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Abstract

We study information design in click-through auctions, in which the bidders/advertisers bid for

winning an opportunity to show their ads but only pay for realized clicks. The payment may or

may not happen, and its probability is called the click-through rate (CTR). This auction format is

widely used in the industry of online advertising. Bidders have private values, whereas the seller has

private information about each bidder’s CTRs. We are interested in the seller’s problem of partially

revealing CTR information to maximize revenue. Information design in click-through auctions turns

out to be intriguingly different from almost all previous studies in this space since any revealed

information about CTRs will never affect bidders’ bidding behaviors – they will always bid their

true value per click – but only affect the auction’s allocation and payment rule. In some sense, this

makes information design effectively a constrained mechanism design problem.

Our first result is an FPTAS to compute an approximately optimal mechanism under a constant

number of bidders. The design of this algorithm leverages Bayesian bidder values which help to

“smooth” the seller’s revenue function and lead to better tractability. The design of this FPTAS

is complex and primarily algorithmic. Our second main result pursues the design of “simple”

mechanisms that are approximately optimal yet more practical. We primarily focus on the two-

bidder situation, which is already notoriously challenging as demonstrated in recent works. When

bidders’ CTR distribution is symmetric, we develop a simple prior-free signaling scheme, whose

construction relies on a parameter termed optimal signal ratio. The constructed scheme provably

obtains a good approximation as long as the maximum and minimum of bidders’ value density

functions do not differ much.
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1 Introduction

Many of the phenomenal Internet Technology companies are powered by online advertising [25].

When an Internet user browses a webpage, an ad auction may be run to determine which

ads to be displayed to this user. Such ad auctions can be either done by the webpage owner
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or through ad exchange platforms. Large website owners (sellers) sometimes may know the

users much better than individual advertisers (bidders) do. It is thus natural for the seller to

utilize such information advantage to improve its ad revenue. As an example, the seller’s

knowledge about the user can be used to better predict an Internet user’s click-through rate

(CTR), which is then used in ad auctions to deliver ad impressions more efficiently.

Interestingly, a recent line of works, starting from Bro Miltersen and Sheffet [14], Emek

et al. [26], comes to realize that it may not always be the seller’s best interest to use as

much information as possible. That is, partially use certain amount – and the right type – of

information may be more beneficial for the seller’s revenue. This insight has motivated many

studies on the algorithmic problem of optimal information design – i.e., determining what

information to be shared with which bidders – in order to maximize revenue in different

auction formats [14, 26, 12, 38, 30, 5].

While there are two main types of bidding strategies in online advertising: autobidding

[20, 7, 6] and manual bidding, to better understand the optimal design of information in an

auction environment, we follow the rich literature and turn to the cleaner manual bidding

where the platform incentivizes buyers to tell the truth. However, different from almost

all previous works focusing on stylized auction formats such as the second price auction

for independent-value bidders [14, 26, 12, 5] and common-value bidders [38] and Myerson’s

optimal auction [30], we focus on a different auction format, i.e., the click-through auction,

which is the main auction format employed by the current online advertising industry [27].

The click-through auction is also widely known as the generalized second-price auction [25]

or position auctions [44]. We use the term “click-through auction” as coined by Bergemann

et al. [11] to emphasize the sale of clicks, since this factor turns out to make information

design in click-through auctions significantly different from that in almost all other previously

studied auctions. In a click-through auction for selling a single ad position, each bidder i

submits a bid bi expressing his value for each click of his ad. Additionally, the seller will

estimate a click through rate (CTR) ri for bidder i. The auction runs by ranking bidders

according to the product score biri, denoted as b(1)r(1) g b(2)r(2) g · · · , and allocates the

item to the bidder with the highest product score b(1)r(1). Crucially, since the auction only

sells clicks, the winner does not need to pay unless a click truly happens in which case the

winner pays the second highest score divided by his own CTR, i.e., b(2)r(2)/r(1). When

there is only a single ad slot to allocate, it is straightforward to verify that this auction

is truthful, regardless of the CTR values (even mistakenly estimated).1 As a result, the

seller’s information advantage of knowing the CTRs cannot be exploited to influence the

advertisers’ bidding behaviors since it is always their best interest to bid the true value per

click vi. In some sense, information design here is effectively a naturally restricted format

of mechanism design for multiple items with additive bidder values (which is generally a

very difficult question [19]). This crucially differs from the information design task in all

previously studied auction formats, in which the seller’s information about the item (e.g.,

the CTR) can be revealed to alter bidders’ bidding behaviors. This is intrinsically because

bidders pay for realized clicks only thus the probability of receiving a click will not matter

in click-through auctions. Note that, even in per-impression ad auctions as studied in [5],

bidders pay for impressions but care about clicks or conversions, thus their values do depend

on the probability of receiving a click, i.e., the CTR.

1 Such truthfulness holds only when there is a single slot, which is the case we focus on in this paper.
Click-through auctions are well-known to be non-truthful and difficult to analyze when there are multiple
slots [25].
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Most relevant to ours is the recent work by Bergemann et al. [11], who study the same

information design question of optimally revealing the CTR information in click-through

auctions. They focused on a simplified setup with complete information about the bidders,

i.e., the bidders’ values are assumed to be fully known to the seller. A natural calibration

constraint, originating from Foster and Vohra [29], is imposed on their information design,

which simply means the disclosed CTR estimation to each bidder has to be consistent with

(i.e., equal in expectation) the true CTR of the bidder. They thus call the new model

calibrated click-through auctions. Notably, the seller is allowed to privately communicate

information with each bidder, which is known as private signaling. The main contribution of

this paper is to extend the setup of [11] to the more natural and also more widely studied

setup of Bayesian bidders with independent values. For this reason, We call our model the

Bayesian calibrated click-through auction.

