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Modeling molecular ensembles with gradient-domain
machine learning force fields†

Alex M. Maldonado,a Igor Poltavsky,b Valentin Vassilev-Galindo,bc Alexandre Tkatchenko,⇤b

and John A. Keith⇤a

Gradient-domain machine learning (GDML) force fields have shown excellent accuracy, data efficiency,

and applicability for molecules with hundreds of atoms, but the employed global descriptor limits

transferability to ensembles of molecules. Many-body expansions (MBEs) should provide a rigorous

procedure for size-transferable GDML by training models on fundamental n-body interactions. We

developed many-body GDML (mbGDML) force fields for water, acetonitrile, and methanol by training

1-, 2-, and 3-body models on only 1000 MP2/def2-TZVP calculations each. Our mbGDML force

field includes intramolecular flexibility and intermolecular interactions, providing that the reference

data adequately describe these effects. Energy and force predictions of clusters containing up to

20 molecules are within 0.38 kcal/mol per monomer and 0.06 kcal/(mol Å) per atom of reference

supersystem calculations. This deviation partially arises from the restriction of the mbGDML model

to 3-body interactions. GAP and SchNet in this MBE framework achieved similar accuracies but

occasionally had abnormally high errors up to 17 kcal/mol. NequIP trained on total energies and

forces of trimers experienced much larger energy errors (at least 15 kcal/mol) as the number of

monomers increased—demonstrating the effectiveness of size transferability with MBEs. Given these

approximations, our automated mbGDML training schemes also resulted in fair agreement with

reference radial distribution functions (RDFs) of bulk solvents. These results highlight mbGDML as

valuable for modeling explicitly solvated systems with quantum-mechanical accuracy.

1 Introduction
Machine learning (ML) potentials and force fields1–3 have revolu-
tionized atomistic modeling by facilitating larger and longer sim-
ulations crucial for modeling dynamic and kinetic properties.4,5

General-purpose ML potentials (e.g., ANI-2x6, OrbNet Denali,7

AIQM18) model chemical (local) interactions and can be useful
for subsets of chemical space. These approaches assist molecular
screening but require enormous data sets of hundreds of thou-
sands of structures. Alternatively, ML potentials can be tailored
to specific systems to improve desired simulation reliability. This
requires that models be retrained for each system, so training
must involve minimal human involvement and computations to
be practical.

Size transferability to hundreds of molecules is paramount for
useful ML potentials. Most ML potentials rely on local descrip-
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tors9–12 or graph neural networks (GNNs)13,14 that partition to-
tal properties into atomic contributions. Local descriptors have
been successful in numerous applications, but they inherently
neglect or limit complicated non-local interactions by enforcing
atomic radial cutoffs. For example, a recent study showed that a
deep neural network potential’s predictions of liquid water prop-
erties are sensitive to training data relevant to the thermodynamic
state point.15 Global descriptors (such as the Coulomb matrix and
pairwise atomic distances) impose no such constraints and cap-
ture interactions at all scales.16,17 Still, they are usually restricted
to the same number of atoms.

Gradient-domain ML (GDML) uses a global descriptor and has
demonstrated remarkable success in many chemical applications
with monomers or dimers.18–22 Moreover, GDML only needs en-
ergies and forces of approximately 1000 structures to accurately
learn the potential energy surfaces of molecules19 and periodic
materials.17 The global descriptor limits GDML to the same sys-
tem it was trained on, whether a single molecule or a chemical
reaction. Size-transferable GDML for molecular ensembles would
provide rapidly trained force fields for high-quality molecular sim-
ulations involving solvents.

