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Abstract

We present improved estimates of air-sea CO2 exchange over three latitude bands of the 

Southern Ocean (SO) using atmospheric CO2 measurements from global airborne campaigns and 35 

an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (M ). These 

flux estimates show two features not clearly resolved in previous estimates based on inverting 

surface CO2 measurements: a weak winter-time outgassing in the polar region, and a sharp phase 

transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The 

estimates suggest much stronger summer-time uptake in the polar/subpolar regions than 40 

estimated derived from neural-network interpolation of pCO2 from profiling floats, but 

somewhat weaker uptake than a recent study by Long et al (1), who used the same airborne data

and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also 

uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have 

excessive diabatic mixing (transport across moist isentrope, e, or M surfaces) at high southern 45 

latitudes in the austral summer, which leads to biases in estimates of air-sea CO2 exchange. 

Furthermore, we show that the MSE-based constraint is consistent with an independent 

constraint on atmospheric mixing based on combining airborne and surface CO2 observations.  

Significance Statement 

Precise estimates of Southern Ocean CO2 uptake are lacking due to sparse surface-ocean 50 

observations. This study presents an alternate approach applying airborne CO2 observations to 

constrain the SO air-sea CO2 flux using a multi-box atmospheric model aligned with moist 

isentropes. This study improves upon prior studies that estimate flux based on atmospheric CO2

measurements by using better-constrained estimates of atmospheric diabatic transport (transport 

across moist isentropes). It also allows fluxes to be resolved in finer latitude bands, thus 55 

facilitating a closer comparison with surface ocean pCO2 observations and identifying CO2 flux 

components driven by marine photosynthesis, ventilation, and warming/cooling. Our study 

underscores the value of aircraft measurements for precisely quantifying long-term changes in 

CO2 uptake by the SO. 

Introduction 60 

Precise assessments of the air-sea CO2 flux of the Southern Ocean (SO), which includes both 

natural and anthropogenic components, are of critical importance to understanding the global 
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carbon cycle and predicting future oceanic carbon uptake under climate change (2–5). The high-

latitude SO (<58°S) was likely a significant natural source of CO2 to the atmosphere in the 

preindustrial era, but has switched to being a net sink in the present-day (6). Available estimates 65 

suggest that uptake over the entire SO (<35°S) strengthened from 1980 to 2015, with significant 

decadal variability (5, 7–13). 

Observation-based flux estimates of the entire SO remain highly uncertain. The net SO CO2 flux 

has been quantified using pCO2 measurements from ship-based and Argo float observations (8, 

14–21) and from atmospheric CO2 measurements at surface stations that are inverted by 70 

atmospheric transport models (ATMs) (22–28). These products, however, show a large spread of 

flux estimates, and are limited by sparse observations, possible measurement biases, and 

uncertainties in near-surface wind speed, gas exchange coefficients, and modeled atmospheric 

transport. 

Recently, Long et al. (1, henceforth Long21) used atmospheric CO2 observations from a series of 75 

global airborne campaigns to estimate the seasonal cycle of SO  CO2 flux of a single region 

(90°S to 45°S), and reported an annual oceanic uptake of 0.53±0.23 PgC yr-1 averaged from 

2009 to 2018. This annual sink estimate is consistent with the average of atmospheric inversion

products (henceforth 3-D inversions) and neural-network interpolation of ship-based pCO2

products ( , SOCAT) (16, 29), but larger than recent pCO2-based 80 

estimates using neural-network interpolation of profiling floats data from Southern Ocean 

Carbon and Climate Observations and Modeling project (SOCCOM) (17, 18, 30). Long21 also 

identified a larger summer-time CO2 uptake compared to the SOCCOM-based flux estimates and 

the average of multiple atmospheric inversion products. The method of Long21 uses the 

atmospheric CO2 gradient across potential the 85 

underlying air-sea flux, taking advantage of the tendency of CO2 to be well-mixed on surfaces 

(31).  

Here we provide improved estimates of seasonal SO CO2 flux using a novel 4-box tropospheric 

inverse method (Fig. 1a, henceforth 4-box inversion) and the same airborne datasets as in 

Long21 (detailed in Material and Methods and SI Appendix, Fig. S1). Whereas Long21 resolved 90 

fluxes over a single domain (south of 45°S), our method resolves fluxes in three finer bands 

(“polar,” “subpolar,” and “subtropical”) between 90°S and ~37°S  (Fig. 1b and SI Appendix, Fig. 
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S2), which allows closer comparison with pCO2-based flux products (16–18) and provides 

insights into the latitudinal structure of processes driving seasonal pCO2 changes, such as the 

interactions between marine photosynthesis, ocean ventilation, and warming/cooling (32, 33). 95 

At mid-latitudes, CO2 and other long-lived tracers tend to be rapidly dispersed along the surface 

of constant moist isentrope e, e

(34–37). Such mixing can be termed “adiabatic mixing”, in contrast to “diabatic mixing” which 

e surfaces involving diabatic heating or cooling. Our box-model 

builds on recent work (38, 39) by aligning the box boundaries with fixed values of a mass-100 

indexed isentropic coordinate M e e at any instant time, but is adjusted to 

conserve dry air mass in each box. This approach yields box boundaries that are nearly fixed 

e and it highlights 

diabatic mixing as a critical process for quantifying large-scale tracer dispersion. Atmospheric 

transport is conventionally determined using ATMs, but these models show a large spread of 105 

simulated diabatic transport, which is related to uncertainty in advection, convection, and 

boundary height parameterizations (24, 40, 41). Prior studies have identified errors in ATMs by 

pointing to vertical CO2 gradients being overestimated in simulations at mid-latitude (42, 43). 