To our knowledge, Bergemann et al. [11] is the first study of information design in

auctions in which the revealed information cannot influence bidders’ behaviors, but only

affect the mechanism itself. This gives rise to an intriguing information design problem

– in some sense, it is even in contrast to one’s first impression about information design,

also known as persuasion [33], which seeks to exploit information advantage to influence

others’ behaviors. In contrast, information design in click-through auctions only affects

the final allocation and payment of the mechanism but has no effect on bidders’ bidding

behaviors. From this perspective, information design here is effectively a form of mechanism

design. Indeed, a similar phenomenon was observed by Daskalakis et al. [19], who study

the co-design of information structure and the auction mechanism. They observe that at

the optimal co-design, there is no signaling to bidders whatsoever, and the seller will only

use the underlying state to decide the item allocation and payment. Our problem is similar,

except that we restrict ourselves to the class of click-through auctions. This restriction is

motivated by its practical applications.

Before proceeding to describe our results, we briefly highlight the challenges of information

design in our problem. Indeed, the difficulty of information design in strategic games is well

documented in previous works [22, 13]. Even just for auctions, Emek et al. [26] shows that

computing an optimal information design in a second price auction is NP-hard in general

for Bayesian bidder values, though it does become polynomial-time solvable in cases with

complete information of bidder values. Unfortunately, such tractability does not transfer to

the click-through auctions: in a general environment with complete information about bidder

values, even the problem of optimal information design in two-bidder click-through auctions

is left as an open question in [11]. Bergemann et al. [11] show that when the distributions of

CTRs are symmetric, an optimal signaling policy can be characterized. However, back to our

Bayesian generalization of their setup, their optimal design for the symmetric information

environment is no longer applicable because the design of their signaling scheme relies crucially

on knowing the exact identity of the winner for any signal realization, which unfortunately

becomes uncertain in our Bayesian setup with random bidder values. This barrier brings

challenges, but also brings opportunities to adopt more algorithmic approaches. Next, we

elaborate on our findings.

1.1 Results

We study the theoretical aspects of Bayesian calibrated click-through auctions and develop

two encouraging positive results.

Our first result, Theorem 3.1, exhibits a Fully Polynomial Time Approximation Scheme

(FPTAS) for computing an approximately revenue-optimal signaling scheme in an arbitrary

information environment, assuming no point mass in bidders’ value distributions. This

ICALP 2024
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FPTAS applies to any constant number of bidders. Interestingly, our FPTAS bypasses the

notorious challenge of the complete-information general setup of [11] by relaxing it to the

more natural Bayesian valuation setup with smooth value distributions. We use signals of

the form kϵ for some integer k. The key challenge is to enforce the calibration constraint –

i.e., the posterior mean of the CTR conditioned on the signal has to equal the signal itself –

in the rounding process. We develop a nontrivial technique to address the challenge. Notably,

this FPTAS applies to any auction mechanism, as long as its revenue as a function of signals

is Lipschitz continuous.

Our second main result, Theorem 4.2, examines the popular recent computational model

of unknown value distributions, also known as prior-free setups [21]. We give explicit

and efficient construction of simple prior-free signaling schemes for symmetric information

environments (as studied also by Bergemann et al. [11]) with strong approximation guarantees.

The constructed signaling scheme is based on a parameter coined the optimal signal ratio,

which we find is at most 1. This allows us to send larger signals (i.e., larger CTR estimations)

to the bidder with a high click-through rate than the bidder with a low click-through rate.

The proof mainly consists of (i) establishing a connection between the optimal signaling

scheme under the unknown value distribution and the optimal signaling scheme under a

uniform value distribution and (ii) providing the approximation ratio of the constructed

signaling scheme under a uniform value distribution, which is proved to be 0.995. En route

to proving (ii), we prove a more general result (Proposition 4.11) which shows that, if the

optimal signal ratio is convex in CTR (which is true for various commonly used distributions),

then a signaling scheme with better approximation can be devised. This result may be of

independent interest.

1.2 Additional Related Works

Due to the space limit, we briefly discuss the related works here, while additional discussions

in detail are in Appendix A. The most relevant literature to our work is information

design in auctions. Information design has been adopted to second price auctions [14,

26, 18, 5] and Myerson auctions [30] in various setups. Recently, Bergemann et al. [11]

provided characterizations for a symmetric calibrated click-through auction but with complete

information of bidder values. Another line of related literature is the sale of information,

which selectively reveals information for revenue improvement. There are a series of works

in this line [2, 17, 9, 15, 39, 46, 37, 10]. Our work is also related to Bayesian persuasion

[34, 1, 4, 24, 3, 45, 31]. We also refer interested readers to a comprehensive survey by

Dughmi [23]. Finally, our work is partly related to the literature on automated bidding in

auctions [36, 35, 28, 40, 8].

2 Preliminaries

We consider the (arguably more natural) Bayesian version of the calibrated click-through

auction of [11], which is directly motivated by advertising auctions. At a high level, bidders

in this auction are ranked by the products of their private values (i.e., the willingness-to-pay

per click) and the seller’s prediction of click-through-rate (abbr. CTR). Bergemann et al. [11]

consider a basic setup in which bidders’ private values are perfectly known to the seller. In

this paper, we generalize their problem to the Bayesian setup by assuming that bidders’

values are independently drawn from distributions. While each bidder knows his own private

value, the seller only knows the distributions of bidder values (though our second main result

further removes this assumption). This generalization is more aligned with the rich literature
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of Bayesian auction design, starting from the seminal work of [41]. Similar to [11], we also

aim to design a revenue-maximizing auction. Different from classic auction design, the seller

in a click-through auction has an additional knob to tune, i.e., informing bidders about their

CTRs through partial information disclosure (also known as information design [33]). So the

optimal auction requires designs of both incentives and information.

We now describe the general auction setting. There are n bidders. The private value vi

of bidder (she) i = 1, 2, 3, . . . , n is independently drawn from some known distribution Fi(vi)

(with a density function fi(vi)), over some bounded interval [a, b] with a, b ∈ Rg0 ∪ {∞} and

a < b. Note that the density functions f1(v1), f2(v2), . . . , fn(vn) are not necessarily identical.

As seen, our problem is a natural Bayesian variant of [11], whose settings can be obtained by

allowing fi(vi) to be some Dirac ¶-function. i.e., a point distribution.

