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Abstract
In exterior calculus on smooth manifolds, the exterior derivative and wedge products
are natural with respect to smooth maps between manifolds, that is, these operations
commute with pullback. In discrete exterior calculus (DEC), simplicial cochains play
the role of discrete forms, the coboundary operator serves as the discrete exterior
derivative, and an antisymmetrized cup-like product provides a discretewedgeproduct.
We show that these discrete operations in DEC are natural with respect to abstract
simplicialmaps. A second contribution is a new averaging interpretation of the discrete
wedge product in DEC. We also show that this wedge product is the same as Wilson’s
cochain product defined using Whitney and de Rham maps.
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1 Introduction

Discrete exterior calculus (DEC) builds a combinatorial version of exterior calculus
on smooth manifolds with manifolds replaced by cell complexes (usually simplicial
complexes) [6, 12]. This is done by replacing the objects and operators of exterior
calculus by discrete ones in a way that faithfully encodes expected algebraic identities,
e.g., the Leibniz rule for the deRhamdifferential. TheRiemannianmetric is encoded in
DEC via a primal and dual cell complex that incorporate orthogonality, lengths, areas,
volumes, etc. There are other such frameworks with similar goals, with a prominent
one being finite element exterior calculus (FEEC) [2] in which differential forms are
replaced by piecewise polynomial forms with certain continuity properties.

Like FEEC, for most of its existence, DEC has been viewed as a framework
for numerically solving partial differential equations (PDEs) on cell complexes.
For example, FEEC, DEC and their antecedents have been used in computational
electromagnetism [5, 11], elasticity [1, 4, 17], numerical relativity [17, 24], fluid
mechanics [13, 14, 19, 21, 22, 29], quantum electrodynamics [23] and many other
areas of physics and geometry [3].

Algebraic structures on simplicial cochains have also been studied for more theo-
retical purposes. In particular, the simplicial coboundary operator and discrete wedge
product can be used to obtain combinatorial manifestations of various topological and
geometric invariants e.g., see [10, 15, 25, 26, 30, 31]. See [31] for the context for these
and other related references.

In this paper, we promote a category-theoretic viewpoint for DEC that general-
izes the situation in smooth geometry. Smooth exterior calculus takes place within
the category whose objects are manifolds and morphisms are smooth maps between
manifolds. Naturality of exterior calculus (in the category-theoretic sense) encodes
fundamental structures, e.g., the chain rule. In DEC the objects are clearly simplicial
complexes, but the appropriate morphisms analogous to smooth maps have not been
spelled out previously. In the absence of topological and differentiable structure on
the simplicial complexes (as is the case in DEC) it is not a priori clear what such mor-
phisms should be. We propose abstract simplicial maps as discrete proxy for smooth
maps by showing that discrete exterior derivative and wedge product commute with
pullback by abstract simplicial maps. This mimics the analogous properties in the
smooth case, including a discrete chain rule.

Roughly speaking, wedge products are required for PDEs with nonlinear terms.
For example, nonlinearity may present itself as a product of functions, such as in the
term div(φu) in two-phase flow with φ indicating the phase and u the velocity [29].
Or it may arise indirectly, for example in the convective term u · ∇u in Navier–Stokes
equations for incompressible flowwhich leads to a wedge product via a Lie derivative.
That is, u · ∇u is the vector proxy for the form Luu� − 1

2diuu
� = iudu� + 1

2diuu
� ,

and contraction can be written in terms of wedge product, iXα = ± ∗ (∗α ∧ X �) for a
form α and vector field X . The sign depends on the differential form degree. This is
the formulation that was used in [19].

Piecewise polynomial approximations of wedge products have not yet appeared
in the FEEC literature, except in the special case of wedge products used to define
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inner products of forms. A FEEC theory incorporating general wedge products will
likely need to address the fact that degrees add under products of polynomials. Thus,
the finite element space of the product α ∧ β is different from that of the constituent
factors α and β. One approach might be to convert a polynomial form to degrees of
freedom (DOF) values followed by a combinatorial wedge product on the DOF. This
can then be mapped to a shape function value. The discrete DEC wedge product is
such a combinatorial product operation that might be useful in such constructions at
least for the lowest degree Whitney forms used in FEEC. In fact, the DEC wedge
product is closely related to the wedge product of Whitney forms as we show. Within
DEC the old combinatorial product operator from [12] has been recently used in the
discretization of nonlinear terms in fluid mechanics PDEs [19, 29].

A second contribution of this paper is a satisfying interpretation of this old DEC
discrete wedge product. This interpretation organizes the (complicated) combinatorics
of the wedge product into conceptually simpler averages and products of values of
cochains involved. With the coboundary operator interpreted as a difference operator
and the averaging interpretationofwedgeproduct, themetric independent parts ofDEC
are seen to be consisting of simple arithmetic operations, making DEC a useful tool
that requires minimal mathematical background as compared with exterior calculus
on differentiable manifolds.