We provide novel estimates of diabatic mixing rates that are independent of ATMs by using the 

moist static energy (MSE) budget of reanalyses. As MSE surfaces are identical to e and M110 

surfaces, which are all conserved during adiabatic processes, MSE-based mixing rates provide 

precise constraints on cross-M  diabatic transport.  

In this paper, we start by describing and validating the M -aligned box-model inversion method. 

We conduct a systematic analysis of uncertainty in ATMs-simulated diabatic mixing rates across 

three M  surfaces over the mid- to high-latitude SO by developing two relevant constraints, one 115 

based on moist static energy (MSE) budgets and the other based on atmospheric CO2 gradients 

across M surfaces. We present our airborne-based seasonal flux estimates resolved from the 

box-model inversion method that is constrained by MSE-based diabatic mixing rates, and discuss 

key features and mechanisms that cause the flux cycles to vary meridionally. Estimates obtained 

from airborne measurements are further compared with other flux products to identify any 120 

limitations these products may have. We also discuss the broad implications of our method for 
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resolving decadal variability and long-term trends in SO CO2 fluxes, resolving surface fluxes of 

other species and in other regions, and the potential to improve ATMs in general.  

Results and discussion

Box-model Architecture and Evaluation  125

The 4-box inversion model, shown in Figure 1a (detailed in Materials and Methods) divides the 

troposphere in the Southern Hemisphere into discrete boxes, with lateral boundaries aligned with 

fixed values of M (38). The M  coordinate e, but a given M  surface constantly

adjusts to keep the total dry airmass under it conserved. Each M surface is indexed to the 

corresponding contained airmass. The three primary boxes of the model each contain 15×1016 kg 130 

of dry air, and intersect the surface of the Earth in zonal bands (Fig. 1b). The northern-most 

fourth box provides a boundary condition for the third box. The CO2 flux at the bottom of each 

primary box is calculated from mass balance, based on diagnosed CO2 transport between boxes 

and observed inventory changes within the boxes (Eq. 1). A key assumption of the 4-box model 

is that the adiabatic transport (along e or M  transport) is sufficiently rapid that CO2 meridional 135 

transport is mainly controlled by bi-directional e or M  transport) 

between boxes, thus effectively reducing the troposphere to a discrete 1-dimensional mixing 

system. This assumption and the performance of the box model are validated below. In this 

model, diabatic transport is parameterized based on the cross-M CO2 gradient and a seasonally-

dependent diabatic mixing rate, expressed in kg2 day-1 (Eq. 2). Because airmass (kg) has replaced 140 

latitude or length in our box model, these mixing rates are analogous to diffusion coefficients, 

with the advantage of representing fundamental properties of the atmosphere that are 

independent of model discretization. We provide two approaches (Materials and Methods) to 

calculate climatological monthly diabatic mixing rates, one based on CO2 inversion systems that 

are constrained by surface CO2 observations and transport model simulations (ATM-based 145 

mixing rates), and one based on moist static energy budgets derived from MERRA-2 and JRA-

55 reanalyses (MSE-based mixing rates).We validate the 4-box inversion approach by applying 

the method to reconstruct surface CO2 fluxes from 4 CO2 inverse models, using the full 3-D 

gridded atmospheric CO2 fields of each product, averaged over each box, and using the 

corresponding parameterized climatological ATM-based mixing rates from the same model 150 

(detailed in Materials and Methods). This method provides an internally consistent system for 
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each 3-D inversion, and the reconstructed surface fluxes align well with original inverted fluxes

over each zonal band (RMSE  0.12 PgC yr-1, Fig. 3a, SI Appendix, Fig. S4-S6, SI Appendix, 

Table S1), especially over the climatological seasonal cycle (Fig. 3b). The 4-box inversion also

reconstructs the interannual variability (IAV) of fluxes (e.g., Fig. 3a), even though the box-model 155

uses interannually-constant mixing rates, showing that flux IAV can be learned from variations 

in atmospheric CO2 gradients, while the impact of IAV in the atmospheric dynamics is relatively 

small. The method for resolving the zonal-averaged flux is not biased by the representation error

(44, 45) that arises from the coarse resolution inverse model, which we verify by successfully 

reconstructing zonal-averaged air-sea CO2 flux from a product with finer-scale variability 160

(Materials and Methods, SI Appendix, Fig. S16). These validations confirm that the complex 3-

dimensional circulation of the atmosphere at high southern latitudes can be approximated by 

mixing along one dimension (the coordinate M ), at least for the purpose of resolving zonal-

averaged SO CO2 fluxes.  

Diabatic Mixing Rate Evaluation  165 

We find that the MSE-based mixing rates from MERRA-2 and JRA-55 are highly consistent 

with each other, while ATM-based mixing rates have a large spread up to threefold, and are 

faster than MSE-based mixing rates in austral summer over the high-latitudes (Fig. 2 and SI 

Appendix, Fig. S3). We believe the MSE-based mixing rates are more reliable for two reasons: 

First, the MSE-based constraint is powerful because surfaces of constant MSE are exactly 170 

parallel with the M coordinate and because MSE has strong gradients across M  in all seasons. 