Many-body expansions (MBEs) should enable size-transferable
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GDML because systems with non-covalent clusters are natu-
rally described in terms of n-body interactions.23,24 Data-driven,
many-body potentials (e.g., MB-pol) have already been widely
successful in modeling aqueous systems.25–27 This expansion is
formally exact if all N-body interactions are accounted for with
sufficient accuracy and precision. However, the expansion is typ-
ically truncated to the third order due to combinatorics. One can
avoid truncating the expansion and include all contributions by
using a classical many-body polarization model (e.g., a Thole-
type model as in MB-pol25). We expect training on fundamental
n-body interactions found in clusters would extend GDML force
fields to be useful for bulk liquid simulations. Alternative ap-
proaches exist; for example, Gaussian Approximation Potential
(GAP)3,11 was extended to liquid methane by decomposing en-
ergies into fundamental interactions (e.g., repulsion, dispersion,
and electrostatic contributions) and different scales.28 This is an-
other rigorous approach that requires considerable effort with
large numbers of quantum chemical calculations.

MBEs share characteristics with local descriptors but provide
several key advantages. First, n-body interactions are more ef-
ficiently treated on a molecular basis instead of an atomic ba-
sis. Second, errors associated with MBE truncation can be cor-
rected using a variety of schemes. For example, using long-range
physical models to capture induction and dispersion effects.29,30

Alternatively, one could use ONIOM-style31 approaches such
as molecule-in-molecules (MIM)32 and molecular tailoring ap-
proach (MTA)33 where low-cost calculations on the whole struc-
ture (i.e., supersystem) are used to capture all long-range in-
teractions. Third, these n-body contributions can be observed
in relatively small clusters. Local descriptors require data on
large clusters to achieve similar levels of size transferability.34

This opens the door for many-body GDML (mbGDML) force fields
trained on high levels of theory that scale poorly with system size,
such as CCSD(T). In addition, mbGDML naturally incorporates in-
tramolecular/monomer flexibility, which is extremely challenging
for analytical potentials.

Thus, mbGDML should provide size-transferable force fields
trained on highly accurate quantum chemical methods. To eval-
uate this, we developed an automated framework in Python to
facilitate training and application of mbGDML force fields (avail-
able at github.com/keithgroup/mbGDML). GDML force fields for
water (H2O), acetonitrile (MeCN), and methanol (MeOH) were
trained on 1000 structures for 1-, 2-, and 3-body interactions. GAP
and SchNet35 were also evaluated in this many-body framework.
The size transferability of mbGDML was further assessed against
a highly promising graph neural network, Neural Equivariant In-
teratomic Potentials (NequIP).13 Reference structures from the
literature were used to benchmark energy and forces predictions.
The following sections demonstrate mbGDML energy and force
accuracies within 0.38 kcal/mol per monomer and 0.06 kcal/(mol
Å) per atom for structures containing up to 20 monomers (120
atoms). The MBE framework itself contributes 14% to 83% of
these errors depending on the system. Error cancellation dramat-
ically improves relative energy predictions of mbGDML to less
than 3 kcal/mol and achieves fair to excellent agreement with
solvent radial distribution functions (RDFs).

2 Methods
The MBE represents the total system energy, E, composed of N
noncovalently connected (i.e., non-intersecting) fragments as the
sum of n-body interaction energies:36
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Here, N is the number of monomers; i, j, k are monomer indices;
E(1)

i is the energy of monomer i; and DE (n)
i, j, ... represents the n-

body interaction energy contribution of the fragment containing
monomers i, j, . . . with lower order (< n) contributions removed.
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monomers i and j is
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Equation 1 is exact when all n-body contributions up to N are
accounted for with exact accuracy and precision. This equation
also holds for properties expressed as a derivative of energy (i.e.,
gradients).

The xTB program37 v6.4.0 was used to run MD simulations
of the three solvents at 500 K. Small clusters containing up to
three molecules were sampled from these simulations to gener-
ate data sets for training. Higher temperatures provided config-
urations relevant at lower temperatures with the added benefit
of sampling high-energy regions.2 GFN2-xTB,38 a semiempirical
quantum mechanics method, was used as a compromise between
the cost of quantum chemical methods and potentially not having
classical force field parameters for species of interest. Further-
more, simulation accuracy is not a significant concern because
only reasonable geometries are desired at this stage.