Statement of results: Propositions 2 and 3 prove the naturality property of the discrete
exterior derivative and wedge product under pullback by abstract simplicial maps.
Proposition 5 gives a new interpretation of anti-symmetrized cup-like product which
was defined in DEC in [12] and which has been used in some physical applications.
This new interpretation is a double averaging involving the two cochains involved.
Proposition 1 shows that the DEC wedge product is equal to a cochain product of
Wilson [31] and hence the averaging interpretation applies toWilson’s cochain product
as well.

2 Background: discrete exterior calculus

In this section, we give a brief overview of DEC [12]. The input data is a simplicial
complex X with additional decorations and properties. The discrete notions of dif-
ferential form, exterior derivative, and wedge product only depend on the underlying
simplicial complex, and are defined using standard methods from simplicial alge-
braic topology. Incorporating features that depend on a metric (e.g., a discretization
of the Hodge star operator) essentially requires that X approximates a manifold. This
assumption is appropriate given the desired applications: DEC has been used mostly
as a method for solving PDEs on simplicial approximations of embedded orientable
manifolds. A discrete Hodge star construction involves a Poincaré dual complex of X
using circumcenters [12] and is not relevant to this paper.

With the above in mind, below we will assume that X arises as an approximation of
an embeddedmanifold. In particular, each top dimensional simplex is embedded inR

N

individually, and combinatorial data specifies how these are glued to each other. This
may be presented by embedding the entire approximation of themanifold as a complex
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of dimensionm embedded inR
N for some N ≥ m. A common example is a piecewise-

linear (PL) approximation of a surface in R
3. But the coordinate-independent aspect

of DEC does not require such a global embedding. All the operations and objects are
local to the simplices and their neighbors. In DEC, the top dimensional simplices of
the simplicial approximation of an orientable manifold are oriented consistently and
the lower dimensional simplices are oriented arbitrarily.

Thus, the starting point for DEC is a simplicial complex X which may be a triangu-
lation approximation ofM . For the results of this paper X can be simply a triangulation
of a manifold. Then, letCk(X) denote the vector space of k-chains defined overR, and
Ck(X) the corresponding space of k-cochains. Given a differential form α ∈ �k(M),
one obtains a k-cochain

∫
α via integration over k-chains, i.e., the value of the deRham

map [8]. By Stokes theorem, the coboundary operator on cochains plays the role of
discrete exterior derivative, denoted by d below. From standard algebraic manipula-
tions, the cup product (�) plays the role of tensor product and the antisymmetrized
cup product plays the role of a discrete wedge product (∧). For α ∈ Ck(X) the notation
〈α, [v0, . . . , vk]〉 denotes evaluation of α on the oriented simplex [v0, . . . , vk]. Often,
we will use [0 . . . k] to label a generic oriented k-simplex in X .

Wefirst recall the simplicial cup product definition fromalgebraic topology. See [20,
page 292] for details.

Definition 1 (Cup product) Given a simplicial complex X choose a partial ordering
of vertices of X such that vertices of each simplex are totally ordered. Given cochains
α ∈ Ck(X) and β ∈ Cl(X) the cup product α � β is characterized by its evaluation
on (k + l)-simplices as

〈
α � β, [v0 ... vk+l ]

〉 = 〈α, [v0 ... vk]〉 〈β, [vk ... vk+l ]〉 (1)

if v0 < . . . < vk+l in the given ordering.

The following definitions of the discrete exterior derivative and discrete wedge
product in DEC are from [12]. Each is defined below on a simplex and extends by
linearity to chains.

Definition 2 (DEC exterior derivative) For a cochain α ∈ Ck(X), the discrete exte-
rior derivative dα ∈ Ck+1(X) is characterized by its evaluation (k + 1)-dimensional
simplices σ as 〈dα, σ 〉 := 〈α, ∂σ 〉 and extending by linearity to Ck+1(X). Recall that
if σ = [0 . . . k+1] the boundary ∂σ = ∑i=k+1

i=0 (−1)i [0 . . . î . . . k+1]where î means
missing vertex.

Remark 1 In the discrete wedge product definition below we use a generalization of
the cup product � defined above, although for simpicity we use the same symbol �.
The difference between the � defined above and the one used in the definition below
is this: the requirement that v0 < . . . < vk+l is dropped. This implies that α � β is
no longer a cochain. This is because α � β evaluated on [v0 ... vk+l ] then need not
be the same value as the evaluation on a permutation of the vertices. However, the
anti-symmetrization used in the definition below does indeed produce a cochain.
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Definition 3 (DEC wedge product) Given cochains α ∈ Ck(X) and β ∈ Cl(X) the
wedge product α ∧ β is characterized by its evaluation on (k + l)-simplices as

〈α ∧ β, [0 ... k + l]〉 = 1

(k + l + 1)!
∑

τ∈Sk+l+1

sgn(τ )〈α � β, [τ(0) ... τ (k + l)]〉. (2)

