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We study the problem of designing dynamic intervention policies
for minimizing cascading failures in online financial networks,
as well we more general demand-supply networks. Formally, we
consider a dynamic version of the celebrated Eisenberg-Noe model
of financial network liabilities, and use this to study the design of
external intervention policies. Our controller has a fixed resource
budget in each round, and can use this to minimize the effect of
demand/supply shocks in the network. We formulate the optimal
intervention problem as a Markov Decision Process, and show
how we can leverage the problem structure to efficiently compute
optimal intervention policies with continuous interventions, and
give approximation algorithms in the case of discrete interventions.
Going beyond financial networks, we argue that our model captures
dynamic network intervention in a much broader class of dynamic
demand/supply settings with networked inter-dependencies. To
demonstrate this, we apply our intervention algorithms to a wide
variety of Web-related application domains, including ridesharing,
online transaction platforms, and financial networks with agent
mobility; in each case, we study the relationship between node
centrality and intervention strength, as well as fairness properties
of the optimal interventions.
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1 INTRODUCTION

Motivation. The world consists of interconnected entities that
interact with one another in the form of networks. Networks ex-
perience shocks due to adverse scenarios, such as (partial) fail-
ures of nodes and edges. When exogenous shocks hit networks,
such shocks propagate through the edges of the network, causing
cascades that may affect a significant population of nodes in the
network. This phenomenon is known as network contagion, and a
particularly interesting category of networks that undergo conta-
gion are financial networks. In financial networks, financial entities,
such as individuals, businesses, and banks have liabilities to one
another as well as assets which can be attributed either internally,
i.e., within the financial network in question, or externally, i.e.,
outside the financial network. It is often the case that the entities
within these networks do not have adequate means to pay off their
financial obligations, so they become default [13, 18]. A planner
acts as an external force and is responsible for (optimally) allocat-
ing resources, also known as interventions (or bailouts) subject to
budget constraints so that defaults are averted [1, 9, 22, 23].

When modeling and studying such networked interactions,
much of the literature assumes the interactions are static [12, 14,
15, 18, 20, 22-24]. However, in many situations, networked interac-
tions evolve, subject to an uncertain environment, and where the
planner’s interventions at some point in time affect the state of
the system in future times, resembling the dynamics in queuing
network models [2, 21], or epidemics [4, 8, 10, 11, 19]. So far, lim-
ited attention has been given to contagion processes that evolve
dynamically: First of all, such approaches have either been consid-
ered in limited settings of a financial system together with specific
strategies for the mitigation of systemic risk that do not fall under
an intervention regime [6, 7, 16], or are based on different modeling
assumptions and are computationally more intensive [3].

Moving beyond contagion in financial systems, we argue that our
models have a much broader scope across a variety of Web-based
applications. In particular, with small modifications, our model and
algorithms can apply to resource allocation problems arising in
ridesharing, ad placement, influence maximization, allocation of
computational resources, and contagion in digital financial transac-
tion networks, to name a few. At a high level, our framework can
handle settings that can be modeled as a supply/demand network,
subject to defaults, and where the demand is proportionally split
between neighbors of a node upon its default. Consequently, we
hope our ideas can find wider usage in other such settings.

A Model for Dynamic Interventions in Networks. We study
networks subject to a contagion process over time, with the system’s
current state and interventions affecting its future state due to
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the accumulation of liabilities at nodes. Our model extends the
static Eisenberg-Noe model [13] of contagion to a dynamic setting
with the accumulation of liabilities. The network is overseen by an
external regulator, who has limited resources to try and intervene
to stop a contagion. Designing such intervention policies, however,
requires leveraging both spatial and temporal information.

We initially study the design of an optimal fractional intervention

policy, which is a computationally tractable problem (assuming
that the system responds optimally at every round). Next, we study
the allocation of discrete resources, a computationally intractable
problem whose static version has been studied in [23]. Here, we
design approximate discrete intervention policies that are based on
the fractional intervention policy. Note that the concurrent work of
[5] studies dynamic interventions under the Eisenberg-Noe model
only in the case where the rationing of payments among agents is
constant (i.e., does not vary with time), which is a particular case
of our framework.
Interventions in General Demand-Supply Networks. While
our models are motivated by (and build on) existing models of
liabilities and defaults in financial networks, we posit that these
models and the corresponding resource allocation problems can
extend far beyond this setting to account for many applications on
the Web. One place where such a clearing mechanism can be utilized
is in ridesharing [2] (Uber, Lyft, etc.). The nodes of the network
represent neighborhoods of a city, the external world represents
suburban areas of the city, and the internal liabilities between nodes
represent the number of rides requested from a neighborhood i
to a neighborhood j. The external liabilities (resp. external assets)
correspond to rides requested from a neighborhood i to suburban
areas (resp. rides from the suburban areas to a neighborhood i).
The interventions correspond to additional supply (for example,
autonomous vehicles) that can be dispatched to any neighborhood.
Assets represent available vehicles, and shocks represent adverse
scenarios such as traffic jams. Similarly, in a computing cluster, nodes
represent compute nodes, and liabilities represent the amount of
computing that can be displaced to adjacent nodes; assets represent
available computing power at each node, shocks represent failures
of computing resources, and interventions represent allocations of
backup resources to the existing centers (which can also be utilized,
e.g., because of high demand).

More generally, any problem that corresponds to a supply and
demand network that evolves at which, when the corresponding obli-
gations of the node cannot be met in full, they should be distributed
proportionally towards the nodes that demand the corresponding
resources. A planner seeks to allocate resources in this environment
subject to a budget constraint can be captured by our framework.
Our framework can support the maximization of a variety of ob-
jectives. In this paper, we focus on a particular objective function.
However, the solutions produced are equivalent to every strictly
increasing objective. For discrete interventions (where the problem
becomes NP-Hard), we provide approximation guarantees of the
computed solution concerning the optimal solution that works un-
der realistic monotonicity assumptions. As a result, our dynamic
contagion framework is suitable for resolving resource allocation
problems in a variety of domains (both through the lens of fractional
and discrete allocations); financial transaction networks (physical
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Figure 1: Schematic representation of our problem setting.

or on the Web [e.g., Venmo, cryptocurrencies]), ridesharing, high-
performance computing, ad-placement, to name a few.

