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Abstract

Consider an agent exploring an unknown graph in search of some goal state. As it walks around the
graph, it learns the nodes and their neighbors. The agent only knows where the goal state is when
it reaches it. How do we reach this goal while moving only a small distance? This problem seems
hopeless, even on trees of bounded degree, unless we give the agent some help. This setting with
“help” often arises in exploring large search spaces (e.g., huge game trees) where we assume access to
some score/quality function for each node, which we use to guide us towards the goal. In our case,
we assume the help comes in the form of distance predictions: each node v provides a prediction
f(v) of its distance to the goal vertex. Naturally if these predictions are correct, we can reach the
goal along a shortest path. What if the predictions are unreliable and some of them are erroneous?
Can we get an algorithm whose performance relates to the error of the predictions?

In this work, we consider the problem on trees and give deterministic algorithms whose total
movement cost is only O(OP T + ∆ · ERR), where OP T is the distance from the start to the goal
vertex, ∆ the maximum degree, and the ERR is the total number of vertices whose predictions
are erroneous. We show this guarantee is optimal. We then consider a “planning” version of the
problem where the graph and predictions are known at the beginning, so the agent can use this
global information to devise a search strategy of low cost. For this planning version, we go beyond
trees and give an algorithms which gets good performance on (weighted) graphs with bounded
doubling dimension.
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1 Introduction

Consider an agent (say a robot) traversing an environment modeled as an undirected graph

G = (V, E). It starts off at some root vertex r, and commences looking for a goal vertex

g. However, the location of this goal is initially unknown to the agent, who gets to know

it only when it visits vertex g. So the agent starts exploring from r, visits various vertices

r = v0, v1, · · · , vt, · · · in G one by one, until it reaches g. The cost it incurs at timestep t is
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12:2 Graph Searching with Predictions

the distance it travels to get from vt−1 to vt. How can the agent minimize the total cost?

This framework is very general, capturing not only problems in robotic exploration, but also

general questions related to game tree search: how to reach a goal state with the least effort?

Since this is a question about optimization under uncertainty, we use the notion of

competitive analysis: we relate the cost incurred by the algorithm on an instance to the

optimal cost incurred in hindsight. The latter is just the distance D := d(r, g) between the

start and goal vertices. Sadly, a little thought tells us that this problem has very pessimistic

guarantees in the absence of any further constraints. For example, even if the graph is known

to be a complete binary tree and the goal is known to be at some distance D from the

root, the adversary can force any algorithm to incur an expected cost of Ω(2D). Therefore

the competitiveness is unbounded as D gets large. This is why previous works in online

algorithms enforced topological constraints on the graph, such as restricting the graph to be

a path, or k paths meeting at the root, or a grid [3].

But in many cases (such as in game-tree search) we want to solve this problem for broader

classes of graphs – say for complete binary trees (which were the bad example above), or even

more general settings. The redeeming feature in these settings is that we are not searching

blindly: the nodes of the graph come with estimates of their quality, which we can use to

search effectively. What are good algorithms in such settings? What can we prove about

them?

In this paper we formalize these questions via the idea of distance predictions: each node

v gives a prediction f(v) of its distance dG(v, g) to the goal state. If these predictions are

all correct, we can just “walk downhill” – i.e., starting with v0 being the start node, we can

move at each timestep t to a neighbor vt of vt−1 with f(vt) = f(vt−1)− 1. This reaches the

goal along a shortest path. However, getting perfect predictions seems unreasonable, so we

ask:

What if a few of the predictions are incorrect? Can we achieve an “input-sensitive” or

“smooth” or “robust” bound, where we incur a cost of d(g, r)+ some function of the

prediction error?

We consider two versions of the problem:

The Exploration Problem. In this setting the graph G is initially unknown to the agent: it

only knows the vertex v0 = r, its neighbors ∂v0, and the predictions on all these nodes.

In general, at the beginning of time t g 1, it knows the vertices Vt−1 = {v0, v1, · · · , vt−1}
visited in the past, all their neighboring vertices ∂Vt−1, and the predictions for all the

vertices in Vt−1 ∪ ∂Vt−1. The agent must use this information to move to some unvisited

neighbor (which is now called vt), paying a cost of d(vt−1, vt). It then observes the edges

incident to vt, along with the predictions for nodes newly observed.

The Planning Problem. This is a simpler version of the problem where the agent starts off

knowing the entire graph G, as well as the predictions at all its nodes. It just does not

know which node is the goal, and hence it must traverse the graph in some order.

