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Abstract

We present improved estimates of air-sea CO> exchange over three latitude bands of the
Southern Ocean (SO) using atmospheric CO> measurements from global airborne campaigns and
an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mge). These
flux estimates show two features not clearly resolved in previous estimates based on inverting
surface CO; measurements: a weak winter-time outgassing in the polar region, and a sharp phase
transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The
estimates suggest much stronger summer-time uptake in the polar/subpolar regions than
estimated derived from neural-network interpolation of pCO: from profiling floats, but
somewhat weaker uptake than a recent study by Long et al (1), who used the same airborne data
and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also
uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have
excessive diabatic mixing (transport across moist isentrope, 6., or Mee surfaces) at high southern
latitudes in the austral summer, which leads to biases in estimates of air-sea CO> exchange.
Furthermore, we show that the MSE-based constraint is consistent with an independent

constraint on atmospheric mixing based on combining airborne and surface CO- observations.

Significance Statement

Precise estimates of Southern Ocean CO> uptake are lacking due to sparse surface-ocean
observations. This study presents an alternate approach applying airborne CO; observations to
constrain the SO air-sea CO> flux using a multi-box atmospheric model aligned with moist
isentropes. This study improves upon prior studies that estimate flux based on atmospheric CO»
measurements by using better-constrained estimates of atmospheric diabatic transport (transport
across moist isentropes). It also allows fluxes to be resolved in finer latitude bands, thus
facilitating a closer comparison with surface ocean pCO; observations and identifying CO; flux
components driven by marine photosynthesis, ventilation, and warming/cooling. Our study
underscores the value of aircraft measurements for precisely quantifying long-term changes in

CO; uptake by the SO.

Introduction

Precise assessments of the air-sea CO» flux of the Southern Ocean (SO), which includes both

natural and anthropogenic components, are of critical importance to understanding the global
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carbon cycle and predicting future oceanic carbon uptake under climate change (2-5). The high-
latitude SO (<58°S) was likely a significant natural source of CO> to the atmosphere in the
preindustrial era, but has switched to being a net sink in the present-day (6). Available estimates
suggest that uptake over the entire SO (<35°S) strengthened from 1980 to 2015, with significant
decadal variability (5, 7-13).

Observation-based flux estimates of the entire SO remain highly uncertain. The net SO CO; flux
has been quantified using pCO, measurements from ship-based and Argo float observations (8,
14-21) and from atmospheric CO, measurements at surface stations that are inverted by
atmospheric transport models (ATMs) (22-28). These products, however, show a large spread of
flux estimates, and are limited by sparse observations, possible measurement biases, and
uncertainties in near-surface wind speed, gas exchange coefficients, and modeled atmospheric

transport.

Recently, Long et al. (1, henceforth Long21) used atmospheric CO; observations from a series of
global airborne campaigns to estimate the seasonal cycle of SO CO» flux of a single region
(90°S to 45°S), and reported an annual oceanic uptake of 0.53+0.23 PgC yr' averaged from
2009 to 2018. This annual sink estimate is consistent with the average of atmospheric inversion
products (henceforth 3-D inversions) and neural-network interpolation of ship-based pCO>
products (Surface Ocean CO: Atlas, SOCAT) (16, 29), but larger than recent pCO»-based
estimates using neural-network interpolation of profiling floats data from Southern Ocean
Carbon and Climate Observations and Modeling project (SOCCOM) (17, 18, 30). Long21 also
identified a larger summer-time CO> uptake compared to the SOCCOM-based flux estimates and
the average of multiple atmospheric inversion products. The method of Long2l1 uses the
atmospheric CO, gradient across potential temperature (0) as an emergent constraint on the

underlying air-sea flux, taking advantage of the tendency of COx to be well-mixed on 0 surfaces

31).

Here we provide improved estimates of seasonal SO CO, flux using a novel 4-box tropospheric
inverse method (Fig. la, henceforth 4-box inversion) and the same airborne datasets as in
Long21 (detailed in Material and Methods and S7 Appendix, Fig. S1). Whereas Long21 resolved
fluxes over a single domain (south of 45°S), our method resolves fluxes in three finer bands

(“polar,” “subpolar,” and “subtropical”) between 90°S and ~37°S (Fig. 1b and SI Appendix, Fig.
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S2), which allows closer comparison with pCO»-based flux products (16—18) and provides
insights into the latitudinal structure of processes driving seasonal pCO> changes, such as the

interactions between marine photosynthesis, ocean ventilation, and warming/cooling (32, 33).

At mid-latitudes, CO> and other long-lived tracers tend to be rapidly dispersed along the surface
of constant moist isentrope e, yielding gradients that are roughly parallel to the gradients in 6.
(34-37). Such mixing can be termed “adiabatic mixing”, in contrast to “diabatic mixing” which
is defined as transport across 0. surfaces involving diabatic heating or cooling. Our box-model
builds on recent work (38, 39) by aligning the box boundaries with fixed values of a mass-
indexed isentropic coordinate Mg, which is parallel to 6. at any instant time, but is adjusted to
conserve dry air mass in each box. This approach yields box boundaries that are nearly fixed
with respect to latitude and season despite large seasonal displacements in 6. and it highlights
diabatic mixing as a critical process for quantifying large-scale tracer dispersion. Atmospheric
transport is conventionally determined using ATMs, but these models show a large spread of
simulated diabatic transport, which is related to uncertainty in advection, convection, and
boundary height parameterizations (24, 40, 41). Prior studies have identified errors in ATMs by
pointing to vertical CO» gradients being overestimated in simulations at mid-latitude (42, 43).
We provide novel estimates of diabatic mixing rates that are independent of ATMs by using the
moist static energy (MSE) budget of reanalyses. As MSE surfaces are identical to 0. and Mg
surfaces, which are all conserved during adiabatic processes, MSE-based mixing rates provide

precise constraints on cross-Mge diabatic transport.