Our Technical Contributions. Formally, we study the problem
of optimally allocating (fractional and discrete) resources subject
to (i) contagion effects and (ii) an uncertain environment, i.e., an
environment that experiences financial shocks. We generalize the
model of Eisenberg and Noe [13] to discrete time as a Markov Deci-
sion Process (MDP) and formulate the optimal intervention problem
(Sec. 2). The resulting MDP is very high-dimensional; nevertheless,
we show how we can leverage the problem structure to compute
near-optimal intervention policies for continuous interventions
efficiently. Moreover, under discrete interventions, we demonstrate
how the planner can use the above continuous intervention poli-
cies to derive heuristic control policies with formal approximation
guarantees (Sec. 4). In addition, our framework also supports the
incorporation of additional fairness constraints (based on general-
izations of the Gini Coefficient) for the distribution of the resources
such that interventions are more equitable across nodes; surpris-
ingly, we also show that incorporating such objectives has little
effect on the welfare objective in our setting. We supplement our
theoretical results with experiments (Sec. 6) on real-world data from
the Venmo transaction platform, semi-artificial data from mobility
patterns, real-world data for ridesharing applications from New
York City’s Taxi and Limousine Commission, and synthetic data
with core-periphery structure!.

2 SETTING

Notation. We use [n] to denote the set {1,...,n}. For vectors
(resp. matrices), we use ||x||, for the p-norm of x (resp. for the
induced p-norm); for the Euclidean norm (i.e., p = 2), we omit the
subscript. 0 (resp. 1) denotes the all zeros (resp. all ones) column
vector, and 1g represents the indicator column vector of the set
S. We use x A y (resp. x V y) as shorthand for the coordinate-wise
minimum (resp. maximum) of vectors x and y. For a given vector
x, we use the array notation x(i : j) to denote a sub-vector of x
from x; to xj (inclusive range). Finally order relations >, <, >, <
denote coordinate-wise ordering.
System Model (see Fig. 1). The model we study is a natural dy-
namic extension of the Eisenberg-Noe model [13]. The system con-
sists of n entities [n], connected via a dynamic network, where each
directed edge (i, j) denotes that entity i owes a liability to entity j.
At the start of each (discrete) round t, new internal liabilities
£;j(t) > 0 get generated in the system. Moreover, let P(t — 1)
denote the clearing vector from round t — 1, i.e., each agent clears
Pi(t = 1) € [0,P;(t — 1)] of its liabilities in round ¢ — 1 where
P;(t — 1) are the total liabilities in round ¢ — 1. The rest of the

Code: https://github.com/papachristoumarios/dynamic-clearing
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liabilities are getting forwarded in time. In accordance with the
proportional clearing rule of the EN model, we have that the same
Pi(1-1)
P;(t-1)
Thus, the total liability between i, j € [n] at the start of round t (i.e.,
before clearing) is given by

fraction (l - ) of each of agent i’s liabilities are cleared.

13,-<t—1>)

pij(t) =4 (t) + pij(t —1) - (1 )

In addition, agents also experience external liabilities b; () > 0,
generated at the start of each round t. Let £;(t) = X je(n) £ij(1);
then the total liabilities owed by i at the start of round ¢t are P;(t) =
bi(t) + X jen) Pis (1) = bi(t) + 6:(8) + (Pi(t = 1) = Bi(t — 1)) > 0.
This induces the liability network in round ¢, with the (weighted,
directed) relative liability matrix A(t) given by a;;(t) = I;J’l’ ((tt)) .Now
let Bi(t) = Xje[n] @ij(t) denote the fractional internal liability
for any node i, and f(t) the vector of these internal liabilities.
Throughout the rest of the paper we assume the system has non-
vanishing external liabilities, i.e., that the following holds for A(#):

AssUMPTION 1 (NON-VANISHING EXTERNAL LIABILITIES).
IB®)lleo = IAT ()11 < 1 forall t € [T]

In order for the overall system to clear their liabilities (in par-
ticular, given there are always external liabilities), the EN model
assumes that each agent i has some additional “assets” ¢; which
can contribute to clearing their liabilities. In the same vein, in a
dynamic interaction setting, we assume each agent has external
assets (or “revenue streams”), which in each round ¢ provide an
instantaneous revenue c(t) = {c;(t)};e[n] = 0. Now, as in the EN

model, the clearing vectors P(t) > 0 must satisfy the following
zero-input dynamics constraints

P(t) < P(t) =b(t) +£(r) + P(t —1) — P(t - 1) (1a)
P(t) < AT()P(t) + (1) (1b)

We refer to first constraint (Eq. 1a) as the solvency constraint, since
if for some node i it holds with equality, it means that this node
is able to repay its debts in full. We refer to the second constraint
(Eq. 1b) as the default constraint, since when it holds with equal-
ity for some node i € [n], this means that i partially repays
its debts proportionally to its creditors. Finally, clearing vectors
are always non-negative. Note by definition the bounds in Egs.
?? are non-negative; we can thus compress these constraints as
P(t) € [0,P(t) A (AT (£)P(t) +c(1))].

Dynamic Control. Until now, we have assumed that all inputs (in-
ternal/external liabilities, and external asset values) are exogenous.
We now augment this model with an additional centralized con-
troller, who is provided with some resource budget in each round,
and can allocate this budget to try and minimize defaults.

Actions. Consider a controller (or planner) who has access to a
bounded amount of resource B > 0 at each round, and seeks to inject
this into the network (i.e. allocate a fractional quantity Z;(t) > 0 to
each agent i subject to the constraint 17 Z(t) < B). The per-round
allocation Z(t) may be subject to additional bounds Z(¢) < L for
some given maximum allowed allocation vector L; ignoring this
is equivalent to letting L > 1B. Therefore, the action space Z is
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givenby Z = {z € R" : ||z||; £ B, 0 < z < L}. We always assume
the policy function Z(¢) is Markovian.

State transitions. Eq. 1 can be modified to incorporate allocations
Z(t) to get

P(t) € [0, P(t) A (AT(DP(2) + c(t) + Z(1))] ()
17z(t) < B, Z(t) € [0,L]

Note that in the above equations, A(t) is implicitly a function of
P(t), and consequently, this makes the constraints non-linear. In the
full paper, we show that the necessary and sufficient condition for
the set of allocations satisfying Eq. 2 to be convex (in P(1:T),Z(1:
T)) is that the relative liability matrix A(t) is constant over time
(which makes the dynamics linear; see also the concurrent results
of [5]).