When auctions start, the seller privately observes a CTR vector r = (r1, r2, . . . , rn) ∈

[r, 1]n for n bidders, which is drawn from a commonly known joint distribution ¼(r). r > 0

is a small positive value close to 0. The CTR ri represents the probability of bidder i’s ad

being clicked, which may be estimated by the seller with some machine learning method.

For bidder i, assume the marginal probability ¼(ri) g À, where À is a small positive value

since it does not make sense to consider a CTR with a marginal probability arbitrarily close

to 0 in practice.

To maximize his revenue, the seller may privately disclose some information about ri

to bidder i. Suppose the seller has the power of commitment2, and he designs a signaling

scheme denoted as Ã, which is also observed by the bidders. Hence, conditioning on observing

CTR vector r, the seller sends signal s = (s1, s2, . . . , sn) with probability Ã(s|r), where si is

the signal privately sent to bidder i. In the rest of the paper, we assume that ri ∈ R with R

being a discrete and finite set of CTR values.

Calibrated Click-Through Auction. The calibrated click-through auction was previously

studied by Bergemann et al. [11]. Initially, each bidder privately observes her value vi and

the seller privately observes the CTR vector r. The seller then sends a signal si to each

bidder i privately. Upon receiving the signal si, bidder i submits her bid bi to the auction

and the auction determines the winner i∗ by selecting the one with the highest product, i.e.,

bi∗si∗ = maxj bjsj , and charges the winner for each realized click by

pi∗ = max
j ̸=i∗

bjsj

si∗

.

The winner only pays when a click is received2. Hence, the seller’s expected revenue is

ri∗pi∗ . One can easily prove that the auction is truthful2 for any s1, . . . , sn, as it follows the

“minimum-bid-to-win” payment rule. Therefore, without loss of generality, we will assume

bi ≡ vi in the rest of the paper.

Following [11], we adopt the concept calibration to information design. That is, given any

private signal si = s′
i, bidder i’s posterior estimation of CTR ri should be equal to s′

i, i.e.,

E[ri|si = s′
i] = s′

i. (1)

The calibration constraint is a consequence of the revelation principle. Given any signal

realization si = s′
i, bidder i will interpret s′

i through Bayes updates by computing the

expected CTR value E[ri|si = s′
i]. The calibration constraint simply requires that the signal

2 More discussions about pay-per-click, commitment power and truthfulness are in Appendix B.

ICALP 2024
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itself directly reflects this expected value so that bidders do not need to compute the expected

CTR value by themselves. Such revelation-principle-style simplification is widely adopted in

information design [34, 24, 33], where signals can without loss of generality be persuasive

action recommendations. Analogously, in our auction setup, such direct information scheme

will directly signal the posterior mean of the signal, i.e., obeying the calibration constraint (1).

Hence, any signal si must be within [r, 1] ¦ [0, 1] by (1). One important observation in [11]

is that if the CTRs and signals are discrete, we can rewrite (1) as

∑

(r,s):si=s′
i

¼(r)Ã(s|r)(ri − s′
i) = 0. (2)

Bayesian Calibrated Click-Through Auction. We focus on the seller’s information design

problem, i.e., to design a signaling scheme Ã in order to maximize the seller’s expected

revenue. The problem is formulated as below,

max
Ã,s

∑

r

¼(r)
∑

s

Ã(s|r)

∫

v

f(v)R(r, v, s)dv

subject to E[ri|si = s′
i] = s′

i ∀s′
i ∈ [0, 1], ∀i

Ã(s|r) ∈ [0, 1],
∑

s

Ã(s|r) = 1, ∀r, s ∈ [0, 1]n, (3)

where f(v) = f1(v1)f2(v2) · · · fn(vn) is the density function of v = (v1, v2, . . . , vn), and the

revenue R(r, v, s) = ri∗
maxj ̸=i∗ vjsj

si∗
. Since both the signals s and the probabilities of sending

signals Ã(s|r) are variables, the objective of (3) is non-convex.

Given CTR vector r and signal s, denote the seller’s expected revenue as R(r, s) =
∫

v
f(v)R(r, v, s)dv. Specifically, R(r, s) for 2 bidders is

R(r, s) =

∫

v

f(v)R(r, v, s)dv

=

∫ b

a

r1

v2s2

s1

Pr (v1s1 ≥ v2s2|v2) f2(v2)dv2 +

∫ b

a

r2

v1s1

s2

Pr (v2s2 ≥ v1s1|v1) f1(v1)dv1, (4)

where Pr (v1s1 g v2s2|v2) is the probability of bidder 1 winning given that bidder 2’s value

is v2 (similarly for Pr (v2s2 g v1s1|v1)).

By (4), we can see that our problem differs from [11] in a crucial way: With any fixed

s, the winner is also fixed in [11] since they have complete information on v, while in our

case, either bidder can be the winner with some probability due to the uncertainty in their

valuations. This difference somewhat “smooths” our objective function while at the same

time brings new challenges.

3 Click-Through Auctions in General Environments

In this section, we present an FPTAS for (3) achieving 1 − O(ϵ) approximation when the

number of bidders is a constant. This result hinges on a minor continuity assumption on

bidders’ value distribution. That is, we assume every distribution Fi has no point mass3 and

has finite second moment, i.e., Evi∼Fi
[v2

i ] < ∞. Under these two mild technical assumptions,

we prove the following theorem.

3 The no-point-mass assumption alleviates the tie-breaking problem arising in the case of deterministic
bidders’ values. A discussion on this assumption is in Appendix D.
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▶ Theorem 3.1. For any small ϵ > 0, there is an algorithm that computes a (multiplicative)

1 − O(ϵ) approximate signaling scheme in poly(|R|n, (n
ϵ
)n) time where n is the number of

bidders and |R| is the size of set R of CTR values.