The cost in both cases is the total distance traveled by the agent until it reaches the goal,

and the competitive ratio is the ratio of this quantity to the shortest path distance d(r, g)

from the root to the goal.
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1.1 Our Results

Our first main result is for the (more challenging) exploration problem, for the case of trees.

▶ Theorem 1 (Exploration). The (deterministic) TreeX algorithm solves the graph explora-

tion problem on trees in the presence of predictions: on any (unweighted) tree with maximum

degree ∆, for any constant ¶ > 0, the algorithm incurs a cost of

d(r, g)(1 + ¶) + O(∆ · |E|/¶),

where E := {v ∈ V | f(v) ̸= d(v, g)} is the set of vertices that give erroneous predictions.

One application of the above theorem is for the layered graph traversal problem (see §1.3

for a complete definition).

▶ Corollary 2 (Robustness and Consistency for the Layered Graph Traversal problem.). There ex-

ists an algorithm that achieves the following guarantees for the layered graph traversal problem

in the presence of predictions: given an instance with maximum degree ∆ and width k, for any

constant ¶ > 0, the algorithm incurs an expected cost of at most min(O(k2 log ∆) OPT, OPT +

O(∆|E|)).

The proof of the above corollary is immediate: Since the input is a tree (with some

additional structure that we do not require) that is revealed online, we can use the algorithm

from Theorem 1. Hence, given an instance I of layered graph traversal (with predictions),

we can use the algorithm from Theorem 1 in combination with the [8], thereby being both

consistent and robust: if the predictions are of high quality, then our algorithm ensures that

the cost will be nearly optimal; otherwise if the predictions are useless, [8]’s algorithm gives

an upper bound in the worst case.

Moreover, we show that the guarantee obtained in Theorem 1 is the best possible, up to

constants.

▶ Theorem 3 (Exploration Lower Bound). Any algorithm (even randomized) for the graph

exploration problem with predictions must incur a cost of at least max(d(r, g), Ω(∆ · |E|)).

Proof. The lower bound of d(r, g) is immediate. For the second term, consider the setting

where the root r has ∆ disjoint paths of length D leaving it, and the goal is guaranteed

to be at one of the leaves. Suppose we are given the “null” prediction, where each vertex

predicts f(v) = D + ℓ(v) (where ℓ(v) is the distance of the vertex from the root, which we

henceforth refer to as the level of the vertex). The erroneous vertices are the D vertices

along the r-g path. Since the predictions do not give any signal at all (they can be generated

by the algorithm itself), this is a problem of guessing which of the leaves is the goal, and any

algorithm, even randomized, must travel Ω(∆ ·D) = Ω(∆ · |E|) before reaching the goal. ◀

Our next set of results are for the planning problem, where we know the graph and the

predictions up-front, and must come up with a strategy with this global information.

▶ Theorem 4 (Planning). For the planning version of the graph exploration problem, there is

an algorithm that incurs cost at most

(i) d(r, g) + O(∆ · |E|) if the graph is a tree, where ∆ is the maximal degree.

(ii) d(r, g) + 2O(³) ·O(|E|2) where ³ is the doubling dimension of G.

Again, E is the set of nodes with incorrect predictions.

ITCS 2023
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Note that result (i) is very similar to that of Theorem 1 (for the harder exploration

problem): the differences are that we do not lose any constant in the distance d(r, g) term,

and also that the algorithm used here (for the planning problem) is simpler. Moreover, the

lower bound from Theorem 3 continues to hold in the planning setting, since the knowledge

of the graph and the predictions does not help the algorithm; hence result (i) is tight.

We do not yet know an analog of result (ii) for the exploration problem: extending

Theorem 1 to general graphs, even those with bounded doubling metrics remains a tantalizing

open problem. Moreover, we currently do not have a lower bound matching result (ii); indeed,

we conjecture that a cost of d(r, g) + 2O(³) · |E| should be achievable. We leave these as

questions for future investigation.