Equation 1 represents the MBE framework where individual
GDML force fields are trained on intramolecular (i.e., 1-body) and
intermolecular (i.e., 2- and 3-body) energies and forces. Energies
and forces were calculated with ORCA v4.2.039,40 using second-
order Møller–Plesset perturbation (MP2) theory,41 the def2-TZVP
basis set,42 and the frozen core approximation. This level of the-
ory was chosen for its efficiency and accuracy for noncovalent in-
teractions, but future applications of mbGDML are recommended
to use the highest levels of quantum chemical theory available
for training data. The Resolution of Identity (RI) approximation
was only used for calculations containing 16 or more monomers.
Additional calculation details and discussion can be found in the
Electronic Supplementary Information (ESI).

3 Results and discussion

3.1 Small isomers

We evaluated mbGDML, mbGAP, and mbSchNet on tetramers
(4mers), pentamers (5mers), and hexamers (6mers) from the
literature.43–45 These test structures have minimal higher-order
(> 3-body) contributions that increase with the number of
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monomers. Furthermore, many-body ML (mbML) potentials con-
sidered here implement a distance-based cutoff for 2- and 3-body
contributions (see the ESI for more details). Small clusters al-
low us to determine whether errors are from the underlying MBE
framework or ML predictions.

ML potentials discussed here are trained on small data sets of
only 1000 structures to showcase GDML data efficiency. Train-
ing sets were determined through an iterative training procedure
to reduce the maximum model error.46 GAP and SchNet models
were trained on the same training sets as GDML for a fair compar-
ison. In theory, training sets could be tailored for GAP and SchNet
to reduce errors; however, a cursory attempt did not substantially
improve results. We reiterate that GAP and SchNet normally re-
quire substantially large training sets. In other words, GAP and
SchNet potentials presented here are technically underfitted com-
pared to standard practices. More information can be found in the
ESI.

Fig. 1 shows relative isomer energies with respect to the low-
est energy structure for MBE (light color) and mbGDML (dark
color) methods. The ESI provides comparable figures for mb-
GAP and mbSchNet. Figures showing absolute energy predictions
for these structures are also shown in the ESI and help deter-
mine where error cancellation comes into play. First, we discuss
the inherent errors in MBE data versus supersystem MP2 data
(gray). These MBE predictions generally capture the relative en-
ergy trends of water, acetonitrile, and methanol isomers. Water
predictions showed increasing errors with system size, indicat-
ing the importance of higher-order contributions (as expected).
Acetonitrile 5mers and 6mers (Fig. 1D-F) show small energy dif-
ferences that are not monotonically increasing. This is likely due
to challenging electrostatics and polarization from dipole-dipole
interactions. Methanol isomer MBE predictions showed this same
trend as water, but higher-energy structures now exhibit lower
MBE errors. This suggests that higher-order contributions are cru-
cial for stabilizing low-energy methanol structures. Incomplete
basis sets and basis set superposition errors (BSSE) are known to
impact MBE accuracy.47–52 The def2-TZVP basis set was chosen
for its balance of cost and accuracy, as the larger aug-cc-pVTZ
basis set only improved the energy MAE by 0.15 kcal/mol. BSSE
corrections are not included here because the n-body energies and
forces would depend on the original supersystem—thereby limit-
ing data set transferability.

We now discuss mbGDML data, which approximates the MBE
potential energy surface. In general, mbGDML reasonably mimics
MBE data, including innate errors made by the MBE framework,
as seen in the acetonitrile 5mer and 6mer data. Note that for-
tuitous error cancellations of 2- and 3-body mbGDML predictions
sometimes give the appearance of higher accuracy than MBE. mb-
GAP and mbSchNet potentials occasionally are better or worse
than mbGDML; however, as previously mentioned, these methods
generally require larger training sets and are likely to underper-
form. For example, Table 1 shows the MBE, mbGDML, mbGAP,
and mbSchNet energy and force mean absolute errors (MAEs)
with respect to supersystem MP2/def2-TZVP calculations for all 4-
6mer structures considered here. All mbML models perform sim-
ilarly for water and acetonitrile, but the methanol isomer errors

Table 1: Energy (kcal/mol) and force [kcal/(mol Å)] MAEs of 4-
6mer predictions. MAEs on an energy/monomer and force/atom
basis are shaded. Best ML potential values are bolded. Energy
and forces are abbreviated as E and F, respectively.