In this paper, we start by describing and validating the Mge-aligned box-model inversion method.
We conduct a systematic analysis of uncertainty in ATMs-simulated diabatic mixing rates across
three Mg surfaces over the mid- to high-latitude SO by developing two relevant constraints, one
based on moist static energy (MSE) budgets and the other based on atmospheric CO> gradients
across Mg surfaces. We present our airborne-based seasonal flux estimates resolved from the
box-model inversion method that is constrained by MSE-based diabatic mixing rates, and discuss
key features and mechanisms that cause the flux cycles to vary meridionally. Estimates obtained
from airborne measurements are further compared with other flux products to identify any

limitations these products may have. We also discuss the broad implications of our method for
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resolving decadal variability and long-term trends in SO CO»> fluxes, resolving surface fluxes of

other species and in other regions, and the potential to improve ATMs in general.
Results and discussion

Box-model Architecture and Evaluation

The 4-box inversion model, shown in Figure 1a (detailed in Materials and Methods) divides the
troposphere in the Southern Hemisphere into discrete boxes, with lateral boundaries aligned with
fixed values of Mge(38). The Mge coordinate is aligned with 0., but a given Mge surface constantly
adjusts to keep the total dry airmass under it conserved. Each Mg surface is indexed to the
corresponding contained airmass. The three primary boxes of the model each contain 15x10'® kg
of dry air, and intersect the surface of the Earth in zonal bands (Fig. 1b). The northern-most
fourth box provides a boundary condition for the third box. The CO; flux at the bottom of each
primary box is calculated from mass balance, based on diagnosed CO: transport between boxes
and observed inventory changes within the boxes (Eq. 1). A key assumption of the 4-box model
is that the adiabatic transport (along 0. or Mge transport) is sufficiently rapid that CO> meridional
transport is mainly controlled by bi-directional diabatic transport (across 0. or Mg transport)
between boxes, thus effectively reducing the troposphere to a discrete 1-dimensional mixing
system. This assumption and the performance of the box model are validated below. In this
model, diabatic transport is parameterized based on the cross-Mg. CO; gradient and a seasonally-
dependent diabatic mixing rate, expressed in kg? day™! (Eq. 2). Because airmass (kg) has replaced
latitude or length in our box model, these mixing rates are analogous to diffusion coefficients,
with the advantage of representing fundamental properties of the atmosphere that are
independent of model discretization. We provide two approaches (Materials and Methods) to
calculate climatological monthly diabatic mixing rates, one based on CO; inversion systems that
are constrained by surface CO> observations and transport model simulations (ATM-based
mixing rates), and one based on moist static energy budgets derived from MERRA-2 and JRA-
55 reanalyses (MSE-based mixing rates).We validate the 4-box inversion approach by applying
the method to reconstruct surface CO> fluxes from 4 CO; inverse models, using the full 3-D
gridded atmospheric CO; fields of each product, averaged over each box, and using the
corresponding parameterized climatological ATM-based mixing rates from the same model

(detailed in Materials and Methods). This method provides an internally consistent system for
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each 3-D inversion, and the reconstructed surface fluxes align well with original inverted fluxes
over each zonal band (RMSE < 0.12 PgC yr!, Fig. 3a, SI Appendix, Fig. S4-S6, SI Appendix,
Table S1), especially over the climatological seasonal cycle (Fig. 3b). The 4-box inversion also
reconstructs the interannual variability (IAV) of fluxes (e.g., Fig. 3a), even though the box-model
uses interannually-constant mixing rates, showing that flux IAV can be learned from variations
in atmospheric CO» gradients, while the impact of IAV in the atmospheric dynamics is relatively
small. The method for resolving the zonal-averaged flux is not biased by the representation error
(44, 45) that arises from the coarse resolution inverse model, which we verify by successfully
reconstructing zonal-averaged air-sea CO; flux from a product with finer-scale variability
(Materials and Methods, ST Appendix, Fig. S16). These validations confirm that the complex 3-
dimensional circulation of the atmosphere at high southern latitudes can be approximated by
mixing along one dimension (the coordinate Mge), at least for the purpose of resolving zonal-

averaged SO CO»> fluxes.

Diabatic Mixing Rate Evaluation

We find that the MSE-based mixing rates from MERRA-2 and JRA-55 are highly consistent
with each other, while ATM-based mixing rates have a large spread up to threefold, and are
faster than MSE-based mixing rates in austral summer over the high-latitudes (Fig. 2 and S7
Appendix, Fig. S3). We believe the MSE-based mixing rates are more reliable for two reasons:
First, the MSE-based constraint is powerful because surfaces of constant MSE are exactly
parallel with the Mge coordinate and because MSE has strong gradients across Mg in all seasons.
Second, the MSE-based constraint is consistent with an additional constraint on mixing that is
available when combining CO, data from both aircraft and surface stations. The available inverse
models compute CO» fluxes using surface data only, but also yield troposphere CO; gradients
which can be compared to airborne observations. We find that the cross-Mee CO> gradients in
most inverse models are inconsistent with the observed gradients in airborne data during the
austral summer in the mid- to high-latitude (Fig. 4a and b). The discrepancies in simulated CO>
gradients correlate strongly with the diagnosed diabatic mixing rates from each corresponding
ATM (Fig. 4), showing that ATMs with stronger diabatic mixing produce smaller CO> gradients
compared to observations. Based on the correlation, we find that the larger observed CO>
gradients from airborne data than model simulations appear to require a slower mixing rate of