Example 1 (Wedge product on a triangle) Let X be the oriented triangle [012] and
α, β ∈ C1(X). Using Definition 3

〈α ∧ β, [012]〉 = 1

6

[

〈α � β, [012]〉 − 〈α � β, [021]〉 − 〈α � β, [102]〉

+ 〈α � β, [120]〉 + 〈α � β, [201]〉 − 〈α � β, [210]〉
]

. (3)

Using the shorthand notation αi j for 〈α, [i j]〉 and β jk for 〈β, [ jk]〉, terms like 〈α �

β, [i jk]〉 above can be written as αi jβ jk with an appropriate sign depending on the
sign of the permutation corresponding to the ordering i, j, k of vertices. (Note that
α j i = −αi j , etc.) Then, (3) is

〈α ∧ β, [012]〉 = 1

6

[
α01β12 − α02β21 − α10β02 + α12β20 + α20β01 − α21β10

]
.

The terms can be collected by vertices and the signs adjusted to yield

〈α ∧ β, [012]〉 = 1

6

[
(α01β02 − α02β01) + (α01β12 − α12β01) + (α02β12 − α12β02)

]
,

where the terms on the RHS can be interpreted as alternating products at the three
vertices. Such an interpretation has existed at least since [12]. One of the results in
this paper is an alternative, averaging interpretation of the discrete wedge product; see
Proposition 5.

Remark 2 The discrete d satisfies a Leibniz rule with respect to the discrete ∧ since
the coboundary operator does so with respect to �. It is known that the discrete ∧
is anti-commutative but not associative [12]. This lack of associativity is encoded
by an A∞-algebra structure on the cochains of a simplicial complex [9]. Together
with the skew-commutativity of the wedge product, one in fact obtains a C∞-algebra
structure [26, 27, 31]. Example 10 provides a simple computation demonstrating the
failure of associativity.

Wilson [31] defined a cochain product and proved convergence and other proper-
ties for this product. Wilson also used this product to define a combinatorial Hodge
star operator. The next proposition shows that combinatorial DEC wedge product of
Definition 3 is equal to Wilson’s cochain product. Wilson’s cochain product uses the
space of Whitney forms [7] on the underlying space of the simplicial complex X
(denoted P−

1 �k(X) in the notation of [2]) and the family of Whitney interpolation
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maps W : Ck(X) → P−
1 �k(X) which map cochains to piecewise polynomial dif-

ferential forms. See Appendix for the definition of Whitney interpolation maps and
forms.

Proposition 1 Let X be a triangulated manifold, α ∈ Ck(X), β ∈ Cl(X) and ν a
(k + l)-dimensional simplex in X. Then,

〈α ∧ β, ν〉 =
∫

ν

Wα ∧ Wβ .

Here, the∧ on the left is the combinatorial DECwedge product of Definition 3 and the
one on the right is the wedge product on smooth forms. The RHS above is Wilson’s
cochain product [31, Definition 5.1].

Proof Let ν = [0 ... k + l] and assume all lower dimensional faces of ν are oriented in
some arbitrary way, for example, according to increasing vertex ordering. Identifying
cochains and chains let α = ∑

σ k≺ν ασ σ where σ k ≺ ν means σ is a k-dimensional
face of ν and ασ ∈ R. Similarly β = ∑

τ l≺ν βτ τ . Then,

∫

ν

Wα ∧ Wβ =
∑

σ k ,τ l≺ν
σ ·τ=ν

ασ βτ

∫

ν

Wσ ∧ Wτ .

Here, the sum is over all k-dimensional faces σ and l-dimensional faces τ of ν such that
σ and τ intersect in exactly one vertex and span ν. (We denote this spanning property
by σ · τ = ν.) This is because the integrand on the right is zero if σ and τ intersect in
more than one vertex. See the proof of [31, Theorem 5.2]. Also by [31, Theorem 5.2],
if σ = [ρ(0) ... ρ(k)], τ = [ρ(k) ... ρ(k + l)], ρ ∈ Sk+l+1 and ν′ = [ρ(0) ... ρ(k + l)]
then ∫

ν′
Wσ ∧ Wτ = ε(σ, τ )

k! l!
(k + l + 1)! ,

where ε(σ, τ ) is a sign determined by

orientation(σ ) · orientation(τ ) = ε(σ, τ ) · orientation(ν′) .

Without loss of generality, we will use increasing vertex ordering to orient the faces
and let sgn(σ ) denote the sign of the permutation needed to bring the vertices of σ into
increasing order, etc. Then, the equation for ε is sgn(σ ) · sgn(τ ) = ε(σ, τ ) · sgn(ν′).
Then, ∫

ν

Wα ∧ Wβ =
∑

σ k ,τ l≺ν
σ ·τ=ν

ασ βτ ε(σ, τ )
k! l!

(k + l + 1)! .