Method H2O MeCN MeOH
E F E F E F

MBE 0.925 0.426 0.110 0.019 0.503 0.157
0.169 0.026 0.020 0.001 0.100 0.005

mbGDML 1.340 0.737 0.296 0.164 1.667 0.872
0.248 0.045 0.057 0.005 0.342 0.030

mbGAP 1.906 1.014 0.264 0.235 2.908 1.369
0.345 0.062 0.049 0.007 0.600 0.046

mbSchNet 1.285 0.690 0.368 0.168 3.138 1.177
0.237 0.043 0.070 0.005 0.648 0.040

for mbGAP and mbSchNet are nearly double that for mbGDML.
Previous studies also investigated mbML models for water.

Nguyen et al. use permutationally invariant polynomials (PIPs),
Behler-Parrinello neural networks (BPNNs), and GAP models for
predicting water 1, 2-, and 3-body interactions.53 Their 2-body
training set included 34 431 structures containing the global dimer
minimum, saddle points, artificially compressed geometries, and
geometries from path-integral molecular dynamics (PIMD) sim-
ulations using HBB2-pol.54 Their 3-body training set contained
10 001 structures from HBB2-pol MD and PIMD of small water
clusters, liquid water, and ice phases. Table 2 shows 2- and 3-body
interaction energy MAEs with their models and those calculated
here. The PIP, BPNN, and GAP water models trained on large

Table 2: Energy MAEs (kcal/mol) for 2- and 3-body interactions
of small water isomers (4-6mers) from Fig. 1A-C. Reference data
were computed with MP2/def2-TZVP. Best ML potential values
are bolded.

n-body Training set Method 4mers 5mers 6mers
2 1000 GDML 0.030 0.047 0.035

1000 GAP 0.014 0.012 0.015
1000 SchNet 0.013 0.012 0.013
34 431a PIP 0.050 0.054 0.145
34 431a BPNN 0.057 0.033 0.061
34 431a GAP 0.043 0.040 0.138

3 1000 GDML 0.093 0.071 0.041
1000 GAP 0.134 0.129 0.112
1000 SchNet 0.098 0.059 0.041
10 001a PIP 0.050 0.056 0.095
10 001a BPNN 0.040 0.070 0.123
10 001a GAP 0.007 0.024 0.030

a Data from Ref. 53.

data sets achieved 2- and 3-body interaction energy MAEs on the
order of 0.033–0.145 and 0.007–0.123 kcal/mol, respectively. Al-
ternatively, our GDML force fields trained on only 1000 structures
achieved MAEs of 0.030–0.047 and 0.041–0.093 kcal/mol for 2-
and 3-body interaction energies. This shows that GDML models
using small training sets can perform similarly to well-trained po-
tentials requiring large training sets.53 We highlight that the GAP
results from Ref. 53 demonstrate substantial accuracy improve-
ments possible with more extensive training sets.
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Fig. 1: Relative energies of isomers containing four, five, and six monomers of (A-C) water, (D-F) acetonitrile, and (G-I) methanol.
Gray dashed lines are the reference MP2/def2-TZVP calculations. Light-colored lines with squares are MBE predictions calculated with
MP2/def2-TZVP with no distance-based cutoffs for 2- and 3-body predictions. Dark-colored lines with circles are mbGDML predictions.
Different y-axis scales are used for each subplot to enhance visualization.

We reiterate that ML potential accuracy is intricately linked to
reference data sets, but we specifically opted to show the promise
of GDML with small training sets. In almost all cases, the water 2-
body models prepared here outperformed those from Ref. 53 that
used larger training sets. Presumably, our smaller data sets may
contain structures that enhance the perceived accuracy of these
models. The 3-body data exhibit the opposite trend, which can
be attributed to data set quality. In general, additional sampling
of configurational spaces would improve our mbML models; how-
ever, the objective here is to evaluate ML potentials that can be
trained with minimal computational cost.