Second, the MSE-based constraint is consistent with an additional constraint on mixing that is 

available when combining CO2 data from both aircraft and surface stations. The available inverse 

models compute CO2 fluxes using surface data only, but also yield troposphere CO2 gradients 

which can be compared to airborne observations. We find that the cross-M  CO2 gradients in 175 

most inverse models are inconsistent with the observed gradients in airborne data during the 

austral summer in the mid- to high-latitude (Fig. 4a and b). The discrepancies in simulated CO2

gradients correlate strongly with the diagnosed diabatic mixing rates from each corresponding 

ATM (Fig. 4), showing that ATMs with stronger diabatic mixing produce smaller CO2 gradients 

compared to observations. Based on the correlation, we find that the larger observed CO2180 

gradients from airborne data than model simulations appear to require a slower mixing rate of 

~10 and 21 (1016 kg2 day-1) at the 15 and 30 M surfaces (Fig. 4a and b), respectively, in the 
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austral summer. The required mixing rates are consistent with the MSE-based mixing rate, thus 

providing strong evidence for the MSE-based estimates to be more realistic. Among all ATMs, 

the ACTM model yields a realistic summer gradient and mixing rates compatible with the MSE 185 

budget. In the rest of the year, both MSE-based mixing rates and ATM-based mixing rates, as 

well as simulated and observed CO2 gradients are generally within the 1 uncertainty of the 

observed gradients and close to two MSE-based mixing rates (SI Appendix, Fig. S7).

For the 4-box inversions presented here, we alternately use MSE-based mixing rates derived 

from MERRA-2 and JRA-55 to invert airborne CO2 observations, allowing for uncertainty in 190

mixing based on the spread between these two estimates and their small IAV (detailed in SI 

Appendix, Text S2).  

Airborne-based air-sea CO2 fluxes  

We calculate air-sea CO2 fluxes using the observed CO2 inventory of each M box and CO2

gradients across M surfaces from each airborne campaign, which are resolved by binning 195 

airborne data into four M  bands (detailed in Materials and Methods). We correct for small 

biases in CO2 inventory and gradient induced by sparse spatial coverage of the airborne 

observations (SI Appendix, Text S1 and Table S5) by comparing averaged CO2 from full 3-D 

model data and flight track-subsampled model data. We also correct the contribution of small 

non-oceanic CO2 flux to the CO2 mass balance based on flux estimates in four inversion products 200 

(SI Appendix, Figure S8). Our fluxes estimate allow for uncertainties from CO2 measurement 

imprecision, spread and IAV of MSE-based diabatic mixing rates, spatial coverage corrections, 

flux interannual variability due to insufficient temporal sampling, and non-oceanic CO2 flux 

corrections (SI Appendix, Text S1-2). Although we report a similar random error as Long21, we 

expect our results to be subject to smaller systematic errors from uncertainty in mixing, and 205 

importantly also allow resolving fluxes at finer spatial scales with the same data. The reported 

random error is dominated by CO2 measurement error derived from comparing different 

instruments. 

The 4-box inversion resolves clear seasonal cycles of air-sea CO2 flux in all three latitude bands, 

with clear differences in amplitude and phasing between the bands. Over the polar band (Fig. 5a), 210 

we find a strong CO2 uptake in the summer (DJF) and a weak outgassing in the winter (JJA). 

Over the subpolar band (Fig. 5b), we find a strong uptake in the summer and a weak uptake in 
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the winter. In the subtropical band (Fig. 5c), the seasonality is reversed, with a weak uptake in 

the summer and a strong uptake in the rest of the year. Averaged over the full year, all bands 

show net uptake. We now discuss each of these prominent features in turn. 215 

The airborne-based estimates suggest a weak winter-time CO2 outgassing of 0.05±0.03 PgC 

integrated from June to August (equivalent to 0.56±0.35 gC m-2 mon-1) in the polar band (Fig. 

5a). Winter outgassing is expected from strong winter-time upwelling which brings carbon-rich 

deep water to the surface (13). This outgassing pattern is consistent with several recent pCO2-

based flux estimates, for example, observations from uncrewed surface vehicles in the Antarctic 220 

Zone during June and July of 2019 (0.7 gC m-2 mo-1) (46), reconstructed winter-time (July, 2004-

2014 average) fluxes using summer-time measurements (0.04±0.008 PgC) (47), and neural-

network interpolation of ship-based SOCAT measurements (0.03 PgC, Fig. 5e) (16), but is 

smaller than estimates solely based on neural-network interpolation of SOCCOM float data

during 2014 and 2017 (~ 0.23 PgC, Fig. 5e) . The small winter-time outgassing in our results is 225 

also consistent with several 3-D inversions that used surface station CO2 observations (Jena 

inversion, ACTM, and CAMS), but is significantly more positive than one 3-D inversion (CT

2019b, Fig. 5e). 

The airborne-based flux estimates show a clear phase shift between the polar/subpolar bands (Fig. 

5a-b) and the subtropical band (Fig. 5c). The boundary between these two boxes in the 4-box 230 

model roughly aligns with the subtropical front over the Atlantic and the Indian Ocean but is ~5°

south of the subtropical front over the Pacific Ocean. This phase shift is likely due to the 

latitudinal change of the dominant mechanism that drives the surface-ocean pCO2 seasonal 

changes. To the north of this boundary, the pCO2 cycle is dominated by temperature-related 

solubility changes. To the south, it is dominated by biological production/mixing processes 235 

driving seasonal changes in dissolved inorganic carbon  (32, 33, 48). A similar shift across ~40°S 

has been resolved in surface ocean pCO2 data (33, 48, 49) and also in flux estimates based on 

these pCO2 data, but the seasonal amplitudes of fluxes in these estimates are weaker in both 

regions than we find from airborne data (Fig. 5e-g). The phase shift, however, is not distinctly 

resolved in the 3-D inversions and two neural-network interpolations of pCO2-based products 240 

(Fig. 5e-g). 
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To quantify the contribution of temperature-related solubility changes to the CO2 fluxes (Fig. 5i-

l), we compare the airborne-based fluxes to results from a simple thermal model, which assumes 

pCO2 increases by 4% per degree Celsius increase in sea-surface temperature (SST) change and 

uses wind-speed dependent gas exchange (methods in SI Appendix, Text S3) (50, 51).  In the 245

polar zone (Fig. 5i-j), the thermal model yields fluxes that are strongly out of phase compared 

with observations (correlation = -0.81 and -0.83). In the subtropical region (Fig. 5k), the cycle 

from the thermal model broadly aligns with the observed cycle ( =0.62).  