1.2 Our Techniques

To get some intuition for the problem, consider the case where given a tree and a guarantee

that the goal is at distance D from the start node r. Suppose each node v gives the “null”

prediction of f(v) = D + d(r, v). In case the tree is a complete binary tree, then these

predictions carry no information and we would have to essentially explore all nodes within

distance D. But note that the predictions for about half of these nodes are incorrect, so

these erroneous nodes can pay for this exploration. But now consider a “lopsided” example,

with a binary tree on one side of the root, and a path on the other (Figure 1). Suppose the

goal is at distance D along the path. In this case, only the path nodes are incorrect, and we

only have O(D + |E|) = O(D) budget for the exploration. In particular, we must explore

more aggressively along the path, and balance the exploration on both sides of the root. But

such gadgets can be anywhere in the tree, and the predictions can be far more devious than

the null-prediction, so we need to generalize this idea.

r

a

b

g

Figure 1 The subtree rooted on r’s child a is a complete binary tree, while the subtree rooted on
b is a path to the goal g. “Null” predictions f(v) = D + d(r, v) at every v have a total error D (only
nodes on the path from r to g have errors on predictions).

We start off with a special case which we call the known-distance case. This is almost

the same as the general problem, but with the additional guarantee that the prediction of

the root is correct. Equivalently, we are given the distance D := d(r, g) of the goal vertex

from the root/starting node r. For this setting, we can get the following very sharp result:

▶ Theorem 5 (Known-Distance Case). The TreeX-KnownDist algorithm solves the graph

exploration problem in the known-distance case, incurring a cost of at most d(r, g) + O(∆|E|).

Hence in the zero-error case, or in low-error cases where |E| j D, the algorithm loses

very little compared to the optimal-in-hindsight strategy, which just walks from the root to

the goal vertex, and incurs a cost of D. This algorithm is inspired by the “lopsided” example

above: it not only balances the exploration on different subtrees, but also at multiple levels.
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To generalize this idea from predictions, we introduce the concepts of anchor and loads (see

§2). At a high level, for each node we consider the subtrees rooted at its children, and identify

subset of nodes in each of these subtrees which are erroneous depending on which subtree

contains the goal g. We ensure that these sets have near-equal sizes, so that no matter which

of these subtrees contains the goal, one of them can pay for the others. This requires some

delicacy, since we need to ensure this property throughout the tree. The details appear in §3.

Having proved Theorem 5, we use the algorithm to then solve the problem where the

prediction for the root vertex may itself be erroneous. Given Theorem 5 and Algorithm 1,

we can reduced the problem to finding some node v such that d(v, g) is known; moreover

this v must not be very far from the start node r. The idea is conceptually simple: as

we explore the graph, if most predictions are correct we can use these predictions to find

such a v, otherwise these incorrect predictions give us more budget to continue exploring.

Implementing this idea (and particularly, doing this deterministically) requires us to figure

out how to “triangulate” with errors, which we do in §4.

Finally, we give the ideas behind the algorithms for the planning version of the problem.

The main idea is to define the implied-error function φ(v) := |{u | f(u) ̸= d(u, v)}|, which

measures the error if the goal is sitting at node v. Since we know all the predictions and the

tree structure in this version of the problem, and moreover ϕ(g) = |E|, it is natural to search

the graph greedily in increasing order of the implied-error. However, naively doing this may

induce a large movement cost, so we bucket nodes with similar implied-error together, and

then show that the total cost incurred in exploring all nodes with φ(v) ≈ 2i is itself close

to 2i (times a factor that depends on the degree or the doubling dimension). It remains an

interesting open problem to extend this algorithm to broader classes of graphs. The details

here appear in §5.

1.3 Related Work

Graph Searching. Graph searching is a fundamental problem, and there are too many

variants to comprehensively discuss: we point to the works closest to ours. Baeza-Yates,

Culberson, and Rawlins [3] considered the exploration problem without predictions on the

line (where it is also called the “cow-path” problem), on k-spiders (i.e., where k semi-infinite

lines meet at the root) and in the plane: they showed tight bounds of 9 on the deterministic

competitive ratio of the line, 1 + 2kk/(k − 1)k−1 for k-spiders, among other results. Their

lower bounds (given for “monotone-increasing strategies”) were generalized by Jaillet and

Stafford [23]; [24] point out that the results for k-spiders were obtained by Gal [18] before [3]

(see also [1]). Kao et al. [29, 28] give tight bounds for both deterministic and randomized

algorithms, even with multiple agents.

The layered graph traversal problem [42] is very closely related to our model. A tree is

revealed over time. At each timestep, some of the leaves of the current tree die, and others

have some number of children. The agent is required to sit at one of the current (living)

leaves, so if the node the agent previously sat is no longer a leaf or is dead, the agent is forced

to move. The game ends when the goal state is revealed and objective is to minimize the

total movement cost. The width k of the problem is the largest number of leaves alive at any

time (observe that we do not parameterize our algorithm with this parameter). This problem

is essentially the cow-path problem for the case of w = 2, but is substantially more difficult

for larger widths. Indeed, the deterministic bounds lie between Ω(2k) [17] and O(k2k) [9].