3.2 16mers

Predictions of medium-sized structures provide a straightforward
test of size transferability. There are additional, albeit typically
small, higher-order contributions in larger structures. Also, the
n-body cutoffs are now in effect to reduce the number of com-
putations. Table 3 shows energies and forces of hexadecamers
(16mers) from the literature55–57 computed with RI-MP2/def2-
TZVP and compared against mbGDML, mbGAP, and mbSchNet
results. The truncated MBE contributes a few kcal/mol errors
depending on the system. For example, the MBE prediction of
(H2O)16 results in a 3.3 kcal/mol error whereas (MeCN)16 has
only a 0.2 kcal/mol error. Missing higher-order contributions or
basis set errors are the most likely causes. All mbML models per-
formed similarly well with (H2O)16. Most errors originated from
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Table 3: MBE and mbML absolute energy errors (kcal/mol)
and force MAEs [kcal/(mol Å)] of 16mers with respect to RI-
MP2/def2-TZVP. Errors on an energy/monomer and force/atom
basis are shaded. Best ML potential values are bolded. Energy
and forces are abbreviated as E and F, respectively.

Method (H2O)16 (MeCN)16 (MeOH)16
E F E F E F

MBE 3.320 0.456 0.243 0.067 1.589 0.262
0.207 0.010 0.015 0.001 0.099 0.003

mbGDML 4.013 0.903 0.282 0.239 5.561 1.070
0.251 0.019 0.018 0.002 0.348 0.011

mbGAP 3.749 1.105 6.741 0.614 17.580 1.789
0.234 0.023 0.421 0.006 1.099 0.019

mbSchNet 4.560 0.767 16.066 0.552 3.422 1.189
0.285 0.016 1.004 0.006 0.214 0.012

3-body predictions, with error cancellation improving model per-
formance.

3.2.1 Analysis of (MeCN)16

We find that both mbSchNet and mbGAP models trained from
smaller data sets have abnormally high errors for (MeCN)16 and
(MeOH)16, respectively. In both cases, the 3-body model has sub-
stantial error accumulation. Cutoffs are not the issue because
only �0.006 of the 16.1 kcal/mol error in mbSchNet’s prediction
of (MeCN)16 is from cutoffs implemented in the 2- and 3-body
models. Prediction errors contribute the most; a massive �15.2
kcal/mol error comes from the 3-body SchNet model.

Assessing inadequacies of training data is more complicated. If
3-body structures from (MeCN)16 are substantially different from
the data sets, then the model may break down. To investigate this,
we used dimensionality reduction to visualize high-dimensional
similarity in 2D space. Similar structures in feature space should
be clustered together and vice versa.

Fig. 2A shows the GDML feature space, a 2D embedding of
trained and 3-body structures from (MeCN)16 using Uniform
Manifold Approximation and Projection (UMAP).58 There is a sig-
nificant overlap between the GDML training set feature space and
the structures from (MeCN)16. High overlap suggests that GDML
should have low prediction errors, which is the case. SchNet, on
the other hand, has several test structures isolated from training
data, resulting in higher errors (shown in the ESI).

Not all structures with a high error are dissimilar in feature
space. Models should have learned similar structures and thus
should have performed well. A simple, ad hoc geometry descrip-
tor (discussed in the ESI) applied in Fig. 2B shows that all high-
error structures are dissimilar to anything in the data set. SchNet
has some difficulty with these structures, which results in a sub-
stantial 16.1 kcal/mol error. Many-body GAP’s 17.6 kcal/mol er-
ror in (MeOH)16 is likely for the same reason. However, GAP
uses a local descriptor, making feature space more complicated to
analyze. Models under these circumstances were excluded from
further analyses (namely, mbSchNet for acetonitrile and mbGAP
for methanol).

