σa[ht] is persuasive for all three distri-
butions µ∗,µ1 � µ∗ + ɛ

2 (e1 � e2) and µ2 � µ∗ + ɛ
2 (e2 � e1). 

From Proposition 3, we have that on this event, the first 
term, which is the sender’s expected loss, is no less than 
T ·Gap(µ∗, {µ∗,µ1,µ2}). We lower-bound the second 
term using the Azuma-Hoeffding inequality. The re-
maining step is to show that the probability of the event 
ET(µ∗) ∩ ET(µ1) ∩ ET(µ2) does not vanish as T goes to 
infinity, which follows from robust persuasiveness of 
the algorithm a and careful choice of ɛ. The details are 
provided in Appendix D2 of the e-companion.

6. Conclusion
We studied a repeated Bayesian persuasion problem, 
where the distribution of payoff-relevant states is 
unknown to the sender. The sender learns this distri-
bution from observing state realizations while making 
recommendations to the receiver. We propose the Rai 

algorithm, which persuades robustly and achieves 
O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T log T
p

) regret against the optimal signaling 
mechanism under the knowledge of the state distribu-
tion. To match this upper bound, we construct a per-
suasion instance for which no persuasive algorithm 
achieves regret better than Ω(

ffiffiffiffi

T
√
). Taken together, our 

work precisely characterizes the value of knowing the 
state distribution in repeated persuasion.

Although social learning is a strong motivation for 
our robust persuasiveness criterion, there are other moti-
vations as well. For instance, a platform concerned about 
its long-run reputation may want to design a recommen-
dation algorithm that guarantees verifiably good-quality 
recommendations, not just with respect to currently 
available state realization data, but also with respect to 
any additional data obtained in the future. An algorithm 
satisfying our robust persuasiveness criterion enables 
such a platform to meet its goals.

Although in our analysis, we have assumed that the 
receiver’s utility is fixed across time periods, our 
model and the analysis can be easily extended to 
accommodate heterogeneous receivers, as long as the 
sender observes the receiver’s type prior to making 
the recommendation and the cost of robustness Gap 

can be uniformly bounded across different receiver 
types. More interesting is the setting where the sender 
must persuade a receiver with an unknown type. In 
such a setting, assuming that the sender cannot elicit 
the receiver’s type prior to making the recommenda-
tion, the sender makes a menu of action recommenda-
tions (one for each receiver type). It can be shown that 
the complete information problem in this setting cor-
responds to public persuasion of a group of receivers 
with no externality, which is known to be a computa-
tionally hard linear program with exponentially many 
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constraints (Dughmi and Xu 2017). Consequently, our 
algorithm ceases to be computationally efficient. Nev-
ertheless, our results imply that the algorithm con-
tinues to maintain the O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T log T
p

) regret bound.

Our characterization of the cost of robust persuasion 
may be of independent interest. For instance, one can 
derive the sample complexity bounds for the static per-
suasion problem when the sender only has access to the 
samples from the underlying distribution. To obtain a 
signaling mechanism that is persuasive with probability 
at least 1� β�and is ɛ-optimal, our characterization yields 
a sample complexity of Θ

� |Ω | +log(1=β)
p4

0
D2ɛ2

�

. Note that for 

large enough ɛ, one can simply use the full-information 
mechanism with no need for any samples.

Our analysis highlights two main technical contri-
butions. One is the characterization of the cost of robust 
persuasion for the underlying linear program and using 
this characterization to perform a tight regret analysis 
for the online learning problem. The former result 
heavily uses the specifics of the persuasion problem (for 
instance, the use of the splitting lemma to construct a 
feasible robust solution), whereas the latter result is 
more agnostic to the setting. Given this, we believe our 
approach can be extended to other online linear pro-
gramming settings, as long as one can obtain a charac-
terization of the corresponding cost of robustness. Note 
that even in our persuasion setting, we had to impose 
the regularity conditions to obtain the linear bounds on 
the cost of robustness, without which the cost could be 
O(1) and the regret would be linear. Whether these reg-
ularity conditions can be generalized to other linear set-
tings is an interesting question for further investigation.
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