~10 and 21 (10'® kg? day™') at the 15 and 30 M. surfaces (Fig. 4a and b), respectively, in the

6
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austral summer. The required mixing rates are consistent with the MSE-based mixing rate, thus
providing strong evidence for the MSE-based estimates to be more realistic. Among all ATMs,
the ACTM model yields a realistic summer gradient and mixing rates compatible with the MSE
budget. In the rest of the year, both MSE-based mixing rates and ATM-based mixing rates, as
well as simulated and observed CO, gradients are generally within the 1o uncertainty of the

observed gradients and close to two MSE-based mixing rates (SI Appendix, Fig. S7).

For the 4-box inversions presented here, we alternately use MSE-based mixing rates derived
from MERRA-2 and JRA-55 to invert airborne CO> observations, allowing for uncertainty in
mixing based on the spread between these two estimates and their small IAV (detailed in S/

Appendix, Text S2).

Airborne-based air-sea CO; fluxes

We calculate air-sea CO fluxes using the observed CO> inventory of each Mg. box and CO»
gradients across Mge surfaces from each airborne campaign, which are resolved by binning
airborne data into four Mge bands (detailed in Materials and Methods). We correct for small
biases in CO; inventory and gradient induced by sparse spatial coverage of the airborne
observations (SI Appendix, Text S1 and Table S5) by comparing averaged CO; from full 3-D
model data and flight track-subsampled model data. We also correct the contribution of small
non-oceanic CO; flux to the CO, mass balance based on flux estimates in four inversion products
(SI Appendix, Figure S8). Our fluxes estimate allow for uncertainties from CO> measurement
imprecision, spread and IAV of MSE-based diabatic mixing rates, spatial coverage corrections,
flux interannual variability due to insufficient temporal sampling, and non-oceanic CO; flux
corrections (S Appendix, Text S1-2). Although we report a similar random error as Long21, we
expect our results to be subject to smaller systematic errors from uncertainty in mixing, and
importantly also allow resolving fluxes at finer spatial scales with the same data. The reported
random error is dominated by CO; measurement error derived from comparing different

instruments.

The 4-box inversion resolves clear seasonal cycles of air-sea CO; flux in all three latitude bands,
with clear differences in amplitude and phasing between the bands. Over the polar band (Fig. 5a),
we find a strong CO; uptake in the summer (DJF) and a weak outgassing in the winter (JJA).

Over the subpolar band (Fig. 5b), we find a strong uptake in the summer and a weak uptake in

7
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the winter. In the subtropical band (Fig. 5c), the seasonality is reversed, with a weak uptake in
the summer and a strong uptake in the rest of the year. Averaged over the full year, all bands

show net uptake. We now discuss each of these prominent features in turn.

The airborne-based estimates suggest a weak winter-time CO> outgassing of 0.05+£0.03 PgC
integrated from June to August (equivalent to 0.564+0.35 gC m™ mon™) in the polar band (Fig.
5a). Winter outgassing is expected from strong winter-time upwelling which brings carbon-rich
deep water to the surface (13). This outgassing pattern is consistent with several recent pCO»-
based flux estimates, for example, observations from uncrewed surface vehicles in the Antarctic
Zone during June and July of 2019 (0.7 gC m™ mo™') (46), reconstructed winter-time (July, 2004-
2014 average) fluxes using summer-time measurements (0.0410.008 PgC) (47), and neural-
network interpolation of ship-based SOCAT measurements (0.03 PgC, Fig. 5e) (16), but is
smaller than estimates solely based on neural-network interpolation of SOCCOM float data
during 2014 and 2017 (~ 0.23 PgC, Fig. 5e) . The small winter-time outgassing in our results is
also consistent with several 3-D inversions that used surface station CO> observations (Jena
inversion, ACTM, and CAMS), but is significantly more positive than one 3-D inversion (CT
2019b, Fig. Se).

The airborne-based flux estimates show a clear phase shift between the polar/subpolar bands (Fig.
5a-b) and the subtropical band (Fig. 5¢). The boundary between these two boxes in the 4-box
model roughly aligns with the subtropical front over the Atlantic and the Indian Ocean but is ~5°
south of the subtropical front over the Pacific Ocean. This phase shift is likely due to the
latitudinal change of the dominant mechanism that drives the surface-ocean pCO: seasonal
changes. To the north of this boundary, the pCO: cycle is dominated by temperature-related
solubility changes. To the south, it is dominated by biological production/mixing processes
driving seasonal changes in dissolved inorganic carbon (32, 33, 48). A similar shift across ~40°S
has been resolved in surface ocean pCO; data (33, 48, 49) and also in flux estimates based on
these pCO; data, but the seasonal amplitudes of fluxes in these estimates are weaker in both
regions than we find from airborne data (Fig. 5e-g). The phase shift, however, is not distinctly

resolved in the 3-D inversions and two neural-network interpolations of pCO»-based products

(Fig. 5e-g).
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To quantify the contribution of temperature-related solubility changes to the CO> fluxes (Fig. 5i-
1), we compare the airborne-based fluxes to results from a simple thermal model, which assumes
pCO; increases by 4% per degree Celsius increase in sea-surface temperature (SST) change and
uses wind-speed dependent gas exchange (methods in SI Appendix, Text S3) (50, 51). In the
polar zone (Fig. 5i-j), the thermal model yields fluxes that are strongly out of phase compared
with observations (correlation p = -0.81 and -0.83). In the subtropical region (Fig. 5k), the cycle
from the thermal model broadly aligns with the observed cycle (p =0.62).

