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Abstract

In Arabidopsis (4Arabidopsis thaliana), overproduction of salicylic acid (SA) increases disease
resistance and abiotic stress tolerance but penalizes growth. This growth—defense trade-off has
hindered the adoption of SA-based disease management strategies in-agriculture. However,
investigation of how SA inhibits plant growth has been challenging because many SA-
hyperaccumulating Arabidopsis mutants have developmental defeets due to the pleiotropic
effects of the underlying genes. Here, we heterologously expressed a bacterial SA synthase gene
in Arabidopsis and observed that elevated SA levels decreased plant growth and reduced the
expression of cold-regulated (COR) genes in a dose-dependent manner. Growth suppression was
exacerbated at below-ambient temperatures. Severing the SA-responsiveness of individual COR
genes was sufficient to overcome the growth inhibition caused by elevated SA at ambient and
below-ambient temperatures while preserving disease- and abiotic-stress-related benefits. Our
results show the potential of decoupling SA-mediated growth and defense trade-offs for

improving crop productivity.
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Introduction

The phytohormone salicylic acid (SA) has well-established roles in immune signaling in plants
(Vlot et al., 2009; Peng et al., 2021; Ullah et al., 2023). Considerable advances in understanding
SA-mediated defense mechanisms have been made possible through forward genetic screens,
particularly in the model plant Arabidopsis (Arabidopsis thaliana). These screens have.identified
mutants with enhanced disease resistance resulting from increased SA accumulation (Heil and
Baldwin, 2002; Rivas-San Vicente and Plasencia, 2011). Examples inelude -constitutive
expresser of pathogenesis-related genes5 (cpr5) (Bowling et al., 1997), defense no deathl
(dndl) (Yu et al., 1998), sap and mizl domain-containing ligasel (sizI) (Lee et al., 2007), and
suppressor of rps4-RLD1 (srfrl) (Kwon et al., 2004). However, SA-elevated mutants exhibit
reduced growth, sometimes in a temperature-dependent manner (Heidel et al., 2004; Wang et al.,

2009; Alcéazar and Parker, 2011; Huot et al., 2014; Albrecht and Argueso, 2017).

Mechanistic research into the growth—defense trade-off has been challenging, in part because SA
regulates various physiological and developmental processes in its own right (Rivas-San Vicente
and Plasencia, 2011; Peng et al., 2021). Such efforts are further complicated by the reliance on
the so-called autoimmune or lesion mimic mutants which display constitutive activation of
defense responses (including elevated. SA) at the expense of plant growth and development
(Bruggeman et al., 2015; van Wersch et al., 2016). These autoimmune mutants have diverse
origins, as their mutated genes are involved in not only immune signaling but also programmed
or induced cell death, second messengers, hormonal pathways, or other cellular and subcellular
processes (Bruggeman et al., 2015; van Wersch et al., 2016; Freh et al., 2022). This makes it
difficult to isolate the specific effects of SA on growth. For instance, cpr5 mutants exhibit
juvenile leaf senescence in additional to dwarfism (Bowling et al., 1997) and CPR5 was later
shown to _have dual function as a nucleoporin associated with the nuclear pore complex (Gu et
al.,2016) and an RNA-binding protein associated with RNA processing complexes (Peng et al.,
2022). The dndl mutant shows severe dwarfism and harbors a loss-of-function allele encoding
CYCLIC NUCLEOTIDE-GATED CATION CHANNEL?2 (CNGC2) with roles in Ca®" signaling
associated with not only defense but also plant development (Kohler et al., 1999; Clough et al.,
2000; Chan et al., 2003; Ma et al., 2010). SIZI encodes a small ubiquitin-like modifier (SUMO)
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E3 ligase and its mutant phenotypes include altered chloroplast functions and prolific bolting
(Miura et al., 2013; Kong et al., 2017). SRFRI encodes a tetratricopeptide repeat domain-
containing protein that functions as a negative immune regulator via its interactions with disease
resistance proteins as well as transcription factors involved in developmental processes (Kim et
al., 2010; Li et al., 2010; Bhattacharjee et al., 2011; Kim et al., 2014). Disentangling the complex
interplay between growth and SA-mediated defense calls for development of an experimental
system to directly manipulate SA biosynthesis in plants without the confounding influence of

pleiotropic gene mutations.

Several approaches have been used to augment SA biosynthesis in plants with varying degrees of
success. In tobacco (Nicotiana tabacum), constitutive co-expression of Escherichia coli entC and
Pseudomonas fluorescens pmsB genes encoding isochorismate synthase (ICS) and isochorismate
pyruvate lyase (IPL), respectively, resulted in elevated SA accumulation and enhanced disease
resistance when the enzymes were targeted to the chloroplasts (Verberne et al., 2000). However,
a similar approach in Arabidopsis expressing a chloroplast-targeted fusion gene of pchA (ICS)
and pchB (IPL) from Pseudomonas aeruginosa led to severe dwarfism and sterility (Mauch et
al., 2001). This has discouraged further research with SA bioengineering in Arabidopsis. In
poplars (Populus tremula x P. alba and P. nigra), SA hyperaccumulation resulting from
overexpression of Yersinia enterocolitica Irp9 encoding a bifunctional SA synthase targeted to
the chloroplasts enhanced- abiotic stress tolerance and rust resistance without affecting plant
growth as in tobacco«(Xue et al., 2013; Ullah et al., 2022). The inconsistent results in
Arabidopsis may reflect taxon-specific sensitivity to SA, although many autoimmune mutants
with similar SA increases did not exhibit the same phenotypic severity or sterility (Bowling et
al., 1997; Clough et al., 2000; Mauch et al.,, 2001; Lee et al., 2007; Kim et al., 2010).
Alternatively, other experimental variations might have contributed, which justifies an

independent reexamination.

In this study, we sought to augment plastidial SA biosynthesis in Arabidopsis by adopting the
poplar strategy expressing a bacterial bifunctional SA synthase Irp9 (Xue et al., 2013). We
successfully obtained viable transgenic lines with a broad range of SA levels to directly assess

the effects of SA on growth. We then used these lines to identify an inhibitory role of SA on
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COLD-REGULATED (COR) gene expression. This SA inhibition interfered with multiple COR-
associated functions, including leaf longevity and low temperature responses, which culminated
in reduced growth especially at below-ambient temperatures. We provide evidence to suggest
that the SA-mediated trade-off can be circumvented by transcriptional rewiring of CORs to

balance growth and defense.

Results

Elevated SA in transgenic Arabidopsis reduces growth in a dose dependent manner

We generated transgenic Arabidopsis plants overexpressing Irp9, a bacterial bifunctional SA
synthase gene, with a ferredoxin chloroplast-targeting signal (Xue et al., 2013), named here Fd-
Irp9-OE lines. We selected five independent lines with different levels of SA accumulation and
growth phenotypes for characterization (Fig. 1). The SA-deficient transgenic NahG plants
expressing a bacterial SA hydroxylase (Reuber et al.; 1998) was included as reference. Four Fd-
Irp9-OE lines (F24, F31, F36, and F51) had SA-derivative levels that approached or surpassed
those detected in the autoimmune mutants, whereas line F19 was similar to the Col-0 wild type
(WT) (Fig. 1A-C, Fig. S1). Hereafter, we refer to F24, F31, F36, and F51 as high-SA (hiSA)
lines. The SA-related metabolites we. detected are similar to those reported to increase in
senescing or pathogen-challenged Arabidopsis leaves, or in mutants or natural accessions with
elevated SA (Bartsch.et al, 2010; Li et al., 2014) (Fig. S2). SA-glucoside (SAG) and
dihydroxybenzoate xylosides (2,3-DHBX and 2,5-DHBX) were by far the most abundant SA-
derivatives in, the hiSA lines, followed by dihydroxybenzoate glucosides (2,3-DHBG and 2,5-
DHBG), with SA-glucose ester (SGE) detected at low levels (Fig. 1C, Fig. S1). For simplicity,
we refer to these SA-derived compounds as SA metabolites, and their summed abundance as

total SA:levels.

The increased accumulation of SA metabolites negatively affected hiSA plant growth in a dose-
dependent manner under long-day (16 h light) conditions at 22°C (Fig. 1B-D). In the hiSA lines,
we did not observe the developmental abnormalities associated with autoimmune mutants, such

as prolific bolting (siz/-2), severe dwarfism (dnd1), or juvenile senescence (cpr5-2) (Fig. 1B and
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inset). At 28 days after germination (DAG) of homozygous Fd-Irp9-OE lines, multiple growth
parameters, including rosette size (length and thickness), rosette biomass, lateral root number,
and root biomass were all inversely associated with total SA levels (Fig. 1D). Line F51 was the
most severely affected, followed in order by F36, F31, and F24; F19 was phenotypically
indistinguishable from the WT. The hiSA lines reached the reproductive phase (bolting) 4—6
days earlier than the WT and displayed accelerated senescence, with apparent leaf yellowing
occurring 5-10 days before that in the WT (Fig. 1E-G). Accordingly, hiSA plants had shorter
life spans and lower seed yields due to many undeveloped siliques as well as slightly reduced
seed weight (Fig. 1F—H), although their fully developed seeds appeared normal (Fig. 1I). These
results demonstrate an inhibitory effect of SA on growth and support previous findings on the
role of SA in leaf senescence and seed yield (Morris et al., 2000;-Abreu and Munné-Bosch,

2009; Zhang et al., 2013).