Despite the correlation, the observed flux cycle in the subtropical band has significant deviations 

in the austral spring compared to the thermal-driven cycle. The strengthening of CO2 uptake 250

from January to April is faster than expected from warming alone (Fig. 5k), which requires a 

contribution from biological-driven changes, possibly associated with the fall phytoplankton 

bloom (52, 53). 

We find a summer-time ocean CO2 uptake of 0.13±0.04 PgC (integrated from December to 

February, DJF) in the polar band (Fig. 5a) and 0.14±0.04 PgC in the subpolar band (Fig. 5b), 255 

which contributes to most of the annual uptake of 0.36±0.16 PgC south of ~43°S (Fig. 5d). Our 

results are qualitatively consistent with prior estimates using the same airborne observations 

(Long21). However, our annual uptake estimate integrated over the polar and subpolar band is 

smaller (within uncertainty) than that of Long21 (0.53±0.23 PgC) (Fig. 5d). The difference is 

mainly explained by larger summer-time CO2 uptake in Long21, but the comparison is 260 

complicated by small differences in ocean domains between these two studies (the 30 M

surface, compared to 45°S, displaces ~2° southward over the western Pacific and ~3° in other 

basins). The larger summer uptake in Long21 can be attributed to the dependence on ATMs, 

which we suggest have unrealistically fast mixing rates in summer (Fig. 2). Summertime fluxes 

from our box model are especially sensitive to the diabatic mixing rate because summertime 265 

cross-M  gradients are large, and the inventory change is small (Fig. 4). The winter-time fluxes 

are less sensitive to the diabatic mixing rate because wintertime CO2 gradients are small, and the 

inverted flux is mainly diagnosed from the observed atmospheric CO2 inventory change. 

In the two high-latitudes band (Fig. 5e-f), our flux estimates align better with the SOCAT-based 

flux estimate than the SOCCOM-based estimate. We find that the SOCCOM-based flux 270 

estimates show significantly larger CO2 outgassing (or weaker uptake) all year round. Possible 
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bias in SOCCOM pCO2 data has been identified by Wu et al. (54), and SOCCOM float data 

remain sparse in our lowest latitude band 43-37°S (18).  

Our airborne-based estimates show large differences from global ocean biogeochemistry models, 

which have known difficulties in representing CO2 exchange over the Southern Ocean (8, 55, 56) 275 

given the large competing process drivers. We find several models that suggest a similar phase 

shift, but we did not find any model that agrees well with our estimates in all three bands (SI 

Appendix, Fig. S9). Airborne-based estimates are relatively consistent with pCO2-based 

estimates and inversions, while sharply deviating from GOBMs, underscoring the need for a 

better understanding of the physical and biogeochemical processes that drive the SO air-sea CO2280 

flux in GOBMs. 

Overview and outlook 

We have resolved air-sea CO2 fluxes over three zonal bands of the SO using airborne data and a 

4-box inversion approach based on M  coordinates. This framework adequately describes large-

scale CO2 transports needed for resolving fluxes at the scale of three zonal bands over the mid- 285 

to high latitudes of the SO, showing that the complex meridional CO2 transport can be simplified 

to diabatic transport. This framework also incorporates constraints on the diabatic mixing rate 

from MSE budgets of atmospheric reanalyses, without requiring an atmospheric transport model.

We demonstrate that the diabatic mixing rates inferred from the MSE budgets are realistic, based 

on a CO2 gradient-mixing rate constraint, but the mixing in most ATMs is too fast in the austral 290 

summer. These differences in representing mixing led to our summer uptake estimates being

somewhat smaller than the uptake estimated by Long21, despite using the same airborne CO2

data. In the austral winter, ATM- and MSE-based mixing rates are generally comparable.

This study provides robust zonal average flux estimates from airborne data by capitalizing on 

rapid atmospheric mixing to integrate zonal heterogeneities. Our estimates have advantages over 295 

the published atmospheric inversions using surface station data because airborne data more 

accurately reflect large-scale features, and our method is less sensitive to large uncertainty in 

simulated atmospheric mixing and the representation error due to model resolution (44). 

Compared to pCO2-based products, our estimates also have advantages, not being subject to 

uncertainty in gas exchange velocity and sparse coverage in pCO2 observations (1, 21). A 300 

corresponding disadvantage, however, is the inability to resolve finer-scale spatial features.
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The 4-box inverse model provides insights that have potential value for understanding and 

improving the simulated atmospheric circulation and structure in 3-D ATMs. We show 

inconsistency in MSE-based and ATM-based diabatic mixing rates, and in CO2 gradients 

between airborne data and inversion systems that are optimized by surface data (Fig. 4). These 305

inconsistencies strongly motivate the incorporation of airborne data into CO2 inversion systems. 

They also identify key errors during the construction of modern ATMs related to diabatic mixing. 

Previous studies have highlighted uncertainty in vertical mixing as a major source of error in 

CO2 fluxes estimated via inverse model calculations using both satellite and in situ data (42, 43). 