Ramesh [44] showed that the randomized version of this problem has a competitive ratio

at least Ω(k2/(log k)1+ε) for any ε > 0; moreover, his O(k13)-competitive algorithm was

improved to a nearly-tight bound of O(k2 log ∆) in recent exciting result by Bubeck, Coester,

and Rabani [8].

ITCS 2023



12:6 Graph Searching with Predictions

Kalyanasundaram and Pruhs [26] study the exploration problem (which they call the

searching problem) in the geometric setting of k polygonal obstacles with bounded aspect ratio

in the plane. Some of their results extend to the mapping problem, where they must determine

the locations of all obstacles. Deng and Papadimitriou [12] study the mapping problem,

where the goal is to traverse all edges of an unknown directed graph: they give an algorithm

with cost 2|E| for Eulerian graphs (whereas OPT = |E|), and cost exp(O(d log d))|E| for

graphs with imbalance at most d. Deng, Kameda, and Papadimitriou [11] give an algorithm

to map two-dimensional rectilinear, polygonal environments with a bounded number of

obstacles.

Kalyanasundaram and Pruhs [27] consider a different version of the mapping problem,

where the goal is to visit all vertices of an unknown graph using a tour of least cost. They

give an algorithm that is O(1)-competitive on planar graphs. Megow et al. [37] extend

their algorithm to graphs with bounded genus, and also show limitations of the algorithm

from [27].

Blum, Raghavan and Schieber [6] study the point-to-point navigation problem of finding

a minimum-length path between two known locations s and t in a rectilinear environment;

the obstacles are unknown axis-parallel rectangles. Their O(
√

n)-competitiveness is best

possible given the lower bound in [42]. [30] give lower bounds for randomized algorithms in

this setting.

Our work is related in spirit to graph search algorithms like A∗-search which use score

functions to choose the next leaf to explore. One line of work giving provably good algorithms

is that of Goldberg and Harrelson [19] on computing shortest paths without exploring the

entire graph. Another line of work related in spirit to ours is that of Karp, Saks, and

Wigderson [31] on branch-and-bound (see also [32]).

Noisy Binary Search. A very closely related line of work is that of computing under noisy

queries [16]. In this widely-used model, the agent can query nodes: each node “points” to a

neighbor that is closer to the goal, though some of these answers may be incorrect. Some

of these works include [41, 40, 15, 10, 13, 7]. Apart from the difference in the information

model (these works imagine knowing the entire graph) and the nature of hints (“gradient”

information pointing to a better node, instead of information about the quality/score of the

node), these works often assume the errors are independent, or adversarial with bounded

noise rate. Most of these works allow random-access to nodes and seek to minimize the

number of queries instead of the distance traveled, though an exception is the work of [7].

As far as we can see, the connections between our models is only in spirit. Moreover, we

show in §A.3 that results of the kind we prove are impossible if the predictions don’t give us

distance information but instead just edge “gradients”.

Algorithms with Predictions. Our work is related to the exciting line of research on

algorithms with predictions, such as in ad-allocation [35], auction pricing [36], page mi-

gration [22], flow allocation [34], scheduling [43, 33, 39], frequency estimation [21], speed

scaling [4], Bloom filters [38], bipartite matching and secretary problems [2, 14], and online

linear optimization [5].

2 Problem Setup and Definitions

We consider an underlying graph G = (V, E) with a known root node r and an unknown

goal node g. (For most of this paper, we consider the unweighted setting where all edge have

unit length; §5.3 and §A.2 discuss cases where edge lengths are positive integers.) Each node

has degree at most ∆. Let d(u, v) denote the distance between nodes u, v for any u, v ∈ V ,

and let D := d(r, g) be the optimal distance from r to the goal node g.
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Vt

∂Vt

Figure 2 The observed vertices Vt ∪ ∂Vt (and extended subtree T
t

:= T [Vt ∪ ∂Vt]) at some
intermediate stage of the algorithm. Visited nodes Vt are shown in red, and their un-visited
neighbors ∂Vt in blue.

