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ABSTRACT

We study the problem of designing dynamic intervention policies

for minimizing cascading failures in online �nancial networks,

as well we more general demand-supply networks. Formally, we

consider a dynamic version of the celebrated Eisenberg-Noe model

of �nancial network liabilities, and use this to study the design of

external intervention policies. Our controller has a �xed resource

budget in each round, and can use this to minimize the e�ect of

demand/supply shocks in the network. We formulate the optimal

intervention problem as a Markov Decision Process, and show

how we can leverage the problem structure to e�ciently compute

optimal intervention policies with continuous interventions, and

give approximation algorithms in the case of discrete interventions.

Going beyond �nancial networks, we argue that our model captures

dynamic network intervention in a much broader class of dynamic

demand/supply settings with networked inter-dependencies. To

demonstrate this, we apply our intervention algorithms to a wide

variety of Web-related application domains, including ridesharing,

online transaction platforms, and �nancial networks with agent

mobility; in each case, we study the relationship between node

centrality and intervention strength, as well as fairness properties

of the optimal interventions.
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1 INTRODUCTION

Motivation. The world consists of interconnected entities that

interact with one another in the form of networks. Networks ex-

perience shocks due to adverse scenarios, such as (partial) fail-

ures of nodes and edges. When exogenous shocks hit networks,

such shocks propagate through the edges of the network, causing

cascades that may a�ect a signi�cant population of nodes in the

network. This phenomenon is known as network contagion, and a

particularly interesting category of networks that undergo conta-

gion are �nancial networks. In �nancial networks, �nancial entities,

such as individuals, businesses, and banks have liabilities to one

another as well as assets which can be attributed either internally,

i.e., within the �nancial network in question, or externally, i.e.,

outside the �nancial network. It is often the case that the entities

within these networks do not have adequate means to pay o� their

�nancial obligations, so they become default [13, 18]. A planner

acts as an external force and is responsible for (optimally) allocat-

ing resources, also known as interventions (or bailouts) subject to

budget constraints so that defaults are averted [1, 9, 22, 23].

When modeling and studying such networked interactions,

much of the literature assumes the interactions are static [12, 14,

15, 18, 20, 22–24]. However, in many situations, networked interac-

tions evolve, subject to an uncertain environment, and where the

planner’s interventions at some point in time a�ect the state of

the system in future times, resembling the dynamics in queuing

network models [2, 21], or epidemics [4, 8, 10, 11, 19]. So far, lim-

ited attention has been given to contagion processes that evolve

dynamically: First of all, such approaches have either been consid-

ered in limited settings of a �nancial system together with speci�c

strategies for the mitigation of systemic risk that do not fall under

an intervention regime [6, 7, 16], or are based on di�erent modeling

assumptions and are computationally more intensive [3].

Moving beyond contagion in �nancial systems, we argue that our

models have a much broader scope across a variety of Web-based

applications. In particular, with small modi�cations, our model and

algorithms can apply to resource allocation problems arising in

ridesharing, ad placement, in�uence maximization, allocation of

computational resources, and contagion in digital �nancial transac-

tion networks, to name a few. At a high level, our framework can

handle settings that can be modeled as a supply/demand network,

subject to defaults, and where the demand is proportionally split

between neighbors of a node upon its default. Consequently, we

hope our ideas can �nd wider usage in other such settings.

A Model for Dynamic Interventions in Networks.We study

networks subject to a contagion process over time, with the system’s

current state and interventions a�ecting its future state due to
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the accumulation of liabilities at nodes. Our model extends the

static Eisenberg-Noe model [13] of contagion to a dynamic setting

with the accumulation of liabilities. The network is overseen by an

external regulator, who has limited resources to try and intervene

to stop a contagion. Designing such intervention policies, however,

requires leveraging both spatial and temporal information.

We initially study the design of an optimal fractional intervention

policy, which is a computationally tractable problem (assuming

that the system responds optimally at every round). Next, we study

the allocation of discrete resources, a computationally intractable

problem whose static version has been studied in [23]. Here, we

design approximate discrete intervention policies that are based on

the fractional intervention policy. Note that the concurrent work of

[5] studies dynamic interventions under the Eisenberg-Noe model

only in the case where the rationing of payments among agents is

constant (i.e., does not vary with time), which is a particular case

of our framework.

Interventions in General Demand-Supply Networks.While

our models are motivated by (and build on) existing models of

liabilities and defaults in �nancial networks, we posit that these

models and the corresponding resource allocation problems can

extend far beyond this setting to account for many applications on

theWeb. One place where such a clearingmechanism can be utilized

is in ridesharing [2] (Uber, Lyft, etc.). The nodes of the network

represent neighborhoods of a city, the external world represents

suburban areas of the city, and the internal liabilities between nodes

represent the number of rides requested from a neighborhood 8

to a neighborhood 9 . The external liabilities (resp. external assets)

correspond to rides requested from a neighborhood 8 to suburban

areas (resp. rides from the suburban areas to a neighborhood 8).

The interventions correspond to additional supply (for example,

autonomous vehicles) that can be dispatched to any neighborhood.

Assets represent available vehicles, and shocks represent adverse

scenarios such as tra�c jams. Similarly, in a computing cluster, nodes

represent compute nodes, and liabilities represent the amount of

computing that can be displaced to adjacent nodes; assets represent

available computing power at each node, shocks represent failures

of computing resources, and interventions represent allocations of

backup resources to the existing centers (which can also be utilized,

e.g., because of high demand).

More generally, any problem that corresponds to a supply and

demand network that evolves at which, when the corresponding obli-

gations of the node cannot be met in full, they should be distributed

proportionally towards the nodes that demand the corresponding

resources. A planner seeks to allocate resources in this environment

subject to a budget constraint can be captured by our framework.

Our framework can support the maximization of a variety of ob-

jectives. In this paper, we focus on a particular objective function.

However, the solutions produced are equivalent to every strictly

increasing objective. For discrete interventions (where the problem

becomes NP-Hard), we provide approximation guarantees of the

computed solution concerning the optimal solution that works un-

der realistic monotonicity assumptions. As a result, our dynamic

contagion framework is suitable for resolving resource allocation

problems in a variety of domains (both through the lens of fractional

and discrete allocations); �nancial transaction networks (physical

Figure 1: Schematic representation of our problem setting.

or on the Web [e.g., Venmo, cryptocurrencies]), ridesharing, high-

performance computing, ad-placement, to name a few.

Our Technical Contributions. Formally, we study the problem

of optimally allocating (fractional and discrete) resources subject

to (i) contagion e�ects and (ii) an uncertain environment, i.e., an

environment that experiences �nancial shocks. We generalize the

model of Eisenberg and Noe [13] to discrete time as a Markov Deci-

sion Process (MDP) and formulate the optimal intervention problem

(Sec. 2). The resulting MDP is very high-dimensional; nevertheless,

we show how we can leverage the problem structure to compute

near-optimal intervention policies for continuous interventions

e�ciently. Moreover, under discrete interventions, we demonstrate

how the planner can use the above continuous intervention poli-

cies to derive heuristic control policies with formal approximation

guarantees (Sec. 4). In addition, our framework also supports the

incorporation of additional fairness constraints (based on general-

izations of the Gini Coe�cient) for the distribution of the resources

such that interventions are more equitable across nodes; surpris-

ingly, we also show that incorporating such objectives has little

e�ect on the welfare objective in our setting. We supplement our

theoretical results with experiments (Sec. 6) on real-world data from

the Venmo transaction platform, semi-arti�cial data from mobility

patterns, real-world data for ridesharing applications from New

York City’s Taxi and Limousine Commission, and synthetic data

with core-periphery structure1.