Transgenic hiSA plants exhibit enhanced disease resistance and abiotic stress tolerance

We assessed resistance to Pseudomonas syringae pyv.-tomato strain DC3000 (Pst DC3000) by
both syringe-infiltration of soil-grown plants and flood-inoculation of in-vitro-cultured seedlings
(F51 was excluded because of low seed yield) (Fig. 2). We observed a negative association
between leaf SA levels and bacterial growth three days post-inoculation (DPI), with significantly
lower bacterial growth in hiSA lines (Fig. 2A-B). These resistant lines showed mild disease
symptoms and continued to produce rosette leaves under the in vitro assay conditions, whereas

WT, F19, and NahG lines succumbed to Pst DC3000 during the monitoring period (Fig. 2B).

We also examined seedling sensitivity to abiotic stress treatments in vitro. Untreated F24, F31,
and F36 seedlings had significantly shorter primary roots than the WT (Fig. 2C), consistent with
the reduced root biomass of soil-grown plants (Fig. 1D). However, the reverse was true for
seedlings. grown on salt- or mannitol-containing medium (Fig. 2C). When seeds were sown on
medium containing herbicidal methyl viologen, all four Fd-Irp9-OE lines, including F19,
showed significantly higher germination rates than the WT (Fig. 2D). We noted that this SA-
mediated protection against methyl viologen-induced oxidative stress was partially lost in siz/-2
(Fig. 2D), highlighting the pleiotropic effects of the siz/ mutation (Kim et al., 2021). Taken

together, our results demonstrate a functional dichotomy for elevated SA biosynthesis in
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Arabidopsis; SA imposed a growth penalty under normal conditions but enhanced disease

resistance and abiotic stress tolerance under adverse conditions.

Transgenic hiSA plants show constitutive expression of SAR marker genes but repression of COR
genes under nonstress conditions

We compared rosette transcriptomes of WT and Fd-Irp9-OE plants at bolting (stage 5:1, Boyes
et al., 2001) under standard growth chamber conditions. The transcriptional response
corresponded positively with SA levels, with 984, 890, 651, and 182 differentially expressed
genes (DEGs, relative to WT) in F51, F36, F31, and F24, respectively, and none.in F19 (Dataset
S1). We detected 1825 DEGs in the SA-deficient NahG line. The two plants with the highest
numbers of DEGs, F51 and NahG, shared 471 DEGs. Hierarchical-clustering analysis of these
471 DEGs across all genotypes identified two main gene clusters with either SA-induced or SA-
repressed expression (Fig. 3 and Dataset S1). Genes positively regulated by SA were enriched
for the gene ontology (GO) terms ‘systemic acquired resistance (SAR)’ and ‘response to SA’ and
various defense and signaling pathways (Fig. . 3A—-B), ‘as would be predicted given the key
function of SA in defense signaling. Examples of genes positively regulated by SA include the
known SA markers PATHOGENESIS-RELATED1 (PR1), PR2, and PR5 (Uknes et al., 1992) and
WRKY transcription factor genes implicated in SAR (Wang et al., 2006).

Interestingly, the transcriptional responses differed within the NONEXPRESSOR OF PRI
(NPR) family encoding SA receptors. NPR3 and NPR4, but not NPRI, were induced in hiSA
lines (Fig. 3A), which presumably reflects their distinct roles in SA signaling (Ding et al., 2018;
Tran et al., 2023).. Expression of pattern-triggered immunity (PTI) and effector-triggered
immunity (ETT) marker genes (Yuan et al., 2021) was unaffected in hiSA lines (Dataset S1),
except- FLS2. (FLAGELLIN-SENSITIVE2) and CERKI (CHITIN ELICITOR RECEPTOR
KINASET) which were significantly changed only in the extreme (NahG, F36, and F51)
genotypes (Fig 3A, Dataset S1). Also unaffected was the expression of endogenous SA
biosynthesis genes or their upstream regulators (Peng et al., 2021) (Dataset S1), but SARDI (SAR
DEFICIENTTI) was upregulated by SA (Fig. 3A). S3H and S5H, which encode SA 3-hydroxylase
and SA 5-hydroxylase for SA catabolism into 2,3-DHBA and 2,5-DHBA, respectively (Fig. 1A)
(Zhang et al., 2013; Zhang et al., 2017), were upregulated in an SA dose-dependent manner (Fig.
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3A). The results are consistent with increased accumulation of 2,3-DHBA and 2,5-DHBA

conjugates in hiSA leaves (Fig. 1C).

The smaller cluster of genes negatively regulated by SA showed significant GO enrichment-for
‘cold acclimation’ and ‘response to water deprivation’ (Fig. 3B). In particular, members‘of four
COLD-REGULATED (COR) gene families [CORI5, COR6.6 (KIN), COR47 (RDI17 and
ERDI0), COR78 (RD29) and their tandem duplicates, except when below detection] known to be
induced by cold (Thomashow, 1999) were downregulated in the hiSA lines. (Fig.-3A). COR
genes are regulated by C-REPEAT/DEHYDRATION RESPONSIVE ELEMENT-BINDING
FACTORS (CBFs/DREBs) and INDUCERS OF CBF EXPRESSION (ICEs) best characterized
for their roles in freezing tolerance (Thomashow, 1999; Kim et al. 2015;Tang et al., 2020; Li et
al., 2024). ICE expression was low under nonstress conditions and unchanged in the hiSA lines.
Among the CBFs, we detected only CBF3 (DREBIA) transcripts, whose levels corresponded
negatively with SA like COR genes (Fig. 3A), supporting sub-functionalization of CBF members
(Novillo et al., 2007). Together, these results confirm canonical SA responses in hiSA leaves

while also uncovering a negative effect of SA ‘on. COR gene expression.

SA-mediated growth penalty is exacerbated at below-ambient temperatures

Motivated by the widespread downregulation of COR genes in the hiSA lines and by our
anecdotal observations of greater growth penalties during winter when plants were watered with
cold tap water, we conducted a series of temperature experiments to characterize the effects of
SA on growth in more detail. We first compared F24 with WT and NahG plants under different
temperature regimes (Fig. 4). Plant growth decreased as expected in all three genotypes as the
temperature decreased from 26°C to 16°C, but the penalty was most pronounced in F24 (Fig.
4A). When we compared multiple hiSA lines at 22°C and 16°C, their growth reduction was
exacerbated at below-ambient temperature in an SA-dose-dependent manner (Fig. 4B,C and Fig.
S3).-Plants grown at 16°C showed significantly greater ion leakage than those at 22°C, and the
differences corresponded positively with SA levels (Fig. 4D). Elevated ion leakage resulting

from decreased membrane permeability is associated with chilling-induced injury and growth
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reduction (Lyons, 1973). The data thus hint at a temperature-sensitive link between SA,

membrane integrity, and plant growth.

We performed transcriptome analysis using rosette leaves of F24, WT, and NahG plants (stage
5.1) grown at 22°C:18°C (day:night, hereafter denoted as 22°C) or 18°C:16°C (day:night,
hereafter 18°C) under otherwise identical long-day growth chamber conditions. We were
particularly interested in genes responsive to SA perturbation at 18°C (F24 vs. WT.and NahG vs.
WT) and to cool temperatures (18°C vs. 22°C) in the WT. The intersection of the three DEG lists
(118 genes) showed two major groups (Fig. 4E and Dataset S2). The first-group consisted of 96
genes upregulated by both SA and cool temperatures, with GO enrichment for ‘SAR,’ ‘response
to SA,’ and various defense responses (Fig. 4E). The second group (16'genes) was upregulated at
below-ambient temperatures, but repressed by SA, and enriched for the GO term ‘response to
cold.” Indeed, transcript levels of all leaf-expressed COR genes were significantly higher at 18°C
than at 22°C in all three genotypes (Fig. 4F). However, the magnitude of COR gene induction
was attenuated by SA, being lowest in F24 and highest in NahG (Fig. 4F). When compared with
the WT, COR gene expression was significantly downregulated in F24 and upregulated in NahG
at 18°C (Fig. 4F). We observed a similar but weaker trend at 22°C with overall lower COR
transcript abundance (Fig. 4F). These results corroborated the findings (Fig. 3) of an inhibitory
effect of SA on COR gene expression.

Constitutive expression.of COR genes rescues the growth defects of hiSA plants

COR proteins stabilize.membranes during cellular dehydration, a common response to freezing
and several other abiotic stresses (Thomashow, 1999; Thalhammer et al., 2014). The suppression
of COR genes in the hiSA lines might compromise this protective function at below-ambient
temperatures. We therefore sought to test the hypothesis that SA-insensitive expression of COR
genes can.rescue the growth defects in the hiSA lines. We first attempted to overexpress
CORI15a, CORI15b or both (CORI15ab) under control of the 35S promoter in WT and F24. All
Pro35S:CORI5 transgenic plants in both backgrounds exhibited prolonged leaf expansion and
delayed senescence (Fig. S4A—-D), consistent with a promotive role of COR15a and COR15b in
leaf longevity (Yang et al., 2011). While rosette and biomass growth improved at both 22°C and
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16°C (Fig. S4E-G), total SA levels and disease resistance became attenuated in homozygous
(T4) F24-COR15 lines (Fig. S4H-I).