Let us formally define the problem setup. An agent initially starts at root r, and wants to

visit goal g while traversing the minimum number of edges. In each timestep t ∈ {1, 2, . . .},
the agent moves from some node vt−1 to node vt. We denote the visited vertices at the start

of round t by Vt−1 (with V0 = {r}), and use ∂Vt−1 to denote the neighboring vertices – those

not in Vt−1 but having at least one neighbor in Vt−1. Their union Vt−1 ∪ ∂Vt−1 is the set of

observed vertices at the end of time t− 1. Each time t the agent visits a new node vt such

that Vt := Vt−1 ∪ {vt}, and it pays the movement cost d(vt−1, vt), where v0 = r. Finally,

when vt = g and the agent has reached the goal, the algorithm stops. The identity of the

goal vertex is known when – and only when – the agent visits it, and we let Ä∗ denote this

timestep. Our aim is to design an algorithm that reaches the goal state with minimum total

movement cost:

Ä∗

∑

t=1

dt−1(vt−1, vt).

Within the above setting, we consider two problems:

In the planning problem, the agent knows the graph G (though not the goal g), and in

addition, is given a prediction f(v) ∈ Z for each v ∈ V of its distance to the goal g; it

can then use this information to plan its search trajectory.

In the exploration problem, the graph G and the predictions f(v) ∈ Z are initially

unknown to the agent, and these are revealed only via exploration; in particular, upon

visiting a node for the first time, the agent becomes aware of previously unobserved nodes

in v’s neighborhood. Thus, at the end of timestep t, the agent knows the set of visited

vertices Vt, neighboring vertices ∂Vt, and the predictions f(v) for each observed vertex

v ∈ Vt ∪ ∂Vt.

In both cases, we define E := {v ∈ V | f(v) ̸= d(g, v)} to be the set of erroneous nodes.

Extending this notation, for the exploration problem, we define Et := E ∩ Vt as the erroneous

nodes visited by time t.

3 Exploring with a Known Target Distance

Recall that our algorithm for the exploration problem on trees proceeds via the known-

distance version of the problem: in addition to seeing the predictions at the various nodes as

we explore the tree, we are promised that the distance from the starting node/root r to the

goal state g is is exactly some value D, i.e., d(r, g) = D. The main result of this section is

Theorem 5, and we restate a rigorous version here.

▶ Theorem 6. If D = d(r, g), the algorithm TreeX-KnownDist(r, D, +∞) finds the goal

node g incurring a cost of at most d(r, g) + O(∆|E|).

ITCS 2023
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Algorithm TreeX-KnownDist is stated in Algorithm 1. For better understanding of it,

we first give some key definitions.

3.1 Definitions: Anchors, Degeneracy, and Criticality

For an unweighted tree T , we define the level of node v with respect to the root r to be

ℓ(v) := d(r, v), and so level L denotes the set of nodes v such that d(r, v) = ℓ(v) = L.

Since the tree is rooted, there are clearly defined notions of parent and child, ancestor and

descendent. Each node is both an ancestor and a descendant of itself. For any node v, let

Tv denote the subtree rooted at v. Extending this notation, we define the visited subtree

T t := T [Vt], and the extended subtree T
t

:= T [Vt ∪ ∂Vt], and let T t
v and T

t

v be the subtrees

of T t and T
t

rooted at v.

▶ Definition 7 (Active and Degenerate nodes). In the exploration setting, at the end of

timestep t, a node v ∈ Vt ∪ ∂Vt is active if T t
v ≠ T

t

v, i.e., there are observed descendants of v

(including itself) that have not been visited.

An active node v ∈ Vt ∪ ∂Vt is degenerate at the end of timestep t if it has a unique child

node in T
t

that is active.

In other words, all nodes which have un-visited descendants (including those in the

frontier ∂Vt) are active. Active nodes are further partitioned into degenerate nodes that have

exactly one child subtree that has not been fully visited, and active nodes that have at least

two active children. See Figure 3 for an illustration.

A crucial definition for our algorithms is that of anchor nodes:

▶ Definition 8 (Anchor). For node u ∈ T , define its anchor Ä(u) to be its ancestor in level

³(u) := 1
2 (D + ℓ(u)− f(u)). If the value ³(u) is negative, or is not an integer, or node u

itself belongs at level smaller than ³(u), we say that u has no anchor and that Ä(u) = §.

Figure 3 demonstrates the location of an anchor node Ä(u) for given node u; it also illustrates

the following claim, which forms the main rationale behind the definition:

▷ Claim 9. If the prediction for some node u is correct, then its anchor Ä(u) is the least

common ancestor (in terms of level ℓ) of u and the goal g. Consequently, if a node u has no

anchor, or if its anchor does not lie on the path P ∗ from r to g, then u ∈ E .