On the other hand, the terms in 〈α ∧ β, ν〉 are of the form sgn(ρ) ασ βτ where σ =
[ρ(0) ... ρ(k)], τ = [ρ(k) ... ρ(k+ l)] and ρ ∈ Sk+l+1. There are k! l! such terms since
the last vertex of σ equals the first vertex of τ . All of these terms acquire the same
sign ε(σ, τ ) when the vertices of σ and τ are permuted to bring them into increasing
vertex order. The normalizing factor in Definition 3 is the denominator above. 
�
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Remark 3 As a corollary of Proposition 1 and [31, Theorem 5.4] the combinatorial
wedge product of DEC converges to the wedge product of smooth forms in the sense
of [31, Theorem 5.4]. This proposition also opens up a path to connect DEC to the
extensive literature on algebraic structures on simplicial cochains including to C∞-
algebras [31] and A∞-algebras [9].

3 Naturality of exterior derivative and wedge product

We first recall the naturality of the exterior calculus operations d and ∧ on smooth
manifolds. Let M and N be smooth manifolds, F : M → N a smooth map and α, β ∈
�•(N ) differential forms on N . Then, naturality of d means that F∗d = dF∗, and
naturality of ∧ means F∗(α ∧ β) = F∗α ∧ F∗β. Recall that F∗ : �•(N ) → �•(M)

is the pullback operator defined by F∗α(v1, . . . , vk) = α(F∗,pv1, . . . , F∗,pvk) for a
k-form α and v1, . . . , vk ∈ TpM for all p ∈ M . At every point p ∈ M , the linear map
F∗,p : TpM → TF(p)N between tangent spaces is the pushforward or differential
which in coordinates in the Jacobian matrix computed at p. See [28] for a review of
these concepts.

An example of the naturality of d is the chain rule in single-variable calculus. For
f , g : R → R, f (g(x))′ = f ′(g(x))g′(x). The LHS is d( f ◦ g)x = d(g∗ f )x and
the RHS is (g∗d f )x since f ′(g(x))g′(x) = d fg(x)g∗,x . Another application of the
naturality of d is in proving the diffeomorphism invariance of cohomology groups.
The naturality of ∧ is used, for example, in change of coordinate computations.

We will define a pullback of cochains induced from abstract simplicial maps and
show that the discrete d and ∧ commute with this pullback. First, we recall the defi-
nition of abstract simplicial maps and a homomorphism on chains induced from such
maps. See [16, 20] for more details.

Definition 4 For simplicial complexes X and Y an abstract simplicial map f : X → Y
is given by the data of a map of sets, f (0) : X (0) → Y (0), with the property that if
{u0, . . . uk} spans a simplex in X , the set { f (u0), . . . , f (uk)} spans a simplex in Y .
The map f (0) is called the vertex map of f .

For us, abstract simplicial maps will be maps between oriented simplices. That is, the
sets {u0, . . . , uk} (simplices) above are replaced by ordered sets [u0, . . . , uk] (oriented
simplices).

Remark 4 An abstract simplicial map can collapse simplices. But the spanning prop-
erty of vertexmaps implies that vertices connected by an edge do not lose that property
of being “discretely near.” Intuitively, vertices can move closer, but cannot move far
apart. Thus, abstract simplicial maps are a combinatorial proxy for smooth (or at least
continuous) maps.

Example 2 Let X be the simplicial complex that is the boundary of a triangle with
vertices u0, u1, u2 and Y the simplicial complex with vertices v0, v1, v2 formed by
the two edges [v0, v1] and [v1, v2]. The vertex map ui �→ vi , for i = 0, 1, 2 does not
define an abstract simplicial map because [u0, u2] is an edge in X but [v0, v2] is not an
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edge in Y . The vertices u0 and u2 that were “nearby” in the sense of being connected
by an edge have become further apart after the mapping.

Example 3 Now consider the same X and let Y be a simplicial complex consisting of
the single edge [v0, v1]. The vertex map ui �→ vi , for i = 0, 1 and u2 �→ v0 does
define an abstract simplicial map and in this map the edge [u0, u2] collapses to the
vertex v0.

Next, we review a standard construction in algebraic topology that builds a homo-
morphism on chains from an abstract simplicial map. See [20] for the applications and
properties of this homomorphism.

Definition 5 Let f : X → Y be an abstract simplicial map between simplicial com-
plexes X and Y . Define a homomorphism f� : Ck(X) → Ck(Y ) for each k determined
by the values on oriented simplices,

f�([u0, . . . , uk]) =
{

[ f (u0), . . . , f (uk)], if f (u0), . . . , f (uk) distinct

0 otherwise

It is easy to see that f� is well-defined since both sides change signs according to the
permutation of the vertices. We use this to define the pullback of cochains.

Definition 6 Given f : X → Y an abstract simplicial map and a cochain α ∈ Ck(Y )

the pullback f ∗α ∈ Ck(X) is defined by its values f ∗α(c) := α( f�(c)) for chains
c ∈ Ck(X).