To prove Theorem 3.1, we resort to discretizing the strategy space. Our starting point is

a reformulation of Program (3) as a linear program with infinite dimension, and then convert

the infinite-dimensional program into a finite-dimensional one by discretizing the signal

space. The main technical challenge is to prove that the solution to the discrete program

approximates the optimal solution to the original infinite-dimensional one. This is more

involved than typical rounding approaches and hinges on the following two key properties:

a). For any signaling scheme, the value of the discrete objective is sufficiently close to the

original objective. This is a consequence of the following Lipschitz continuity of revenue

function R(r, s), whose proof is deferred to Appendix C.

▶ Lemma 3.2. R(r, s) is Lipschitz continuous in s ∈ [r, 1]n with some constant Cn, for

any given CTR r = (r1, r2, . . . , rn).

b). For any solution to the original infinite dimensional program, there exists a corresponding

feasible solution to the discrete program that is sufficiently close to the original solution.

These two properties together can ensure the existence of a solution to the discrete program

yielding the revenue that approximates the optimal solution of the original infinite dimensional

program. Thus by solving the discrete program, we can get an approximately optimal solution.

The major challenge here is to prove property b), as any naïve rounding of a signaling

scheme from the continuous signal space to a discrete space would break the calibration

constraints and hence end up with an infeasible rounded signaling scheme to the discrete

program. To circumvent the difficulty, we introduce a novel technique to retain all the

calibration constraints.

At a high level, we will reserve a small amount of probability mass from the given signaling

scheme at the beginning and only apply rounding to the remaining probability mass. After

the rounding step, we will redistribute the reserved probability mass to carefully fix all the

calibration constraints broken by the rounding step. In particular, one has to be extremely

careful to avoid the straightforward discretization structure of the signal space, because

otherwise a large fraction of probability mass reservation will be needed for the fixing stage,

which leads to a significant revenue loss and fails the 1 − O(ϵ) approximation. The detailed

proof of Theorem 3.1 is involved and relegated to Appendix C.2.

It is worthwhile to compare our FPTAS in Theorem 3.1 with a recent FPTAS for multi-

channel Bayesian persuasion by Babichenko et al. [4], and highlight their key differences.

While both rely on the continuity of the sender’s utility functions, their techniques are

significantly different. Specifically, the FPTAS of [4] applies to a constant number of states

but many receivers (i.e., bidders) whereas our FPTAS applies to many states but a constant

number of bidders. Their FPTAS discretizes the space of distributions over the states (thus

requires a constant number of states) whereas our FPTAS discretizes the space of posterior

CTR mean, which is why we have to adjust the scheme to satisfy the calibration constraints.

Our choice of discretizing posterior means is due to its direct usage in click-through auctions.

Such a special structure and the resultant challenges of fixing calibration constraint violation

– which is the core difficulty in our proof – is not present in the setup of [4].

We remark that the discretization technique applied to Theorem 3.1 is in fact regardless

of the expected revenue R(r, s). To retain the calibration constraint and preserve the

approximation simultaneously, one basic requirement is that R(r, s) needs to be Lipschitz-

continuous in signal s. Therefore, our algorithm can be treated as a framework that can

accommodate different auctions (with Lipschitz continuous expected revenue R(r, s)) and

ICALP 2024
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maintain the calibration of signals. Based on this observation, we consider one simple

modified auction: a click-through auction with a reserved price. Reserve prices are widely

studied in the literature and commonly used in the industry [43, 42]. Similarly, we only need

to show R(r, s) of this modified auction is Lipschitz-continuous for Corollary 3.3 to be true,

which is deferred to Appendix C.3.

▶ Corollary 3.3. In a click-through auction where winner pays at least some fixed reserve

price p, for any constant number of bidders and any small ϵ > 0, there is an algorithm

that computes (multiplicatively) 1 − O(ϵ) approximate signaling scheme with time complexity

poly(|R|, 1
ϵ
).

4 Click-Through Auctions in Symmetric Environments

While Theorem 3.1 provides an algorithm that can compute an approximately optimal

signaling scheme in fairly general setups, the algorithm relies on solving large-scale linear

programs thus may be too costly in reality and also lacks interpretability. In this section,

we pursue the design of “simple” signaling schemes through the approximation lens. Given

the challenge of the problem in general, we shall restrict our attention to a fundamental

special case in this section – i.e., 2 bidders and symmetric environments – which is also a

major focus of our preceding work by Bergemann et al. [11]. For this basic case, we first

characterize that without calibration constraint, the optimal information design is governed

by a single parameter called optimal signal ratio, which is at most 1. Such an observation

motivates an explicit construction of a simple and prior-free signaling scheme, which is close

to the optimal when bidder values’ probability density function does not fluctuate much.

An environment is symmetric [11] if 1) the distribution of the products v1r1, v2r2, . . . , vnrn

are exchangeable, and 2) the values vi’s are i.i.d. drawn from a distribution F (v). Hence,

the symmetric environment further implies that the distribution of r1, r2, . . . , rn are also

exchangeable, i.e., ¼(r1, r2, . . . , rn) = ¼(perm(r1, r2, . . . , rn)) where perm(·) is any permuta-

tion function. For the purpose of easy exposition, we allow ri to be drawn from a slightly

enlarged interval [0, 1], with which the results obtained hold for ri ∈ [r, 1] as in our original

setting.

▶ Definition 4.1. The distribution F (v) (with density f(v)) has a monotone hazard rate

(MHR) if the “hazard rate” of the distribution f(v)
1−F (v) is increasing in v.

MHR is a standard assumption widely used in economics [5, 32, 16]. Many distributions

are MHR, such as uniform distribution, exponential distribution, gamma distribution, etc.

Note that MHR implies regularity proposed by Myerson [41].

▶ Theorem 4.2. There exists a prior-free signaling scheme that can be found in polynomial

time and guarantees a (multiplicative) 0.995 · (f/f)2-approximation for any continuous MHR

distribution f(v), where f and f are the respective maximum and minimum values of f(v)

for v ∈ [0, c] with any c > 0.