For any node v ∈ T , define its children be Çi(v) for i = 1, 2, . . . , ∆v, where ∆v f ∆

is the number of children for v. Note that the order is arbitrary but prescribed and fixed

throughout the algorithm. For any time t, node v, and i ∈ [∆v], define the visited portion of

the subtree rooted at the ith child as Ct
i (v) := T t

Çi(v).

▶ Definition 10 (Loads Ãi and Ã). For any time t, node v, and index i ∈ [∆v], define

Ãt
i(v) := |{u ∈ Ct

i (v) | Ä(u) = v}|.

In other words, Ãt
i(v) is the number of nodes in Ct

i (v) that have v as their anchor. Define

Ãt(v) =
∑∆v

i=1 Ãt
i(v) to be the total number of nodes in T t

v \ {v} which have v as their anchor.

▶ Definition 11 (Critical Node). For any time t, active and non-degenerate node v, and

index j ∈ [∆v], let qj := arg mini ̸=j{Ãt
i(v) | Çi(v) is active at time t}. Call v a critical node

with respect to j at time t if it satisfies

(i) Ãt
j(v) g 2Ãt

qj
(v), namely, the number of nodes of Ct

j(v) that have v as their anchor is at

least twice larger than the number of nodes of Ct
qj

(v) that have v as their anchor; and

(ii) 2Ãt
j(v) g |Ct

j(v)|, namely, at least half of the nodes of Ct
j(v) have v as their anchor.
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f(u)

ℓ(u)

D

r u

g

Ä(u)

ℓ(u)

D+ℓ(u)−f(u)

2

r u

Ä(u)

r

Active and degenerate nodes Anchor node Illustrating Claim 9

c

b

d a

Figure 3 The first figure from the left illustrates active and degenerate nodes. Nodes such as a

(shaded in blue) are in ∂Vt while the rest are visited nodes in Vt. Unshaded node b is inactive (since
it has no un-visited descendant), while all other shaded nodes (blue, yellow and red) are active.
Among the active nodes, nodes such as c (shaded in yellow) are non-degenerate nodes as they have
at least two active children. Finally nodes such as d (shaded in red) are degenerate as they have
exactly one active child.
The second and third figures give an example of anchor node Ä(u) (in yellow) at level 1

2
(D+ℓ(u)−f(u))

for given node u (in red) at level ℓ(u). The rightmost figure (with root r and goal g also indicated)
illustrates Claim 9, showing that when u’s prediction f(u) is correct, then its anchor is the least
common ancestor of u and goal g (since D +ℓ(u)−f(u) is equal to twice the distance of Ä(u) from r).

3.2 The TreeX-KnownDist Algorithm

Equipped with the definitions in §3.1, at a high level, the main idea of the algorithm is

to balance the loads (as defined in Definition 10) of all the nodes v. Note that if the goal

g ∈ Ci(v), then the nodes u ∈ Ci(v) that have v as their anchor (i.e., Ä(u) = v) have

erroneous predictions; hence balancing the loads automatically balances the cost and the

budget. To balance the loads, we use the definition of a critical node (see Definition 11):

whenever a node v becomes critical, the algorithm goes back and explores another subtree of

v, thereby maintaining the balance.

More precisely, our algorithm TreeX-KnownDist does the following: at each time step

t, it checks whether there is a node that is critical. If there is no such node, the algorithm

performs one more step of the current DFS, giving priority to the unexplored child of vt

with smallest prediction. On the other hand, if there is a critical node v, then this v must be

the anchor Ä(vt). In this case the algorithm pauses the current DFS, returns to the anchor

Ä(vt) and resumes the DFS in Ä(vt)’s child subtree having the smallest load (say Cq(Ä(vt))).

This DFS may have been paused at some time t′ < t, and hence is continued starting at

node vt′ . The variable mem(v) saves the vertex that the algorithm left the subtree rooted on

v last time. For example, in this case mem(Çq(Ä(vt))) = vt′ . If no such time t′ exists, the

algorithm starts a new DFS from some child of Ä(vt) whose subtree has the smallest load (in

this case, mem(Çq(Ä(vt))) = §). The pseudocode appears as Algorithm 1.

A few observations: (a) While D = d(r, g) does not appear explicitly in the algorithm, it

is used in the definition of anchors (recall Definition 8). Even when d(r, g), the predicted

distance at the root, is not the true distance to the goal (as may happen in Section 4),

given any input D in Algorithm 1, we will still define Ä(v) to be v’s ancestor at level

³(u) := 1
2 (D + ℓ(u)− f(u)). (b) The new node vt is always on the frontier : i.e., the nodes

which are either leaves of T or have unvisited children. Moreover, (c) the memory value

mem(v) = § if and only if v ̸∈ Vt, else mem(v) is on the frontier in the subtree below v.
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Algorithm 1 TreeX-KnownDist(r, D, B).