Proposition 2 (Naturality of discrete d) Let f : X → Y be an abstract simplicial
map between simplicial complexes X and Y . Then, discrete d commutes with the
pullback along f : for any α ∈ Ck(Y ) we have f ∗dα = d( f ∗α). Equivalently,

〈 f ∗dα, [u0 ... uk+1]〉 = 〈d f ∗α, [u0 ... uk+1]〉 (4)

for all (k + 1)-simplices [u0 ... uk+1] in X.

Proof This follows immediately from the definitions of d and f ∗ and the fact that
∂ f� = f�∂ . See [20, Lemma 12.1] for a proof of this fact. 
�
Example 4 Let X and Y be the simplicial complexes of Example 3, f the simplicial
map defined in that example, and let α ∈ C0(X) be the 0-cochain that takes the value
α0 and α1 on the vertices v0 and v1. Then, the pullback f ∗α takes the values α0, α1
and α0 on the vertices u0, u1 and u2, respectively. Thus, the values of the d f ∗α on the
three edge of X are 〈d f ∗α, [u0, u1]〉 = α1 −α0, 〈d f ∗α, [u0, u2]〉 = α0 −α0 = 0, and
〈d f ∗α, [u1, u2]〉 = α0 − α1. On the other hand the evaluations of the pullback of dα

are 〈 f ∗dα, [u0, u1]〉 = 〈dα, [v0, v1]〉 = α1 − α0, 〈 f ∗dα, [u0, u2]〉 = 〈dα, [v0]〉 = 0,
and 〈 f ∗dα, [u1, u2]〉 = 〈dα, [v1, v0]〉 = α0 − α1, verifying the naturality of d in this
example.
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Proposition 3 (Naturality of discrete wedge product) Let f : X → Y be an abstract
simplicial map between simplicial complexes X and Y . Then, the discrete∧ commutes
with the pullback along f : for all α ∈ Ck(Y ) and β ∈ Cl(Y ), we have f ∗(α ∧ β) =
f ∗α ∧ f ∗β. Equivalently,

〈 f ∗(α ∧ β), [u0 ... uk+l ]〉 = 〈 f ∗α ∧ f ∗β, [u0 ... uk+l ]〉 (5)

for all (k + l)-simplices [u0 ... uk+l ] in X.

Proof We note that the statement (5) is for a simplex but extends by linearity to chains.
The analogous statement for the cup product follows directly from the definitions,

〈 f ∗(α � β), [u0 ... uk+l ]〉 = 〈α � β, f ([u0 ... uk+l ])〉
= 〈α � β, [ f (u0) ... f (uk+l)]〉
= 〈α, [ f (u0) ... f (uk)]〉 〈β, [ f (uk) ... f (uk+l)]〉
= 〈 f ∗α, [u0 ... uk]〉〈 f ∗β, [uk ... uk+l ]〉
= 〈 f ∗α � f ∗β, [u0 ... uk+l ]〉 .

We observe that (for dimension reasons) both sides are 0 if the vertex map of f is not
a bijection when restricted to {u0, u1, . . . , uk+l}.

Adapting the above computation to the wedge product, the terms in the expansion
of 〈α ∧ β, [ f (u0) ... f (uk+l)]〉 are of the form

〈α � β, [ f (uτ(0)) ... f (uτ(k+l))]〉 ,

where τ ∈ Sk+l+1 is a permutation. If the vertex map of f is a bijection, then each
such term is equal to

〈α, [ f (uτ(0)) ... f (uτ(k))]〉 〈β, [ f (uτ(k)) ... f (uτ(k+l))]〉 (6)

by the cup product result by relabelling the vertices under the permutation τ .
If the vertex map of f is not a bijection on {u0, u1, . . . , uk+l}, then the LHS of (5)

is 0. To show that the RHS is also 0, assume that for some i �= j , f (ui ) = f (u j ).
If both i and j are in {τ(0), . . . , τ (k)} or both are in {τ(k), . . . , τ (k + l)} then that
particular term of the form (6) is 0 for dimensional reasons.

Next assume that i = τ(a) and j = τ(b) for 0 ≤ a ≤ k and k ≤ b ≤ k + l so
that the term of type (6) is not automatically 0. In this case, there will be a matching
term in which j = τ(a) and i = τ(b). These two terms are identical and appear with
opposite signs sgn(τ ) and hence cancel. 
�

In addition to the naturality, the discrete d and ∧ satisfy a Leibniz rule [12]. This
is proved here for completeness.