Despite the correlation, the observed flux cycle in the subtropical band has significant deviations
in the austral spring compared to the thermal-driven cycle. The strengthening of CO> uptake
from January to April is faster than expected from warming alone (Fig. 5k), which requires a
contribution from biological-driven changes, possibly associated with the fall phytoplankton

bloom (52, 53).

We find a summer-time ocean CO; uptake of 0.13+0.04 PgC (integrated from December to
February, DJF) in the polar band (Fig. 5a) and 0.14+0.04 PgC in the subpolar band (Fig. 5b),
which contributes to most of the annual uptake of 0.36+0.16 PgC south of ~43°S (Fig. 5d). Our
results are qualitatively consistent with prior estimates using the same airborne observations
(Long21). However, our annual uptake estimate integrated over the polar and subpolar band is
smaller (within uncertainty) than that of Long21 (0.531+0.23 PgC) (Fig. 5d). The difference is
mainly explained by larger summer-time CO> uptake in Long2l, but the comparison is
complicated by small differences in ocean domains between these two studies (the 30 Moe
surface, compared to 45°S, displaces ~2° southward over the western Pacific and ~3° in other
basins). The larger summer uptake in Long21 can be attributed to the dependence on ATMs,
which we suggest have unrealistically fast mixing rates in summer (Fig. 2). Summertime fluxes
from our box model are especially sensitive to the diabatic mixing rate because summertime
cross-Mge gradients are large, and the inventory change is small (Fig. 4). The winter-time fluxes
are less sensitive to the diabatic mixing rate because wintertime CO gradients are small, and the

inverted flux is mainly diagnosed from the observed atmospheric CO; inventory change.

In the two high-latitudes band (Fig. Se-f), our flux estimates align better with the SOCAT-based
flux estimate than the SOCCOM-based estimate. We find that the SOCCOM-based flux

estimates show significantly larger CO» outgassing (or weaker uptake) all year round. Possible

9
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bias in SOCCOM pCO, data has been identified by Wu et al. (54), and SOCCOM float data

remain sparse in our lowest latitude band 43-37°S (18).

Our airborne-based estimates show large differences from global ocean biogeochemistry models,
which have known difficulties in representing CO> exchange over the Southern Ocean (8, 55, 56)
given the large competing process drivers. We find several models that suggest a similar phase
shift, but we did not find any model that agrees well with our estimates in all three bands (S
Appendix, Fig. S9). Airborne-based estimates are relatively consistent with pCOz-based
estimates and inversions, while sharply deviating from GOBMs, underscoring the need for a
better understanding of the physical and biogeochemical processes that drive the SO air-sea CO»

flux in GOBMs.

Overview and outlook

We have resolved air-sea CO> fluxes over three zonal bands of the SO using airborne data and a
4-box inversion approach based on Mge coordinates. This framework adequately describes large-
scale CO> transports needed for resolving fluxes at the scale of three zonal bands over the mid-
to high latitudes of the SO, showing that the complex meridional CO; transport can be simplified
to diabatic transport. This framework also incorporates constraints on the diabatic mixing rate
from MSE budgets of atmospheric reanalyses, without requiring an atmospheric transport model.
We demonstrate that the diabatic mixing rates inferred from the MSE budgets are realistic, based
on a CO; gradient-mixing rate constraint, but the mixing in most ATMs is too fast in the austral
summer. These differences in representing mixing led to our summer uptake estimates being
somewhat smaller than the uptake estimated by Long21, despite using the same airborne CO>

data. In the austral winter, ATM- and MSE-based mixing rates are generally comparable.

This study provides robust zonal average flux estimates from airborne data by capitalizing on
rapid atmospheric mixing to integrate zonal heterogeneities. Our estimates have advantages over
the published atmospheric inversions using surface station data because airborne data more
accurately reflect large-scale features, and our method is less sensitive to large uncertainty in
simulated atmospheric mixing and the representation error due to model resolution (44).
Compared to pCO»-based products, our estimates also have advantages, not being subject to
uncertainty in gas exchange velocity and sparse coverage in pCO; observations (1, 21). A

corresponding disadvantage, however, is the inability to resolve finer-scale spatial features.

10



305

310

315

320

325

330

The 4-box inverse model provides insights that have potential value for understanding and
improving the simulated atmospheric circulation and structure in 3-D ATMs. We show
inconsistency in MSE-based and ATM-based diabatic mixing rates, and in CO> gradients
between airborne data and inversion systems that are optimized by surface data (Fig. 4). These
inconsistencies strongly motivate the incorporation of airborne data into CO; inversion systems.
They also identify key errors during the construction of modern ATMs related to diabatic mixing.
Previous studies have highlighted uncertainty in vertical mixing as a major source of error in
CO; fluxes estimated via inverse model calculations using both satellite and in situ data (42, 43).
Vertical mixing in the mid-troposphere has both along- and cross-Mee components, and the
cross-Mge mixing (diabatic) component would typically be rate limiting because the along-Mee
(adiabatic) mixing is more rapid. Reducing uncertainty in vertical mixing thus requires reducing
uncertainty in diabatic mixing, which we show can be constrained with MSE budgets. Future
studies should focus on better understanding the inconsistency between transport models and
reanalyses, which likely are associated with insufficient vertical resolutions, uncertainty in
parameterizations (e.g., convection), and challenges related to the re-gridding and interpolation

when assimilating meteorology data into these models.