Vertical mixing in the mid-troposphere has both along- and cross-M  components, and the 310

cross-M mixing (diabatic) component would typically be rate limiting because the along-M

(adiabatic) mixing is more rapid. Reducing uncertainty in vertical mixing thus requires reducing 

uncertainty in diabatic mixing, which we show can be constrained with MSE budgets. Future 

studies should focus on better understanding the inconsistency between transport models and 

reanalyses, which  likely are associated with insufficient vertical resolutions, uncertainty in 315 

parameterizations (e.g., convection), and challenges related to the re-gridding and interpolation 

when assimilating meteorology data into these models.

Our study motivates obtaining additional airborne data to improve estimates of large-scale 

carbon uptake across different latitudes of the SO. The ocean uptake over the entire SO has 

increased in recent decades according to surface ocean pCO2 data and models (2, 7–9, 11–13, 21). 320 

Here we only attempted to resolve a seasonal climatology of the SO CO2 flux over different 

latitudes over the period 2009-2018, but resolving interannual variation would be feasible given 

regular sampling on future aircraft campaigns, with spatial coverage over the SO similar to 

HIPPO, ORCAS, and ATom. New frameworks based on the M  coordinate are suitable also for 

studying the sources and sinks of other tracers, for example, computing the air-sea O2 flux, and 325 

atmospheric CH4 chemical loss rate.

Materials and methods 

Airborne campaigns and airborne CO2 observations 

We use airborne CO2 observations from three aircraft campaigns, the HIAPER Pole-to-Pole 

Observation project (HIPPO, (57)), the O2/N2 Ratio and CO2 Airborne Southern Ocean Study 330 

(ORCAS, (58)), and the Atmospheric Tomography Mission (ATom, (59)). HIPPO and ATom 
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have global coverage, mostly along a Pacific or Atlantic transect, while ORCAS focused on the 

Southern Ocean adjacent to Drake Passage (horizontal flight tracks are shown in SI Appendix,

Fig. S1). HIPPO consisted of five campaigns (HIPPO1-5) and ATom consisted of four 

campaigns (ATom1-4), each with several flights south of 35°S. ORCAS was a single 6-week 335

campaign, but with much denser temporal sampling, so we have split it into three sub-campaigns 

(ORCAS1-3) in our analysis. Detailed descriptions of these airborne campaigns are in SI 

Appendix, Text S4 and SI Appendix, Table S2. We primarily use CO2 airborne measurements 

collected by the NCAR AO2 instrument (60). To evaluate potential uncertainty (detailed in SI 

Appendix, Text S2.1), we also use measurements from three other in-situ instruments, the 340

Harvard QCLS instrument (61), Harvard OMS instrument (62), and NOAA Picarro, and 

measurements from two flask samplers, the NCAR/Scripps Medusa flask sampler (60, 63) and 

NOAA Portable Flask Packages(PFP, 63). AO2 and QCLS are available on all campaigns. 

However, OMS did not fly on ORCAS or ATom, NOAA PFPs did not fly on ORCAS, and the 

NOAA Picarro did not fly on HIPPO. The in-situ measurements are averaged to 10-sec intervals. 345 

Mass-indexed moist isentropic coordinate (M ) 

The M  coordinate, first introduced in Jin et al. (38), is defined as the total dry air mass under a 

e) in the troposphere of a given hemisphere. Surfaces of 

constant M  e but the relationship changes with season, as the 

atmosphere warms and cools. A schematic of the annual zonal average atmospheric M value is 350 

in shown Fig. 1a, while climatological positions of the near-Earth surface contours of three M

surfaces (15, 30, and 45 1016 kg) are shown in Fig. 1b and SI Appendix, Fig. S2. Details of the 

calculation of M are described in SI Appendix, Text S5.  

We also relate bands of constant M  to approximate latitude bands (see Fig. 5) based on the 

zonal average latitude of corresponding daily surface M  (averaged from 2009 to 2018) over the 355 

ocean.  

Box model architecture and diabatic mixing rates 

We build a 4-box atmospheric model using selected M surfaces (15, 30, 45, and 60, 1016 kg) as 

boundaries, shown in Fig. 1a. This box e (or M ) being the 

preferential mixing surface of CO2 throughout the hemisphere, especially over mid-latitude 360 

storm tracks (34, 37). The box model allows surface CO2 fluxes (Fi, PgC year-1) to be computed 
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from the CO2 mass balance of each M box, based on the knowledge of atmospheric CO2

inventory (M , PgC) in each box and the diabatic transport of CO2 between boxes (Q , , PgC 

year-1) 

M

t
=

F + Q ,

F + Q , Q ,

if i = 1
if i > 1

(1)  365 

where i = 1 is the highest latitude (lowest M ) box.  

In Eq.1, Q ,  represents the transport (PgC year-1) of CO2 between the ith and i+1th box, with 

poleward flux as positive. Q , is parameterized according to:  

Q , = D , ·
( )

M
· (2) 

where D ,  is the diabatic mixing rate (kg2 day-1) that represents the mixing rate across the 370 

boundary of box i and i+1, is the CO2 concentration (PgC per kg air mass) of the ith box, 

calculated as CO2 inventory of the box divided by the total airmass of the box (15×1016 kg), and 

M is the distance in M  coordinates between box centers, which for evenly spaced boxes is 

the same as the total airmass of each box.  is a constant (1/365) to convert from PgC day-1 to 

PgC year-1. Equation 2 is a variant of Fick’s law, with M as an effective distance coordinate, 375 

and 
( )

is a measure of the CO2 concentration gradient. With this approach, D ,  is a 

property of the corresponding M surface and is insensitive to the choice of box size. 