The approximation ratio in Theorem 4.2 achieves its best ratio 0.995 for uniform distri-

bution. More generally, the approximation ratio depends on the term f/f which intuitively

captures how much the distribution deviates from being uniform. Notably, both the algorithm

and the signaling scheme require no knowledge about the value distribution F , i.e., F could

be unknown to the seller (though Section 4.4 provides a better guarantee when F is known

and satisfy certain properties). We remark that the signaling scheme in Theorem 4.2 is simple

in the sense that its construction is parameterized by a single parameter called optimal signal
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ratio. The information design problem thus can be easily optimized by empirically selecting a

value that gives the best performance. More importantly, Theorem 4.2 also provides a robust

solution to the problem, which can be very useful when it is hard or costly to accurately

estimate the distributions of bidder values.

4.1 Key Primitive of the Construction: the Optimal Signal Ratio

Before presenting the proof, we discuss the main ingredient for the construction of the
signaling scheme, the optimal signal ratio. Given a CTR vector r = (h, l) (without loss of
generality, assume h g l) and a signal pair s = (s1, s2), the expected revenue by (4) can be
rewritten as (Recall f(v) = 0, ∀v /∈ [0, c]. Note that although the seller requires no knowledge
about F (v) to construct the scheme, the bidders’ value should follow some prior F (v).)

R(r, s) =

∫ c

0

(h
v2s2

s1

)

∫ c

v2s2

s1

f(v1)dv1f(v2)dv2 +

∫ c

0

(l
v1s1

s2

)

∫ c

v1s1

s2

f(v2)dv2f(v1)dv1. (5)

Clearly, from (5), the expected revenue is determined by the signals through their ratio

x = s2

s1

, which we call the signal ratio. We define the optimal signal ratio to be the signal

ratio maximizing (5). In the rest of the paper, without loss of generality, we assume h = 1.

Then the optimal signal ratio only depends on the smaller CTR l, denoted as x(l) with

l ∈ [0, 1].

▶ Lemma 4.3. The optimal signal ratio l < x(l) f 1 for l ∈ [0, 1) and x(1) = 1.

Lemma 4.3 is directly implied by Lemma E.1 and E.2 in Appendix E, where more

discussion about x(l) can be found. There are two interesting implications from Lemma

4.3. The first interesting implication is that without the calibration constraint, it would

be optimal for the seller to only send pairs of signals with the optimal signal ratio where

a larger (resp. smaller) signal is observed by the bidder with a higher (resp. lower) CTR,

which motivates our construction of the signaling scheme. The second implication is that

by l < x(l) in Lemma 4.3, information design induces more intensive competition between

buyers by partial-information revelation (with signal ratio x(l)) than full revelation (with

signal ratio l). This again explains the observations in [5] that revenue extraction in auctions

needs competition and too “fine-grained” targeting information may lead to a thin market.

More detailed discussions on the second implication are in Appendix F.

As an application of Lemma 4.3, we observed that x(l) = 1 for l ∈ [0, 1] for any exponential

distribution. It turns out that in this special case, the revenue-maximizing calibrated signaling

scheme is simply to reveal no information, i.e., always sending one calibrated signal pair

with s1 = s2 = E[ri]. This leads to the following proposition, whose proof is deferred to

Appendix G.5.

▶ Proposition 4.4. If the value distribution is an exponential distribution with density

f(v) = ¼e−¼v, v g 0, ¼ > 0, the signaling scheme revealing no information is revenue-

optimal.

4.2 Construction of the Simple Signaling Scheme

In this part, we present the construction of a simple signaling scheme. Recall that given

the smaller CTR l, the maximum expected revenue is achieved when s2

s1

= x(l), i.e., the

optimal signal ratio. In other words, one can construct an approximately optimal signaling

scheme by sending signal pairs of the optimal signal ratio x(l) as frequently as possible, while

maintaining the calibration constraints.
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Algorithm 1 Construction of Simple Signaling Scheme.

1. Given CTR vector r = (1, l), we compute a list of candidate signals Ã0, Ã1, . . . , ÃK−1,

where K = +logx(l) l, such that x(l)K+1 f l f x(l)K . The signal Ãi is computed as

ÃK = 1, Ã0 = x(l)K , Ãi = Ãi−1 · x(l), ∀i ∈ [K]. (6)

2. Define p(r, s) = ¼(r)Ã(s|r) as the probability mass of sending signal s conditioning on

CTR r. Let (l, 1) and (1, l) send signals (Ãk, Ãk+1) and (Ãk+1, Ãk), respectively, with the

same probability mass

p
(

(l, 1), (Ãk, Ãk+1)
)

= p
(

(1, l), (Ãk+1, Ãk)
)

= pk, ∀k{1, 2, . . . , K − 1}

where pk is computed as

pk = pk−1 ·
1 − Ãk

Ãk − l
= p0

k
∏

i=1

1 − Ãi

Ãi − l
, ∀k ∈ {1, 2, . . . , K − 1}. (7)

3. By the above construction, we know p
(

(l, 1), (ÃK−1, 1)
)

= p
(

(1, l), (1, ÃK−1)
)

= pK−1.

To maintain calibration constraint, the seller will additionally send signal (Ã0, Ã0) with

p
(

(l, 1), (Ã0, Ã0)
)

= p
(

(1, l), (Ã0, Ã0)
)

= z, where

z = p0 ·
Ã0 − l

l + 1 − 2Ã0
. (8)

4. Choose a proper p0 (other parameters z, pi are then determined) so that

z + p0 + p1 + · · · + pK−1 = ¼(r) =
1

2

Based on the above intuition, we then present the construction of the simple signaling

scheme Ã depicted in Algorithm 1. Since the CTRs of bidders are exchangeable, we can

separately consider the signaling scheme for each pair of CTR vectors. Without loss of

generality, consider a pair of CTR vectors (l, 1) and (1, l) such that ¼(r = (l, 1)) = ¼(r =

(1, l)) = 1
2 . In particular, we assume x(l) < 1 (otherwise, optimality can be easily achieved

by revealing no information). With properly chosen parameter p0, the constructed signaling

scheme is calibrated and valid (see Appendix G.1). Note that by (8), the probability mass

z = 0 if Ã0 = l, which implies all the signals sent are of the optimal signal ratio. Therefore,

the optimal expected revenue is achieved.