Our study motivates obtaining additional airborne data to improve estimates of large-scale
carbon uptake across different latitudes of the SO. The ocean uptake over the entire SO has
increased in recent decades according to surface ocean pCO; data and models (2, 7-9, 11-13, 21).
Here we only attempted to resolve a seasonal climatology of the SO CO flux over different
latitudes over the period 2009-2018, but resolving interannual variation would be feasible given
regular sampling on future aircraft campaigns, with spatial coverage over the SO similar to
HIPPO, ORCAS, and ATom. New frameworks based on the Mg, coordinate are suitable also for
studying the sources and sinks of other tracers, for example, computing the air-sea O flux, and

atmospheric CH4 chemical loss rate.
Materials and methods

Airborne campaigns and airborne CO: observations

We use airborne CO> observations from three aircraft campaigns, the HIAPER Pole-to-Pole
Observation project (HIPPO, (57)), the O2/N> Ratio and CO;, Airborne Southern Ocean Study
(ORCAS, (58)), and the Atmospheric Tomography Mission (ATom, (59)). HIPPO and ATom

11
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have global coverage, mostly along a Pacific or Atlantic transect, while ORCAS focused on the
Southern Ocean adjacent to Drake Passage (horizontal flight tracks are shown in SI Appendix,
Fig. S1). HIPPO consisted of five campaigns (HIPPO1-5) and ATom consisted of four
campaigns (AToml1-4), each with several flights south of 35°S. ORCAS was a single 6-week
campaign, but with much denser temporal sampling, so we have split it into three sub-campaigns
(ORCASI1-3) in our analysis. Detailed descriptions of these airborne campaigns are in S/
Appendix, Text S4 and SI Appendix, Table S2. We primarily use CO; airborne measurements
collected by the NCAR AOQO?2 instrument (60). To evaluate potential uncertainty (detailed in S/
Appendix, Text S2.1), we also use measurements from three other in-situ instruments, the
Harvard QCLS instrument (61), Harvard OMS instrument (62), and NOAA Picarro, and
measurements from two flask samplers, the NCAR/Scripps Medusa flask sampler (60, 63) and
NOAA Portable Flask Packages(PFP, 63). AO2 and QCLS are available on all campaigns.
However, OMS did not fly on ORCAS or ATom, NOAA PFPs did not fly on ORCAS, and the

NOAA Picarro did not fly on HIPPO. The in-situ measurements are averaged to 10-sec intervals.

Mass-indexed moist isentropic coordinate (Me.)

The Mge coordinate, first introduced in Jin et al. (38), is defined as the total dry air mass under a
specific moist isentropic surface (6¢) in the troposphere of a given hemisphere. Surfaces of
constant Mg, align with surfaces of constant 0. but the relationship changes with season, as the
atmosphere warms and cools. A schematic of the annual zonal average atmospheric Mge value is
in shown Fig. la, while climatological positions of the near-Earth surface contours of three Mg
surfaces (15, 30, and 45 10'° kg) are shown in Fig. 1b and SI Appendix, Fig. S2. Details of the
calculation of Mg are described in S/ Appendix, Text SS5.

We also relate bands of constant Mg to approximate latitude bands (see Fig. 5) based on the
zonal average latitude of corresponding daily surface Mee (averaged from 2009 to 2018) over the

ocean.

Box model architecture and diabatic mixing rates

We build a 4-box atmospheric model using selected Mee surfaces (15, 30, 45, and 60, 10'¢ kg) as
boundaries, shown in Fig. la. This box model takes advantage of 6. (or Mge) being the
preferential mixing surface of CO> throughout the hemisphere, especially over mid-latitude

storm tracks (34, 37). The box model allows surface CO> fluxes (F;, PgC year!) to be computed

12



365

370

375

380

385

from the CO> mass balance of each Mg box, based on the knowledge of atmospheric CO>
inventory (M;, PgC) in each box and the diabatic transport of CO2 between boxes (Q;;+1, PgC

year')

oM; _ { Fi+ Qi1 ifi=1 1)

ot (Fi+ Qiiy1 — Qi—qiifi> 1
where 1 =1 is the highest latitude (lowest Mge) box.

In Eq.1, Q41 represents the transport (PgC year™) of CO: between the i and i+1" box, with
poleward flux as positive. Q; ;41 i1s parameterized according to:
i+1 = X1)

Qiji+1 = Dyji41 Tee K (2)

where Djj, is the diabatic mixing rate (kg? day™') that represents the mixing rate across the
boundary of box i and i+1, ; is the CO, concentration (PgC per kg air mass) of the i box,
calculated as CO; inventory of the box divided by the total airmass of the box (15%10'6 kg), and
AMege 1s the distance in Mg coordinates between box centers, which for evenly spaced boxes is
the same as the total airmass of each box. x is a constant (1/365) to convert from PgC day™! to

PgC year'!. Equation 2 is a variant of Fick’s law, with Mg as an effective distance coordinate,

Xi+1=Xi)

and
AMg,

is a measure of the CO2 concentration gradient. With this approach, D;;,q is a
property of the corresponding Mg surface and is insensitive to the choice of box size.