We adopt two independent methods to estimate climatological (2009 to 2018 average) monthly

diabatic mixing rates (D , ). The first method extracts diabatic mixing rates from transport 

models using total CO2 fields from 3-D inversion products (SI Appendix, Table S3). We first use 380 

the daily 3-D atmospheric field of M computed from MERRA-2 to assign a M  value to each 

daily model grid cell from 2009 to 2018. The atmospheric 3-D CO2 fields and surface CO2 flux 

fields of inversions are interpolated to the MERRA-2 reanalysis grids (1°x1°, 26 vertical levels 

from 1000 mbar to 100 mbar). We then calculate a daily CO2 inventory (M ) of each M  band as 

the sum of CO2 mass for all 3-D grid boxes within the corresponding M  domain. We calculate 385 

monthly CO2 inventory change ( ) by taking the time derivative of the monthly atmospheric 

CO2 inventory. We note that monthly CO2 inventory change is computed by first averaging daily 
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CO2 inventory by month but shifting the phase of the averaging window by 15 days to center at 

the beginning of each month, and then differencing these values to obtain a rate of change 

centered mid-month. We calculate monthly CO2 gradients between two M  boxes ( - ) by 390 

averaging daily gradients. We calculate monthly surface CO2 flux (F ) by averaging daily flux, 

which is computed by integrating all daily 3-D inversion flux grids with surface M  values 

within the corresponding M  range.  

The CO2 transport across the north boundary of each M box in the model can be calculated 

from the CO2 inventory change and surface flux of that box and the boxes further southward, 395 

according to:  

Q , (t) =
dM (t)

dt
F (t) (3) 

Combining Eq. 2 and 3, climatological average (2009 to 2018 average) monthly D , is 

calculated following: 

D , (t) =

[
dM (t)

dt
F (t) ]

[ (t) (t)]
· M (4)

 400 

where [] denotes the average of corresponding monthly values of all years (2009 to 2018). The 

1  uncertainty is calculated as the standard deviation of resolved D , (t) for that month over all 

years, representing the interannual variability, which is shown to be small (Fig. 2 and SI 

Appendix, Fig. S3), with the exception of CAMS in September because of close-to-zero CO2

gradients across the 30 (1016 kg) M  surface.405 

The second method relies on moist static energy (MSE) budgets from meteorological reanalyses, 

of which we use MERRA-2 and JRA-55 (65, 66). MSE is a measure of static energy that is 

conserved in adiabatic ascent/descent and during latent heat release due to condensation, and is 

e or M . This method provides a much more well-defined D 

because finite MSE gradients exist in each reanalysis time step and do not reverse sign, in 410 

contrast to CO2. MSE is defined following 

MSE(t) =  C · T(t) + g · z + L (T) · q(t) (5) 
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where  C 1 K 1) is the specific heat of dry air at a constant pressure, T is 

temperature (K), g is the gravity constant assumed to be 9.81 2, q is the specific humidity of 

air (kg water vapor per kg air mass), and L  is the latent heat of evaporation at temperature T (K). 415 

L 1 1

temperature.

MSE transport at the northern boundary of each box is calculated by energy conservation within 

the box, which follows Eq. 3 but has a small modification to account for atmospheric energy 

sources or sinks (E , J day-1):420 

Q , (t) =
dS (t)

dt
F (t) E ( ) (6)

where S is the total MSE (J) that is calculated using temperature (T) and specific humidity (q) 

from corresponding reanalyses (Eq. 5). F is modified as surface heat flux (J day-1), including 

surface sensible and latent heat flux, which is directly available from MERRA-2 and JRA-55. E

is defined as heating rate due to radiative imbalance, and is calculated using temperature 425 

tendency analysis ( , K day-1) of these reanalyses, following: 

E (t) = C (T) ·
T (t)

t
· M (7) 

With MERRA-2, the temperature tendency due to radiative imbalance is directly available, while 

with JRA-55, it is calculated as the sum of heating rates due to longwave and shortwave 

radiation. 430 

To estimate climatological monthly D ,  from reanalysis, the gradient ( ) in Eq. 4 is 

modified to be the energy density gradient (J per kg airmass), calculated from the total MSE of 

each box divided by the total airmass of the box (15×1016 kg in this study). 

We thus calculate monthly 
( )

, F (t), E (t) from 2009 to 2018 by averaging 6-hourly data 

from MERRA-2 and JRA-55, with 6-hourly Si shifted by 15 days before calculating  
( )

, as 435 

for ATM CO2. 

The calculation of monthly D based on MSE is according to a modified version of Eq. 4: 
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D , (t) =
[

dS (t)
dt

F (t) E ( ) ]

[ (t) (t)]
· M (8) 

We show six (four ATM-based and two MSE-based) sets of monthly diabatic mixing rates for

the M surfaces at 15, 30, and 45 (1016 kg) in Fig. 2 and SI Appendix, Fig. S3. Climatological 440 

daily mixing rates are further calculated by 4-harmonic fits to monthly data. 