We attributed this flaw to 35S promoter-mediated cosuppression because both the
original Fd-Irp9 and the CORI5 constructs were built on pCambia vectors with double 35S
promoters driving the selectable marker and the target genes (see Materials and Methods).
Shallow RNA-seq confirmed a potent silencing of the (abundantly expressed) Fd={rp9 to
background levels in two F24-COR15ab lines, along with depleted transcript levels of PR/ and
other SA marker genes (Fig. S4J). However, the relatively less expressed CORI15a and COR15b
were not silenced, indicative of dose-dependent differential cosuppression responses (Jorgensen
et al., 1996). The results are consistent with the F24-CORI5ab homozygotes reverting SA levels

to WT-like but exhibiting prolonged leaf expansion characteristic.of ectopic COR expression.

In a second attempt, we examined crosses between CORI5ab. (WT background) and hiSA lines
in early generations to obtain proof-of-concept data before the co-suppression effect intensifies
in homozygous progeny (Fig. 5). In multiple crosses involving independent transgenic lines, F;
plant growth, leaf senescence, seed yield, and SA.metabolite levels were intermediate of their
parents at 22°C (Fig. SA—C). We identified F, individuals which maintained high levels of SA
accrual and disease resistance like<their hiSA parent, but with vastly improved growth at 16°C
(Fig. 5D-F). This supports the hypothesis that severing COR suppression by SA could alleviate
the growth penalty in hiSAclines.

Next, we remade the constructs for ectopic expression of individual COR genes under control of
the ACTIN2 (ACT2) promoter in the WT, F24, F31, F36, and siz/-2 backgrounds, hereafter
referred to ‘as eCORs (ectopic CORs). We chose CORI15a, CORI15b, and COR6.6/KIN2 for two
reasons: they were most responsive to cooling in F24 (Fig. 4F) and their encoded proteins reside
in. different” subcellular compartments with distinct-yet-overlapping stress responses (Kurkela
and Borg-Franck, 1992; Wilhelm and Thomashow, 1993). Consistent with the proof-of-concept
data above, all three eCOR genes rescued hiSA and siz/-2 plant growth to varying degrees (Fig.
6 and Figs. S5-S6). Due to prior experience of unexpected gene silencing, we prioritized our
transgenic characterization on growth and SA phenotypes. We measured SA levels from one

randomly selected plant per genotype from T, plants to verify no apparent loss of SA accrual in

10
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hiSA-eCOR lines (Fig. S6). We grew two randomly selected homozygous lines from each
background-eCOR combination for further characterization at 22°C and 16°C under long-day
conditions. All eCOR transgenic lines in hiSA backgrounds showed prolonged leaf expansion,
improved growth, and significantly higher biomass over their respective parental lines at both
temperatures (Fig. 6A-D and Figs. S5-S6). Specifically at 16°C, hiSA plants expressing eCORs
exhibited reduced growth penalty relative to the WT or WT-eCOR plants (Fig. 6B, D). All eCOR
lines showed delayed senescence as previously reported (Yang et al., 2011), which resulted in
significantly higher seed yields than their cognate background at 16°C (Fig. 6E) as observed for
representative F; hybrids of Pro35S:COR15ab and hiSA lines (Fig. 5C).

Across all backgrounds and at both temperatures, eCORI5a and=eCORI5b appeared more
effective than eCORG.6 in rescuing hisSA plant growth (Fig. 6A~E). eCOR expression also
significantly improved siz/-2 growth at both temperatures but in-many cases the biomass and
seed yields were still significantly lower than those of ' WT or WT-eCOR lines (Fig. 6A-E),
suggesting partial rescue. This along with the observation that SA levels were partially depleted
in the siz/-2 background (Fig. S6) again attests to SA accumulation as a pleiotropic phenotype of
sizI-2 (Park et al., 2011; Kim et al., 2021).

Ectopic expression of COR genes did not/interfere with resistance to Pst DC3000 in the F24 and
F31 backgrounds (Fig. 6F-G, Fig. S6), consistent with sustained SA levels in hiSA-eCOR lines
at either temperature (Fig. 6H.and Fig. S6). Furthermore, ion leakage was significantly lower in
the F24-eCOR15alines than in the F24 parent and equivalent to that of the WT or WT-eCOR15a
lines at 16°C (Fig. 6]). Together, the data suggest that it is possible to rescue hiSA plant growth
by ectopic COR expression to restore membrane protection without compromising SA-mediated

disease resistance.

Discussion

The transgenic hiSA Arabidopsis lines reported here permitted unambiguous determination of

SA effects on plant growth and stress responses. We show that elevated SA levels reduced

11
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biomass accrual, promoted precocious flowering and senescence, decreased seed yield, improved
disease resistance, and enhanced abiotic stress tolerance, all in a dose-dependent manner.
Notably, the hiSA lines exhibited more pronounced growth decreases at sub-ambient
temperatures. Our data support a model in which SA antagonizes COR gene expression to fine-
tune growth and defense responses to external cues (Fig. 7). The SA inhibitory effects appear
modest in unstressed plants with basal or low levels of COR expression (Fig. 4F, Fig..7A, top).
With decreasing temperatures, COR genes are strongly stimulated but this induction is attenuated
in hiSA plants (Fig. 4F), which exacerbates the growth reduction (Fig. 7A, bottom). A similar
mechanism may also underlie plant responses to a range of biotic and abiotic stresses that
activate SA and/or CORs to varying extents (Fig. 7A, right). We show that the SA inhibition of
growth can be fully or partially rescued by transcriptional rewiring of individual COR genes to

balance growth and defense (Fig. 7B).

COR proteins were originally identified by their rapid and strong induction in cold-acclimated
Arabidopsis (Gilmour et al., 1988; Hajela et al., 1990; Kurkela and Franck, 1990). Several of
them were independently discovered in other screens with alternative names, such as cold-
inducible (KIN), low temperature-induced (LTI), responsive to desiccation (RD), or early
responsive to dehydration (ERD) (i‘e., COR6.6 = KIN2; COR47 = RD17; COR78 = LTI78 =
RD29a) (Thomashow, 1999). Perhaps less recognized is the sensitivity of COR genes to
moderate cooling. Wang and Hua (2009) reported COR gene induction within hours of cooling
(28—522°C or 22—16°C), though it was smaller, transient, and more variable than after cold
shock (22—4°C).-Among our other findings in this report, we show significant and sustained
induction across all COR gene families in plants grown at sub-ambient temperatures (Fig. 4F).
The work adds to’ the known dehydration-related abiotic stresses that induce COR gene

expression.

Cold temperatures reduce plant growth while increasing SA production and disease resistance
(Scott et al., 2004; Carstens et al., 2014; Ibafiez et al., 2017; Wu et al., 2019; Li et al., 2020).
Moderate cooling also reduced plant growth but did not have large effects on SA accrual (similar
levels at 22°C and 16°C, Fig. S3) as previously reported (Li et al., 2020; Bruessow et al., 2021).

Cooling stimulated PR gene expression in an SA-dependent manner, but SA is not required for
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cooling-induced COR expression (Wang and Hua, 2009; Kim et al., 2013) (Fig. 4F). Instead, we
show that SA had a detrimental effect on the induction of COR and other low-temperature
sensitive genes (Fig. 4F). This negative regulation of COR genes by SA has received little
attention in the literature, but a majority (58) of the 100 SA-repressed genes we identified,
including several CORs (Fig. 3A), was classified as down-regulated by SA or SA-analogs in a
meta-analysis (Zhang et al., 2020). Furthermore, an inverse relationship between basal SA levels
and COR transcript abundances was gleaned from different Arabidopsis accessions where levels
of COR genes were one to two orders of magnitude higher in Col-0 than C24-at midday (Miller
et al., 2015). Diurnal expression of luciferase (LUC) under control of the-COR78 promoter was
demonstrated in both accessions and the expression amplitudes were much higher in Col-0 than
C24 for both COR78(Col):LUC and COR78(C24):LUC transgenes-(Miller et al., 2015). The
authors suggested that genetic backgrounds act in trans to modulate COR78 expression (Miller et
al., 2015). We argue that constitutively elevated SA in C24 (Bechtold et al., 2018) could underlie
the suppression of COR genes relative to Col-0. Thus, multiple lines of evidence from the
present and previous investigations support an inhibitory role of SA on COR expression in

Arabidopsis.

SA and CORs have opposing roles in leaf senescence and longevity (Yang et al., 2011; Zhang et
al., 2013; Zhang et al., 2017). We posit that SA suppression of CORs likely contributed to the
accelerated leaf senescence and flowering phenotypes in our hiSA plants (Fig. 1). This may
represent an evolutionary strategy to optimize reproductive success in response to pathogen
infection (Korves and Bergelson, 2003). While SA has been implicated in both biotic and abiotic
defense (Rivas-San‘Vicente and Plasencia, 2011; Miura and Tada, 2014; Peng et al., 2021), COR
genes have mainly been associated with dehydration-related abiotic stress responses
(Thomashow, 1999; Miller et al., 2015). Our finding of SA-COR regulation thus links COR-
mediated. abiotic (including cooling) responses with SA defense signaling, and adds to the
growing network of defense pathway interactions in response to diverse external and internal
signals (Aerts et al., 2021; Liu et al., 2022).