3.3 20mers
Truncated higher-order contributions could be pertinent for ac-
curate absolute energies, as seen in the previous 16mer data. In
practice, relative energy accuracy is of primary importance. Yao
et al.59 trained mbML methanol potentials and analyzed their
performances on five (MeOH)20 isomers. They used a Generative
Adversarial Network (GAN) trained on RI-MP2/cc-pVTZ energies
with the Coulomb matrix descriptor. Training included 80% of
their data sets that contained 844 800 monomers, 74 240 dimers,
and 36 864 trimers.

Relative isomer energies of their methods are reported in Table
4. Their mbGAN potential accurately captures the isomer rank-

Table 4: Relative energies (kcal/mol) of four (MeOH)20 with
respect to the lowest energy structure (Isomer 0). Errors are
provided within the parentheses. Best ML potential values are
bolded.

Method Isomer
1 2 3 4

RI-MP2a 31.0 40.9 50.8 52.0

MBEa 27.5 39.6 48.0 48.6
(�3.5) (�1.3) (�2.8) (�3.4)

mbGANa 26.1 39.8 49.2 49.8
(�4.9) (�1.1) (�1.6) (�3.0)

RI-MP2b 28.5 38.9 49.9 49.5

mbGDML 29.1 38.9 51.2 48.4
(0.6) (0.0) (2.2) (�1.1)

mbSchNet 33.6 41.4 52.7 53.0
(5.1) (2.5) (2.8) (3.5)

a RI-MP2/cc-pVTZ, MBE, and mbGAN (trained on 675 840
monomers, 59 392 dimers, and 29 491 trimers) data are from
Ref. 59.
b RI-MP2/def2-TZVP data calculated here.

ing trend within 5 kcal/mol. mbGDML and mbSchNet (trained
on MP2/def2-TZVP) were within 2.2 and 5.1 kcal/mol of RI-
MP2/def2-TZVP calculations on the same (MeOH)20 structures.
Note that the supersystem calculations here differ from Yao et
al.;59 for example, our calculations predict that Isomer 4 is lower
in energy than Isomer 3.

3.4 Size transferability of local descriptors
As previously mentioned, many ML potentials use local descrip-
tors for size transferability. Recent developments of ML poten-
tials with local descriptors have involved GNNs.13,14 NequIP uses
equivariant, continuous convolutions where edges connect every
atom within a cutoff radius.13 NequIP has achieved remarkable
accuracy and data efficiency on the MD17 data set, bulk water,
formate dehydrogenation, and amorphous lithium phosphate.

Such models are inherently size transferable, but the accuracy
is not typically studied when trained exclusively on small clusters.
In theory, these potentials can train on the same data sets, but
instead of n-body interactions, they would use total energies and
forces. This would eliminate the need for an MBE framework. We
trained NequIP on total energies and forces of 1000 trimers for
water, acetonitrile, and methanol to assess this approach. Another
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Fig. 2: UMAP embeddings of acetonitrile, 3-body GDML feature space of the training set (circles) and (MeCN)16 structure (triangles).
Points near each other are similar in high-dimensional feature space. (A) GDML absolute prediction error of 3-body structures from
(MeCN)16—the maximum error is 0.116 kcal/mol. (B) Geometry descriptor of each structure. Similar values (i.e., colors) indicate
similar geometries.

2000 trimers were used as a validation set.
We emphasize that this is an edge case of GNN potentials. If en-

ergies and forces of larger structures were readily available, these
data would improve size transferability if they were included in
the validation set. However, mbGDML models were never ex-
posed to these larger clusters during training since the objective
was to reproduce the 1-, 2-, and 3-body PES. Thus, training a
NequIP on only trimers represents a straightforward comparison
to mbGDML. These models were then tested against the identi-
cal isomers discussed above, with the results shown in Table 5.
While NequIP can expectedly extrapolate to larger clusters, the

Table 5: Energy MAEs (kcal/mol) of various sized isomers for
mbGDML (many-body global descriptor) and NequIP (local de-
scriptor). MAEs on a per monomer basis are shaded. Best ML
potential values are bolded.