Validation of box-model approach 

We validate the use of the 4-box model for estimating surface CO2 flux by showing that this 

approach successfully reconstructs monthly surface CO2 fluxes for each of the four 3-D CO2

inversion products. This approach uses Eq. 1 and 2, with based on the gridded atmospheric 445 

CO2 fields averaged over grid cells within corresponding M  box and uses D ,  calculated 

using CO2 gradients from each transport model as described in the previous section. We then 

average daily reconstructed fluxes to monthly, centered at the middle of each month, shown as 

solid black curves in Fig. 3 and SI Appendix, Fig. S4-S6. We assess representation error due to 

the coarse resolution of the inverse model, by reconstructing the zonal average flux of the neural-450 

network interpolation of SOCAT data, using the 3D atmospheric field generated by the TM3 

model with flux from SOCAT-based air-sea CO2 flux, together with fossil fuel and ecosystem 

CO2 flux from the Jena sEXTocNEEv2020 (SI Appendix, Fig. S16). We find clear alignment 

between the original and reconstructed SOCAT-based flux, suggesting that our method is not 

limited by representation error. 455 

Airborne estimates of air-sea CO2 fluxes 

We use the 4-box model (Eq. 1 & 2) and airborne CO2 observations to calculate air-sea CO2

fluxes for each surface M  band and each airborne campaign, centering on the mean date of the 

campaign, shown as points in Figure 5a-d. This calculation includes the following steps. 

We first detrend airborne CO2 observations by subtracting a smoothed interannual CO2 trend at 460 

the South Pole (SPO) (67). The trend is calculated by a stiff cubic spline function to the monthly 

average SPO data (68). We then compute the detrended average CO2 ( i) for each campaign and 

each box by trapezoidal integration of detrended CO2 as a function of M  (as in Jin et al. (38)), 

and dividing by the M  range of the box (i.e., 15×1016 kg) (68). Prior to trapezoidal integration, 

we extrapolate airborne observations to M = 0 surface using the average of the 100 465 
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observations with the lowest M values near 0. The extrapolation only results in a slightly 

different averaged CO2 for the lowest M box compared to the value without extrapolation (< 

0.03 ppm) because we have sufficient measurements across M surfaces. The exceptions are

HIPPO1 and 4 (difference 0.1 ppm), in which we do not have observations on low M

surfaces (SI Appendix, Fig. S15). For HIPPO4, however, we extrapolate to M  = 15 (1016 kg) 470 

using the average of the 100 observations with the lowest M values near 15 because due to the 

absence of observations in the entire first M  box, and only estimate fluxes for the 30-45 (1016

kg) box. We then correct for bias in CO2 estimates due to limited spatial coverage (detailed in SI 

Appendix, Text S1). For each M box, we conduct a 2-harmonic fit with an annual offset to i of 

12 campaigns, yielding a fitted seasonal cycle (with offset) of i. We then compute the long-term 475 

(2009 to 2018) time series of observed  as the sum of the climatological seasonal cycle of i

and the CO2 trend at SPO. We note that we use the same trend for each M  band, preserving 

each band’s annual mean offset from SPO. The time series of CO2 inventory (M ) of each box is 

therefore computed by multiplying  and the M  range of the box (i.e., 15×1016 kg in this study).

The Fitted  and M values of each campaign are defined as the values at the mean date of the 480 

corresponding campaign. Observed surface CO2 fluxes for each airborne campaigns are then

calculated as the combination of two components, namely the CO2 inventory change  and 

CO2 diabatic transport Qi,i+1, following Eq. 1 and 2. We calculate the component  as the time 

derivative of the daily timeseries of Mi from the combined seasonal plus SPO trend fit. The 

component Qi,i+1 for each airborne campaign mean date is calculated as the product of the 485

observed atmospheric CO2 gradient (without fitting) between two boxes and the 4-harmonic 

fitted diabatic mixing rate at the campaign mean date (average of 2 MSE-based mixing rates) of 

the corresponding M  surface.  

The surface CO2 fluxes estimated from the 4-box model are the total fluxes that also contain any 

land ecosystem CO2 emission/uptake and fossil fuel CO2 emission. We correct for these non-490 

oceanic components by subtracting the corresponding flux components using the average of four 

3-D CO2 inversion products. The magnitude of this correction is small compared to the total air-

sea fluxes, as shown in SI Appendix, Fig. S8. 
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We estimate the uncertainty of each individual flux estimate and the seasonal flux cycle by 

generating an ensemble (2000 iterations) of flux estimates, allowing for uncertainty of these 495 

sources: (1) uncertainty of CO2 measurements; (2) uncertainty of the correction for spatial bias 

due to insufficient airborne coverage; (3) interannual variability of the diabatic mixing rate; (4) 

spread of the diabatic mixing rate between the two reanalyses; (5) correction for the biosphere 

and fossil fuel CO2 flux; and (6) interannual variability of the flux. Detailed bias and uncertainty 

analyses are presented in SI Appendix, Text S1-2. The overall uncertainties of each flux estimate 500 

are shown as error bars in Fig. 5a-d. The overall uncertainties of 2-harmonic fitted seasonal flux 

cycles are shown as shaded regions in Fig. 5a-d. 

We also show the averaged air-sea CO2 fluxes calculated using 6 sets of diabatic mixing rates (4 

sets of ATM-based and 2 sets of MSE-based) in SI Appendix, Fig. S10. These are estimated 

using the average and 1  uncertainty of 6000 iterations of flux estimates, with 1000 iterations for 505 

each set of mixing rates. We also show the air-sea CO2 fluxes calculated using each set of mixing 

rates in SI Appendix, Fig. S11. 

We calculate the annual CO2 uptake of each M  box from the constant term of the 2-harmonic 

fitted seasonal flux cycles (shown as text in Fig. 5). 
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Figure 1: (a) Schematic of the box model. Boundaries of the box model are selected M
surfaces at 15, 30, 45, and 60 M  values (1016 kg), which are shown as zonal and 2009-2018 705 
averages. (b) Selected near-surface M  contours as 2009-2018 averages. M  is computed from 
3-hourly MERRA-2 reanalysis. These M bands are nearly fixed with season (SI Appendix, Fig. 
S2). Red triangles show the location of surface stations that are used in the Carbon Tracker 
2019b 3-D CO2 inversion product.  