2 SETTING

Notation. We use [=] to denote the set {1, . . . , =}. For vectors

(resp. matrices), we use ∥G ∥Ħ for the ?-norm of G (resp. for the

induced ?-norm); for the Euclidean norm (i.e., ? = 2), we omit the

subscript. 0 (resp. 1) denotes the all zeros (resp. all ones) column

vector, and 1ď represents the indicator column vector of the set

( . We use G ' ~ (resp. G ( ~) as shorthand for the coordinate-wise

minimum (resp. maximum) of vectors G and ~. For a given vector

G , we use the array notation G (8 : 9) to denote a sub-vector of G

from Gğ to G Ġ (inclusive range). Finally order relations g, f, >, <

denote coordinate-wise ordering.

System Model (see Fig. 1). The model we study is a natural dy-

namic extension of the Eisenberg-Noe model [13]. The system con-

sists of = entities [=], connected via a dynamic network, where each

directed edge (8, 9) denotes that entity 8 owes a liability to entity 9 .

At the start of each (discrete) round C , new internal liabilities

ℓğ Ġ (C) g 0 get generated in the system. Moreover, let %̃ (C − 1)

denote the clearing vector from round C − 1, i.e., each agent clears

%̃ğ (C − 1) ∈ [0, %ğ (C − 1)] of its liabilities in round C − 1 where

%ğ (C − 1) are the total liabilities in round C − 1. The rest of the

1Code: https://github.com/papachristoumarios/dynamic-clearing
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liabilities are getting forwarded in time. In accordance with the

proportional clearing rule of the EN model, we have that the same( )˜
fraction 1

Č
− ğ (Ī−1)
Č (Ī− )

of each of agent 8’s liabilities are cleared.
ğ 1

Thus, the total liability between 8, 9 ∈ [=] at the start of round C (i.e.,

before clearing) is given by
( )

1 1
%̃ğ (C − 1)

?ğ Ġ (C) = ℓğ Ġ (C) + ?ğ Ġ (C − ) · − ,
%ğ (C − 1)

In addition, agents also experience external liabilities∑ 1ğ (C) > 0,

generated at the start of each round C . Let ℓğ (C) = )Ġ∈[ (Ĥ] ℓğ Ġ C ;

then the total liabilities owed by 8 at the start of round C are % C =∑ ğ ( )

1ğ (C) + ∈[ ] ?ğ Ġ (C) = 1ğ (C) + ℓğ (C) + (%ğ (C − −Ġ 1) − ˜ (Ĥ %ğ C 1)) > 0.

This induces the liability network in round C , with the (weighted,

directed) relative liability matrix�(C) given by
Ħ

0 (C) = ğ Ġ (Ī ) . Now∑ ğ Ġ Čğ (Ī )

let Vğ (C) = Ġ∈[Ĥ] 0ğ Ġ (C) denote the fractional internal liability

for any node 8 , and V (C) the vector of these internal liabilities.

Throughout the rest of the paper we assume the system has non-

vanishing external liabilities, i.e., that the following holds for �(C):

Assumption 1 (Non-vanishing external liabilities).

=
Đ∥V (C)∥∞ ∥� (C)∥1 < 1 for all C ∈ [) ]

In order for the overall system to clear their liabilities (in par-

ticular, given there are always external liabilities), the EN model

assumes that each agent 8 has some additional “assets” 2ğ which

can contribute to clearing their liabilities. In the same vein, in a

dynamic interaction setting, we assume each agent has external

assets (or “revenue streams”), which in each round C provide an

instantaneous revenue 2 (C) = {2ğ (C)} gğ∈[Ĥ] 0. Now, as in the EN

model, the clearing vectors %̃ (C) g 0 must satisfy the following

zero-input dynamics constraints

%̃ (C) f % (C) = 1 (C) + ℓ (C) + % (C − 1) − %̃ (C − 1) (1a)

%̃ Đ(C) f � (C)%̃ (C) + 2 (C) (1b)

We refer to �rst constraint (Eq. 1a) as the solvency constraint, since

if for some node 8 it holds with equality, it means that this node

is able to repay its debts in full. We refer to the second constraint

(Eq. 1b) as the default constraint, since when it holds with equal-

ity for some node 8 ∈ [=], this means that 8 partially repays

its debts proportionally to its creditors. Finally, clearing vectors

are always non-negative. Note by de�nition the bounds in Eqs.

?? are non-negative; we can thus compress these constraints as

%̃ (C) ∈ [0, % (C) ' (�Đ (C)%̃ (C) + 2 (C))].

Dynamic Control. Until now, we have assumed that all inputs (in-

ternal/external liabilities, and external asset values) are exogenous.

We now augment this model with an additional centralized con-

troller, who is provided with some resource budget in each round,

and can allocate this budget to try and minimize defaults.

Actions. Consider a controller (or planner) who has access to a

bounded amount of resource� g 0 at each round, and seeks to inject

this into the network (i.e. allocate a fractional quantity /ğ (C) g 0 to

each agent 8 subject to the constraint 1Đ/ (C) f �). The per-round

allocation / (C) may be subject to additional bounds / (C) f ! for

some given maximum allowed allocation vector !; ignoring this

is equivalent to letting ! g 1�. Therefore, the action space Z is

given byZ = {I ∈ RĤ : ∥I∥1 f �, 0 f I f !}. We always assume

the policy function / (C) is Markovian.

State transitions. Eq. 1 can be modi�ed to incorporate allocations

/ (C) to get

%̃ Đ(C) ∈ [0, % (C) ' (� (C)%̃ (C) + 2 (C) + / (C))] (2)

1Đ/ (C) f �, / (C) ∈ [0, !]

Note that in the above equations, �(C) is implicitly a function of

% (C), and consequently, this makes the constraints non-linear. In the

full paper, we show that the necessary and su�cient condition for

the set of allocations satisfying Eq. 2 to be convex (in %̃ (1 : ) ), / (1 :

) )) is that the relative liability matrix �(C) is constant over time

(which makes the dynamics linear; see also the concurrent results

of [5]).

Next, given the current state % (C), exogenous input 2 (C), and

action / (C), a natural ‘maximal’ choice of the clearing vector %̃ (C)

is for it to be the �xed point of the system
( ) ( )
% ( % ((C) C) )

( (C) = ↦→
%̃

.
C) % Đ (3)
( (C) ' � (C)%̃ (C) + 2 (C) + / (C)

︸                                         ︷︷                                         ︸
=¨(ď (Ī ),Ė (Ī ) ;ď (Ī−1),đ (Ī ) )

When the round is clear from the context we will use the abbrevi-

ation ¨Ī (B, I) to denote the mapping with information up to time

C acting on the state action pair (B, I), i.e. for all I we have that

B (I) = ¨Ī (B (I), I). Under Asm. 1, we can use the Banach �xed-point

theorem to assert that this has a unique solution (since ¨Ī is a con-

traction with respect to B for a given I; see [18]). We henceforth

make the following assumption on the agents’ response

Assumption 2 (Maximal clearing). In each round C , the agents

maximally clear their liabilities, i.e., with %̃( (C) as) the unique �xed

point of %̃ C Đ( ) = % (C) ' � (C)%̃ (C) + 2 (C) + / (C) .

The above condition, taken from the ENmodel, is standard in the

�nance literature – it imposes a natural requirement that agents try

and clear liabilities as soon as possible, subject to the proportional

clearing rule. If one wants to maximize �ows (or minimize defaults),

one may be tempted to think that this is without loss of generality.

In the context of dynamic external interventions, however, this

is not the case; one can create examples where dropping this as-

sumption leads to higher overall rewards. These settings however

are somewhat extreme, and it may be possible to eliminate them

via other assumptions. In the full paper we exhibit one such natu-

ral regime; �nding more general conditions remains a challenging

direction for future work.