Proposition 4 (Leibniz rule) Let α ∈ Ck(X) andw ∈ Cl(X) and c ∈ Ck+l(X). Then,

〈d(α ∧ w), c〉 = 〈dα ∧ w + (−1)kα ∧ dw, c〉 .
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Proof It is enough to show this for a (k+l+1)-simplex and then extend by linearity
to chains. Each element of the permutation group Sk+l+2 acts as an isomorphism
on a (k+l+1)-simplex σ . Each permutation of vertices defines a vertex map which
corresponds to an abstract simplicial isomorphism. Using τ to refer to an element of
Sk+l+2 as well as the corresponding simplicial isomorphism, note that τ commutes
with the boundary operator on chains. Thus,

〈d(α ∧ w), σ 〉 = 〈α ∧ w, ∂σ 〉 =
∑

τ

sgn(τ )〈α � w, τ∂σ 〉

=
∑

τ

sgn(τ )〈α � w, ∂τσ 〉

=
∑

τ

sgn(τ )〈d(α � w), τσ 〉 ,

which, by Leibniz rule for cup products is

∑

τ

sgn(τ )〈dα � w + (−1)|α|α � dw, τσ 〉 = 〈dα ∧ w + (−1)|α|α ∧ dw, σ 〉 .

It is illustrative to see this in the following simplest example. 
�
Example 5 Let f , g ∈ C0(X), where X is the edge [01]. We will denote the evaluation
of f on vertex i as fi etc. Now, we check that

〈d( f ∧ g), [01]〉 = 〈d f ∧ g + f ∧ dg, [01]〉 .

The LHS is f1g1 − f0g0 and so is the RHS since

〈d f ∧ g, [01]〉= 1

2

[〈d f , [01]〉 g1 − 〈d f , [10]〉 g0
]= 1

2

[
( f1 − f0)g1 − ( f0 − f1)g0

]

〈 f ∧ dg, [01]〉= 1

2

[
f0 〈dg, [01]〉 − f1 〈dg, [10]〉]= 1

2

[
f0(g1 − g0) − f1(g0 − g1)

]
.

4 Averaging interpretation of wedge product

Themain result of this section shows that the combinatorics of the discretewedge prod-
uct in DEC are organized into a neat averaging formula; see Proposition 5. We begin
with motivation from several low-dimensional examples that illustrate this averaging
interpretation.

Example 6 Let X be the oriented simplicial complex with a single edge [01], and
consider f ∈ C0(X) and α ∈ C1(X). Let fi denote the values of f on vertex i and
α01 the evaluation of α on the edge [01]. Then, the evaluation of f α = f ∧ α on the
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edge [01] is a weighted average of the values of f ,

〈 f ∧ α, [01]〉 = 1

2

[〈 f � α, [01]〉 − 〈 f � α, [10]〉] = 1

2

[
f0 α01 − f1 α10

]

= f0 + f1
2

α01 .

Example 7 Example 1 reviewed the standard alternating product interpretation of the
discrete wedge product of two 1-cochains. This was achieved by collecting terms at
each vertex. However, one can also collect the terms by edges, yielding a sum of
weighted averages

〈α ∧ β, [012]〉 = 1

3

[

α01
(β02 + β12)

2
+ α12

(β10 + β20)

2
+ α20

(β01 + β21)

2

]

. (7)

In words, (7) shows that the value of the wedge product of 1-cochains α and β on a
triangle comes from going around the triangle multiplying the value of α on an edge
by the average value of β on the two edges incident on that first edge. This is done
for all 3 edges and the final result is the average of these products. Alternatively one
can reverse the roles of α and β (in terms of inner averaging and outer averaging) and
then

〈α ∧ β, [012]〉 = 1

3

[
(α20 + α21)

2
β01 + (α01 + α02)

2
β12 + (α10 + α12)

2
β20

]

. (8)

We emphasize that this averaging interpretation depends on the choice of orientation
of chains. For example, β02 is used in the first term in (7) while β20 is used in the
second term and α20 rather than α02 is used in the third term. Informally, in this case,
one goes around the triangle in the direction it is oriented (counterclockwise in this
case) taking values of α on each edge, and the values of β being used are taken on the
two remaining edges pointing away. For (8) one takes the values with edges pointing
toward. Part of the content of Proposition 5 is to show that such choices permitting an
averaging interpretation always exist.

Example 8 The case of α ∈ C0(X) and β ∈ C2(X) also demonstrates the simplicity
of the averaging interpretation.

〈α ∧ β, [012]〉 =
(

α0 + α1 + α2

3

)

β012

Tobuild intuition for the general case proved inProposition 5, consider the following
example.

Example 9 Let α ∈ C2(X) and β ∈ C1(X) for X the tetrahedron [0123]. The aver-
aging interpretation will yield an average over 4 terms, one for each triangle of the
tetrahedron. Each term will be a product of the value of α on a triangle multiplied by
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the average of the 3 values of β corresponding to the other 3 edges of the tetrahedron
touching the triangles at the vertices of the triangle. Explicitly,

〈α ∧ β, [0123]〉 = 1

4

[
α012

(
β03 + β13 + β23

3

)

+ α031

(
β02 + β12 + β32

3

)

+ α023

(
β01 + β21 + β31

3

)

+ α132

(
β10 + β20 + β30

3

) ]
. (9)

The roles of α and β in inner and outer averaging could have been reversed as in (8)
as compared with (7). Notice again that particular choices of orientations have been
used in order to achieve the averaging interpretation in (9). All triangle terms are on
triangles taken counter-clockwise viewed from outside the tetrahedron and all edge
terms are on edges going away from the triangle. To see what becomes of the factor
1/24 = 1/(2+1+1)! in Definition 3, after collecting the terms by vertices the terms can
be arranged as

1

24

[
2(α012β03 − α013β02 + α023β01) + 2(α012β13 − α013β12 + α123β01)+

2(α012β23 − α023β12 + α123β02) + 2(α013β23 − α023β13 + α123β03)
]
.