We adopt two independent methods to estimate climatological (2009 to 2018 average) monthly
diabatic mixing rates (Dj;41). The first method extracts diabatic mixing rates from transport
models using total CO> fields from 3-D inversion products (S Appendix, Table S3). We first use
the daily 3-D atmospheric field of Mg computed from MERRA-2 to assign a Mge value to each
daily model grid cell from 2009 to 2018. The atmospheric 3-D CO; fields and surface CO» flux
fields of inversions are interpolated to the MERRA-2 reanalysis grids (1°x1°, 26 vertical levels
from 1000 mbar to 100 mbar). We then calculate a daily CO» inventory (M;) of each Mg, band as
the sum of CO> mass for all 3-D grid boxes within the corresponding Mg. domain. We calculate

monthly CO» inventory change (%) by taking the time derivative of the monthly atmospheric

CO2 inventory. We note that monthly CO; inventory change is computed by first averaging daily
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CO2 inventory by month but shifting the phase of the averaging window by 15 days to center at
the beginning of each month, and then differencing these values to obtain a rate of change
centered mid-month. We calculate monthly CO; gradients between two Mg boxes (Xj4+1-Xi) by
averaging daily gradients. We calculate monthly surface CO; flux (F;) by averaging daily flux,
which is computed by integrating all daily 3-D inversion flux grids with surface Mee values

within the corresponding Mg. range.

The CO> transport across the north boundary of each Mg box in the model can be calculated
from the CO> inventory change and surface flux of that box and the boxes further southward,

according to:

s

1 =1 d ,
Qi,i+1(t) = Z ( M(it(t) - Fi’(t)> (3)

i'=1

Combining Eq. 2 and 3, climatological average (2009 to 2018 average) monthly Dj;;q is

calculated following:

[z (dM © g, (t))]
TROESC)

Djir1 (D) = - AMg, (4)

where [] denotes the average of corresponding monthly values of all years (2009 to 2018). The
lo uncertainty is calculated as the standard deviation of resolved Dj ;1 (t) for that month over all
years, representing the interannual variability, which is shown to be small (Fig. 2 and S/
Appendix, Fig. S3), with the exception of CAMS in September because of close-to-zero CO>
gradients across the 30 (10'® kg) Mo surface.

The second method relies on moist static energy (MSE) budgets from meteorological reanalyses,
of which we use MERRA-2 and JRA-55 (65, 66). MSE is a measure of static energy that is
conserved in adiabatic ascent/descent and during latent heat release due to condensation, and is
thus aligned with surfaces of 6. or Mge. This method provides a much more well-defined D
because finite MSE gradients exist in each reanalysis time step and do not reverse sign, in

contrast to CO>. MSE is defined following

MSE(t) = Cp - T(t) + 8-z + Ly(T) - q(t) (5)
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where  C, (1005.7J kg 'K™!) is the specific heat of dry air at a constant pressure, T is
temperature (K), g is the gravity constant assumed to be 9.81 m s 2, q is the specific humidity of
air (kg water vapor per kg air mass), and L, is the latent heat of evaporation at temperature T (K).
L, is defined as 2406kJkg™' at 40°C and 2501kJkg™! at 0°C and scales linearly with

temperature.

MSE transport at the northern boundary of each box is calculated by energy conservation within
the box, which follows Eq. 3 but has a small modification to account for atmospheric energy

sources or sinks (E;, J day™):

ol

Qe (9 = Z (B2 - R0 - Er) ©)

where S is the total MSE (J) that is calculated using temperature (T) and specific humidity (q)
from corresponding reanalyses (Eq. 5). F; is modified as surface heat flux (J day™), including
surface sensible and latent heat flux, which is directly available from MERRA-2 and JRA-55. E;

is defined as heating rate due to radiative imbalance, and is calculated using temperature

tendency analysis (%, K day™) of these reanalyses, following:

aT;(t)
Ei(®) = Cp(T) - — = M, ™
With MERRA-2, the temperature tendency due to radiative imbalance is directly available, while
with JRA-55, it is calculated as the sum of heating rates due to longwave and shortwave

radiation.

To estimate climatological monthly D;;,, from reanalysis, the gradient (xj+; —X;) in Eq. 4 is
modified to be the energy density gradient (J per kg airmass), calculated from the total MSE of
each box divided by the total airmass of the box (15106 kg in this study).

ds.,
We thus calculate monthly Sét(t), F; (t), Ey (t) from 2009 to 2018 by averaging 6-hourly data
from MERRA-2 and JRA-55, with 6-hourly S; shifted by 15 days before calculating dsgt(t) , as

for ATM CO:x.

The calculation of monthly D based on MSE is according to a modified version of Eq. 4:
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32 (B2 - R - Be o))

[Xi+1(0) — xi (0]

D1 (D) = - AMg, (8)

We show six (four ATM-based and two MSE-based) sets of monthly diabatic mixing rates for
the Mo surfaces at 15, 30, and 45 (10'¢ kg) in Fig. 2 and SI Appendix, Fig. S3. Climatological

daily mixing rates are further calculated by 4-harmonic fits to monthly data.