Solvent Method 4mers 5mers 6mers 16mer

H2O mbGDML 0.793 1.088 1.765 4.013
0.198 0.218 0.294 0.251

NequIP 0.727 1.650 3.609 37.903
0.182 0.330 0.601 2.369

MeCN mbGDML 0.260 0.317 0.288 0.282
0.065 0.063 0.048 0.018

NequIP 1.671 2.116 2.970 28.510
0.418 0.423 0.495 1.782

MeOH mbGDML 1.260 1.805 2.089 5.561
0.342 0.374 0.382 0.348

NequIP 4.006 6.661 7.902 21.732
1.002 1.332 1.317 1.358

errors are substantially higher than mbGDML. For example, the
NequIP error on (H2O)16 was more than 33 kcal/mol higher than
mbGDML.

These static cluster results demonstrate that mbGDML is a rea-

sonably accurate, size-transferable force field. The desired level
of theory for reference data determines the MBE framework’s via-
bility. Training on large clusters or bulk systems is likely more effi-
cient if a lower scaling method is satisfactory. However, mbGDML
becomes particularly useful when applications require force fields
based on higher scaling methods. Recovering truncated higher-
order contributions would also expectedly improve errors, but
explicit 4-body interactions are rather challenging due to high
demands on precision and combinatorics.48,49,60 Electrostatic61

and more general quantum embedding approximations may be
a practical route to avoid calculating higher-order contributions,
but they are not considered here.

3.5 Molecular dynamics simulations

While accurate predictions of static clusters are essential, com-
pelling applications for mbGDML would involve molecular sim-
ulations. Low energy and force errors are not conclusive of ac-
curate molecular simulations,62 but experimentally measurable
dynamic properties are an alternative and rigorous way to eval-
uate ML potentials. For example, the radial distribution function
(RDF) is a vital bulk property that quantitatively defines liquid
structure. Locations and intensities of peaks and valleys represent
the solvation shells and liquid ordering. Accurately reproducing
reference RDF curves is crucial for a practical size-transferable
potential.

Periodic NVT simulations driven by mbGDML force fields were
performed at 298.15 K for 10–30 ps in the atomic simulation en-
vironment (ASE).63 Note that NVT simulations could artificially
bias intermolecular distances due to the volume constraint. NPT
simulations would be a more rigorous metric, but these are not
yet implemented in mbGDML, and this will be the focus of fu-
ture work. The minimum-image convention was used with cubic
boxes with lengths of 16 Å (137 molecules), 18 Å (67 molecules),
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and 16 Å (61 molecules) for water, acetonitrile, and methanol,
respectively. Production trajectories were used to compute all
possible RDFs. Some RDF curves are shown in Fig. 3. Wa-

Fig. 3: Simulated RDF curves from NVT MD simulations with
mbGDML for (A) gOO(r) in water, (B) gNN(r) in acetonitrile, and
(C) gOO(r) in methanol. Reference RDF curves from the literature
are shown in dashed gray lines. Examples of classical results in
the literature are shown in solid, light gray lines.

ter,64 acetonitrile,65 and methanol66,67 reference RDF curves are
from neutron diffraction experiments. Results from classical MD
simulations68–74 are also shown in Fig. 3. Note that classical
references often include some fitting to empirical data,68,71–74

whereas mbGDML and others69,70 run calculations with no ex-
plicit empirical fitting. Individual figures of all RDF curves, along
with labeled classical references, are shown in the ESI.