This is a reasonable assumption since natural agents do not

usually have knowledge of their future, have limited memory, and

are not usually able to respond in a globally optimal way, given

a realization of the sample path. From a mathematical viewpoint,

lifting Asm. 2 leads to non-convexities which yields a hard-to-solve

non-convex optimization problem to �nd the globally optimal policy

(cf. full paper).

Exogenous Shocks. Till now, we have been agnostic in our model

description as to the exact nature of the exogenous shocks to

the system, i.e., the per-round internal and external liabilities,

and external asset payouts. We assume that the environment is
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stochastic, i.e. the instantaneous assets and (internal and exter-

nal) liabilities induce uncertainty in the system in forms of a

disturbance. We denote the �nancial environment at round C as

* (C) = (1 (C), 2 (C), {ℓğ Ġ (C)} )ğ, Ġ∈[Ĥ] . We assume that the environ-

ment is a Markov Chain:

Assumption 3 (Markovian Exogenous Shocks). The �nancial

environment* (C) is a Markov Chain, i.e. Pr [* (C) = D (C) |* (C − 1) =

D (C − 1), . . . ,* (1) = D (1)] = Pr [* (C) = D (C) |* (C − 1) = D (C − 1)].

The state space of* (C) is denoted byU. It is easy to observe that

under Asm. 3 the sequence ( (C) = (% (C), %̃ (C)) is a Markov Chain

(MC). More speci�cally, at time C the only information needed to

determine ?ğ Ġ (C) is the instantaneous liabilities (which is a MC),

the action / (C − 1) and the remaining liabilities from times C − 1,

therefore extra information from round 0 up to C − 2 is redundant.

Since the external liabilities are also an MC and the sum of ?ğ Ġ (C)

only depends on the state of the system at C − 1 then ( (C) is a MC

based wrt to ( (C − 1) and / (C − 1). Also Eq. 2 depends only on

the state of the system at time C − 1 and the calculated maximum

liabilities at the start of round C therefore the optimal clearing

vector that occurs on the element-wise minimum of the RHS of the

inequalities of Eq. 2 is dependent on the previous state ( (C − 1) and

the action / (C − 1). That de�nes a transition kernel T , T ((B, I) →

B′) = T (B′ |B, I) = Pr [( (C) = B′ |( (C − 1) = B, / (C − 1) = I]. We also

denote the projection on (B, I) of the kernel (which is a distribution

itself) as T (·|B, I) = Tĩ,İ (·). The MC is also associated with an

initial distribution over the state space ( (0) ∼ c0. The state space

of the MC is denoted by S.

3 CONTINUOUS INTERVENTIONS

Given the above setting of networked interactions over time with

stochastic shocks, we can now formulate the problem of optimal dy-

namic interventions for maximizing various objectives as a Markov

Decision Process (MDP). In this section, we formalize this, and show

that when interventions are allowed to be continuous, the MDP

can be solved optimally for a wide range of objectives. Continuous

actions are however often infeasible in practice, and so in the next

section, we turn to the question of designing approximately-optimal

controllers given discrete actions.

Rewards & Objective. The stochastic reward incurred by a state-

action pair at time C is '(C) = 1Đ %̃ (C). Note that here we can use

any function of %̃ (C) that is coordinate-wise strictly increasing due

to [13, Lemma 4] and get the same solution. Thus our framework

allows for the maximization of a large family of reward functions2

For simplicity, we have chosen '(C Đ) = 1 %̃ (C) since it corre-

sponds to a measure of how much money circulates in and out of

the network. The overall objective that is to be maximized is the

sum of rewards over a �nite horizon [) ],

Đ∑−1
max Eď (0)∼ [ ( ( ) ( ) ( ( )) ( ))]ÿ ' ( C , / C = Π C, ( C ,* C

0
Π (4)

Ī=0

s.t. (2) ∀C ∈ [) ]

2Other possible reward functions can be, for example, Ď (Ĭ (Ī ), ď (Ī ), Ė (Ī ),đ (Ī ) ) =

ĬĐ (Ī )Č̃ (Ī ) for some function Ĭ (Ī ) > 0. The analysis of the approximation algorithm
for these functions is similar to the one followed in [23].

where Π : [) ] × S → Z is a policy function. We also assume that

there are no accumulated debts and interventions from time C f 0.

We let A (B, I) = Eđ (Ī ) ['(( (C) = B, / (C) = I,* (C))].

Value Function.We de�ne the value function+ Π (C, B) as the optimal

reward we can collect from time C onward, starting from state B

and applying policy Π. The value function obeys the HJB equations

with respect to actions chosen from the action set, i.e.{ } + (C, B) =

max ′
∈Z A (B )İ , I) + Eĩ′∼T [

ĩ,İ
+ (C + 1, B ] . In Fig. 2 we present an

example of an allocation scenario under ourmodel for a toy dynamic

network with ) = 2 periods.

E�ciently Computing the Optimal Value Function The above

MDP has a very high-dimensional state and action space ( 2
R
ĤĐ

and RĤĐ respectively), so a priori it is unclear if it can be solved

e�ciently. Surprisingly, we show below that we can exploit the

structure of the problem – in particular, the fact that the random

shocks are exogenous (Asm. 3), and the maximal clearing assump-

tion (Asm. 2) – to give a closed-form expression for the value function

as an expectation over the exogenous shock vector * (1 : ) ); more-

over, this also allows us to compute it e�ciently (and thus �nd

near-optimal policies) via Monte Carlo estimation.

We now proceed to show how to calculate the value function

+ (C, B) and the optimal policy / ∗ (C). First, it is easy to check that

given a realization of the random shocks D (C : ) ), the optimal

reward (and policy) can be written as a sequence of nested linear

programs. More surprisingly, we prove that we can exchange the

maximum and expectation operators in the value function due to

the structure of our model. Consequently, when the shocks are

generated randomly, we get that the value function (Thm. 1) can

be approximated by sampling # sample paths and then, for each

sample pathD (C : ) ) solving a sequence of) − C +1 linear programs.

Our algorithm (Alg. 1) is comprised of two routines: �rst,

Compute-Value-Function-Given-Sample-Path) takes as an in-

put a realization D (C : ) ) of exogenous shocks, a starting state

B (C − 1) = B , and budget constraints ! and � and solves a sequence

of ) − C + 1 nested linear programs, where the optimal solution at

round C is fed to calculate the optimal solution at round C + 1. The

second routine (Aggregate) takes as input a natural number # , the

budget constraints ! and �, a �nancial environment U, and the

starting state B . The algorithm then samples # exogenous shock re-

alizations fromU. Conditioned on any of the sample pathsDğ (C : ) )

with 8 ∈ [# ], it calls the �rst routine to compute the sample value

function +̄ ( : ) . It aggregates all solutions estimates +̄ (C, B)īğ Ī Đ :

Theorem 1. Under Asms. ??, the following are true

(1) The value function + (C, B) satis�es + (C, B) =

Eđ (Ī :Đ ) [maxİĪ ,Ħ̃Ī
{1Đ ?̃Ī +max Đ Đ

İĪ+1,Ħ̃
{ ?̃ + + { ?̃ + + . . . }}}]

Ī+1
1 Ī 1 maxİĪ+2,Ħ̃Ī+2 1 Ī 2

and corresponds to solving a sequence of linear programs.
2

(2)
log

For =
(2 2/ą ) (Đ−Ī+1) �

#
2 2 samples, Y > 0, and � =
Ć

sup (∥U 1∥1 + ∥ℓ ∥1), Alg. 1 returns a solution +̄ (C, B) such that

|+̄ (C, B) −+ (C, B) | f Y with probability at least 1 − X .

4 DISCRETE INTERVENTIONS

We next focus on the problem of allocating discrete interventions.