Thus, the factor outside becomes 1/12 which finally appears in equation (9) as
(1/4)(1/3) with (1/4) for the outer averaging over the 4 triangles of the tetrahedron
and (1/3) for the inner averaging over the 3 other edges touching each triangle.

With the above motivating examples in place, we turn to the general proof of the
averaging interpretation of the discrete wedge product. Let k, l ∈ Z≥0 and σ =
{0, 1, . . . , k+ l} and let Sk+l+1 be the group of permutations of the elements of σ . Let
i : Sk ↪→ Sk+l+1 and j : Sl ↪→ Sk+l+1 be inclusions so that elements of i(Sk) and
j(Sl) act on the first k and last l positions of the input, respectively. For any F ⊂ σ

with k elements, v ∈ σ \ F and G = σ \ (F ∪ {v}) define the set of permutations

P(F, v,G) := {ρ | ρ ∈ Sk+l+1, ρ(0), . . . , ρ(k − 1) ∈ F, ρ(k) = v,

ρ(k + 1), . . . , ρ(k + l) ∈ G} .

We will denote by ( f , v, g) an ordering of the elements of σ such that as sets, f = F
and g = G. By definition of P(F, v,G), each such ordering corresponds uniquely to
a permutation in P(F, v,G). We will write the action of a permutation ρ ∈ Sk+l+1
on an ordering ( f , v, g) as (ρ( f ), v, ρ(g)) and the action of τk ◦ τl for τk ∈ i(Sk) and
τl ∈ j(Sl) as (τk( f ), v, τl(g)).

Lemma 1 Let F, v,G be as above and ( f0, v, g0) an ordering corresponding to a
particular chosen permutation τ ∈ P(F, v,G). Then, for all ( f , v, g) orderings
corresponding to permutations in P(F, v,G) there exist τk ∈ i(Sk) and τl ∈ j(Sl)
depending on ( f , v, g) such that

(i) (τk( f ), v, τl(g)) = ( f0, v, g0); and
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(ii) sgn(τk) sgn(τl) = sgn(τ ).

Proof Let η ∈ Sk+l+1 such that (η( f0), v, η(g0)) = (0, . . . , k + l). Then, τ =
η−1 τl τk η. Also, since the sign homomorphisms from Sk, Sl , Sk+l+1 to Z2 are com-
patible with the inclusions i and j we have that sgn(τ ) = sgn(η−1 τk τl η) =
sgn(τk) sgn(τl). 
�
Notation: In the following, we use the notation f k ≺ σ to denote a k-face f of simplex
σ , ignoring orientations. That is, f k is just a subset of size k + 1 of the vertices of σ .
Sometimes, we skip the superscript to simplify notation. For σ an oriented simplex
and f an oriented face or a set of vertices, the face σ \ f is an oriented face of σ

formed by deleting the vertices in face f from the vertices of σ . For g an oriented
simplex and vertex v, v ∗ g is an oriented simplex formed by union of {v} with the
vertex set of g. As before, whenever a simplex is used in an evaluation of a cochain,
for example f in 〈α, f 〉 it is assumed to be oriented. The specific orientation being
used is not apparent in this notation.

Proposition 5 (Averaging interpretation of discrete wedge product) Let α ∈
Ck(X), β ∈ Cl(X) and σ be a (k + l)-simplex in X. Then, the discrete wedge product
of Definition 3 is

〈α ∧ β, σ 〉 = 1
(k+l+1

k+1

)
∑

f k≺σ

〈α, f 〉
(

1

k + 1

∑

v0≺ f

〈β, v ∗ (σ \ f )〉
)

(10)

= 1
(k+l+1

l+1

)
∑

f l≺σ

(
1

l + 1

∑

v0≺ f

〈α, v ∗ (σ \ f )〉
)

〈β, f 〉 , (11)

where the orientations of f and v∗(σ \ f ) are such that the ordering ( f \{v}, v, σ \ f )
corresponds to an even permutation in Sk+l+1.

Proof We prove the first equality. The proof for the second is similar. The RHS of (10)
can be written as a double sum, first summing over all vertices and for a fixed vertex
summing over all the (k − 1)-faces of σ not containing that vertex to get

〈α ∧ β, σ 〉 = 1

k + l + 1!
∑

v0≺σ

∑

gk−1≺(σ\{v})
k! 〈α, v ∗ g〉 l! 〈β, σ\g〉 .