Next, given the current state P(t), exogenous input c(t), and
action Z(t), a natural ‘maximal’ choice of the clearing vector P(b)
is for it to be the fixed point of the system

P(1) P(1)
5(t) = (ﬁ(t)) = (P(t) A (AT(t)ﬁ(t) +c() +Z(t))). ¥

=0(S(1),Z(1);S(t-1),U(¢))

When the round is clear from the context we will use the abbrevi-
ation ®; (s, z) to denote the mapping with information up to time
t acting on the state action pair (s,z), i.e. for all z we have that
s(z) = ®;(s(z), z). Under Asm. 1, we can use the Banach fixed-point
theorem to assert that this has a unique solution (since ®; is a con-
traction with respect to s for a given z; see [18]). We henceforth
make the following assumption on the agents’ response

AsSSUMPTION 2 (MAXIMAL CLEARING). In each round t, the agents
maximally clear their liabilities, i.e., with P(t) as the unique fixed

point of B(£) = P(t) A (AT(t)ﬁ(t) +e(t) + Z(t)).

The above condition, taken from the EN model, is standard in the
finance literature - it imposes a natural requirement that agents try
and clear liabilities as soon as possible, subject to the proportional
clearing rule. If one wants to maximize flows (or minimize defaults),
one may be tempted to think that this is without loss of generality.
In the context of dynamic external interventions, however, this
is not the case; one can create examples where dropping this as-
sumption leads to higher overall rewards. These settings however
are somewhat extreme, and it may be possible to eliminate them
via other assumptions. In the full paper we exhibit one such natu-
ral regime; finding more general conditions remains a challenging
direction for future work.

This is a reasonable assumption since natural agents do not
usually have knowledge of their future, have limited memory, and
are not usually able to respond in a globally optimal way, given
a realization of the sample path. From a mathematical viewpoint,
lifting Asm. 2 leads to non-convexities which yields a hard-to-solve
non-convex optimization problem to find the globally optimal policy
(cf. full paper).

Exogenous Shocks. Till now, we have been agnostic in our model
description as to the exact nature of the exogenous shocks to
the system, i.e., the per-round internal and external liabilities,
and external asset payouts. We assume that the environment is
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stochastic, i.e. the instantaneous assets and (internal and exter-
nal) liabilities induce uncertainty in the system in forms of a
disturbance. We denote the financial environment at round t as
U(t) = (b(1),e(t),{tij(t)}i je[n])- We assume that the environ-
ment is a Markov Chain:

AssuMPTION 3 (MARKOVIAN EXOGENOUs SHOCKS). The financial
environment U (t) is a Markov Chain, i.e. Pr[U(t) = u(¢)|U(t—1) =
u(t—=1),...,UQ1) =u(1)] =Pr[U@®) =u@®)|U(t - 1) =u(t - 1)].

The state space of U(¢) is denoted by U. It is easy to observe that
under Asm. 3 the sequence S(t) = (P(¢), ﬁ(t)) is a Markov Chain
(MC). More specifically, at time ¢ the only information needed to
determine p;;(t) is the instantaneous liabilities (which is a MC),
the action Z(t — 1) and the remaining liabilities from times t — 1,
therefore extra information from round 0 up to ¢ — 2 is redundant.
Since the external liabilities are also an MC and the sum of p;;(t)
only depends on the state of the system at ¢ — 1 then S() is a MC
based wrt to S(t — 1) and Z(¢ — 1). Also Eq. 2 depends only on
the state of the system at time ¢ — 1 and the calculated maximum
liabilities at the start of round ¢t therefore the optimal clearing
vector that occurs on the element-wise minimum of the RHS of the
inequalities of Eq. 2 is dependent on the previous state S(¢+ — 1) and
the action Z(t — 1). That defines a transition kernel 7, 7 ((s,z) —
')y =T(s"|s,z) =Pr[S(t) =s'|S(t — 1) =5, Z(t — 1) = z]. We also
denote the projection on (s, z) of the kernel (which is a distribution
itself) as 7 (+|s,z) = 752(+). The MC is also associated with an
initial distribution over the state space S(0) ~ 7. The state space
of the MC is denoted by S.

3 CONTINUOUS INTERVENTIONS

Given the above setting of networked interactions over time with
stochastic shocks, we can now formulate the problem of optimal dy-
namic interventions for maximizing various objectives as a Markov
Decision Process (MDP). In this section, we formalize this, and show
that when interventions are allowed to be continuous, the MDP
can be solved optimally for a wide range of objectives. Continuous
actions are however often infeasible in practice, and so in the next
section, we turn to the question of designing approximately-optimal
controllers given discrete actions.
Rewards & Objective. The stochastic reward incurred by a state-
action pair at time ¢ is R(t) = 17P(t). Note that here we can use
any function oflj(t) that is coordinate-wise strictly increasing due
to [13, Lemma 4] and get the same solution. Thus our framework
allows for the maximization of a large family of reward functions?
For simplicity, we have chosen R(t) = lTﬁ(t) since it corre-
sponds to a measure of how much money circulates in and out of
the network. The overall objective that is to be maximized is the
sum of rewards over a finite horizon [T],

T-1
[

R(S(1). Z() = TI(£,5(1)). U (1))]
4 @

T

max - Es(0)~m

—_

st. (2) Vte

2QOther possible reward functions can be, for example, R(v(t), S(t), Z(t),U(t)) =
oT () P(t) for some function v(¢) > 0. The analysis of the approximation algorithm
for these functions is similar to the one followed in [23].
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where IT : [T] X 8 — Z is a policy function. We also assume that
there are no accumulated debts and interventions from time ¢ < 0.
Welet r(s, z) = Ey () [R(S(t) =5, Z(t) =2, U(2))].

Value Function. We define the value function V1I(t, s) as the optimal
reward we can collect from time t onward, starting from state s
and applying policy II. The value function obeys the HJB equations
with respect to actions chosen from the action set, i.e. V(t,s) =
max,e 7 {r(s, z) + By [V(t+ l,s’)]}. In Fig. 2 we present an
example of an allocation scenario under our model for a toy dynamic
network with T = 2 periods.