Furthermore, the functional pleiotropy of CORs is linked to different regulatory circuits.
Whereas COR induction by cold, drought, and other dehydration stresses is regulated by
CBFs/DREBs and/or ICEs (Liu et al., 1998; Novillo et al., 2007; Kim et al., 2015; Tang et al.,
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2020; Li et al., 2024), COR involvement in leaf longevity is regulated by NAC transcription
factor VNI2 (VND-INTERACTING 2) (Yang et al., 2011). Interestingly, VNI2 expression was
insensitive to SA or cooling in the present study, suggesting the involvement of other
transcription factors in SA-COR regulation of leaf senescence and longevity. As discussed
above, cold-activated disease resistance is SA-dependent (Wu et al., 2019; Li et al., 2020). It has
been shown that cold and pathogen defense signaling pathways share common players.such as
membrane receptors, calcium channels, reactive oxygen species, and MAPK (mitogen-activated
protein kinase) cascades (Browse and Xin, 2001; Ding et al., 2019; Wu et al, 2019).
Specifically, ICEl has recently been shown to physically interact with- NPR1 and TGA3
(TGACG-BINDING FACTOR3) to activate SA signaling during cold-enhanced immunity (L1 et
al., 2024). However, expression of these genes was unaffected by SA or sub-ambient
temperatures in the current study, although their involvement at post-transcriptional levels cannot
be excluded. Whether the SA-COR regulation involves. CBFs/DREBs, ICEs, or other
transcription factors warrants further research. Given that leaf senescence is governed by an
interplay of hormonal, developmental, and environmental cues (Jibran et al., 2013; Kim et al.,
2017), the involvement of other defense—hormone crosstalk in the SA-COR regulation also

requires further research.

All COR genes are present as-tandem. duplicates in Arabidopsis and closely related taxa that
predate Brassicaceae speciation (Murat et al., 2015). As such, differences in basal expression
(Fig. 4F) and stress responsiveness between paralogs have been reported. For instance, drought
induces expression. of COR15a and CORG6.6 (KIN2), but not COR15b or KINI (Kurkela and
Borg-Franck, ,1992; Wilhelm and Thomashow, 1993). The COR78 tandem duplicates (RD29a
and RD29b) also show different basal expression and stress responsiveness (Yamaguchi-
Shinozaki and Shinozaki, 1993). At the protein level, COR proteins vary in size and subcellular
localization(e.g., chloroplast for COR15 and cytosol for COR6.6), but they share characteristics
of certain late embryogenesis abundant (LEA) and dehydrin proteins, being highly hydrophilic
and boiling stable (Gilmour et al., 1996; Kovacs et al., 2008; Thalhammer et al., 2014).
Experimentally characterized COR15a and COR15b are unstructured in their fully hydrated state
and form amphipathic o-helices upon dehydration to promote membrane association and

stabilization (Thalhammer and Hincha, 2014; Navarro-Retamal et al., 2016). Similarly, another
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SA-suppressed and low temperature-induced gene L7730 (Fig. 4F) encodes an intrinsically
disordered dehydrin with Lys-rich segments that can fold into a-helices on the lamellar bilayer to
stabilize membrane structures (Eriksson et al., 2011; Andersson et al., 2020). The other COR
proteins are also predicted as intrinsically disordered hydrophilic proteins with amphipathic o-
helical regions (Thomashow, 1999), which suggests that they too may contribute to membrane

protection.

Given the overlapping but nonidentical properties of COR genes and their encoded proteins and
given the widespread suppression of CORs by SA, it may seem surprising that transcriptional
rewiring of individual COR genes was sufficient to restore hiSA plant growth. Nevertheless, the
results align with the notion that genetic redundancy underlies both-evolvability and robustness
of biological systems (Stelling et al., 2004; Kafti et al., 2009; Hunter, 2022). The COR family
exemplifies functional redundancy that can arise from duplicated genes (e.g., tandem duplicate)
or distinct genes (e.g., different CORs) with overlapping. function to buffer against stochastic
perturbations, thereby increasing robustness and evolvability of the organism (Hartman et al.,
2001; Stelling et al., 2004). CORs and other LTIs thus constitute a repertoire of “redundant
genes” that can compensate for each other’s loss (Kafti et al., 2009). In this context, our findings
that any of the three COR genes tested could fully or partially rescue growth of hiSA mutants are

not unexpected, after all.

There are precedents for successful uncoupling of growth-defense trade-offs mediated by
another defense hermone, jasmonic acid (JA). JA inhibits growth by antagonizing gibberellin
(GA) signaling i both dicot and monocot species (Yang et al., 2012; Heinrich et al., 2013).
Accordingly, GA3 'supplementation rescued growth defects of JA-activated wild tobacco
(Nicotiana attenuata) caused by herbivory, MeJA treatment, or genetic lesions in the JA
signaling. pathway without affecting defense (Heinrich et al., 2013; Machado et al., 2017). In
Arabidopsis, the growth penalty of a JA-hyperactivated mutant jazQ defective in five JAZ
(jasmonate ZIM domain) transcription repressors can be neutralized by another mutation in
PHYB encoding the shade receptor phytochrome B (Campos et al., 2016). phyB suppresses both
GA and growth-promoting phytochrome-interacting factors (PIFs), and its mutation in jazQ

relieves the GA and PIF suppression in a manner similar to the shade avoidance response to
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promote growth (Campos et al., 2016). Thus, select de-repression with JA, GA, and light
signaling networks via genetic or pharmacological means can alter growth-defense trade-off

outcomes in ways that allow plants to maintain heightened insect defense and robust growth

(Heinrich et al., 2013; Campos et al., 2016).

These studies elegantly demonstrated that the growth-defense trade-off is not.merely
constrained by carbohydrate reserves or energetically costly production of defense compounds
(Heinrich et al., 2013; Campos et al., 2016; Machado et al., 2017). Instead; they support the
alternative view postulated by Kliebenstein (2016) that growth-defense trade-offs are driven by
negative interactions among intersecting signal transduction pathways. In a striking analogy, we
show that de-repression of CORs can overcome the growth—defense trade-off mediated by SA.
While the underlying regulatory circuit remains to be illuminated,, the negative regulation of
CORs by SA exemplifies another “hardwired” transcriptional. intetaction (Campos et al., 2016)

which we posit to restrict leaf longevity upon activation of'SA defense signaling.

The collection of hiSA transgenic lines reported here greatly aided in the molecular dissection of
the trade-off between growth and SA-mediated defense. SA, a plant defense elicitor, has
motivated development of structural analogs for commercial applications, but yield penalties
have dampened the prospects of SA-based crop protection in agriculture (Walters et al., 2013).
The finding that overriding'SA inhibition through constitutive COR15a, COR15b, or COR6.6
expression was sufficient to restore plant growth while retaining SA-endowed disease resistance
suggests that a minimalist strategy can be effective for genetic improvement of crop productivity.
The discovery. of genes coordinately and oppositely regulated by cold and SA means that
additional molecular targets can be exploited, in a combinatorial and iterative fashion, to
decouple growth—defense trade-offs in diverse crops under changing climate conditions. We
anticipate.that the hiSA transgenic lines will be valuable for mechanistic investigation of SA

crosstalk with other phytohormone and defense pathways.

Materials and Methods
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Plant materials and growth conditions

Arabidopsis thaliana Columbia-0 (Col-0) accession, cpr3-2, dndl, sizI1-2, and srfri-4 seeds were
obtained from the Arabidopsis Biological Resource Center (ABRC, Columbus, OH, USA).
Transgenic NahG seeds in the Col-0 background (Reuber et al., 1998) were a gift from Frederick
Ausubel, Massachusetts General Hospital. Seeds were stratified for three days at 4°C and.sown
onto 5 cm square plastic pots containing Miracle-Gro Moisture Control potting soil (Miracle-Gro
Lawn Products, Inc., Marysville, OH, USA) supplemented with Steinernema feltiae (Nemasys,
BASF Corp., Research Triangle Park, NC, USA). Unless otherwise noted, plants were grown in
a Conviron chamber (Conviron Ltd., Winnipeg, Canada) at 22°C with 65W. T8 cool-white
fluorescent bulbs under a 16 h light (100 pmol m™~ s™') and 8 h dark photoperiod. Temperature
experiments of soil-grown plants were conducted using two growth chambers set at constant
26°C, 22°C, or 16°C, or variable 22°C:18°C or 18°C:16°C day:night temperatures as indicated.
Plants were grown under ambient (22°C) conditions until 14 DAG before half of them were
transferred to the cool temperature growth chamber. Transgenic plant selection in tissue culture
was carried out in a walk-in growth room maintained at 22°C outfitted with 60W FLAT PANEL
VEG (FPV24-A) LED lighting (Barron Lighting Group, Glendale, AZ, USA) at 16 h light (100~
120 pmol m 2 s™") and 8 h darkness. Cool temperature experiments of tissue-cultured plants were
conducted using a Percival growth chamber (CU36L4, Percival Scientific, IA, USA) set at a
constant temperature of 16°C under a 16 h light (SciWhite® PetriClear™ lighting at

100 pmol m ™ s™') and 8 h-dark photoperiod.

Nicotiana benthamiana seeds obtained from the National Tobacco Germplasm Collection were
sown on soil-as above and maintained in a walk-in growth room at 22°C with 16 h lighting at
400 pmol m~? s provided by AgroLED® iSunlight® T5 White LED lamps. Plants

approximately 2-month-old were used for leaf infiltration.