Validation of box-model approach

We validate the use of the 4-box model for estimating surface CO> flux by showing that this
approach successfully reconstructs monthly surface CO» fluxes for each of the four 3-D CO>
inversion products. This approach uses Eq. 1 and 2, with y; based on the gridded atmospheric
CO fields averaged over grid cells within corresponding Mee box and uses Dj; calculated
using CO; gradients from each transport model as described in the previous section. We then
average daily reconstructed fluxes to monthly, centered at the middle of each month, shown as
solid black curves in Fig. 3 and ST Appendix, Fig. S4-S6. We assess representation error due to
the coarse resolution of the inverse model, by reconstructing the zonal average flux of the neural-
network interpolation of SOCAT data, using the 3D atmospheric field generated by the TM3
model with flux from SOCAT-based air-sea CO> flux, together with fossil fuel and ecosystem
CO; flux from the Jena sSEXTocNEEv2020 (SI Appendix, Fig. S16). We find clear alignment
between the original and reconstructed SOCAT-based flux, suggesting that our method is not

limited by representation error.

Airborne estimates of air-sea CO; fluxes
We use the 4-box model (Eq. 1 & 2) and airborne CO; observations to calculate air-sea CO»
fluxes for each surface Mge band and each airborne campaign, centering on the mean date of the

campaign, shown as points in Figure 5a-d. This calculation includes the following steps.

We first detrend airborne CO2 observations by subtracting a smoothed interannual CO> trend at
the South Pole (SPO) (67). The trend is calculated by a stiff cubic spline function to the monthly
average SPO data (68). We then compute the detrended average CO: (i;) for each campaign and
each box by trapezoidal integration of detrended CO> as a function of Mge (as in Jin et al. (38)),
and dividing by the Mg range of the box (i.e., 15x10' kg) (68). Prior to trapezoidal integration,

we extrapolate airborne observations to Mee = 0 surface using the average of the 100
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observations with the lowest Mge values near 0. The extrapolation only results in a slightly
different averaged CO; for the lowest Mge box compared to the value without extrapolation (<
0.03 ppm) because we have sufficient measurements across Mge surfaces. The exceptions are

HIPPOI1 and 4 (difference = 0.1 ppm), in which we do not have observations on low Mg

surfaces (SI Appendix, Fig. S15). For HIPPO4, however, we extrapolate to Mge = 15 (10'¢ kg)
using the average of the 100 observations with the lowest Mg values near 15 because due to the
absence of observations in the entire first Mge box, and only estimate fluxes for the 30-45 (10'6
kg) box. We then correct for bias in CO; estimates due to limited spatial coverage (detailed in S/
Appendix, Text S1). For each Mge box, we conduct a 2-harmonic fit with an annual offset to ¥; of
12 campaigns, yielding a fitted seasonal cycle (with offset) of ;. We then compute the long-term
(2009 to 2018) time series of observed y; as the sum of the climatological seasonal cycle of ¥;
and the CO; trend at SPO. We note that we use the same trend for each Mg band, preserving
each band’s annual mean offset from SPO. The time series of CO» inventory (M;) of each box is
therefore computed by multiplying x; and the Mee range of the box (i.e., 15x10'® kg in this study).
The Fitted x; and M; values of each campaign are defined as the values at the mean date of the

corresponding campaign. Observed surface CO> fluxes for each airborne campaigns are then

. . aM;
calculated as the combination of two components, namely the CO; inventory change a_tl and

CO. diabatic transport Q;;i+1, following Eq. 1 and 2. We calculate the component % as the time

derivative of the daily timeseries of M; from the combined seasonal plus SPO trend fit. The
component Qi+ for each airborne campaign mean date is calculated as the product of the
observed atmospheric CO, gradient (without fitting) between two boxes and the 4-harmonic
fitted diabatic mixing rate at the campaign mean date (average of 2 MSE-based mixing rates) of

the corresponding Mge surface.

The surface CO> fluxes estimated from the 4-box model are the total fluxes that also contain any
land ecosystem CO; emission/uptake and fossil fuel CO; emission. We correct for these non-
oceanic components by subtracting the corresponding flux components using the average of four
3-D CO; inversion products. The magnitude of this correction is small compared to the total air-

sea fluxes, as shown in SI Appendix, Fig. S8.
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We estimate the uncertainty of each individual flux estimate and the seasonal flux cycle by
generating an ensemble (2000 iterations) of flux estimates, allowing for uncertainty of these
sources: (1) uncertainty of CO> measurements; (2) uncertainty of the correction for spatial bias
due to insufficient airborne coverage; (3) interannual variability of the diabatic mixing rate; (4)
spread of the diabatic mixing rate between the two reanalyses; (5) correction for the biosphere
and fossil fuel CO» flux; and (6) interannual variability of the flux. Detailed bias and uncertainty
analyses are presented in S/ Appendix, Text S1-2. The overall uncertainties of each flux estimate
are shown as error bars in Fig. 5a-d. The overall uncertainties of 2-harmonic fitted seasonal flux

cycles are shown as shaded regions in Fig. Sa-d.

We also show the averaged air-sea CO; fluxes calculated using 6 sets of diabatic mixing rates (4
sets of ATM-based and 2 sets of MSE-based) in S/ Appendix, Fig. S10. These are estimated
using the average and 1o uncertainty of 6000 iterations of flux estimates, with 1000 iterations for
each set of mixing rates. We also show the air-sea CO» fluxes calculated using each set of mixing

rates in S/ Appendix, Fig. S11.

We calculate the annual CO, uptake of each Mg box from the constant term of the 2-harmonic

fitted seasonal flux cycles (shown as text in Fig. 5).
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Figure 1: (a) Schematic of the box model. Boundaries of the box model are selected M
surfaces at 15, 30, 45, and 60 Mee values (10'¢ kg), which are shown as zonal and 2009-2018
averages. (b) Selected near-surface Mge contours as 2009-2018 averages. Mge is computed from
3-hourly MERRA-2 reanalysis. These Mge bands are nearly fixed with season (SI Appendix, Fig.