Dispersion and polarization are not always accurately treated
with MP2 theory,75,76 and likewise, the underlying model chem-
istry (MP2/def2-TZVP) to train mbGDML force fields may not ac-
curately reproduce experimental liquid properties. For example,
MP2 yields excellent results for liquid water simulations when
appropriate density corrections or basis set error cancellation
schemes are employed,77,78 but these were not used here. To
our knowledge, a thorough investigation has not been performed
for liquid acetonitrile and methanol with MP2, so the agreement

with experiments is more uncertain. Note that molecular simu-
lations using Kohn-Sham density functional theory (DFT) results
in comparable differences in RDFs shown in Fig. 3, depending
on the exchange-correlation functional and dispersion treatment
used.79–83

The simulated RDFs with mbGDML fairly agree with the ref-
erence curves. In particular, the water gOO(r) in Fig. 3A agrees
remarkably well with experimental data. This is consistent
with fragment-based ab initio MD (AIMD) simulations.84,85 How-
ever, these AIMD simulations include higher-order contributions
through electrostatic embedding. Deviations in the gOH(r) and
gHH(r) curves are partially due to the neglect of quantum nuclear
effects.86

In all cases, acetonitrile peaks from mbGDML are less intense
than the reference curves. This indicates that the predicted liquid
structure with mbGDML is less ordered than the deuterated neu-
tron diffraction data.65 Notably, gNN(r) is wide with two distinct
peaks that deviate from the experimental reference. However,
classical RDFs from the literature can vary substantially. Some
classical potentials70,73 result in a similar gNN(r) shape while oth-
ers69,71,72 better resemble the experimental reference.

Methanol simulations appear more challenging for mbGDML.
RDF peaks with respect to experimental data are less intense
(same as acetonitrile). The shape of gOO(r), Fig. 3C, agrees well
with the digitized experimental data. Classical simulations us-
ing GROMOS96 and OPLS/AA potentials have significantly more
ordered liquid structure.74 For instance, their gOH(r) peaks are
around 1.24 higher in intensity than mbGDML. While the gOO(r)
is in good agreement with the experiment beyond 5 Å, the gOH(r)
and gHH(r) curves are missing long-range liquid structure. Even
though GDML employs a global descriptor, mbGDML is not cap-
turing these long-range interactions. We suspect this is caused by
truncations and cutoffs used in the MBE framework.

To summarize, even though the mbGDML models used here
only included up to 3-body contributions, they generally predict
the liquid structure of water, acetonitrile, and methanol well.
Moreover, these force fields automatically include fully flexible
molecules and perform no fitting to experimental properties. Fur-
ther improvements could be made with more expansive training
sets and higher-order contributions. For systems without classical
parameters, mbGDML can be rapidly trained on relatively small
amounts of data and provide valuable dynamical insights for ex-
plicitly solvated systems.

4 Conclusions
We have introduced a GDML-driven, many-body expansion
framework that enables state-of-the-art size transferability to-
ward molecular simulations of solvents. mbGDML force fields
trained on only 1000 1-, 2-, and 3-body interactions accurately
modeled small and medium isomers of water, acetonitrile, and
methanol. Size-extrapolated predictions on static clusters of up
to 20 monomers had energy errors of less than 0.38 kcal/mol per
monomer for all three solvents. These results outperform NequIP
trained on the same trimer data set by up to 34 kcal/mol for
16mers. Dynamic simulations of bulk systems using our mbGDML
force fields provide semi-quantitative insights while avoiding ex-
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pensive training data on bulk systems and fitting to experimental
data.

It is important to note that the accuracy of mbGDML is gener-
ally limited to that of the underlying MBE framework. More ex-
tensive and diverse n-body data sets can help minimize mbGDML
deviations from the MBE reference. If further accuracy improve-
ments are desired, explicit 4-body ML force fields, classical mod-
els, or hybrid methods like MIM and MTA could be required.
While these approaches are certainly possible to implement, we
focused on providing a proof-of-concept of mbGDML. We thus
anticipate promising applications for complex, explicitly solvated
systems where high levels of theory are desired.

Data availability
Code for preparing and using many-body ML potentials can be
found at github.com/keithgroup/mbGDML (DOI: 10.5281/zen-
odo.6270373). All other code and data supporting this pa-
per are available at github.com/keithgroup/mbgdml-h2o-meoh-
mecn (DOI: 10.5281/zenodo.7802196) and further detailed in
the ESI.
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