For the discrete interventions problem, each node can be allocated

discrete resources up to some value !Ġ ∈ N. A simpler version of
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Figure 2: A contagion network over Đ = 2, with instantaneous internal liabilities ℓ , external liabilities Ę, and external assets ę

that are identical over the two rounds. The total budget is þ = 2 at each round. The optimal allocation for Ī = 1 is İ∗ (1) = (2, 0, 0 Đ)

in which case all nodes are able to cover their debts, and no liabilities are carried over from Ī = 1 to Ī = 2. Similarly, in Ī = 2 the

optimal intervention vector is İ∗ (2) = (2, 0, 0 Đ) and all liabilities are cleared. The value function equals Ď(1) + Ď(2) = 10.

Algorithm 1 Dynamic Clearing With Fractional Interventions

Compute-Value-Function-Given-Sample-Path(Ĉ, þ, ī (Ī : Đ ) , ĩ)

(1) Given the initial state at round Ī − 1 calculate ý(Ī ) and Č (Ī )

(2) For each Ī ′ ∈ [Ī,Đ ]

(a) Let ī (Ī ′
( )

) = Ę (Ī ′ ), ę (Ī ′ ), vec({ℓğ Ġ (Ī
′ ) } )ğ,Ġ ∈ [Ĥ] be the �nancial

environment.

(b) Let Č̃∗ (Ī ′ ), Ė ∗ (Ī ′ ) be the optimal solution to

max Đ ˜ ′
Č̃

( )
(Ī ′ ),Ė (Ī ′ )

1 Č Ī subject to the dynamics of (2) and the

random shocks Ę (Ī ′ ), ę (Ī ′ ), {ℓğ Ġ (Ī
′ ) }ğ,Ġ ∈ [Ĥ] .

(c) If Ī ′ < Đ , use Č̃∗ (Ī ′ ) to calculate ý(Ī ′ + 1) and Č (Ī ′ + 1) .∑
(3) ReturnĒī (Ī :Đ ) =

Đ
Ī ′∈ [

∗̃ ( ′ )Ī,Đ ] 1 Č Ī .

Aggregate(Ċ , Ĉ, þ, U, ĩ)

(1) Sample Ċ i.i.d. sample paths {īğ (Ī : Đ ) }ğ∈ [Ċ ] ∼ U where a

sample path consists a realization of the environment onĐ − Ī + 1

periods.

(2) For every ğ ∈ [Ċ ] compute

Ēīğ (Ī :Đ )=Compute-Value-Function-Given-Sample-Path(Ĉ, þ,īğ (Ī :Đ ), ĩ )

(3) Return 1 ∑
Ē̄ (Ī, ĩ Ċ) = ğ=1ĒĊ īğ (Ī :Đ ) .

the problem studied in [23] allowed the interventions to get two

distinct values {0, ĈĠ }. The analysis in this case is exactly the same

with the general case. The total budget is again þ and does not

change with time as well. We refer the the action space of this

setting with Z = İ N
Ĥ{ ∈Ě : ∥İ∥1 f þ, 0 f İ f Ĉ}. Note that Z

de�ned on Sec. 3 corresponds to the fractional relaxation of ZĚ .

We again seek to �nd the optimal policy which maximizes the

value function at round Ī = 0, subject to the dynamics

( ) ( )
Č Ī ( Č (Ī)( ) )

ď (Ī) = ↦→
Č̃ Đ . (5)
(Ī) Č (Ī) ' ý (Ī)Č̃ (Ī) + ę (Ī) + Ė (Ī)

︸                                         ︷︷                                         ︸
=«(ď (Ī ),Ė (Ī ) ;ď (Ī−1),đ (Ī ) )

Again, when the round is clear from the context, we will use the

abbreviation «Ī (ĩ, İ) to denote the mapping with information up to

time Ī acting on the state action pair (ĩ, İ), i.e., for all İ we have that

ĩ (İ) = «Ī (ĩ (İ), İ). Similarly to ¨Ī , the operator «Ī is a contraction

according to Asm. 1. In [23, Theorem 1] it has been proven that

the same problem is NP-Hard for Đ = 1 by reduction from the Set

Cover problem. Therefore, the problem in question is at least as

hard as the combinatorial optimization problem of [23]. Therefore,

we seek an approximate policy which yields an approximate value

functionĒ ďċĈ (Ī, ĩ) such thatĒ ďċĈ (Ī, ĩ ċČĐ) g (1 − Ą (Ī, ĩ)) ·Ē (Ī, ĩ)

for some Ą (Ī, ĩ) ∈ (0, 1).

For the problem with Đ = 1 the work of [23] obtains a (1 −

ămax)-approximation for the problem with a randomized rounding

algorithm where ămax is the maximum row sum of the relative

liability matrix. Because the matrixý will be di�erent in both cases,

which would correspond to di�erent clearing solutions. However,

note that a rounding regime that iteratively rounds the fractional

optimal solutions in a backward fashionwill not yield correct results.

The reason is that a suboptimal action at round Ī + 1 can a�ect the

optimal fractional action at round Ī .

Algorithm 2 Randomized Rounding

Sample-Interventions(Ĉ, þ, ī (Ī : Đ ) , ĩ)

(1) Until constraints are satis�ed and the approximation guarantee is

not violated

(a) For every agent ğ ∈ [Ĥ] sample (independent) interventions

( )
İ∗ (Ī : Đ )

İĚ,ğ (Ī : Đ ) ∼ Bin
Ĩ,ğ

, Ĉğ
Ĉ

.
ğ

(2) Return the value functionĒ ďċĈ ∑
= Č̃

: ] 1
Đ

′∈ [ Ě (Ī )ī (Ī Đ ) Ī Ī,Đ given the

calculated approximate (ďċĈ) policy after calculating the clearing

payments Č̃Ě (Ī : Đ ) .

Aggregate-Discrete(Ċ , Ĉ, þ, U, ĩ)

(1) Sample Ċ exogenous shocks {ī Ġ (Ī : Đ ) } Ġ ∈ [Ċ ] ∼ U

(2) For Ġ ∈ [Ċ ]

(a) Call Compute-Value-Function-Given-Sample-

Path(Ĉ, þ,ī Ġ (Ī : Đ ), ĩ) and get the optimal fractional policy

İ∗ (Ĩ Ī : Đ ) .

(b) Calculate

Ē ďċĈ
=

:
Sample-Interventions(Ĉ, þ,ī Ġ (Ī : Đ ), ĩ )

ī Ġ (Ī Đ )

(3) Return Ē̄ ďċĈ 1 ∑
=

Ċ ďċĈ
Ċ Ġ=1Ēī Ġ (Ī :Đ )

The �rst idea on deriving an approximation algorithm for the

problem described is adapting the approximation algorithm pre-

sented in [23] to the dynamic setting: More speci�cally let Ī be a
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�xed round and B (C) be a �xed state at round C and let D (C : ) ) be a

sample path for the random sequence* (C : ) ) from time C onward.

Conditioned on the realization ofD (C : ) ) the planner seeks to solve

the following deterministic problem

∑Đ
max + ) , B ′

( : (C (C ′ ′ ′)) = (C , (Ī Đ '(B (C ) Π C )ī , I (C ) = B ), D (C ′))
İ (Ī :Đ )

Ī ′=Ī

s.t. B ′(C ) = «Ī ′ (B (C
′), I (C ′), D (C ′)), I (C ′ ′) ∈ Z ∀ ∈ [ ]Ě C C,) .