The orientations of the simplices v ∗ g and σ \ g in the cochain evaluations above
are such that the ordering (g, v, σ \ (g ∪ {v})) corresponds to an even permutation
in P(g, v, σ \ (g ∪ {v})). (We have used g etc. to represent both an ordering of
vertices and the corresponding set.) The fact that the orderings of σ corresponding
to all the permutations in P(g, v, σ \ (g ∪ {v})) can be reordered to the ordering
(g, v, σ \ (g ∪ {v})) follows from Lemma 1. The k! l! factorial follows from the fact
that there are k! orderings for gk−1 ≺ (σ \ {v}) once a g is fixed and after in addition
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fixing a v there are l! orderings for the remaining vertices. The above can be rewritten
as

1

k + 1

1
(k+l+1

k+1

)
∑

v0≺σ

∑

v0∗gk−1≺σ

〈α, v ∗ g〉 〈β, v ∗ (σ\(v ∗ g))〉 .

Renaming v ∗ g =: f , we can rewrite this as

1

k + 1

1
(k+l+1

k+1

)
∑

v0≺σ

∑

f k≺σ

〈α, f 〉 〈β, v ∗ (σ\ f )〉 ,

where it is understood that f is a k-face of σ that must contain the vertex v. This can
be expressed equivalently by using Lemma 1 once for every choice of v and switching
the summation and moving the normalizing factors as

1
(k+l+1

k+1

)
∑

f k≺σ

〈α, f 〉
(

1

k + 1

∑

v0≺ f

〈β, v ∗ (σ\ f )〉
)

,

where now the vertex summation is over all vertices v in f .
It is crucial to note here that the only reason that we have been able to collect all

the β evaluations with a single α evaluation is because the Lemma 1 can be used once
for every choice of v once the face f and its orientation have been fixed. 
�

The following is Example 5.8 in [31] and demonstrates the well-known fact that
the DEC wedge product and Wilson’s cochain product are not associative. We use the
averaging interpretation for the computation.

Example 10 Let X be the edge [01], α, β ∈ C0(X). Let α0, β0 = 1, 0, α1, β1 = 0, 1
and ω01 = 1. Then,

〈
(α ∧ β) ∧ ω, [01]〉 = α0β0 + α1β1

2
ω01 = 0 .

On the other hand,

〈
α ∧ (β ∧ ω), [01]〉 = α0 + α1

2

(
β0 + β1

2
ω01

)

= 1

4
.

5 Conclusion

In this paper, we have developed a categorical perspective on Discrete Exterior Calcu-
lus. The earlier work on DEC focused on discretizing the objects of exterior calculus
(namely differential forms), operators on forms, and domains on which these forms
live. In contrast, in Section3, we have promoted a discretization ofmorphisms of exte-
rior calculus (namely smoothmaps).We also gave an intuitive averaging interpretation
of the discrete wedge which generalizes an averaging interpretation that was known
in a special case of the discrete wedge of a 1-cochain with a 0-cochain.
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As proved in Proposition 1, the anti-symmetrized cup product that is used as a dis-
crete wedge product in DEC is equal to the cochain product ofWilson [31]. Then, by a
theorem of Sullivan [27] (see also [31, Theorem 5.11]) there exists a local construction
which canonically extends the algebra of DEC to a C∞-algebra. Under mesh refine-
ment, this C∞-algebra converges to the algebra given by wedge product on forms,
see [31, Theorem 5.12] for details. This suggests a direction for making the combina-
torial wedge product ofDECmore accurate by includingmore andmore combinatorial
operators of the C∞-algebra.

Appendix

We recall here the definition of Whitney forms and Whitney maps. See [8, §1] for
properties of Whitney forms and [18] for a recent survey on Whitney forms. Let X be
a simplicial complex with the structure of a C0-manifold of dimension n embedded
in R

N , N ≥ n.

Definition 7 (Whitney interpolation map) For any k-simplex σ = [v0 ... vk] ∈ X
with 0 ≤ k ≤ n let σ ∗ ∈ Ck(X) denote the cochain that evaluates to 1 on σ and 0
on all other k-simplices. For each k the Whitney interpolation map W : Ck(X) →
P−

1 �k(X) is defined by

W (σ ∗) := k!
k∑

i=0

(−1)iμi dμ0 ∧ . . . ∧ d̂μi ∧ . . . ∧ dμk ,

where μi is the barycentric coordinate corresponding to vertex vi and hat denotes that
term is missing. Here, it is assumed that the support of μi is the star (one-ring) of
vertex vi , i.e., μi ≥ 0 in all n-simplices containing vi and is set to be 0 everywhere
else.

This definition yields a piecewise-linear polynomial space of k-forms on the under-
lying space of X and this is the space of Whitney forms denoted in this paper
by P−

1 �k(X). See [2] for higher polynomial degree generalizations of the spaces
P−

1 �k(X) of Whitney forms.
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