Efficiently Computing the Optimal Value Function The above
MDP has a very high-dimensional state and action space (R*"T
and R"T respectively), so a priori it is unclear if it can be solved
efficiently. Surprisingly, we show below that we can exploit the
structure of the problem - in particular, the fact that the random
shocks are exogenous (Asm. 3), and the maximal clearing assump-
tion (Asm. 2) - to give a closed-form expression for the value function
as an expectation over the exogenous shock vector U(1 : T); more-
over, this also allows us to compute it efficiently (and thus find
near-optimal policies) via Monte Carlo estimation.

We now proceed to show how to calculate the value function
V(t,s) and the optimal policy Z*(t). First, it is easy to check that
given a realization of the random shocks u(t : T), the optimal
reward (and policy) can be written as a sequence of nested linear
programs. More surprisingly, we prove that we can exchange the
maximum and expectation operators in the value function due to
the structure of our model. Consequently, when the shocks are
generated randomly, we get that the value function (Thm. 1) can
be approximated by sampling N sample paths and then, for each
sample path u(¢ : T) solving a sequence of T —t + 1 linear programs.

Our algorithm (Alg. 1) is comprised of two routines: first,
Compute-Value-Function-Given-Sample-Path) takes as an in-
put a realization u(t : T) of exogenous shocks, a starting state
s(t — 1) = s, and budget constraints L and B and solves a sequence
of T — t + 1 nested linear programs, where the optimal solution at
round ¢ is fed to calculate the optimal solution at round ¢ + 1. The
second routine (Aggregate) takes as input a natural number N, the
budget constraints L and B, a financial environment U, and the
starting state s. The algorithm then samples N exogenous shock re-
alizations from U. Conditioned on any of the sample paths u; (¢ : T)
with i € [N], it calls the first routine to compute the sample value
function Vu,-( +T)- It aggregates all solutions estimates V(t,s):

THEOREM 1. Under Asms. ??, the following are true
(1) The wvalue function V(t,s) satisfiles V(t5) =
By (e1) [maxzbﬁt
{(1"pr+max,, 5 {1 P +max,, 5 A1 prea+... }}}]
and corresponds to solving a sequence of linear programs.
_ 272
(2) For N = w samples, ¢ > 0, and A =
supq (Ibll1 +11£1l1), Alg. 1 returns a solution V (1, s) such that
|V (t,5) — V(t,5)| < € with probability at least 1 — §.

4 DISCRETE INTERVENTIONS

We next focus on the problem of allocating discrete interventions.
For the discrete interventions problem, each node can be allocated
discrete resources up to some value L; € N. A simpler version of
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Figure 2: A contagion network over T = 2, with instantaneous internal liabilities ¢, external liabilities b, and external assets c
that are identical over the two rounds. The total budget is B = 2 at each round. The optimal allocation for t = 1is z*(1) = (2,0, 0T
in which case all nodes are able to cover their debts, and no liabilities are carried over from ¢ = 1 to ¢ = 2. Similarly, in t = 2 the
optimal intervention vector is z*(2) = (2,0,0)” and all liabilities are cleared. The value function equals R(1) + R(2) = 10.

Algorithm 1 Dynamic Clearing With Fractional Interventions

Compute-Value-Function-Given-Sample-Path(L, B, u(t : T), s)
(1) Given the initial state at round ¢ — 1 calculate A(¢) and P(t)
(2) Foreacht’ € [t,T]
(a) Letu(t') = (b(¢'),c(t’),vec({£:j (') }; je[n])) be the financial
environment.
(b) Let P*(¢'), Z*(¢') be the optimal solution to
maxp,r) 7, 17P(¢) subject to the dynamics of (2) and the
random shocks b(t"), c(¢'), {£ij (') }i je(n]-
(c) If t/ < T, use P*(¢') to calculate A(t'+1) and P(¢' +1).
(3) Return Vuer) = Zt’e[t,T] 1TP*(Z‘,),

Aggregate(N, L, B, U, s)

(1) Sample N i.i.d. sample paths {u;(t : T)};e[n] ~ U where a
sample path consists a realization of the environmenton T — ¢ + 1
periods.

(2) For every i € [N] compute

V; (#:7)= Compute-Value-Function-Given-Sample-Path (L, B, u; (:T), s)

(3) Return V(t,s) = & >N, Ve (6:T) -

the problem studied in [23] allowed the interventions to get two
distinct values {0, L;}. The analysis in this case is exactly the same
with the general case. The total budget is again B and does not
change with time as well. We refer the the action space of this
setting with Z; = {z € N" : ||z||; < B,0 < z < L}. Note that Z
defined on Sec. 3 corresponds to the fractional relaxation of Z.

We again seek to find the optimal policy which maximizes the
value function at round ¢t = 0, subject to the dynamics

P(t) P(t)

S(t) = (ﬁ(r)) - (P(t) A (ATO)F(t) +c(t) +Z(")) O

=V (S(),Z(1):S(t-1),U(2))

Again, when the round is clear from the context, we will use the
abbreviation ¥ (s, z) to denote the mapping with information up to
time ¢ acting on the state action pair (s, z), i.e., for all z we have that
s(z) = ¥;(s(z), ). Similarly to ®;, the operator ¥; is a contraction
according to Asm. 1. In [23, Theorem 1] it has been proven that
the same problem is NP-Hard for T = 1 by reduction from the Set
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Cover problem. Therefore, the problem in question is at least as
hard as the combinatorial optimization problem of [23]. Therefore,
we seek an approximate policy which yields an approximate value
function VSOL (¢, 5) such that VSOL (t,5) > (1 - y(t,5)) - VOPT (1,5)
for some y(t,s) € (0,1).

For the problem with T = 1 the work of [23] obtains a (1 —
Pmax)-approximation for the problem with a randomized rounding
algorithm where fmax is the maximum row sum of the relative
liability matrix. Because the matrix A will be different in both cases,
which would correspond to different clearing solutions. However,
note that a rounding regime that iteratively rounds the fractional
optimal solutions in a backward fashion will not yield correct results.
The reason is that a suboptimal action at round ¢ + 1 can affect the
optimal fractional action at round t.