▶ Remark 4.5. As mentioned previously, the construction only depends on one parameter,

the optimal signal ratio x(l). Besides, the scheme has a clear structure, i.e., computing a

geometric series of signals {Ãi} and then assigning probabilities, both of which can be done

efficiently.

We present the following concrete example that describes the constructed signaling

scheme.

▶ Example 4.6. Let f(v) be the uniform distribution over [0, 1]. The click-through rates are

h = 1 and l = 0.6, with ¼((h, l)) = ¼((l, h)) = 0.5. By solving (5), we obtain the optimal

signal ratio x = 9
10 . We consider k = 4 levels of signals within [0.6, 1) as Ã0 = ( 9

10 )4, Ã1 =
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Table 1 Example of a signaling scheme. Each entry corresponds to λ(r)π(s|r), i.e., the probability

mass of sending signals s = (σi, σj) when observing the CTR vector r.

r

s
(σ0, σ0) (σ0, σ1) (σ1, σ2) (σ2, σ3) (σ3, σ4) (σ1, σ0) (σ2, σ1) (σ3, σ2) (σ4, σ3)

(0.6, 1) z p0 p1 p2 p3 0 0 0 0

(1, 0.6) z 0 0 0 0 p0 p1 p2 p3

( 9
10 )3, Ã2 = ( 9

10 )2, Ã3 = 9
10 , Ã4 = ( 9

10 )0 = 1. The signaling scheme is given by Table 1, where

the probabilities z and p0, p1, p2, p3 are determined according to (7) and (8) to keep the

construction a calibrated signaling scheme.

Note that all signal pairs except (Ã0, Ã0) follows the optimal signal ratio x = 9
10 . Hence

the revenue suboptimality only happens when sending the signal s = (Ã0, Ã0), of which the

probability mass is z ≈ 0.016. It turns out that the expected revenue of this calibrated

signaling scheme is 0.2698. In contrast, by relaxing the calibration constraint, the maximum

revenue one can achieve is 0.27 (i.e., always sending signals of the optimal signal ratio 9/10).

Since 0.27 is clearly an upper bound of the optimal revenue for any calibrated signaling

scheme, the revenue loss of our construction is less than 0.075%.

We remark that the revenue loss decreases very quickly as the number of signals k

increases. In this example, if l = 0.2 instead, then the optimal signal ratio x(l) = 4
5 and we

can choose k = 7, yielding a much smaller probability mass of sending suboptimal signals

z ≈ 1.5 × 10−5.

4.3 Proof of Theorem 4.2

We first show a special case of Theorem 4.2, which is also a cornerstone for the main proof.

That is, if the value distribution is uniform (i.e., f/f = 1), we can design a 0.995-approximate

scheme.

▶ Proposition 4.7. Given a uniform distribution supported on [0, c], the constructed signaling

scheme can achieve at least (multiplicative) 0.995-approximation.

Simple calculation leads to the optimal signal ratio x(l) = 3+l
4 under the uniform distribution.

The proof of Proposition 4.7 is a combination of the following two lemmas. Recall that

the constructed signaling scheme sends signal pairs of the optimal signal ratio x(l) with

probability 1 − z and with the remaining probability z sends the suboptimal signal pair

(Ã0, Ã0). Lemma 4.8 bounds the probability z, while Lemma 4.9 lower bounds the revenue

approximation when sending out (Ã0, Ã0). We will discuss the proof of Lemma 4.8 in

Section 4.4, where a more general result is proved, and defer the proof of Lemma 4.9 to

Appendix G.6.

▶ Lemma 4.8. For optimal signal ratio function x(l) = 3+l
4 , there exists a signaling scheme

whose worst-case approximation is 1 − z∗, where z∗ f 0.04.

▶ Lemma 4.9. Sending signal (Ã0, Ã0), i.e., the signal ratio is 1, is (multiplicatively) 8
9 -

approximation.

Proof of Proposition 4.7. Combining Lemma 4.8 and Lemma 4.9, the approximation of the

constructed signaling scheme is at least (1 − z∗) · 1 + z∗ · 8
9 g 224/225 ≈ 0.995. ◀
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We prove Theorem 4.2 by showing that the signaling scheme we constructed for the

uniform distribution is a 0.995·(f/f)2-approximation for any value distribution. In particular,

sending signal pairs of signal ratio 3+l
4 is (f/f)2-approximate and sending (Ã0, Ã0) is 8

9 ·

(f/f)2-approximate. An analysis similar to Proposition 4.7 finally leads to 0.995 · (f/f)2

approximation.

Proof of Theorem 4.2. We first derive the upper and lower bound of the expected revenue

R(r, s) by connecting to the uniform-distribution case. Given a CTR r = (1, l) and any signal

pair s = (s1, s2) with ratio s2

s1

f 1 (by Lemma 4.3, s2

s1

f 1 is without loss of generality), the

upper bound by (5) is computed as

R(r, s) =

∫ c

0

v2s2

s1

∫ c

v2s2

s1

f(v1)dv1f(v2)dv2 +

∫ c·

s2

s1

0

(l ·
v1s1

s2

)

∫ c

v1s1

s2

f(v2)dv2f(v1)dv1

≤

∫ c

0

v2s2

s1

∫ c

v2s2

s1

fdv1fdv2 +

∫ c·

s2

s1

0

(l ·
v1s1

s2

)

∫ c

v1s1

s2

fdv2fdv1

=(fc)2 ·
(

∫ c

0

v2s2

s1

∫ c

v2s2

s1

1

c
dv1

1

c
dv2 +

∫ c
s2

s1

0

(l ·
v1s1

s2

)

∫ c

v1s1

s2

1

c
dv2

1

c
dv1

)

=(fc)2 · R(r, s)

where R(r, s) computes the expected revenue under a uniform value distribution given CTR

vector r and signal pair s. Similarly, the lower bound is R(r, s) g (fc)2 · R(r, s). Since R(r, s)

is only related to the signal ratio x = s2

s1

, we rewrite R(r, s) as R(r, x). Similarly, rewrite

R(r, s) as R(r, x). Let x∗ f 1 and x f 1 (by Lemma 4.3) be the optimal signal ratio for

R(r, x) and R(r, x), respectively. Then,

(fc)2 · R(r, x∗) f R(r, x∗) f (fc)2 · R(r, x∗)

(fc)2 · R(r, x) f R(r, x) f (fc)2 · R(r, x)

Simple calculation leads to (f/f)2 · R(r, x∗) f (fc)2 · R(r, x∗) f (fc)2 · R(r, x) f R(r, x).