Generation of transgenic Arabidopsis lines

Transgenic lines were produced via floral dip transformation (Clough and Bent, 1998) using
Agrobacterium tumefaciens strain C58 (Koncz and Schell, 1986) carrying different binary
constructs. To generate the Fd-Irp9-OE lines (Supplementary Data Set S3), Col-0 was
transformed with the binary plasmid pCAMBIA1302-Pro35S:Fd-Irp9 (Xue et al., 2013). T,
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plants were selected on half-strength Murashige and Skoog (1/2 MS) medium with 20 mg L™
hygromycin and confirmed by PCR using primers for /rp9 and HPT encoding hygromycin
phosphotransferase (Table S1). Confirmed T; plants were transplanted to soil for LC-MS
screening of SA levels (see below) and seeds from selected lines were harvested. T, plants were
again confirmed by PCR as above and by LC-MS analysis of SA metabolites, and T3 seeds‘were
harvested for antibiotic screening of homozygous lines. T3 and T4 plants were again analyzed for
SA levels by LC-MS. From the first pilot transformation trial, one hiSA event was recovered
(F24). Then, a larger T, population from a second transformation trial was sereened to-select a

panel of lines that represent a wide range of SA increases for further charaeterization.

For preparation of Pro35S:CORI5 constructs, the coding sequences of CORI5a (At2g42540,
ABRC stock no. U12858) and CORI15b (At2g42530, stock-no. U10423) were PCR-amplified
using primers containing vector homology (Table S1). The ¢cDNAsS were cloned into Spel and
Pmll digested pCM (modified from pCAMBIA2301, Swamy et al., 2015) via Gibson assembly
(NEBuilder HiFi DNA Assembly Cloning Kit, NEB, Ipswich, MA, USA) and sequence verified
to generate Pro35S:CORI15a and Pro35S:COR15b constructs. For the construct containing both
CORI15a and CORI15b (CORI15ab for short), the CORI5a cassette was PCR-amplified using
primers with vector homology (Table S1) and cloned into Pro35S:CORI15b predigested with
EcoRI and BamHI to produce Pro35S:COR15a-Pro35S:CORI15b (Pro35S:CORI15ab) which was
sequence confirmed. Floral dip transformation of WT and F24 was performed as above and
transgenic plants were selected by 50 mg L' kanamycin without (WT background) or with 20
mg L' hygromyein (F24 background). T, plants obtained from antibiotic selection were
confirmed by, PCR using NPTII (neomycin phosphotransferase 1I) and transgenic COR-vector
primers (Table S1). T; plants were again PCR-checked using Irp9, HPT, NPTII, and transgenic
COR-yector primers and tested for disease resistance (see below). Homozygous T4 plants were
grown at.22°C and 16°C for biomass, SA measurements, and disease resistance analysis (only

the 22°C group).

A second set of CORI5a and CORI5b vectors was similarly prepared using primers that
introduced sequences encoding C-terminal HA-tag and Strep-tag II, respectively (Table S1). A
CORG6.6 (At5g15970)-Flag fragment was synthesized as gBlocks (Integrated DNA
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Technologies, IA, USA) and cloned into pCM as described above. To avoid transgene co-
suppression, the Pro35S:CORI15a-HA, Pro35S:CORI15b-Strepll, and Pro35S:COR6.6-Flag
cassettes were PCR-amplified and Gibson-assembled into a Spel/Pmel-digested p201N backbone
(Addgene #59175) in which the kanamycin selection marker gene was controlled by the potato
(Solanum tuberosum) Ubiquitin3 promoter and terminator (Jacobs et al., 2015). The 35S
promoter was swapped for the Arabidopsis ACTIN2 (ACT2) promoter amplified from clone
pAtA2pt-Ppo (a gift from Peter Lafayette, University of Georgia, Athens, GA, USA) by Gibson

assembly to generate ProACT2:COR constructs. All constructs were verified by 'sequencing.

Arabidopsis floral dip transformation was performed as above in WT, F24, F31, F36, and siz/-2
backgrounds and transgenic plants were selected by 50 mg L' ‘kanamycin with 20 mg L™
hygromycin (in hiSA backgrounds) or without (WT and siz/-2 backgrounds). T, plants were
further screened by PCR using Irp9, HPT, NPTII, and transgenic’ COR-vector primers (Table
S1). T, plants were selected based on antibiotic resistance and increased leaf longevity
characteristic of ectopic COR expression. Two_randomly selected events per construct in each
background were analyzed by LC-MS for SA levels and advanced through T; to obtain
homozygous plants. Homozygous plants . were grown at 22°C and 16°C for growth
characterization, and a subset of plants were used for SA measurements and disease resistance

analysis (see below).

Growth monitoring and. biomass analysis

Col-0 WT, homozygous Fd-Irp9-OE lines, NahG, and several autoimmune mutants were
monitored for, various growth parameters shown in Fig. 1. Rosette leaf (nos. 7-8) thickness and
rosette canopy diameter of plants grown at 22°C (n = 5 plants) were measured at bolting stage
5.1 (28 DAG) according to Boyes et al. (2001) and the plants were destructively harvested for
rosette and-root biomass. The number of lateral roots (> 1 cm) was counted and dry weight was
obtained after oven drying at 55°C. Additional plants (n = 5) were monitored for the onset of leaf
senescence and bolting. Seed yield and silique traits (number and length) were measured at 50
DAG. Similar growth monitoring experiments were conducted more than 10 times, including as
background genotypes for subsequent Pro35S:COR and ProACT2:COR transformants, with

reproducible trends.
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Growth comparison at 22°C and 16°C of WT, NahG, and Fd-Irp9-OF lines was similarly
performed using n = 8 plants for data shown in Fig. 4C, or n = 4 plants for replicate data shown
in Fig. S3B. Similar growth monitoring experiments were performed at least four times,
including as background genotypes for subsequent Pro35S:COR and ProACT2:COR
experiments, with reproducible patterns. The comparison among WT, NahG, and-F24 was
conducted more than 10 times under various growth temperatures from 16°C to.26°C. Growth
monitoring of Pro35S:COR or ProACT2:COR transformants (two randomly selected events per
group) was conducted using » = 3—4 homozygous plants, except when Fi and F, progeny from
selected crosses were used. The experiments were performed once for.Pre35S:COR plants and at
least three times for ProACT2:COR transformants with similar trends. Biomass data were
measured only once as shown in Fig. 6 from 30 DAG plants at 22°C and 40 DAG at 16°C.
Statistical significance between each transgenic group and WT or between each transgenic COR

line and its cognate background was determined using two-sided Student’s #-test.

RNA-seq analysis

Three fully expanded rosette leaves (no. 7-9) per plant were snap-frozen in liquid nitrogen.
Plants at growth stage 5.1 (Boyes.et al., 2001) were used, which corresponded to 30 DAG at
22°C (Fig. 3, Dataset S1) and 28 DAG at 22°C or 38 DAG at 18°C (Fig. 4E-F, Dataset S2) in
two separate experiments, /Approximately 50-100 uL. volume of liquid nitrogen-ground powder
was used for RNA isolation with a Direct-zol RNA MiniPrep Kit (Zymo Research, Irvine, CA,
USA) and PureLink Plant RNA Reagent (Invitrogen, Waltham, MA, USA). RNA library
preparation and [llumina NextSeq 500 sequencing (single end, 75 cycles) were performed at the
Georgia Genomics and Bioinformatics Core of the University of Georgia (Supplementary Data
Set S3). Sequence data were preprocessed as described previously (Xue et al., 2015) and mapped
to.the Arabidopsis thaliana TAIR v10 reference genome using STAR v2.5.3a (Dobin and
Gingeras, 2015). Transcript abundance was estimated by featureCounts v1.5.2 (Liao et al., 2014)
for differential expression analysis by DESeq2 v1.22 with multiple testing corrections (Love et
al., 2014). Differentially expressed genes were determined by RPKM >3, O <0.05, and fold-
change > 1.5 using n = 4 plants (individual pools of three rosette leaves per plant per pool),

except one contaminated F51 sample (Fig. 3 and Dataset S1) that was mis-clustered with NahG
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samples in principal component analysis and was excluded. Only nuclear protein-coding genes

were reported. Logy-adjusted expression values were z-score transformed for hierarchical

clustering analysis using Morpheus (https://software.broadinstitute.org/morpheus) with Pearson’s
correlation as the distance metric. Gene ontology enrichment was performed using ShinyGO
v0.76.3 (Ge et al., 2020). Venn diagrams were drawn with DeepVenn (Hulsen, 2022); and

expression ratios were visualized with HeatMapper Plus (https://bar.utoronto.ca/nteols/cgi-

bin/ntools heatmapper plus.cgi).