Algorithm 2 Randomized Rounding

Sample-Interventions(L, B, u(¢: T), s)
(1) Until constraints are satisfied and the approximation guarantee is
not violated
(a) For every agent i € [n] sample (independent) interventions

Zr (¢:T)
zqi(t:7) ~Bin(”,L,~)
A L

(2) Return the value function Vlf(?é) = Yre[tT] 17P,4 (1) given the
calculated approximate (SOL) policy after calculating the clearing

payments Py(t:T).
Aggregate-Discrete(N, L, B, U, s)
(1) Sample N exogenous shocks {u;(¢:T)}jcn) ~ U
(2) For j € [N]
(a) Call Compute-Value-Function-Given-Sample-
Path(L, B,u;(t : T), s) and get the optimal fractional policy

zy(t:T).
(b) Calculate
ij(()t’jn = Sample-Interventions (L, B,u;(t : T), s)
>SOL _ N SO
(3) Return VSOL = ﬁ 21:1 V;,(tL;T)

The first idea on deriving an approximation algorithm for the
problem described is adapting the approximation algorithm pre-
sented in [23] to the dynamic setting: More specifically let t be a
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fixed round and s(t) be a fixed state at round ¢ and let u(t : T) be a
sample path for the random sequence U (¢ : T) from time ¢ onward.
Conditioned on the realization of u(t : T) the planner seeks to solve
the following deterministic problem

T
max V(e (65(0) = D R(s(t), 2(¢') = T(E,5(£)), u(t)

z(:T) =
st s(t) =W (s(t)), z(t),u(t),z(t') € Z4 ¥Vt €[t T].

We also consider the fractional relaxation where the decision

variables lie in Z. Let V;@LT) (¢, 5(t)) be the value that the approx-

imation algorithm produces, let VﬁE-LT) (t,5(t)) be the optimal so-
lution of the relaxation (i.e., when the interventions belong to Z)

and let Vu(%i %(t,s(t)) be the optimal solution. From optimality

we know that VIEPE (¢.5(1) > VUL (£.5(1). Since u(t = T) is
given, the optimal policy for the relaxed program consists of solv-
ing T — t + 1 LPs sequentially and finding the pair of the clearing
vector and optimal policy. We produce a rounded policy SOL that
corresponds to an allocation vector z;(t : T) randomly by rounding
the matrix 2y (¢ : T) of the optimal relaxed policy by rounding all
random variables z,4 ; (") as Binomial i.i.d. vectors on L; trials with
biases z:)i(t')/L,- forallt’ € [t,T].

THEOREM 2. Alg. 2 yields the following approximation
guarantee (on expectation): Eu(t:T)EZd(t:T)[VSOL(t,s(t))] >
(1 = 9 - ByepVOPT@s®)],  where y =
SUPy, (1.7) MaXy e[ 1,T],ic[n] Bi(t') is the worst-case financial
connectivity of a deterministic contagion network produced in the
environment space U.

Note that in the proof of Thm. 2, there is no dependence on the
states created by the rounded outcomes. Therefore, we can compare
and lower bound by the fractionally relaxed policy’s reward value at
each round t. Specifically, the proof of Thm. 2 lies in the observation
that under a realization of the financial environment, a default node
on the rounded solution can serve at least its external assets plus
the intervention it gets, so, in expectation, it can serve at least its
external assets plus the intervention of the fractional solution. For
the optimal solution of the fractional relaxation, we know [18, 23]
that for every S C [n], the sum of the external assets and the
fractional interventions over S is at least the sum of payments
weighted by the “negated” financial connectivities. Moreover, for
all the solvent nodes, the amount of payments they can serve is at
least the corresponding fractional payment weighted by the node’s
connectivity. Combining both observations, we get that the value
function of the rounded solution is at least a factor of 1 minus the
worst financial connectivity across (the remaining) rounds of the
optimal solution.

5 FAIRNESS IN INTERVENTION POLICIES

We say that an allocation is fair across the nodes if the intervention
each node gets “does not differ a lot from its neighbors”, whereas
the “neighborhood” of a node can be expressed in terms of the
existing financial network or can be expressed in terms of an aux-
iliary network as in [23]. In this way, we can measure fairness in
allocations in various settings. For instance, we can compare the
interventions between a node and all other nodes in the network,
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interventions between a node and its neighbors on the financial
network, and interventions between nodes belonging to different
population groups (such as minority groups). All fairness metrics
have to be scale-invariant, namely, do not change when the budget
provided changes from B to aB for some a > 0.

Driven by the above desiderata, we call an allocation rule
Z(1 : T) in the model fair if the allocations of a node do not
“differ much” from its neighbors. As a starting point, we consider
the Gini Coefficient [17] and generalize it accordingly to our model.
In detail, we measure the deviation between a node and its neigh-
bors on a graph sequence {H;},e[7] With weights w;;(t) > 0
(w;ji(t) = 0 foralli € [n],t € [T]), with the following measure
GC(t: Hy) = D eEH) Wi (D)1Zi(t)=Z;(t)]
Siein) Zi(0)(Z eim) (Wi (49055(0)))
sure of inequality is well defined: when all nodes get the same
allocations, it equals zero, and when one node gets all the alloca-
tions, it equals one. Examples of the sequence {H; };¢ 7] include:
(i) Setting w;;(t) = 1{i # j} yields the standard Gini Coefficient
(GC). Such a measure does not capture the topology of the problem
and aims to distribute interventions equitably.

(ii) Setting w;;(t) = a;jj(t), i.e., the weights between the nodes
represent the actual relative liabilities between such pairs of nodes.
This measure considers spatial interactions and the strength of ties
(i.e., the relative importance of liabilities) to distribute the resources.
We call this fairness constraint the Spatial Gini Coefficient (SGC).
A similar fairness measure has been considered in [23], yet their
measure is asymmetric.

(iii) If every node is associated with a sensitive attribute and g; () €
[0, 1] is the probability of the node having this sensitive attribute,
we can, for example, use w;;(t) = |q;(t) — q;(t))] - 1{ai;j(t) > 0} to
put high weights on adjacent pairs which deviate in this attribute.
For instance, g;(t) can represent the probability of a node belonging
to a minority group. Thus the weights would give importance to
mitigating inequalities between neighboring groups of minorities
and non-minorities. Moreover, if we want to enforce a stronger
version of fairness, we can consider w;;(t) = |q;(t) — q;(¢)], which
penalizes all deviations in allocations between nodes with high
deviations in their sensitive attribute. If more than one sensitive
attributes are present, the weights can be modified accordingly
to capture the average (or maximum) deviation of the attributes
between a pair of nodes. We call this coefficient the Property Gini
Coefficient (PGC).