We also consider the fractional relaxation where the decision

variables lie in Z. Let + ďċĈ (C, B (C))
( )

be the value that the approx-
ī Ī :Đ

imation algorithm produces, let +ĎāĈ C, B C
ī (

be the optimal so-
Ī :

( ( ))
Đ )

lution of the relaxation (i.e., when the interventions belong to Z)

and let +ċČĐ (C, B (C))
( )

be the optimal solution. From optimality
ī Ī :Đ

we know that +ĎāĈ ċČĐ(C, B (C)) g + (C, B (C)) D (C ) )
ī (

:
Đ ) ī (

. Since
Ī : Ī :Đ )

is

given, the optimal policy for the relaxed program consists of solv-

ing ) − C + 1 LPs sequentially and �nding the pair of the clearing

vector and optimal policy. We produce a rounded policy ($! that

corresponds to an allocation vector I (Ě C : ) ) randomly by rounding

the matrix I∗ (Ĩ C : ) ) of the optimal relaxed policy by rounding all

random variables I (Ě,ğ C
′) as Binomial i.i.d. vectors on !ğ trials with

biases I∗ ′ ′(C )/!ğĨ ğ for all C ∈ [C,) ], .

Theorem 2. Alg. 2 yields the following approximation

guarantee (on expectation): E ďċĈ
ī (Ī :Đ ),İĚ ( (Ī : ) [Đ + C, B (C))] g

(1 − W + Đ) · E
ċČ

( : ) [ (C, B (C))]ī Ī Đ , where W =

sup ′
ī (Ī :Đ ) maxĪ ′∈[Ī,Đ ],ğ∈[ (Ĥ] Vğ C ) is the worst-case �nancial

connectivity of a deterministic contagion network produced in the

environment space U.

Note that in the proof of Thm. 2, there is no dependence on the

states created by the rounded outcomes. Therefore, we can compare

and lower bound by the fractionally relaxed policy’s reward value at

each round C . Speci�cally, the proof of Thm. 2 lies in the observation

that under a realization of the �nancial environment, a default node

on the rounded solution can serve at least its external assets plus

the intervention it gets, so, in expectation, it can serve at least its

external assets plus the intervention of the fractional solution. For

the optimal solution of the fractional relaxation, we know [18, 23]

that for every ( ¦ [=], the sum of the external assets and the

fractional interventions over ( is at least the sum of payments

weighted by the “negated” �nancial connectivities. Moreover, for

all the solvent nodes, the amount of payments they can serve is at

least the corresponding fractional payment weighted by the node’s

connectivity. Combining both observations, we get that the value

function of the rounded solution is at least a factor of 1 minus the

worst �nancial connectivity across (the remaining) rounds of the

optimal solution.

5 FAIRNESS IN INTERVENTION POLICIES

We say that an allocation is fair across the nodes if the intervention

each node gets “does not di�er a lot from its neighbors”, whereas

the “neighborhood” of a node can be expressed in terms of the

existing �nancial network or can be expressed in terms of an aux-

iliary network as in [23]. In this way, we can measure fairness in

allocations in various settings. For instance, we can compare the

interventions between a node and all other nodes in the network,

interventions between a node and its neighbors on the �nancial

network, and interventions between nodes belonging to di�erent

population groups (such as minority groups). All fairness metrics

have to be scale-invariant, namely, do not change when the budget

provided changes from � to U� for some U > 0.

Driven by the above desiderata, we call an allocation rule

/ (1 : ) ) in the model fair if the allocations of a node do not

“di�er much” from its neighbors. As a starting point, we consider

the Gini Coe�cient [17] and generalize it accordingly to our model.

In detail, we measure the deviation between a node and its neigh-

bors on a graph sequence {�Ī } ∈[ ] with weights Fğ Ġ (C) gĪ Đ 0

(Fğğ (C) = 0 for all 8 ∈ [=∑ ], C ∈ [) ]), with the following measure

GC ;
(ğ,Ġ ) ∈ā (Ą ) ĭğ Ġ (Ī ) |Ėğ (Ī )−Ė Ġ (Ī ) |

(C � ) = Ī( )Ī ∑ ∑ . Note that this mea-
ğ∈ [Ĥ] Ėğ (Ī ) Ĥ] (ĭğ Ġ (Ī )+ĭĠğ (Ī ) )Ġ ∈ [

sure of inequality is well de�ned: when all nodes get the same

allocations, it equals zero, and when one node gets all the alloca-

tions, it equals one. Examples of the sequence {�Ī }Ī ∈[Đ ] include:

(i) Setting Fğ Ġ (C) = 1{8 ≠ 9} yields the standard Gini Coe�cient

(GC). Such a measure does not capture the topology of the problem

and aims to distribute interventions equitably.

(ii) Setting Fğ Ġ (C) = 0ğ Ġ (C), i.e., the weights between the nodes

represent the actual relative liabilities between such pairs of nodes.

This measure considers spatial interactions and the strength of ties

(i.e., the relative importance of liabilities) to distribute the resources.

We call this fairness constraint the Spatial Gini Coe�cient (SGC).

A similar fairness measure has been considered in [23], yet their

measure is asymmetric.

(iii) If every node is associated with a sensitive attribute and @ğ (C) ∈

[0, 1] is the probability of the node having this sensitive attribute,

we can, for example, useFğ Ġ (C) = |@ğ (C) −@ Ġ (C)) | · 1{0ğ Ġ (C) > 0} to

put high weights on adjacent pairs which deviate in this attribute.

For instance, @ğ (C) can represent the probability of a node belonging

to a minority group. Thus the weights would give importance to

mitigating inequalities between neighboring groups of minorities

and non-minorities. Moreover, if we want to enforce a stronger

version of fairness, we can considerFğ Ġ (C) = |@ğ (C) − @ Ġ (C) |, which

penalizes all deviations in allocations between nodes with high

deviations in their sensitive attribute. If more than one sensitive

attributes are present, the weights can be modi�ed accordingly

to capture the average (or maximum) deviation of the attributes

between a pair of nodes. We call this coe�cient the Property Gini

Coe�cient (PGC).

This motivates the de�nition of a 6(C)-fair allocation to be the

allocation policy/ (1 : ) ) for whichGC(C ;�Ī ) f 6(C) for all C ∈ [) ]

for some function 6(1 : ) ) ∈ [0, 1] that does not depend on the

clearing payments and the interventions. In our experiments we use

6(C) = constant. This corresponds to the following additional linear

constraints on the action space for an additional set of decision

variables s(C) ∈ R |ā (ĄĪ ) | ; for all C ∈ [) ] we have

sğ Ġ (C) g 0 ∀(8, 9) ∈ � (�Ī )

sğ Ġ (C) f |/ğ (C) − / Ġ (C) | ∀(8, 9) ∈ � (�Ī )∑ ∑
Fğ Ġ (C)sğ Ġ (C) f 6(C) (Fğ Ġ (C) +F Ġğ (C))/ğ (C) .

(ğ, Ġ ) ∈ā (ĄĪ ) ğ, Ġ∈[Ĥ]

After imposing the fairness constraints, a question one might

ask is “How does the optimal value function without the fairness

3524



Dynamic Interventions for Networked Contagions WWW ’23, April 30–May 04, 2023, Austin, TX, USA

constraints compares to the optimal value function with fairness

constraints for any type of the (generalized) Gini Coe�cient?”.

For this reason, we de�ne the Price of Fairness (PoF) to be
E [OPT sans fairness]
E [OPT with fairness]

. Since the fairness-constrained setting has addi-

tional constrains compared to the no-fairness setting, the price of

fairness is always at least 1. In the static version, [23] proves that

under discrete allocations there exist instances where the PoF can

be unbounded, yet when the allocations are fractional the PoF is

always bounded. Subsequently, in the dynamic setting it is easy to

observe that the same result holds. Finally, in Sec. 6 we show how

incorporating further fairness constraints to the problem a�ects

the distribution of interventions in our datasets with respect to

the nodes’ clearing payments and we also give quantitative results

regarding the PoF.

6 EXPERIMENTS

Datasets.We run experiments with a variety of datasets, including

synthetic networks, �nancial networks from various online settings,

as well as an application to a non-�nancial networked resource

allocation problem arising in ridesharing.