Metabolite analysis

SA metabolites were measured by reverse-phase high-performance liquid chromatography—mass
spectrometry (HPLC-MS) as detailed previously (Xue et al., 2013) using plants at bolting (stage
5.1). For screening of early generation transformants, one fully expanded rosette leaf (no. 8) was
sampled using a biopsy punch (2 mm diameter) directly into the extraction buffer. For analysis of
homozygous transgenic lines, rosette leaves (nos. 7-9) were flash-frozen in liquid nitrogen,
ground to a fine powder, and an aliquot freeze-dried. Fourleaf discs or 5 mg of freeze-dried leaf
powder per plant was extracted in 200 pL of extraction buffer (1:1 methanol:chloroform, v v'')
containing BCg-cinnamic acid, Ds-benzoic aeid, and resorcinol as internal standards. Metabolite
identity was confirmed with authentic standards for SA, 2,3-DHBA, 2,5-DHBA (Sigma-Aldrich,
St. Louis, MO, USA) and SAG(Toronto Research Chemicals, Toronto, ON, Canada), previously
fraction-collected compounds for 2,5-DHBG and SGE (Xue et al., 2013), or through MS
fragmentation match against published data or NIST library for 2,5-DHBX, 2,3-DHBG, and 2,3-
DHBX (Dean and-Delaney, 2008; Bartsch et al., 2010; Xue et al., 2013). The glycosides and
xylosides were further confirmed by LC-MS and tandem MS analysis of Nicotiana benthamiana
extracts from leaves infiltrated with 1 mM SA, 2,3-DHBA, or 2,5-DHBA (Fig. S2). Except for
the Ty screening (n = 1) and when noted otherwise, SA metabolite analysis of Fd-Irp9-OE lines
was performed with n = 7-12 (T,) or n = 5-8 (homozygous) plants. The experiment with
homozygous hiSA lines at ambient temperatures was performed at least four times with
reproducible trends. Experiments comparing 22°C and 16°C plants were conducted twice with
similar patterns. SA metabolite analysis of Pro35S:COR or ProACT2:COR transformants was
performed with n = 6 (Pro35S:COR) or n = 5 (ProACT2:COR) individual plants, except for the
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confirmation analysis of ProACT2:COR T lines (n = 1 plant per line) in all genetic backgrounds.

Statistical differences were determined by two-sided Student’s #-test against WT samples.

Pathogenicity assay

Plant resistance to Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) was assessed
for soil-grown plants under the specified conditions using syringe infiltration of rosette-leaves as
described previously (Lovelace et al., 2018). Two days before inoculation, Pst DC3000 cultures
were grown in King’s B medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 50
mg L' rifampicin. Psz DC3000 inoculum was prepared at a concentration of 1 x 10° colony-
forming units (CFU) mL™' (ODggo = 0.1, diluted 1:100) in 25 mM magnesium chloride. Rosette
leaves 7 and 8 were inoculated with bacterial suspensions. Two days'post-inoculation (DPI), four
leaf discs (two discs per leaf) were collected from each infiltrated plant and homogenized for 2
min in 500 pL of 25 mM magnesium chloride in a SpeedMill PLUS Bead Mill homogenizer
(Analytik Jena AG, Jena, Germany). Homogenized samples were serially diluted, and 10 pL of
each dilution was plated on King’s B medium containing 50 mg L' rifampicin. CFU were
counted after two days of incubation at 28°C, and data are presented as log;o CFU cm ™ (Fig.
2A). The experiment was performed six times for Fd-Irp9-OE lines (n = 3 plants) at 22°C with
similar results, including as background genotypes for the Pro35S:COR or ProACT2:COR
transformants. The experiment for the Pro35S:COR transformants (CORI15a, CORI5b, and
CORI15ab) was conducted once in T3 and once in T4 (n = 3 plants), showing gradual loss of
disease resistance in the F24 background due to co-suppression (Fig. S4I). The experiment for
ProACT2:COR transformants (CORI5a, COR15b, and CORG6.6) in various backgrounds (n = 4
plants) was conducted once at 22°C (Fig. 6F). Statistical significance was determined by two-

sided Student’s #-test against WT or their respective background genotype as indicated.

Resistanceto Pst DC3000 was also evaluated by flood-inoculation assays as described
previously (Ishiga et al., 2011) using in-vitro-cultured plants. After surface sterilization and
stratification for 48 h at 4°C, seeds sown on half-strength MS medium with 0.3% (w v ') gellan
gum (PhytoTechnology Laboratories, Shawnee Mission, KS, USA) were incubated at 22°C with
a 16 h light (100-120 pmol m > s ') and 8 h darkness photoperiod. Four days after germination,

seedlings were transferred to pathogenicity-assay Petri dishes each containing five seedlings
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from different genotypes. Two days before inoculation, Pst DC3000 culture was prepared as
above in 25 mM magnesium chloride containing 0.025% (v v') Silwet L-77. Two-week-old
Arabidopsis seedlings were flooded with 20 mL of inoculum for 3 min. After removal of excess
bacteria, plates were sealed with Micropore surgical tape (3M, St. Paul, MN, USA) and
incubated under normal growth conditions. At 3 DPI, rosettes were surface-sterilized by plate
flooding with 20 mL of 5% (v v') hydrogen peroxide for 3 min, followed by washing three
times with sterile dH,O. After blotting dry on sterile paper towels, three leaves per plant were
weighed and homogenized as above and serial dilutions plated. CFU were counted after.two days
of incubation at 28°C, and data are presented as logjy CFU mg ' fresh weight tissue. The
experiment was performed in a randomized complete block design where each Petri plate of 57
genotypes (one plant per genotype) was an experimental unit and five biological replicates per
genotype were included (n = 5 plants). The experiment for Fd-Irp9-OE lines was conducted
twice with similar patterns (Fig. 2B). Statistical significance was determined by two-sided
Student’s #-test against WT samples. The seedling flood-inoculation assays were conducted once
for the F, progeny of Pro35S:CORI15ab2 x F31 at 22°C (Fig. 5F) and once for the F24-eCOR
lines at 16°C (Fig. 6G and Fig. S6C). For the latter, tissue cultured plants (seven genotypes per
plate, three plants per genotype) were prepared as above and grown at 22°C for 10 days before
transferring to a 16°C growth chamber. Bacterial inoculation was performed 11 days after (3-

week-old plants) for visual documentation of disease responses (Fig. 6G and Fig. S6C).

Abiotic stress assays

Surface-sterilized"NahG, Col-0, F19, F24, F36, and siz/-2 seeds were germinated as described
and four-day-old seedlings were transferred to vertically placed square Petri dishes (Simport,
Quebec, Canada) containing half-strength MS alone or with 100 mM NaCl or 250 mM mannitol.
Primary root length was measured on eleven-day-old seedlings. The experiment consisted of five
replicate plates per treatment group, each plate containing two seedlings per genotype. The
experiment was performed twice with similar results. For plant response to methyl viologen (or
paraquat dichloride; Sigma, St. Louis, MO, USA), surface-sterilized and stratified seeds were
plated on half-strength MS either alone or containing 5 uM methyl viologen. The plates were
incubated at 22°C with 16 h light (100-120 umol m? s™'). Germination response was recorded

seven days after sowing. The experiment consisted of five replicate plates per group, each with
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10 seeds per genotype. The experiment was performed twice with similar results. Statistical

significance was determined by two-sided Student’s #-test against WT samples.

Ion leakage assays

Four 2 mm leaf discs (rosette leaf 8) per plant (n = 5 plants) were collected into 15 mL Falcon
tubes containing 5 mL of ddH,0O. Samples were shaken at 60 rpm for 4-6 h at ambient
temperature. Conductivity was measured using a conductivity meter (Traceable Products;
Friendswood, TX, USA). The samples were boiled for 30 min and cooled to room temperature,
and conductivity was measured again as total ion leakage. Conductivity values were corrected
using ddH,O as a blank. Ion leakage for each genotype was estimated from initial conductivity as
a percentage of total conductivity. The genotype, temperature, and genotype x temperature
effects were determined by two-way ANOVA, and significant effects,were analyzed post-hoc
with Tukey’s honestly significant difference (HSD) test using JMPPro 16 (SAS Institute, Cary,
NC, USA). The experiment was conducted once. The effects of ectopic COR15a expression in
WT or F24 background on ion leakage were similarly assessed for tissue-cultured plants grown
at 16°C, using six 2 mm leaf discs from rosette leaf 8 per plant (n = 5 plants). Statistical
significance was determined by two-sided Student’s ¢-test against WT and, for F24-eCOR lines,

against the F24 background as well. This experiment was performed once.

Statistical Analysis
Statistical analyses wereperformed as described in each figure legend. Statistical data are

provided in Supplementary Data Set S3.

Accession numbers

Accession numbers of the genes used in this study are: ACT2 (AT3G18780), COR6.6
(ATS5G15970), CORI15a (AT2G42540), CORI5h (AT2G42530), FD (At1g60950), and Irp9
(CAB46570). RNA-seq data are available from the NCBI SRA under accession numbers
PRINA939115 and PRINA942941.

Supplementary Data
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Supplementary Figure S1. SA metabolite analysis of Ty, T, and T3 Fd-Irp9-OE plants (Supports
Figure 1).

Supplementary Figure S2. LC-MS chromatograms and MSMS fragmentation patterns of SA-
derived metabolites (Supports Figure 1).

Supplementary Figure S3. SA metabolite levels and growth of Fd-Irp9-OE plants at 22°C or
16°C (Supports Figure 4).

Supplementary Figure S4. Characterization of homozygous F24-Pro35S:COR transformants
(Supports Figure 5).

Supplementary Figure S5. Growth phenotypes of additional ProACT2:COR transgenic lines
(Supports Figure 6).

Supplementary Figure S6. Additional phenotypes of ProACT2:COR transformants (Supports
Figure 6).

Supplementary Table S1. Primers used in this study.