1.1 v0 ← r, t← 0

1.2 mem(r)← r and mem(v)← § for all v ̸= r

1.3 while vt ̸= g and |Vt| < B do

1.4 if Ä(vt) ̸= § and Ä(vt) is active and not degenerate and Ä(vt) is critical w.r.t. the

index of the subtree containing vt at time t then

1.5 q ← the child index q s.t. Ä(vt) is critical w.r.t. q

1.6 if mem(Çq(Ä(vt))) = § then vt+1 ← Çq(Ä(vt) else u← mem(Çq(Ä(vt))

1.7 else

1.8 u← vt

1.9 while vt+1 undefined and u has no child do

1.10 w ← u’s closest active ancestor

1.11 q ← arg mini{Ãt
i(w) | Çi(w) active }

1.12 if mem(Çq(w)) = § then vt+1 ← Çq(w) else u← mem(Çq(w))

1.13 if vt+1 undefined then vt+1 ← u’s child with smallest prediction

1.14 foreach ancestor u of vt+1 do mem(u)← vt+1

1.15 t← t + 1

3.3 Analysis for the TreeX-KnownDist Algorithm

The proof of Theorem 6 proceeds in two steps. The first step is to show that the total amount

of “extra” exploration, i.e., the number of nodes that do not lie on the r-g path, is O(∆ · |E|).
Formally, let P ∗ denote the r-g path; for the rest of this section, suppose g ∈ C1(v) for

all v ∈ P ∗. Define the extra exploration to be the number of nodes visited in the subtrees

hanging off this path:

ExtraExp(t) :=
∑

v∈P ∗

∑

i ̸=1

|Ct
i (v)|.

▶ Lemma 12 (Bounded Extra Exploration). For all times t∗, ExtraExp(t∗) f 7∆ · |Et∗ |.

Next, we need to control the total distance traveled, which is the second step of our

analysis:

▶ Lemma 13 (Bounded Cost). For all times t∗,

∑

tft∗

d(vt−1, vt) f d(r, vt∗) + 10 ExtraExp(t∗) + 16|Et∗ |.

Using the lemmas above (setting t∗ to be the time Ä∗ when we reach the goal) proves

Theorem 5. In the following sections, we now prove Lemmas 12 and 13.

3.4 Bounding the Extra Exploration

▶ Lemma 14. For any node v ∈ T t, define xt(v) as follows:

(i) if g /∈ Tv, then xt(v) := Ãt(v).

(ii) if g ∈ Tv \ {v}, let g ∈ TÇj(v). Define yt
1(v) := Ãt

j(v), yt
2(v) :=

∑

i ̸=j(|Ct
i (v)| − Ãt

i(v))

and xt(v) := yt
1(v) + yt

2(v).

Then
∑

v∈T t xt(v) f 2|Et|.
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Proof. Let P ∗ be the r-g path in T . If g /∈ Tv (i.e., v /∈ P ∗), then by Claim 9 all the nodes

with v as anchor belong to E . Else suppose g ∈ Tv (i.e., v ∈ P ∗), and suppose g ∈ TÇj(v).

Now all nodes u in Cj(v) having anchor v belong to E , since the least common ancestor of u

and g can be no higher than Çj(v). This means

∑

v∈T t\P ∗

xt(v) +
∑

v∈P ∗

yt
1(v) f

∑

v∈T t

|{u ∈ E | Ä(u) = v}| f |Et|.

Finally, suppose g ∈ Tv (i.e., v ∈ P ∗) and g ∈ TÇj(v). Now for any node u ∈ TÇi(v) for i ̸= j,

the least common ancestor of u and g is v. Hence nodes in TÇi(v) for i ̸= j whose anchor

is not v must be wrongly predicted. Denote the set of such nodes by Y t
2 (v). Note that

|Y t
2 (v)| = yt

2(v), and Y t
2 (v) for each v ∈ P ∗ are disjoint. Hence we have

∑

v∈P ∗

yt
2(v) f

∑

v∈P ∗

|Y t
2 (v)| f |Et|.