 710 
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Figure 2: Diabatic mixing rates of the 30 (1016 kg) M surface. These mixing rates are 
parameterized from four 3-D CO2 inversion products and moist static energy budget of two
reanalysis products (MERRA-2 and JRA-55). Error bars represent only the interannual 
variability of parameterized mixing rates, which is shown to be small, with the exception of 715 
CAMS in September because of the close-to-zero CO2 gradient across the 30 (1016 kg) M
surface. Diabatic mixing rates of the 15 and 45 (1016 kg) M surface are shown in SI Appendix, 
Fig. S3. 
  



28

720

Figure 3: (a) Monthly reconstructed air-sea CO2 fluxes (solid gray) for the 0-30 (1016 kg) M
band (south of ~ 43°S near the Earth surface) based on CarbonTracker 2019b, compared with the 
original monthly 3-D inversion fluxes for the same M band (dashed black). The other
components (i.e., diabatic CO2 transport and CO2 inventory change, detailed in Materials and 
Methods, and Eq. 1) of the box-model reconstruction are shown as well. Positive values of the 725
diabatic transport represent CO2 transport into the 0-30 M band (poleward transport). We note 
that the inventory change (blue) equals the sum of fluxes (black) and diabatic transport (red). (b) 
Similar to (a), but showing the flux and other components as climatological monthly averages 
(2009 to 2018). Shaded regions show interannual variability, which is calculated as the standard 
deviation over 10 years for the corresponding month. We also show these reconstructions for 730
other 3-D inversion products and other surface M  bands in SI Appendix, Fig. S4-S6. 
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Figure 4: Exploring the correlation between Jan. and Feb. ATM-based mixing rates at each M
surface and simulated atmospheric CO2 gradients across the corresponding M surface of four 735
transport models (3-D CO2 inversion products). Simulated gradients are from 3-D concentration 
fields averaged at the mean dates of five airborne campaigns or sub-campaigns that took place 
during January and February (HIPPO1, ATom2, and ORCAS1-3). The corresponding ATM-
based mixing rate is calculated as the January and February average. For comparison, we show 
the observed CO2 gradients (spatial bias corrected, as detailed in SI Appendix, Text S1) as740
horizontal black lines, which are calculated as the average of the same five campaigns or sub-
campaigns, while the dashed lines show the 1 uncertainty (measurement and spatial bias 
correction uncertainty). We also show two MSE-based mixing rates (January and Feburary
average) as vertical brown lines. A similar figure exploring the correlation between April to 
November averaged CO2 gradient and averaged diabatic mixing rate is presented in SI Appendix, 745
Fig. S7.  
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Figure 5: (a)-(d) Seasonal cycle of air-sea CO2 fluxes (negative as net oceanic uptake) estimated 
using 4-box model based on airborne CO2 observations and two sets of MSE-based diabatic 750
mixing rates (see Materials and Methods). Each individual point represents the calculated fluxes 
using airborne observations from the corresponding campaign, centering on the mean date of 
each campaign, while the black line is a 2-harmonic fit. Error bars represent the 1  uncertainty 
of each flux estimate, while shaded regions represent the 1 uncertainty of the 2-harmonic fits 
(detailed in SI Appendix, Text S1-2). Values of air-sea CO2 fluxes calculated for each airborne 755 
campaign transect and for each band are summarized in SI Appendix, Table S4. Annual fluxes 
are from the constant term of the 2-harmonic fitted climatological flux cycles, which is 
equivalent to integrating the fit over a year. These approximate latitude bands (see top of each 
panel) are calculated as the zonal average latitude of the corresponding annual average (2009 to 
2018) M surface over the ocean (SI Appendix, Fig. S2). We also show box-model resolved 760 
fluxes calculated using the average of 6 sets of mixing rate and each set of mixing rate in SI 
Appendix, Fig. S10 and S11. In (e)-(h), we compare our estimates with four 3-D CO2 inversion 
products, and two neural network interpolated surface ocean pCO2 products using SOCAT pCO2

observations alone and SOCCOM pCO2 observations alone. Details of these products are in SI 
Appendix, Text S6. The SOCCOM product is a sensitivity run where all shipboard data from 765 
SOCAT were excluded (only SOCCOM float data were included). We note that the ocean CO2

flux in Jena sEXTocNEET_v2020 is a prior, which is provided by assimilation of surface ocean 
pCO2 observations (i.e., not neural-network derived pCO2) from SOCAT (29) by the Jena mixed-
layer scheme (69). The seasonal cycle of each product is calculated as the average between 2009 
and 2018, except for SOCCOM, which is averaged from 2015 to 2017. In (i)-(l), we compare our 770 
estimates with thermally-driven air-sea CO2 flux cycles (dashed red, methods in SI Appendix, 
Text S3), which is derived from assuming 4% pCO2 increase per degree Celsius increase in sea-
surface temperature (SST) and using wind-speed dependent gas exchange. We calculate the 
correlation between the airborne observed flux cycle and the estimated thermal-driven flux cycle 
of each band. Black solid curves and shaded regions in (e)-(l) are corresponding airborne 775 

 (i) to (l) have a different y-axis range compared to 
panels (a) to (h). We also compare our estimates with nine global ocean biogeochemistry models 
that are used in the Global Carbon Budget 2020 (11, 55) in SI Appendix, Fig. S9. 