Supplementary Data Set S1. Differentially expressed genes in response to SA changes at 22°C.
Supplementary Data Set S2. Differentially expressed genes in response to SA and below-ambient
temperatures.

Supplementary Data Set S3. Results of statistical analyses.
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Figure legends

Fig. 1. Characterization of the Arabidopsis Fd-Irp9-OE lines. (A) Simplified diagram of Irp9-
mediated SA biosynthesis and downstream catabolism and conjugation.(B) Representative plant
morphology 45 days after germination (DAG) at 22°C. Inset shows juvenile senescence of cprJ-
2 not seen in F24. Scale bars, 1 cm. (C) Levels of SA-derived conjugates in rosette leaves of wild
type (WT), homozygous Fd-Irp9-OE lines, and autoimmune mutants at bolting. Data are means
+ SD of n = 5 independent pools, each sampled from three rosette leaves per plant. (D-F)
Vegetative growth traits at 28 DAG (D), onset of senescence (E) and bolting (F) and seed traits
at 50 DAG (F). Data are means + SD of n = 5.plants. (G) Premature senescence in F24 (right)
compared with WT (middle) and NahG (left). Scale bars, 5 cm. (H) Representative images of
F24 at seed set (scale bar, 1 cm). Inset shows incompletely developed siliques (scale bar, 0.5
cm). (I) Representative images of seeds. Scale bars, 0.5 mm. Data are means = SD of n =5
plants. Statistical significance was determined by two-sided Student’s #-test against WT (¥**P <
0.001; **P < 0.01;:*P<0.05). The growth phenotypes were reproducible in more than 10
experiments. The experiment for SA analysis was conducted four times with similar trends.
DHBG, dihydroxybenzoate glucoside; DHBX, dihydroxybenzoate xyloside; SA, salicylic acid;
S3H, SA 3-hydroxylase; SSH, SA 5-hydroxylase; SAG, SA glucoside; SGE, SA glucose ester.

Fig.”2. Responses of Fd-Irp9-OF lines to pathogen or abiotic stresses. (A) Pst DC3000 bacterial
growth based on leaf infiltration of soil-grown plants at bolting. Data are means + SD of n =3
independent pools of four leaf discs sampled from two rosette leaves per plant. The experiment
was performed six times with similar trends. (B) Pst DC3000 bacterial growth based on flood-

inoculation of 2-week-old seedlings in tissue culture. Representative plant images from WT and
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F31 three days after inoculation are shown. Scale bar, 1 cm. Data are means = SD of n =5
independent pools of three rosette leaves per plant. The experiment was performed twice with
similar patterns. (C) Primary root growth of 11-day-old seedlings on half-strength MS medium
(1/2 MS) alone or with NaCl or mannitol. Data are means = SD of n = 5 independent pools of
two seedlings per pool (each data point was averaged from two seedlings). (D) Seed germination
in the presence of methyl viologen. Data are means + SD of n = 5 independent pools of 10 seeds
per pool. The abiotic stress experiments were performed twice with similar results. Statistical
significance was determined by two-sided Student’s z-test against WT (***P <0.001; **P <

0.01; *P < 0.05).

Fig. 3. Leaf transcriptomic responses of the Fd-Irp9-OE lines. (A) Hierarchical clustering of 471
SA-responsive genes selected according to differential expression in both F51 and NahG lines
relative to the WT. Representative genes that were positively or negatively regulated by SA are
shown on the right (*S3H not captured in the list was included for reference). Data were obtained
from n = 4 independent pools, each sampled from three rosette leaves per plant at 30 DAG,
except for F51 where n = 3 independent pools. Differential expression relative to WT was
determined by DEseq2 based on QO < 0.05 and fold-change > 1.5. Color scale bar denotes the z-
score transformed log, ratios. Colorscale bar denotes the normalized log, ratio (B) Gene
ontology (GO) enrichment of genes positively or negatively regulated by SA. Only GO terms
with —log;oFDR > 5 and fold-enrichment > 9 are shown. The RNA-seq experiment was

conducted once.

Fig. 4. Temperature-sensitive growth and transcriptomic responses of the Fd-Irp9-OE lines. (A)
Representative phenotypes of NahG, WT, and F24 plants at 26°C (18 DAG), 22°C:18°C
(day:night, I8 DAG), 18°C:16°C (day:night, 26 DAG), or 16°C (22 DAG). Scale bars, 1 cm.
Each condition was repeated at least once with similar results. (B) Representative phenotypes of
NahG, WT, Fd-Irp9-OE (low to high SA, left to right), and siz/-2 plants at 22°C (30 DAG) or
16°C (49 DAG). Scale bars, 1 cm. (C) Regression analysis between total plant biomass and total
rosette SA levels of multiple genotypes grown at 22°C or 16°C (n = 8 plants except for F51 at
16°C where n = 7 plants). SA metabolite data are shown in Supplementary Figure S3A. (D)

Percent ion leakage of rosette leaf 8 from plants grown at 22°C or 16°C. Data are means + SD (n
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= 5 plants). Effects of genotype (G), temperature (T), and their interaction were determined by
two-way ANOVA, followed by Tukey’s post-hoc tests; significance is indicated by letters. The
experiments were conducted four times for growth monitoring, twice for SA measurements, and

once for ion leakage analysis. (E) Venn diagram of differentially expressed genes in response to

SA (NahG vs. WT or F24 vs. WT) at 18°C or to temperature changes (18°C vs. 22°C) in the' WT.

Clustering analysis of the intersection of 118 genes is shown below, and the top GO terms are
indicated on the right. Color scale bar denotes the z-score transformed log, ratios. (F) Expression
response heatmaps of COR genes. Values are log,-transformed ratios (significant difference
denoted by boldface). Average transcript abundance (reads per kilobase of transcript per million
mapped reads, RPKM) of WT samples at 22°C or 18°C is also shown. Data were obtained from
n =4 independent pools, each sampled from three rosette leaves per plant at bolting. Differential
expression between the specified sample pair was determined-by DEseq2 based on Q <0.05 and

fold-change > 1.5. The RNA-seq experiment was performed once. NG, NahG.

Fig. 5. F; and F, progeny phenotypes of Pro35S:COR[5ab-and hiSA crosses before the onset of
silencing. (A—C) Plant growth at 65 DAG (A), total SA metabolite levels measured in leaf
punches (B), and seed yield (C) of representative F; plants from COR15ab3 x F36 at 22°C. Data
for homozygous genotypes are means + SD of n =5 (B) or n = 3 (C) plants. (D—F) Plant growth
at 65 DAG at 16°C (D), total SA levels in leaf punches at 22°C or 16°C (E), and Pst DC3000
disease resistance at 22°C.of representative F, progeny from COR15ab2 x F31 F; #7 or #8. Data
for homozygous genotypes are means = SD of n =5 (E) or n = 3 (F) plants. Each experiment was

performed once. Scale bars, 1 cm.

Fig. 6. Constitutive ProACT2:COR expression rescues growth of SA-hyperaccumulating lines.
(A) Mature leaves of representative transgenic plants expressing eCOR15a, eCOR15b, or
eCORO6.6 in WT, sizl-2, and hiSA backgrounds at 22°C (30 DAG). Scale bar, 1 cm. Whole plant
images are shown in Supplementary Figure S6A. (B) Plant growth of representative eCOR
transgenic lines (49 DAG) at 16°C. Scale bar, 1 cm. (C—E) Rosette biomass (C—D) and seed
yield (E) at 22°C (C) or 16°C (D-E) from two events per transformation (abbreviated without
“eCOR”). Data are means + SD of n = 4 plants. Statistical significance against the respective

background was determined by two-sided Student’s #-test (***P < 0.001; **P < 0.01). (F)
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Disease resistance against Pst DC3000 based on leaf infiltration of soil-grown plants at 22°C (30
DAG). Data are means + SD of n = 3 independent pools, each sampled from two rosette leaves
per plant per pool. No statistical significance (ns) was found against the respective background
based on two-sided Student’s #-test. Statistical differences against WT are indicated by asterisks
inside the bar (***P < 0.001; **P < 0.01; *P <0.05). (G) Responses to Pst DC3000 based on
flood inoculation of tissue-cultured plants at 16°C. Scale bar, 1 cm. Additional replicates are
shown in Supplementary Figure S6. (H-I) Total SA (H) and percent ion leakage (I)in rosettes of
tissue-cultured plants at 16°C. Data are means = SD (n = 5 plants). Statistical significance was
determined by two-sided Student’s ¢-test against WT in (H) or as indicated (I) (**P < 0.01; *P <
0.05). The growth experiments were conducted three times with reproducible phenotypes. All

other analyses were performed once.