S2). Red triangles show the location of surface stations that are used in the Carbon Tracker
2019b 3-D CO; inversion product.
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Figure 2: Diabatic mixing rates of the 30 (10'® kg) Mg. surface. These mixing rates are
parameterized from four 3-D CO; inversion products and moist static energy budget of two
reanalysis products (MERRA-2 and JRA-55). Error bars represent only the interannual
variability of parameterized mixing rates, which is shown to be small, with the exception of
CAMS in September because of the close-to-zero CO> gradient across the 30 (10'® kg) Moe

surface. Diabatic mixing rates of the 15 and 45 (10'® kg) M. surface are shown in SI Appendix,
Fig. S3.
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Figure 3: (a) Monthly reconstructed air-sea CO> fluxes (solid gray) for the 0-30 (10'® kg) Moe
band (south of ~ 43°S near the Earth surface) based on CarbonTracker 2019b, compared with the
original monthly 3-D inversion fluxes for the same Mg band (dashed black). The other
components (i.e., diabatic CO, transport and CO; inventory change, detailed in Materials and
Methods, and Eq. 1) of the box-model reconstruction are shown as well. Positive values of the
diabatic transport represent CO> transport into the 0-30 Mg. band (poleward transport). We note
that the inventory change (blue) equals the sum of fluxes (black) and diabatic transport (red). (b)
Similar to (a), but showing the flux and other components as climatological monthly averages
(2009 to 2018). Shaded regions show interannual variability, which is calculated as the standard
deviation over 10 years for the corresponding month. We also show these reconstructions for
other 3-D inversion products and other surface Mge bands in SI Appendix, Fig. S4-S6.
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Figure 4: Exploring the correlation between Jan. and Feb. ATM-based mixing rates at each Mg
surface and simulated atmospheric CO; gradients across the corresponding Mee surface of four
transport models (3-D CO> inversion products). Simulated gradients are from 3-D concentration
fields averaged at the mean dates of five airborne campaigns or sub-campaigns that took place
during January and February (HIPPOI1, ATom2, and ORCASI1-3). The corresponding ATM-
based mixing rate is calculated as the January and February average. For comparison, we show
the observed CO, gradients (spatial bias corrected, as detailed in S/ Appendix, Text S1) as
horizontal black lines, which are calculated as the average of the same five campaigns or sub-
campaigns, while the dashed lines show the 1o uncertainty (measurement and spatial bias
correction uncertainty). We also show two MSE-based mixing rates (January and Feburary
average) as vertical brown lines. A similar figure exploring the correlation between April to
November averaged CO» gradient and averaged diabatic mixing rate is presented in SI Appendix,
Fig. S7.
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Figure 5: (a)-(d) Seasonal cycle of air-sea CO» fluxes (negative as net oceanic uptake) estimated
using 4-box model based on airborne CO, observations and two sets of MSE-based diabatic
mixing rates (see Materials and Methods). Each individual point represents the calculated fluxes
using airborne observations from the corresponding campaign, centering on the mean date of
each campaign, while the black line is a 2-harmonic fit. Error bars represent the 16 uncertainty
of each flux estimate, while shaded regions represent the 16 uncertainty of the 2-harmonic fits
(detailed in SI Appendix, Text S1-2). Values of air-sea CO; fluxes calculated for each airborne
campaign transect and for each band are summarized in S/ Appendix, Table S4. Annual fluxes
are from the constant term of the 2-harmonic fitted climatological flux cycles, which is
equivalent to integrating the fit over a year. These approximate latitude bands (see top of each
panel) are calculated as the zonal average latitude of the corresponding annual average (2009 to
2018) M. surface over the ocean (SI Appendix, Fig. S2). We also show box-model resolved
fluxes calculated using the average of 6 sets of mixing rate and each set of mixing rate in S/
Appendix, Fig. S10 and S11. In (e)-(h), we compare our estimates with four 3-D CO; inversion
products, and two neural network interpolated surface ocean pCO- products using SOCAT pCO-
observations alone and SOCCOM pCO; observations alone. Details of these products are in S/
Appendix, Text S6. The SOCCOM product is a sensitivity run where all shipboard data from
SOCAT were excluded (only SOCCOM float data were included). We note that the ocean CO>
flux in Jena sSEXTocNEET v2020 is a prior, which is provided by assimilation of surface ocean
pCO; observations (i.e., not neural-network derived pCO3) from SOCAT (29) by the Jena mixed-
layer scheme (69). The seasonal cycle of each product is calculated as the average between 2009
and 2018, except for SOCCOM, which is averaged from 2015 to 2017. In (i)-(1), we compare our
estimates with thermally-driven air-sea CO» flux cycles (dashed red, methods in S/ Appendix,
Text S3), which is derived from assuming 4% pCO; increase per degree Celsius increase in sea-
surface temperature (SST) and using wind-speed dependent gas exchange. We calculate the
correlation between the airborne observed flux cycle and the estimated thermal-driven flux cycle
of each band. Black solid curves and shaded regions in (e)-(I) are corresponding airborne
observed fluxes and 1o uncertainty. Panels (i) to (1) have a different y-axis range compared to
panels (a) to (h). We also compare our estimates with nine global ocean biogeochemistry models
that are used in the Global Carbon Budget 2020 (11, 55) in S Appendix, Fig. S9.
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