This motivates the definition of a g(t)-fair allocation to be the
allocation policy Z(1 : T) for which GC(¢; Hy) < ¢(t) forallt € [T]
for some function g(1 : T) € [0,1] that does not depend on the
clearing payments and the interventions. In our experiments we use
g(t) = constant. This corresponds to the following additional linear
constraints on the action space for an additional set of decision
variables @(t) € RIEH) forall t € [T] we have

. Note that this mea-

@ij(t) 20 V(i, j) € E(H;)

() < 1Zi(H) = Z;(1)] V(i j) € E(Hy)

DL wiyMey) <g(t) Y (wi(t) + wii()Zi0).
(i.j)€E(Hy) i,je[n]

After imposing the fairness constraints, a question one might
ask is “How does the optimal value function without the fairness
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constraints compares to the optimal value function with fairness
constraints for any type of the (generalized) Gini Coefficient?”.

For this reason, we define the Price of Fairness (PoF) to be
E[OPT sans fairness]|

E[OPT with fairness] *
tional constrains compared to the no-fairness setting, the price of

fairness is always at least 1. In the static version, [23] proves that
under discrete allocations there exist instances where the PoF can
be unbounded, yet when the allocations are fractional the PoF is
always bounded. Subsequently, in the dynamic setting it is easy to
observe that the same result holds. Finally, in Sec. 6 we show how
incorporating further fairness constraints to the problem affects
the distribution of interventions in our datasets with respect to
the nodes’ clearing payments and we also give quantitative results
regarding the PoF.

Since the fairness-constrained setting has addi-

6 EXPERIMENTS

Datasets. We run experiments with a variety of datasets, including
synthetic networks, financial networks from various online settings,
as well as an application to a non-financial networked resource
allocation problem arising in ridesharing.

Synthetic Liability Network (Stochastic blockmodel). We generate a
network of n = 50 nodes and T = 10 rounds whereas the structural
graphs G; are drawn i.i.d. from an SBM with Core-periphery struc-
ture with 2 blocks of size ncore = 10 and nperiphery = 40 and edge
0()"365 06.315 . The internal liabilities and the
external liabilities are drawn i.i.d. from Exp(1), where the internal
liability between (i, j) at round ¢ is realized conditioned on the edge
(i, j) existing on Gy, and the asset vector is set to 0 for every time.
Online Financial Network (Venmo transaction data). We use publicly
available data (https://github.com/sa7mon/venmo-data) from pub-
lic Venmo transactions to form a dynamic transaction network.
The dataset is split into three distinct time periods: (i) July 2018 to
September 2018 (3.8M transactions) October 2018 (3.2M transac-
tions) January 2019 to February 2019 (167K transactions). For our
experiments we used the first period (July 2018 to September 2018)
as it was the period with the most transactions. The amounts of the
transactions are not provided in the data so we generate random
transactions and use the provided topology (see App. B for more
information). We have ignored data points for which the sender or
the receiver of the transaction were missing.

Physical Financial Network (Cellphone mobility data). We extend the
(static) version of the data processed from the SafeGraph platforms
in [23] to the dynamic setting. Due to space constraints we have
deferred the description and creation of the dataset to App. B.
Non-financial Allocation Network (Extra dispatches in ridesharing).
To demonstrates the applicability of our framework beyond finan-
cial networks, our final experiment looks at the problem of cre-
ating extra dispatches (for example, using autonomous vehicles)
in ridesharing networks to mitigate instantaneous demand-supply
imbalances. We use publicly available trip data from the NYC Taxi
and Limousine Commission (TLC). The TLC data are split in time
periods, with each entry containing the start time of a ride, and its
source and destination location IDs (corresponding to zones, e.g.
Washington Heights, East Harlem etc.). We build a temporal net-
work for Manhattan: nodes in the graph are rides between zones,

probability matrix (
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and the rest of the rides (to and from other boroughs) belong to
the external network. The time period corresponds to January 2021
and the T = 31 rounds correspond to different days. The edge
weights (instantaneous liabilities) are determined by the number of
rides requested from a zone to another (or to and from the external
network). See App. B for more information.

Interventions Experiments. We run experiments in two settings:
fractional and discrete interventions. For the fractional interven-
tion setting, we report the payments, cumulative reward, and in-
terventions for the datasets in question; since we solve the prob-
lem optimally we do not report any competing method. For the
discrete intervention setting, our method is similar in spirit to the
randomized-rounding algorithm of [23] for static allocations, which
has been shown to perform very well in practice, and in fact, outper-
form existing heuristics even in more limited settings (in particular,
binary action settings where the decision is to either to allocate or
not). In addition, [23] also presents a greedy hill-climbing algorithm
which under specific conditions gives an approximation guarantee.
However, this algorithm is designed for the binary setting, and so
it is unclear how one can extend the analysis to a dynamic setting
and a more general allocation rule.

In Fig. 3 we plot the the average clearing payments, the average
cumulative reward and the average fractional interventions for the
Synthetic Core-periphery data and the Venmo data together with
confidence intervals by averaging over 50 samples of the random
networks. We plot the clearing payments of the 5 most important
nodes (in terms of total payments).

Similarly, in Fig. 4 we plot the the average clearing payments, the

average cumulative reward and the average discrete interventions
for the TLC data and the SafeGraph data. The datasets here are
deterministically created (sec App. B).
Price of Fairness Studies. To induce fair allocations (in the frac-
tional case) we run Alg. 1 with the constraints of Sec. 5. In Tab. 1,
we run experiments with the fairness constraints where we con-
strain the Spatial GC and the Standard GC to be at most g(t) = 0.5
at all times for different values of the budget B (per dataset). We
report the PoF for the corresponding experiments in Tab. 1. For
the datasets that involve randomness, we take the average over 50
independent runs.

Tab. 1 indicates that all fairness measures achieve a PoF that is
very close to 1 in all datasets. This indicates that, generally our
allocation algorithm can respect algorithmic fairness constraints
with a very small cost on the total welfare.

Insights from Experiments. Due to space constraints, we give
a chosen subset of data from our experiments (see full paper for
more experiments).