Fig. 7. A proposed model for the growth—defense trade-off involving SA and CORs in response
to various stressors. (A) Plant growth under ambient conditions with basal or low levels of COR
expression (blue arrows) is negatively affected by SA (top). CORs are strongly stimulated for
membrane protection at below-ambient temperatures. This induction is attenuated by SA (grey
flatheads), resulting in exacerbated growth reduction in hiSA plants (bottom). The negative
regulation of CORs by SA may also affect growth—defense trade-offs in response to various
biotic and abiotic stressors denoted by brown and blue arrows, respectively, on the right. (B)
Ectopic expression of individual COR genes can bypass SA suppression and rescue plant
growth. Scale bars, 1 cm. The COR6.6 and COR15a structural predictions were retrieved from

AlphaFold DB (https://alphafold.ebi.ac.uk).
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Fig. 1. Characterization of the Arabidopsis Fd-Irp9-OF lines. (A) Simplified diagram of Irp9-

mediated SA biosynthesis and downstream catabolism and conjugation. (B) Representative plant
motphology 45 days after germination (DAG) at 22°C. Inset shows juvenile senescence of cpr3-
2 not seen in F24. Scale bars, 1 cm. (C) Levels of SA-derived conjugates in rosette leaves of wild
type (WT), homozygous Fd-Irp9-OE lines, and autoimmune mutants at bolting. Data are means
+ SD of n = 5 independent pools, each sampled from three rosette leaves per plant. (D-F)
Vegetative growth traits at 28 DAG (D), onset of senescence (E) and bolting (F) and seed traits
at 50 DAG (F). Data are means + SD of n = 5 plants. (G) Premature senescence in F24 (right)
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compared with WT (middle) and NahG (left). Scale bars, 5 cm. (H) Representative images of
F24 at seed set (scale bar, 1 cm). Inset shows incompletely developed siliques (scale bar, 0.5
cm). (I) Representative images of seeds. Scale bars, 0.5 mm. Data are means = SD of n =5
plants. Statistical significance was determined by two-sided Student’s #-test against WT (¥**P <
0.001; **P <0.01; *P < 0.05). The growth phenotypes were reproducible in more than 10
experiments. The experiment for SA analysis was conducted four times with similar trends.
DHBG, dihydroxybenzoate glucoside; DHBX, dihydroxybenzoate xyloside; SA, salicylic acid;
S3H, SA 3-hydroxylase; SSH, SA 5-hydroxylase; SAG, SA glucoside; SGE, SA glucose ester.
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Fig. 2. Responses of Fd-Irp9-OF lines to pathogen or abiotic stresses. (A) Pst DC3000 bacterial
growth based on leaf infiltration of soil-grown plants at bolting. Data are means = SD of n =3
independent pools of four leaf discs sampled from two rosette leaves per plant. The experiment
was:performed six times with similar trends. (B) Pst DC3000 bacterial growth based on flood-
inoculation of 2-week-old seedlings in tissue culture. Representative plant images from WT and
F31 three days after inoculation are shown. Scale bar, 1 cm. Data are means = SD of n =15
independent pools of three rosette leaves per plant. The experiment was performed twice with
similar patterns. (C) Primary root growth of 11-day-old seedlings on half-strength MS medium

(1/2 MS) alone or with NaCl or mannitol. Data are means = SD of n = 5 independent pools of
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two seedlings per pool (each data point was averaged from two seedlings). (D) Seed germination
in the presence of methyl viologen. Data are means = SD of n = 5 independent pools of 10 seeds
per pool. The abiotic stress experiments were performed twice with similar results. Statistical
significance was determined by two-sided Student’s #-test against WT (***P < 0.001; **P <

0.01; *P <0.05).
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Fig. 3. Leaf transcriptomic responses of the Fd-Irp9-OE lines. (A) Hierarchical clustering of 471
SA-responsive genes selected according to differential expression in both F51 and NahG lines
relative to the WT. Representative genes that were positively or negatively regulated by SA are
shown on the right (*S3H not captured in the list was included for reference). Data were obtained
from n = 4 independent pools, each sampled from three rosette leaves per plant at 30 DAG,

except for F51 where n = 3 independent pools. Differential expression relative to WT was
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determined by DEseq2 based on O < 0.05 and fold-change > 1.5. Color scale bar denotes the z-
score transformed logy ratios. Color scale bar denotes the normalized log» ratio (B) Gene
ontology (GO) enrichment of genes positively or negatively regulated by SA. Only GO terms

with —logi1oFDR > 5 and fold-enrichment > 9 are shown. The RNA-seq experiment was

conducted once.
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Fig. 4. Temperature-sensitive growth and transcriptomic responses of the Fd-Irp9-OE lines. (A)
Representative phenotypes of NahG, WT, and F24 plants at 26°C (18 DAG), 22°C:18°C
(day:night, 18 DAG), 18°C:16°C (day:night, 26 DAG), or 16°C (22 DAG). Scale bars, 1 cm.
Each condition was repeated at least once with similar results. (B) Representative phenotypes of
NahG, WT, Fd-Irp9-OE (low to high SA, left to right), and siz/-2 plants at 22°C (30 DAG) or
16°C (49 DAG). Scalebars, 1 cm. (C) Regression analysis between total plant biomass and total
rosette SA levels of multiple genotypes grown at 22°C or 16°C (n = 8§ plants except for F51 at
16°C where n = 7 plants). SA metabolite data are shown in Supplementary Figure S3A. (D)
Percent 10n leakage of rosette leaf 8 from plants grown at 22°C or 16°C. Data are means + SD (n
= 5 plants). Effects of genotype (G), temperature (T), and their interaction were determined by
two-way ANOVA, followed by Tukey’s post-hoc tests; significance is indicated by letters. The
experiments were conducted four times for growth monitoring, twice for SA measurements, and

once for ion leakage analysis. (E) Venn diagram of differentially expressed genes in response to

SA (NahG vs. WT or F24 vs. WT) at 18°C or to temperature changes (18°C vs. 22°C) in the WT.
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Clustering analysis of the intersection of 118 genes is shown below, and the top GO terms are
indicated on the right. Color scale bar denotes the z-score transformed log> ratios. (F) Expression
response heatmaps of COR genes. Values are log>-transformed ratios (significant difference
denoted by boldface). Average transcript abundance (reads per kilobase of transcript per million
mapped reads, RPKM) of WT samples at 22°C or 18°C is also shown. Data were obtained from
n =4 independent pools, each sampled from three rosette leaves per plant at bolting. Differential
expression between the specified sample pair was determined by DEseq2 based on.Q < 0:05 and

fold-change > 1.5. The RNA-seq experiment was performed once. NG, NahG.
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Fig..5. F1 and F> progeny phenotypes of Pro35S:CORI15ab and hiSA crosses before the onset of
silencing. (A—C) Plant growth at 65 DAG (A), total SA metabolite levels measured in leaf
punches (B), and seed yield (C) of representative Fi plants from CORI5ab3 x F36 at 22°C. Data
for homozygous genotypes are means + SD of n =5 (B) or n = 3 (C) plants. (D-F) Plant growth
at 65 DAG at 16°C (D), total SA levels in leaf punches at 22°C or 16°C (E), and Pst DC3000
disease resistance at 22°C of representative F» progeny from CORI5ab2 x F31 Fi #7 or #8. Data
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for homozygous genotypes are means £ SD of n =5 (E) or n = 3 (F) plants. Each experiment was

performed once. Scale bars, 1 cm.
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Fig. 6. Constitutive ProACT2:COR expression rescues growth of SA-hyperaccumulating lines.
(A) Mature leaves of representative transgenic plants expressing eCOR15a, eCOR15b, or
eCORG6.6 in WT, sizl-2, and hiSA backgrounds at 22°C (30 DAG). Scale bar, 1 cm. Whole plant
images are shown in Supplementary Figure S6A. (B) Plant growth of representative eCOR
transgenic lines (49 DAG) at 16°C. Scale bar, 1 cm. (C—E) Rosette biomass (C—D) and seed
yield (E) at 22°C (C) or 16°C (D-E) from two events per transformation (abbreviated without

“eCOR”). Data are means + SD of n = 4 plants. Statistical significance against the respective
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background was determined by two-sided Student’s #-test (***P < 0.001; **P < 0.01). (F)
Disease resistance against Pst DC3000 based on leaf infiltration of soil-grown plants at 22°C (30
DAG). Data are means + SD of n = 3 independent pools, each sampled from two rosette leaves
per plant per pool. No statistical significance (ns) was found against the respective background
based on two-sided Student’s #-test. Statistical differences against WT are indicated by asterisks
inside the bar (***P < 0.001; **P <0.01; *P <0.05). (G) Responses to Pst DC3000 based on
flood inoculation of tissue-cultured plants at 16°C. Scale bar, 1 cm. Additional replicates are
shown in Supplementary Figure S6. (H-I) Total SA (H) and percent ion leakage (I) in rosettes of
tissue-cultured plants at 16°C. Data are means = SD (n = 5 plants). Statistical significance was
determined by two-sided Student’s #-test against WT in (H) or as indicated (I) (¥*P < 0.01; *P <
0.05). The growth experiments were conducted three times with reproducible phenotypes. All

other analyses were performed once.
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Fig. 7. A proposed model for the growth—defense trade-off involving SA and CORs in response
to various stressors. (A) Plant growth under ambient conditions with basal or low levels of COR
expression (blue arrows) is negatively affected by SA (top). CORs are strongly stimulated for

membrane protection at below-ambient temperatures. This induction is attenuated by SA (grey
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flatheads), resulting in exacerbated growth reduction in hiSA plants (bottom). The negative
regulation of CORs by SA may also affect growth—defense trade-offs in response to various
biotic and abiotic stressors denoted by brown and blue arrows, respectively, on the right. (B)
Ectopic expression of individual COR genes can bypass SA suppression and rescue plant
growth. Scale bars, 1 cm. The COR6.6 and COR15a structural predictions were retrieved from

AlphaFold DB (https://alphafold.ebi.ac.uk).
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