Synthetic Liability Network (Stochastic blockmodel).We generate a

network of = = 50 nodes and ) = 10 rounds whereas the structural

graphs �Ī are drawn i.i.d. from an SBM with Core-periphery struc-

ture with 2 blocks of size =core = 10 and =periphery = 40 and edge( )
0 6 0 35

probability matrix
. .

. The internal liabilities and the
0.35 0.1

external liabilities are drawn i.i.d. from Exp(1), where the internal

liability between (8, 9) at round C is realized conditioned on the edge

(8, 9) existing on �Ī , and the asset vector is set to 0 for every time.

Online Financial Network (Venmo transaction data).We use publicly

available data (https://github.com/sa7mon/venmo-data) from pub-

lic Venmo transactions to form a dynamic transaction network.

The dataset is split into three distinct time periods: (i) July 2018 to

September 2018 (3.8M transactions) October 2018 (3.2M transac-

tions) January 2019 to February 2019 (167K transactions). For our

experiments we used the �rst period (July 2018 to September 2018)

as it was the period with the most transactions. The amounts of the

transactions are not provided in the data so we generate random

transactions and use the provided topology (see App. B for more

information). We have ignored data points for which the sender or

the receiver of the transaction were missing.

Physical Financial Network (Cellphonemobility data).We extend the

(static) version of the data processed from the SafeGraph platforms

in [23] to the dynamic setting. Due to space constraints we have

deferred the description and creation of the dataset to App. B.

Non-�nancial Allocation Network (Extra dispatches in ridesharing).

To demonstrates the applicability of our framework beyond �nan-

cial networks, our �nal experiment looks at the problem of cre-

ating extra dispatches (for example, using autonomous vehicles)

in ridesharing networks to mitigate instantaneous demand-supply

imbalances. We use publicly available trip data from the NYC Taxi

and Limousine Commission (TLC). The TLC data are split in time

periods, with each entry containing the start time of a ride, and its

source and destination location IDs (corresponding to zones, e.g.

Washington Heights, East Harlem etc.). We build a temporal net-

work for Manhattan: nodes in the graph are rides between zones,

and the rest of the rides (to and from other boroughs) belong to

the external network. The time period corresponds to January 2021

and the ) = 31 rounds correspond to di�erent days. The edge

weights (instantaneous liabilities) are determined by the number of

rides requested from a zone to another (or to and from the external

network). See App. B for more information.

Interventions Experiments.We run experiments in two settings:

fractional and discrete interventions. For the fractional interven-

tion setting, we report the payments, cumulative reward, and in-

terventions for the datasets in question; since we solve the prob-

lem optimally we do not report any competing method. For the

discrete intervention setting, our method is similar in spirit to the

randomized-rounding algorithm of [23] for static allocations, which

has been shown to perform very well in practice, and in fact, outper-

form existing heuristics even in more limited settings (in particular,

binary action settings where the decision is to either to allocate or

not). In addition, [23] also presents a greedy hill-climbing algorithm

which under speci�c conditions gives an approximation guarantee.

However, this algorithm is designed for the binary setting, and so

it is unclear how one can extend the analysis to a dynamic setting

and a more general allocation rule.

In Fig. 3 we plot the the average clearing payments, the average

cumulative reward and the average fractional interventions for the

Synthetic Core-periphery data and the Venmo data together with

con�dence intervals by averaging over 50 samples of the random

networks. We plot the clearing payments of the 5 most important

nodes (in terms of total payments).

Similarly, in Fig. 4 we plot the the average clearing payments, the

average cumulative reward and the average discrete interventions

for the TLC data and the SafeGraph data. The datasets here are

deterministically created (sec App. B).

Price of Fairness Studies. To induce fair allocations (in the frac-

tional case) we run Alg. 1 with the constraints of Sec. 5. In Tab. 1,

we run experiments with the fairness constraints where we con-

strain the Spatial GC and the Standard GC to be at most 6(C) = 0.5

at all times for di�erent values of the budget � (per dataset). We

report the PoF for the corresponding experiments in Tab. 1. For

the datasets that involve randomness, we take the average over 50

independent runs.

Tab. 1 indicates that all fairness measures achieve a PoF that is

very close to 1 in all datasets. This indicates that, generally our

allocation algorithm can respect algorithmic fairness constraints

with a very small cost on the total welfare.

Insights from Experiments. Due to space constraints, we give

a chosen subset of data from our experiments (see full paper for

more experiments).

In Fig. 5 we present the relationship between the fractional

interventions and the clearing payments for the Synthetic Core-

periphery dataset and the Venmo dataset. We plot the relationship

Fairness Constraint Synthetic TLC Venmo Safegraph
Budget þ 50 100 50 500K

Spatial GC (ĭğ Ġ (Ī ) = ėğ Ġ (Ī )) 1.001 1.007 1.019 1.037
Standard GC (ĭğ Ġ (Ī ) = 1{ğ ≠ Ġ }) 1.011 1.009 1.017 1.102

Table 1: Price of Fairness. The payments and allocations can

be found at Fig. 5. We set 6(C) = 0.5.
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(a) Clearing Payments (Ĉğ = þ = 50) (b) Interventions (Ĉğ = þ = 50) (c) Clearing Payments (Ĉğ = þ = 100) (d) Interventions (Ĉğ = þ = 100)

Figure 3: Fractional interventions in �nancial networks based on the stochastic blockmodel (a-b) and Venmo data (c-d).

(a) Vehicle �ows (þ = 100, Ĉğ = 10) (b) Extra dispatches (þ = 100, Ĉğ = 10) (c) Payments (þ = 500ć, Ĉ custom) (d) Interventions (þ = 500ć, Ĉ custom)

Figure 4: Figs (a-b): Interventions (extra dispatches) in ridesharing (January 2021 NYC data; we report 5 busiest neighborhoods).

Figs (c-d): Discrete interventions in a �nancial network (based on SafeGraph Data, December 2020-April 2021).

(a) SBM (ĝ (Ī ) = 1) (b) SBM (SGC, ĝ (Ī ) = 0.5) (c) SBM (GC, ĝ (Ī ) = 0.5)

(d) Venmo (ĝ (Ī ) = 1) (e) Venmo (SGC, ĝ (Ī ) = 0.5) (f) Venmo (GC, ĝ (Ī ) = 0.5)

Figure 5: Total payments of nodes vs. total interventions received (under �nancial networks based on the Stochastic Blockmodel

and Venmo transaction data): We use ! = � · 1. SGC = Spatial Gini Coe�cient, GC = (Standard) Gini Coe�cient. Constraining

the GC/SGC to be at most 6(C) = 0.5 the 2' drops since the interventions are distributed “more equally” between the nodes, i.e.