The second inequality is due to the optimality of x to R(r, x). The whole inequality

implies that if the seller sends signal pair whose ratio is optimal under a uniform value

distribution, the approximation ratio is at least (f/f)2. Notice that Lemma 4.9 shows that

under a uniform value distribution, sending a signal pair with signal ratio s2

s1

= 1 achieves 8
9

approximation, i.e., 8
9 R(r, x) f R(r, 1). Hence, we have 8

9 (f/f)2 ·R(r, x∗) f 8
9 (fc)2 ·R(r, x) f

(fc)2 · R(r, 1) f R(r, 1), implying that if the seller sends signal pair with ratio equal to 1,

then the approximation is 8
9 · (f/f)2.

Now, we present the 0.995 ·(f/f)2 approximation. Lemma 4.8 shows that under a uniform

distribution, the probability mass z of sending signal (Ã0, Ã0) is upper bounded as z < 0.04,

while 1 − z > 0.96 probability mass is for sending signal pairs of the optimal signal ratio

x. Hence, if we construct a signaling scheme by assuming the unknown value distribution

to be a uniform distribution, it can achieve at least 0.995 · (f/f)2-approximation, where

0.995 ≈ 0.04 × 8
9 + 0.96. ◀

The above proof implies that the prior-free signaling scheme is constructed with signal

ratio x(l) = 3+l
4 obtained by assuming the unknown value distribution to be a uniform

distribution. One direct result from the proof is that an easier but loose scheme is revealing

no information which gives 8
9 · (f/f)2 approximation. The improved ratio in Theorem 4.2

demonstrates the benefits of strategic information revelation.
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4.4 Completing the Last Piece – Approximation Guarantee with Known
Distributions

The only missing piece for completing the proof of Theorem 4.2 is the proof of Lemma 4.8,

which is for a special linear optimal signal ratio function x(l) = 3+l
4 . In this part, we prove a

more general result for any convex x(l), which directly implies Lemma 4.8 with linear x(l).

To formally state the general proposition for convex x(l), we need the following definitions.

▶ Definition 4.10. Given that the optimal signal ratio x(l) is a convex function in l ∈ [0, 1],

define the following notations.

1. Initial number K0: it satisfies that i) x = x(l)K0 g l, and ii) x = x(l)K0+1 crosses the

line x = l and intersects at some point (l, l) with l < 1.

2. Define S(k, l) with Ã0 = x(l)k, Ãi = x(l)k−i as

S(k, l) = 1 +
l + 1 − 2Ã0

Ã0 − l
+

l + 1 − 2Ã0

Ã0 − l
·

1 − Ã1

Ã1 − l
+ · · · +

l + 1 − 2Ã0

Ã0 − l
·

k−1
∏

i=1

1 − Ãi

Ãi − l
(9)

3. Intersection point l[k]: given some k > K0, l[k] ̸= 1 is a solution to the equation x(l)k = l.

In another word, x = x(l)k crosses the line x = l and intersects at the point (l[k], l[k]).

Recall in the construction of the signaling scheme that given a CTR vector r = (l, 1), at

most K = +logx(l) l, signals (i.e., Ãi) are within the interval [l, 1]. In fact, the initial number

K0 specifies the minimum number of signals constructed within [l, 1] for any l < 1. Also, the

probability mass z of sending (Ã0, Ã0) can be computed with the defined S(k, l),

z + p0 + p1 + · · · + pK−1 =
1

2
⇐⇒ z · S(K, l) =

1

2
(10)

With the above definition, we present the general result.

▶ Proposition 4.11. Assume x(l) is a convex function. There exists a signaling scheme

whose worst-case approximation is 1−z∗, where z∗ = 1/S(K0, l[K0 +1]) and S(K0, l[K0 +1])

is computed as (9).

Proposition 4.11 provides a worst-case approximation bound for the constructed signaling

scheme and shows how it depends on the intrinsic properties of the optimal signal ratio

function. Intuitively, by Equation (9), two situations lead to a small z∗: 1) The initial

number K0 is large. In this case, it implies that the seller can send many signal pairs with

the optimal signal ratio and thus S(K0, l[K0 + 1]) grows exponentially; 2) l[K0 + 1] is close

to Ã0 in (9). Later, we will show it is equivalent to that l[K0 + 1] is close to x(l[K0 + 1])K0 .

This case will lead to a large S(K0, l[K0 + 1]) and thus small z∗. In fact, given the number

of signals k g K0 and the CTR l, the approximation of the constructed signaling scheme can

be calculated similarly as 1 − z with z = 1/S(k, l). As we will prove later, the worst-case

approximation is obtained only when l is approaching l[K0 + 1] from above (see Figure 1b

for an example). Hence, when l varies, the actual approximation of the constructed scheme

may be (much) better than 1 − z∗.

Proposition 4.11 may be of independent interest. If an estimate for the bidders’ value

distribution is available, the seller then can construct a signaling scheme as in Section 4.2 that

has an approximation guarantee indicated by Proposition 4.11. Note that Proposition 4.11

only requires x(l) to be convex. This condition applies to various classic distributions, e.g.,

(1) the uniform distribution admits a 0.995-approximation, (2) the exponential distribution

can have the exact optimal mechanism, (3) the standard Weibull distribution (truncated on
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(a) (b)

Figure 1 K0 is initial number. l[k] is the intersection point. k1 < K0 < k2 < K < k3. x(l) is

convex.

[0, 1]) with parameter µ g 2 (specifically we let µ = 10) admits approximation ratio ≈ 0.75.