In Fig. 5 we present the relationship between the fractional
interventions and the clearing payments for the Synthetic Core-
periphery dataset and the Venmo dataset. We plot the relationship

Fairness Constraint Synthetic  TLC  Venmo  Safegraph

Budget B 50 100 50 500K
Spatial GC (w;; (¢) = a;;(t)) 1.001 1.007  1.019 1.037
Standard GC (w;;(¢) = 1{i # j})  1.011 1.009  1.017 1.102

Table 1: Price of Fairness. The payments and allocations can
be found at Fig. 5. We set g(t) = 0.5.
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Figure 3: Fractional interventions in financial networks based on the stochastic blockmodel (a-b) and Venmo data (c-d).
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Figure 4: Figs (a-b): Interventions (extra dispatches) in ridesharing (January 2021 NYC data; we report 5 busiest neighborhoods).
Figs (c-d): Discrete interventions in a financial network (based on SafeGraph Data, December 2020-April 2021).
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Figure 5: Total payments of nodes vs. total interventions received (under financial networks based on the Stochastic Blockmodel
and Venmo transaction data): We use L = B - 1. SGC = Spatial Gini Coefficient, GC = (Standard) Gini Coefficient. Constraining
the GC/SGC to be at most g(t) = 0.5 the R? drops since the interventions are distributed “more equally” between the nodes, i.e.
“more central” nodes get a lower amount of bailouts when fairness is imposed).

between the average total interventions and the network charac-
teristics subject to fairness (g(¢) = 0.5) and no-fairness (g(t) = 1)
constraints. For the fairness constraints, we consider the Spatial
Gini Coefficient (SGC) and the (Standard) Gini Coefficient (GC). We
fit an ordinary least squares model to the points and a robust linear
model via iteratively reweighted least squares with Huber’s T crite-
rion. For the Venmo data, we observe a good positive correlation
(R? = 0.61) between the interventions and the payments. This is
suggestive of the fact that nodes that are generally bailed out are
central in the system, so bailing them out benefits the connections
they have. When fairness constraints are applied, R? decreases since
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the fairness constraint balances interventions between adjacent
nodes (in the case of SGC) and all nodes (in the case of the Standard
GC) which may itself result in nodes that are less important to
the contagion process getting high interventions. For the synthetic
Core-periphery data, core and periphery nodes are well-separated
on the plots’ “left-hand” and “right-hand” sides. We also observe
that when we constrain the Standard GC to be at most 0.5 the R?
drops since the interventions are distributed “more equally” be-
tween core and periphery nodes, which results in more central (i.e.
core) nodes receiving a lower amount of bailouts.
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A PROOFS

Proof of Thm. 1. Base Case t’ = T. Let fT be the PDF of U(T). We
have that

V(T,s) = 17
(T,s) max z<fT P

zZE

= max/ fr(w) giax 175 (u)du
zeZ JUY

= max lim Zf(u,)Aul max 1 p(u,)

zeZ N—oo u;)fpz
=max lim max

z€Z N—oo (pu)T,.p(un) 1) Tp(2T,...2T)T i€[N].je[n]
fui)Auipj(u;)

= li NAw D (wi
NS0 (1) T () YT Bp (27 )T 2, funuip ()

:/ fr(u) max lTﬁ(u)du
u z,p(u)
= EU(T) [ma} lTﬂ.

z,p

The equalities follow from: (i) definition of expectation, (ii) push-
ing the maximization wrt s inside since z is fixed, (iii) definition
of Riemannian integral, (iv) the N optimization problems being
decoupled since z is fixed and thinking of the optimization as a
large problem with a state vector of dimension 2X N Xn, (v) pushing
the optimization inside the limit (rewards are bounded regardless
of the value of N and the corresponding mappings are continuous),
(vi) definition of integration, and (vii) definition of the expected
value.

Inductive Hypothesis. Assume that for £’ = t + 1 we have that

Tx T+
V(t+1,s¢) = EU(t+1:T) [maxztﬂﬁm {1 pt+1+maxzt+2’§”2{l Pr+at

MaXz, 5. Pres {1T§t+3 +... .
Inductive Step. For t’ = t we have that

V(t,st) = max {r(st,zt) + B, ~T(sp,z0) [V (E+ l,st+1)]}
t

= max By ;) | max 15t + By (r11) [ max {17 pre1+
t e

Zt+1,Pt+1

max (1prg+ max {17pas+.. }}}]

Zt+2:Pt+2 Zt+3:Pt+3

= maXEU(t T)[max{l pr+ max {1 D1t
Zt+1 Pt+l

max (17prp+ max {17+ 1|

Zrs2,Pre2 Zt43:P1+3

=Ey (s [ma 175+
U(+T) prf{ Dt

max (1Tpro+ max (1o +.. 1.

Zrs1,Pr+1 Zrs2:Pt+2
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The equalities follow from: (i) the HJB equations, (ii) the induc-
tive hypothesis, (iii) the fact that the maximization over p; is inde-

pendent of the sample paths from round ¢ + 1 onwards and thus we
can reorganize the expectations into one expectation over sample

paths U(t : T) ~ U, (iv) identically to the base case argument.

At any point, with probability 1, the value functions V,,; (;.1) are
between 0 and Y, 17 (b(¢) + £(t)) < (T —t + 1) - A, where A =
supqy (|Ibll1 + [|£]l1) since the maximum reward can be achieved

when all debts are paid and all nodes are solvent. Thus, by standard

Chernoff bounds, one needs to choose N = w

samples to get an e-accurate estimation of the actual value functlon
with probability at least 1 — 8.

[m}
Proof of Thm. 2. Approximation Guarantee. Let D;(t") and Ry (')
are the sets of default nodes and solvent nodes under discrete inter-
ventions at round ¢’. We have that

(1) If i € Dy(t') we have that Ezd(t:T) [ﬁd,i(t’)“ € Dy(t")] =
ci(t') + zj’i(t’).

(2) If i € Ry(t") we have that E,, (p.7)[pa;(t")|i € Rg(t')] =
Ezp(emy[pai(t)Ni € Ry(t)] = Byy(rr) [ Zpr<r (bi(¥) +
G(t") = Zpr<r Pai(t")] 2 By [Zer<r (bi(t’) +
G(t") = Zor e Pyt = Bayuery Lpra(0)] = B, () >
(1 - max;e(y,) ,Br,,-(t’))ﬁfji(t’). The statement follows from:
(i) definition of solvent node in the rounded solution, (ii) re-
cursively using the definition of pg; (") forall 1 < t” </,
(iii) point-wise optimality of the fractional clearing vec-
tor, (iv) definition of the solvency constraint for the frac-
tional relaxation, (v) feasibility of the fractional solution, (vi)
max;e[p] fri(t") > 0by Asm. 1.