“more central” nodes get a lower amount of bailouts when fairness is imposed).

between the average total interventions and the network charac-

teristics subject to fairness (6(C) = 0.5) and no-fairness (6(C) = 1)

constraints. For the fairness constraints, we consider the Spatial

Gini Coe�cient (SGC) and the (Standard) Gini Coe�cient (GC). We

�t an ordinary least squares model to the points and a robust linear

model via iteratively reweighted least squares with Huber’s T crite-

rion. For the Venmo data, we observe a good positive correlation

( 2' = 0.61) between the interventions and the payments. This is

suggestive of the fact that nodes that are generally bailed out are

central in the system, so bailing them out bene�ts the connections

they have.When fairness constraints are applied, 2' decreases since

the fairness constraint balances interventions between adjacent

nodes (in the case of SGC) and all nodes (in the case of the Standard

GC) which may itself result in nodes that are less important to

the contagion process getting high interventions. For the synthetic

Core-periphery data, core and periphery nodes are well-separated

on the plots’ “left-hand” and “right-hand” sides. We also observe

that when we constrain the Standard GC to be at most 0.5 the 2'

drops since the interventions are distributed “more equally” be-

tween core and periphery nodes, which results in more central (i.e.

core) nodes receiving a lower amount of bailouts.
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A PROOFS

Proof of Thm. 1. Base Case C ′ = ) . Let 5Đ be the PDF of* () ). We

have that

+ (), B) = max ï5Đ , 1
Đ ?̃ð

İ∈Z,Ħ̃ fp İ∫
= max Đ5 (Đ D) max 1 ?̃ (D)3D
İ∈Z U Ħ̃ fp İ

∑Ċ
= max lim Đ5 (Dğ )�Dğ max 1 ?̃ (Dğ )
İ∈Z Ċ→∞ ˜

1
Ħ (īğ ) fp İğ= ∑

= max lim max
İ∈Z Ċ→∞ (Ħ (ī1 )Đ ,...,Ħ (īĊ )Đ )Đ fp(İĐ ,...,İĐ )Đ

ğ∈[Ċ ], Ġ∈[Ĥ]

5 (Dğ )�Dğ ?̃ Ġ (Dğ ) ∑
= lim max 5 (Dğ )�Dğ ?̃ Ġ (Dğ )
Ċ→∞ (Ħ (ī1 )Đ ,...,Ħ (īĊ )Đ )Đ fp (İĐ ,...,İĐ )Đ

ğ∈[Ċ∫ ], Ġ∈[Ĥ]

= 5 (Đ D) max 1Đ ?̃ (D)3D
U İ,Ħ̃ (ī )

= Eđ (Đ ) [max 1Đ ?̃] .
İ,Ħ̃

The equalities follow from: (i) de�nition of expectation, (ii) push-

ing the maximization wrt B inside since I is �xed, (iii) de�nition

of Riemannian integral, (iv) the # optimization problems being

decoupled since I is �xed and thinking of the optimization as a

large problemwith a state vector of dimension 2×# ×=, (v) pushing

the optimization inside the limit (rewards are bounded regardless

of the value of # and the corresponding mappings are continuous),

(vi) de�nition of integration, and (vii) de�nition of the expected

value.

Inductive Hypothesis. Assume that for C ′ = C + 1 we have that

+ (C+1, BĪ ) = E
Đ[đ (Ī+1:Đ ) maxİĪ+1,Ħ̃ {

Ī+
?̃ Đ+ { ?̃ +

1
1 Ī+1 maxİ +Ī+2,Ħ̃Ī+2

1 Ī 2

maxİ + 3 +,Ħ̃ {
+

1Đ ?̃Ī+ . . . }}}]
Ī 3 Ī 3

.

Inductive Step. For C ′ = C we have that

{ }
+ (C, BĪ ) = max A (BĪ , IĪ ) + EĩĪ+1∼T( [ĩĪ ,İĪ ) + (C + 1, BĪ+1)]

İĪ [ [ {
= max Đ Đ

E +đ (Ī ) max 1 ?̃Ī Eđ (Ī+1:Đ ) max 1 ?̃Ī+1+
İĪ Ħ̃Ī İĪ+1,Ħ̃Ī+1

}]]
max Đ{1 ?̃Ī+2 + max Đ{1 ?̃Ī+3 + . . . }}

İĪ+2,Ħ̃Ī+2 İ 3,Ħ̃ 3[ {Ī+ Ī+

{
= maxEđ (Ī :Đ ) max 1Đ Đ?̃Ī + max 1 ?̃Ī+1+

İĪ Ħ̃Ī İĪ+1,Ħ̃Ī+1
}}]

max 1Đ{ ?̃Ī+2 + max {1Đ ?̃Ī+3 + . . . }}
İĪ+2,Ħ̃Ī+2 İ
[ Ī+3,Ħ̃Ī+3

= Eđ (Ī :Đ ) max 1Đ{ ?̃Ī+
İĪ ,ĦĪ ]
max {1Đ ?̃1+2 + max {1Đ ?̃Ī+2 + . . . }}} .

İĪ+1,Ħ̃Ī+1 İĪ+2,Ħ̃Ī+2

The equalities follow from: (i) the HJB equations, (ii) the induc-

tive hypothesis, (iii) the fact that the maximization over ?̃Ī is inde-

pendent of the sample paths from round C + 1 onwards and thus we
can reorganize the expectations into one expectation over sample

paths* (C : ) ) ∼ U, (iv) identically to the base case argument.

At any point, with probability 1, the value functions +∑ īğ (Ī :Đ ) are

between 0 and Ī 1
Đ (1 (C) + ℓ (C)) f () − C + 1) · �, where � =

sup (∥U 1∥1 + ∥ℓ ∥1) since the maximum reward can be achieved

when all debts are paid and all nodes are solvent. Thus, by standard
2

Cherno� bounds, one needs to choose
log(2 2/ą ) (Đ−Ī

=
+1) �

#
2 2

samples to get an
Ć

Y-accurate estimation of the actual value function

with probability at least 1 − X .

□

Proof of Thm. 2. Approximation Guarantee. Let� C ′ ′( )Ě and ' (Ě C )

are the sets of default nodes and solvent nodes under discrete inter-

ventions at round C ′. We have that

(1) If 8 ∈ � (C ′) we have that E :
′ ′

( ) [ )Đ ?̃ ( ∈ )İĚ Ě, C |ğ 8 � (Ě Ī Ě C ] g

2ğ (C
′) + I∗ (C ′)Ĩ,ğ .

(2) If 8 ' C ′ we have that E : ?̃ C ′ 8 ' C ′∈ ( )Ě İĚ (Ī Đ ) [ (Ě,ğ =

′ ′ ∑) | ∈ ( )]Ě

E
Ě (Ī :Đ ) [? (İ Ě,ğ C ) |8 ∈ ' (C )]Ě = E [İĚ (Ī :Đ ) Ī ′′<Ī ′ (1ğ (C

′′
∑ ∑ ) +

ℓ ( ˜∑ ′ ? ′
ğ C

′′ ′ ′′)) − ′ ′ (C )] gĪ <
E [ (, İ 1 (Ī ğ ′′ C ) +Ě ′

Ě (Ī :Đ ) Ī <Ī ğ

ℓ C ′′ ?̃∗ C ′′ = E : ? C ′ ?̃∗ ′
ğ ( )) − ′′ ′ ( )] ( ) [ Ĩ,ğ ( )] g ( )Ī <Ī Ĩ,ğ İĚ Ī Đ C gĨ,ğ

(1 −max ′ ∗ ′
ğ∈[ ( )) ( )Ĥ] VĨ,ğ C ?̃ CĨ,ğ . The statement follows from:

(i) de�nition of solvent node in the rounded solution, (ii) re-

cursively using the de�nition of ? (Ě,ğ C
′′) for all 1 f C ′′ < C ′,

(iii) point-wise optimality of the fractional clearing vec-

tor, (iv) de�nition of the solvency constraint for the frac-

tional relaxation, (v) feasibility of the fractional solution, (vi)

max ′
∈ [ ( )ğ Ĥ] VĨ,ğ C > 0 by Asm. 1.