In some cases, it may be difficult to write down the explicit formula of x(l) and verify its

convexity. We find it relatively easy to compute l(x), the inverse of x(l). Hence, to verify

the convexity of x(l), we only need to verify the concavity of l(x). An example of this idea is

in Appendix H.

Before presenting the proof of Proposition 4.11, we show some properties for convex x(l).

▶ Observation 4.12. The function x = x(l)k, for any integer k > 1 and l ∈ [0, 1], intersects

with line x = l at most twice: one point intersecting is (1, 1), and the other one (if exists)

is (l[k], l[k]) (called intersection point as in Definition 4.10). Furthermore, when k > K0

increases, l[k] decreases and limk→∞ l[k] = 0.

The idea of Observation 4.12 is depicted in Figure 1a. Given an initial number K0 and

K = +logx(l′) l′, for some l′, we can observe from the figure that: i) If k f K0, the curve

x(l)k will be above line x = l; ii) If K0 f k f K, then l′ f l[K] and x(l′)k will be above

point (l′, l′). If l′ = l[K], then there are exactly K signals constructed within [l′, 1]; and iii)

If k > K, x(l′)k will be below (l′, l′).

The following key lemma characterizes the monotonicity of convex x(l).

▶ Lemma 4.13. x(l) is a monotone increasing function.

Now we are ready to show the proof of Proposition 4.11. The high-level idea of the proof

is by upper bounding the probability mass z of sending (at most one) non-optimal signal pair

(Ã0, Ã0), because when sending other signal pairs (Ãi, Ãi+1) as constructed in the signaling

scheme, the signaling scheme achieves the maximum of expected revenue expressed in (5).

Proof of Proposition 4.11. Without loss of generality, we consider the case where there

is only one pair of CTR vectors, (l, 1) and (1, l) such that ¼((l, 1)) = ¼(1, l)) = 1
2 . By the

definition of symmetric environments, the analysis can be easily generalized to the case of

more than two CTR vectors.

The following lemma segments [0, 1] by the intersection points l[k]’s, and shows how the

probability mass z changes within each segment. Note that starting from k = K0 + 1, x(l)k

crosses the line x = l (see Figure 1b). Then, we define l[K0] = 1.
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▶ Lemma 4.14. Given k g K0 g 1, the probability mass z > 0 is decreasing in l ∈

(l[k + 1], l[k]].

The proof of Lemma 4.14 is in Appendix G.4.The reason we only care about (l[k + 1], l[k]]

instead of the closed interval [l[k + 1], l[k]] is that i) for l[k + 1] < l f l[k], there will be

k signals constructed in the interval [l, 1], and ii) if l = l[k + 1], the seller can construct a

signaling scheme with a list of k + 1 signals where all the signal pairs sent have the optimal

signal ratio x(l[k + 1]) and the probability mass z = 0.

One implication of Lemma 4.14 is that when there are at most k signals constructed,

the probability mass z achieves its maximum when l approaches l[k + 1] from above, i.e.,

l ³ l[k + 1]. Therefore, at the limit l[k + 1], the probability mass z is computed with

S(k, l[k + 1]) where Ã0 = x(l[k + 1])k, Ã1 = x(l[k + 1])k−1, · · · , Ãi = x(l[k + 1])k−i. In another

word, when l = l[k + 1], instead of constructing a scheme with a list of k + 1 signals where

all the signal pairs sent have signal ratio x(l[k + 1]), the seller constructs a signaling scheme

with a list of k signals starting from Ã0 = x(l[k + 1])k, which sends signal pair (Ãi−1, Ãi) of

signal ratio x(l[k + 1]) and one signal pair (Ã0, Ã0).

By the above analysis, to upper bound z, we only need to compare its values at these

limit points l[k]’s. Alternatively, we compare S(k, l[k + 1]) for different k. The following

lemma shows that S(k, l[k + 1]) is increasing in k, whose proof is in Appendix G.7.

▶ Lemma 4.15. Given k − 1 g K0 g 1, we have S(k, l[k + 1]) g S(k − 1, l[k]).

Lemma 4.15 implies that S(K0, l[K0+1]) is the minimum compared with other S(k, l[k+1])

for k > K0. The quantity S(K0, l[K0 + 1]) is computed as (9) with

Ã0 = x(l[K0 + 1])K0 , Ã1 = x(l[K0 + 1])K0−1, . . . , Ãi = x(l[K0 + 1])K0−i

Since both CTR vectors (1, l) and (l, 1) will send signal (Ã0, Ã0), the upper bound of the

probability mass of sending signal pair (Ã0, Ã0) in the constructed signaling scheme is

z∗ = 1/S(K0, l[K0 + 1]).

The above analysis generalizes to the case of more than two CTR vectors. Note that

given any CTR vector (h, l), in the symmetric environment, we can find one CTR vector

(l, h) with equal probability, i.e., ¼((h, l)) = ¼((l, h)). Hence, we can separately consider

these pairs of CTR vectors when designing a signaling scheme and each of them achieves at

least (1 − z∗) (multiplicatively) approximation. Therefore, the constructed signaling scheme

can achieve at least (1 − z∗) (multiplicatively) approximation. ◀

5 Conclusions and Open Problems

This paper studies the natural Bayesian variant of the calibrated click-through auction of [11].

We focus on the seller’s information design problem to maximize the expected revenue. In

general environments, we develop an FPTAS to compute an approximately optimal signaling

scheme. In a symmetric environment, we give a simple and prior-free signaling scheme with

a constant approximation guarantee for not-too-fluctuating value distributions.

Our results raise many interesting questions for future research. Below we discuss some

of them. The first is to develop a simple signaling scheme for more than two bidders in

symmetric environments. More generally, it is interesting to study more efficient algorithms

for optimal signaling. Though our FPTAS for the general model enriches our understanding

of the tractability of the problem, such an algorithm may not be ideal from a practitioner’s

perspective. The second is to consider the worst-case approximation as in Proposition 4.11

but without the convexity assumption. In Appendix I,we provide more discussions about

these two open problems.
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