Moreover, by [23] we know that for every subset S C [n] we

have that the fractional solution satisfies

(l —maxﬁ”(t )) Zp“ Z [Ci(t’) +Z:,i(t’)] . (6)

ieS jes

By letting S = Dy (t’) on Eq. 6 and since max;ep, (1) Bri(t') <
maX;e[n] Br.i(t') we have that

(1 ~ max ﬁm—(ﬂ)) P EEDY [ci(t') + z;‘,i(t')] .
et ieba(t)  jeDa(t)

Moreover, pri(t') 2 (1) 2 (1= maxicpn) Bri(t)) B, (1)
where the second inequality is due to feasibility and the last in-
equality is because we multiply with a quantity that is strictly in
(0, 1). Therefore we have that the expected reward of the rounded
solution at time ¢’ is at least (1 — max;e[p] Br.i(t’ )) the optimal re-
ward, i.e B, (,.7) [R(s(t'), 2(t") = SOL)] > (1-max;e[p] Br.i(t'))-
R(s(t"),z(t') = OPT) V' € [t,T]

We sum over ¢t/ € [t,T] to conclude that
Ezoem) V(i) (65()] = Brvefe1) Boyem) [RG(1). 2(t) - =
SOL)] 2 (1 - maxye[sT)ic| ﬂrl(t ) - Vo(f%(t s(1)).

Taking expectation with respect tou(t:T) ~U(t:T)and using
Holder’s inequality we arrive to the desired result.
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Ezy (61 u(em) VIO (£5(1))]
OPT
> By |1 - max, max Bi(t") | Vi) (5 ()]

= Euu;n[vo T<t s(t)]-
Eu(t:T)[ u(t T) (t, s(t)) max max ﬁl(t )|

e[t,T] i€
Holder
> By [VOPT (1 s(1)]-
E, .. [IVOET. (1, s(t t
w(ery LIV (85 >)||1]us1;p) juex | max Bi(t)
Vzo

=" By [VOPT (1,5()]-

VOPT (¢ s(¢ t
Euer) [ (t,s( ))]uiltll;)t/ren[%] lrél[a;(]ﬁl( )

= (1 — sup { max  max f;(t’ )}) ‘Buem) [VOPT(t,S(t))].

u(t:T) \t'€[tT]ie[n]
O

B DATASETS

Ridesharing. We construct an instance of the dynamic clearing
problem as follows:

(1) We define the network as rides between locations at the same
borough (this can be extended to include rides from different
boroughs; but here we focus on one borough for clarity of
exposition).

(2) The data is split into non-overlapping frames that correspond
to some duration. For exposition clarity we have used 1-day
intervals. Again, here we can use smaller intervals (e.g. 5min)
to represent demand for rides realistically.

(3) We define ¢;(t) as the total number of rides from location i
to location j at timestamp ¢.

(4) We define b;(t) to be the total number of external (outbound)
rides requested from location i to outside of the borough.

(5) We define c;(t) to be the total number of internal (inbound)
rides requested for location i from outside the borough.

Venmo Transaction Data. We construct the dynamic contagion
instances as follows:

(i) The timestamps are grouped in a weekly basis according to
which year and week of the year they correspond to.

(ii) For the whole dataset (corresponding to the July-September
2018 period), we create 2 sets: V1 and V. V; corresponds to the
top-100 nodes in terms of the number of incoming transactions,
and V, corresponds to the top-100 nodes in terms of the number of
outgoing transactions. As the vertex set we use V.= V; U Va.

(iii) We count the transactions between nodes of V, as well as the
transactions from V to the outside system, and from V to the inside
system for each round (week of the year 2018). For nodes with zero
outgoing transactions we add one transaction.
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(iv) We create random liabilities as follows

£;j(t) = 1{# of transactionsi — jat round t is > 0}
X Gamma(# of transactionsi — jat round t, 1),
Vi, j € [n],t € [T]

bi(t) = max{1, Gamma(# of transactions from i to outside, 1) },
Vi€ [n],t € [T]

¢ (t) = 1{# of transactions from outside to i is > 0}
X Gamma(# of transactions from outside to i, 1),
Vie [n],t € [T].

Note that for b;(t) we assert a positive value in order for Asm. 1 to
hold.
Cellphone Mobility Data. We use mobility data from the Safe-
Graph platform spanning the period of December 2020 to April
2021. The static version of the data (i.e. with one round) has been
introduced in [23]. Our paper extends the experiment to the multi-
period setting, resulting in five financial networks each one of
which for each month of the period of December 2020 to April 2021.
SafeGraph offers insights on mobility patterns of people between
Census Block Groups (CBGs) and Points of Interest (POIs), such
as grocery stores, fitness centers, and religious establishments. We
create a sequence of bipartite liability networks with monthly gran-
ularity between CBGs and POIs using the mobility data as a proxy
to create liabilities. Roughly, given an initial pair of coordinates
(latitude and longitude) we identify k-nearest neighboring CBGs
and, subsequently, the POIs that these CBGs interact with. Each
POI contains data from the visits of unique mobile devices from the
corresponding CBGs, where we assume that each distinct device
represents a unique person. SafeGraph also logs data about the
dwelling time of devices, namely for how long each device stays
in a POI, which we use to classify the visitors to two categories:
customers and employees. For the employees, we add a financial
liability that corresponds to the average monthly wage of such
an employee for the corresponding POI as it is determined by its
NAICS code. For the customers, we add edges from the correspond-
ing CBGs to the POIs with value being the average consumption
value for the specific POI category (given by the POI's NAICS code)
as it is defined by the U.S. Economic Census. For each CBG node,
we estimate the average size of households per CBG, the average
income level and the percentage of people that belong to a minority
group, which we use in order to estimate the assets and liabilities
(internal and external) of CBGs. For the interventions of CBGs we
use the US Cares Act rules to determine the interventions. Regard-
ing the POl interventions we used data from loans provided in April
2020 as part of the SBA Paycheck Protection Program (PPP) and
impute the interventions of the nodes that do not have intervention
information. The processed data was calibrated similarly to [23] to
reflect the specific interaction between POIs and CBGs across the
different time spans.

The full paper contains extensive information on how to build
the network, and determine c;(t), b; (t), £;j(t) and L; for each round
t, which has been omitted due to space constraints.
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