Moreover, by [23] we know that for every subset ( ¦ [=] we

have that the fractional solution satis�es

( ) ∑ ∑ [ ]
1 −max VĨ,ğ (C

′) ?̃∗ f 2 (C ′) .Ĩ,ğ ğ (C
′) + I∗Ĩ,ğ (6)

ğ∈ď
ğ∈ď Ġ∈ď

By letting ( = � (Ě C ′) on Eq. 6 and since max ′
ğ∈ĀĚ ( ′ (Ī ) VĨ,ğ C ) f

max ′
∈ [ ] VĨ,ğ ( )ğ Ĥ C we have that

( ) ∑ ∑ [ ]
1 ′ ∗ ′ ∗ ′− max VĨ,ğ (C ) ?̃ f 2 (C ) + I (C ) .Ĩ,ğ ğ Ĩ,ğ

ğ∈[Ĥ]
ğ∈ĀĚ (Ī ′ ) Ġ∈Ā

( Ě (Ī ′ ) )
Moreover, ?Ĩ,ğ (C

′) g ?̃∗ ′ ′ ∗ ′(C ) g, 1 −max ( ) ( )Ĩ ğ ğ∈[Ĥ] VĨ,ğ C ?̃ CĨ,ğ

where the second inequality is due to feasibility and the last in-

equality is because we multiply with a quantity that is strictly in

(0, 1). Therefore we have that the expected reward of the rounded( )
solution at time C ′ is at least 1 −maxğ∈[Ĥ] VĨ,ğ (C

′) the optimal re-

ward, i.e E ′ ′ ′
İĚ ( [ ( ( ) ( ) )] g ( − ( )) ·Ī :Đ ) ' B C , I C = ($! 1 maxğ∈[Ĥ] VĨ,ğ C

'(B (C ′ ′ ′), I (C ) = $%) ) ∀C ∈ [C,) ]

We sum over C ′ ∈∑ [C,) ] to conclude that

E ( : ) [+
ďċĈ (C, B ′

:
(C))] =

′[ ( ( ) ( )İĚ Ī Đ ( ) Ī ′ , İĐ ∈[Ī Đ E Ě Ī :Đ ) ' B C
ī ] ( , I C =
Ī

($!)] g (1 −max ′ ċČĐ
Ī ′∈[ ( )) · ( ( ))Ī,Đ ],ğ∈[Ĥ] VĨ,ğ C + C, B C

ī (Ī :Đ )
.

Taking expectation with respect to D (C : ) ) ∼ * (C : ) ) and using

Hölder’s inequality we arrive to the desired result.
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ďċĈ
E (İ (Ī :Đ ),ī (Ī :Đ ) [+ C, B (C))]

Ě ( )
g E ′ ċČĐ

ī (Ī :Đ ) [ 1 − max max Vğ (C ) + (C, B (C))]
Ī ′ ī (Ī Đ )∈ [Ī,Đ ] ğ∈[Ĥ] :

=
ċČĐ

E ( : ) [+ (C, B (ī C))]−Ī Đ � �� ċČĐ
E ( : ) [ + :

(C, B (C)) max max Vğ (C
′)�]ī Ī Đ ī (Ī Đ ) Ī ′∈[Ī,Đ ] ğ∈[Ĥ]

Hölder ċČĐg E ( : ) [+ (C, B (C))]−ī Ī Đ

ċČĐ
Eī (Ī :Đ ) [∥+ :

(C, B ′(C))∥
(Ī Đ ) 1]ī

sup max max Vğ (C )
ī Ī : Ī ′Đ ∈[ ]( Ī,Đ ğ∈[Ĥ])

Ē g0
=

ċČĐ
E ( [ī Ī :Đ ) + (C, B (C))]−

ċČĐ
Eī ( (Ī : ) [Đ + C, B (C))] sup max max Vğ (C

′)
ğĪ : Ī ′Đ ∈[Ī,Đī ] ∈ [Ĥ]

(
( )

{ })
= 1 sup max max ′ ċČĐ− Vğ (C ) · E (C, B (C))] .

ī Ī : Ī ′
ī (Ī :Đ ) [+

Đ ∈[ ]) Ī,Đ ğ∈[Ĥ](

□

B DATASETS

Ridesharing. We construct an instance of the dynamic clearing

problem as follows:

(1) We de�ne the network as rides between locations at the same

borough (this can be extended to include rides from di�erent

boroughs; but here we focus on one borough for clarity of

exposition).

(2) The data is split into non-overlapping frames that correspond

to some duration. For exposition clarity we have used 1-day

intervals. Again, here we can use smaller intervals (e.g. 5min)

to represent demand for rides realistically.

(3) We de�ne ℓğ Ġ (C) as the total number of rides from location 8

to location 9 at timestamp C .

(4) We de�ne 1ğ (C) to be the total number of external (outbound)

rides requested from location 8 to outside of the borough.

(5) We de�ne 2ğ (C) to be the total number of internal (inbound)

rides requested for location 8 from outside the borough.

Venmo Transaction Data.We construct the dynamic contagion

instances as follows:

(i) The timestamps are grouped in a weekly basis according to

which year and week of the year they correspond to.

(ii) For the whole dataset (corresponding to the July-September

2018 period), we create 2 sets: +1 and +2. +1 corresponds to the

top-100 nodes in terms of the number of incoming transactions,

and +2 corresponds to the top-100 nodes in terms of the number of

outgoing transactions. As the vertex set we use + = +1 ∪+2.

(iii) We count the transactions between nodes of + , as well as the

transactions from+ to the outside system, and from+ to the inside

system for each round (week of the year 2018). For nodes with zero

outgoing transactions we add one transaction.

(iv) We create random liabilities as follows

ℓğ Ġ (C) = 1{# of transactions8 → 9at round C is > 0}

× Gamma(# of transactions8 → 9at round C, 1),

∀8, 9 ∈ [=], C ∈ [) ]

1ğ (C) = max{1,Gamma(# of transactions from 8 to outside, 1)},

∀8 ∈ [=], C ∈ [) ]

2ğ (C) = 1{# of transactions from outside to 8 is > 0}

× Gamma(# of transactions from outside to 8, 1),

∀8 ∈ [=], C ∈ [) ] .

Note that for 1ğ (C) we assert a positive value in order for Asm. 1 to

hold.

Cellphone Mobility Data. We use mobility data from the Safe-

Graph platform spanning the period of December 2020 to April

2021. The static version of the data (i.e. with one round) has been

introduced in [23]. Our paper extends the experiment to the multi-

period setting, resulting in �ve �nancial networks each one of

which for each month of the period of December 2020 to April 2021.

SafeGraph o�ers insights on mobility patterns of people between

Census Block Groups (CBGs) and Points of Interest (POIs), such

as grocery stores, �tness centers, and religious establishments. We

create a sequence of bipartite liability networks with monthly gran-

ularity between CBGs and POIs using the mobility data as a proxy

to create liabilities. Roughly, given an initial pair of coordinates

(latitude and longitude) we identify :-nearest neighboring CBGs

and, subsequently, the POIs that these CBGs interact with. Each

POI contains data from the visits of unique mobile devices from the

corresponding CBGs, where we assume that each distinct device

represents a unique person. SafeGraph also logs data about the

dwelling time of devices, namely for how long each device stays

in a POI, which we use to classify the visitors to two categories:

customers and employees. For the employees, we add a �nancial

liability that corresponds to the average monthly wage of such

an employee for the corresponding POI as it is determined by its

NAICS code. For the customers, we add edges from the correspond-

ing CBGs to the POIs with value being the average consumption

value for the speci�c POI category (given by the POI’s NAICS code)

as it is de�ned by the U.S. Economic Census. For each CBG node,

we estimate the average size of households per CBG, the average

income level and the percentage of people that belong to a minority

group, which we use in order to estimate the assets and liabilities

(internal and external) of CBGs. For the interventions of CBGs we

use the US Cares Act rules to determine the interventions. Regard-

ing the POI interventions we used data from loans provided in April

2020 as part of the SBA Paycheck Protection Program (PPP) and

impute the interventions of the nodes that do not have intervention

information. The processed data was calibrated similarly to [23] to

re�ect the speci�c interaction between POIs and CBGs across the

di�erent time spans.

The full paper contains extensive information on how to build

the network, and determine 2ğ (C), 1ğ (C), ℓğ Ġ (C) and !ğ for each round

C , which has been omitted due to space constraints.
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