Summing the two inequalities we get the proof. ◀

▶ Lemma 15. For any node v ∈ T and any index i ∈ {1, 2, . . . , ∆v} such that Ãt
i(v) >

minq{Ãt
q(v) | Çq(v) is active at time t}. If vt ∈ TÇj(v) for some j ̸= i then vt+1 /∈ TÇi(v).

Proof. The proof is by contradiction. Assume there is such a time t, and let w :=

arg minq{Ãt
q(v) | Çq(v) is active at time t}. Since vt+1 ∈ TÇi(v), the subtree under node

Çi(v) was not fully visited at time r and hence Çi(v) was active. By the definition of w and

the condition on i in the lemma statement, we have Ãt
i(v) > Ãt

w(v). Now Algorithm 1 will

ensure that vt+1 either remains in TÇj(v) or moves into TÇw(v). ◀

▶ Lemma 16. For any node v on the r-g path P ∗, recall the assumption that g ∈ C1(v). For

any time t and any i ̸= 1, at least one of the following statements must hold:

(i) Ãt
i(v) f 2Ãt

1(v).

(ii) 2Ãt
i(v) f |Ct

i (v)|.
(iii) Ãt

i(v) = |Ct
i (v)| = 1, Ãt

1(v) = 0.

Proof. For sake of a contradiction, assume there exists t, i such that at time t none of the

three statements are true, and this is the first such time. If |Ct
i (v)| = 1, then the falsity of

second statement gives Ãt
i(v) > 1/2 |Ct

i (v)| = 1/2, and so Ãt
i(v) = 1. Then the first statement

being false implies Ãt
1(v) < 1/2, which means the third statement must hold.

Henceforth let us assume |Ct
i (v)| g 2. Let t′ < t be the latest time such vt′ ∈ Ci(v) and

Ä(vt′) = v. Because the second statement is false, Ãt
i(v) > 1/2 |Ct

i (v)| g 1, and so such a time

t′ exists.

Since t′ is the latest time satisfying the condition, we have Ãt
i(v) f Ãt′

i (v) + 1. Moreover,

the number of nodes in Ct
i (v) whose anchor is not v does not decrease, hence |Ct

i (v)|−Ãt
i(v) g

|Ct′

i (v)| − Ãt′

i (v). Also, the number of nodes in Ct
1(v) whose anchor is v does not decrease,

hence Ãt
1(v) g Ãt′

1 (v).

Thus we can get

Ãt′

i (v)− 2Ãt′

1 (v) g Ãt
i(v)− 2Ãt

1(v)− 1 g 0

2Ãt′

i (v)− |Ct′

i (v)| g 2Ãt
i(v)− |Ct

i (v)| − 1 g 0
(1)

Now if Ct′

i (v) is completely visited, then obviously vt′+1 /∈ Ci(v). Otherwise, Ct′

i (v)

is active. Also because g ∈ C1(v), hence C1(v) cannot be completely visited unless the

algorithm ends, which means v is not degenerate and Ct′

1 (v) is still active. Furthermore,
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we have inequalities (1), hence v must be critical w.r.t. the subtree containing vt′ (because

taking q = 1 we get the two inequalities for critical hold, although Ãt′

1 (v) may not be the

smallest one). Hence at time t′ + 1 the algorithm will go to a node which is not in Ci(v).

If vt /∈ Ct

i
(v): Note that one of the three statements holds for t′. If one of the first two

statements is true to t′, then the same statement is also true to t because Ãt
i(v) = Ãt′

i (v),

|Ct
i (v)| = |Ct′

i (v)| and Ãt
1(v) g Ãt′

1 (v). Otherwise we have Ãt
i(v) = Ãt′

i (v) = |Ct
i (v)| =

|Ct′

i (v)| = 1. Then if Ãt
1(v) = 0, then the third statement is true to t; if Ãt

1(v) g 1, then the

first statement is true to t.

Otherwise vt ∈ Ct

i
(v): By Lemma 15, there must exist a time t > t′′ > t′ such that

Ãt′′

1 (v) g Ãt′′

i (v) (otherwise the algorithm will never enter Ci(v) since C1(v) is always active).

Hence by the analysis before, we have Ãt′′

1 (v) g Ãt′

i (v) g 1. Because t′ is defined as the

latest time before t when vt ∈ Ci(v), we have Ãt′′

i (v) = Ãt′

i (v). Hence Ãt
i(v) f Ãt′

i (v) + 1 f
2Ãt′′

i (v) f 2Ãt′′

1 (v) f 2Ãt
1(v), which is the first statement in this lemma. ◀

▶ Lemma 17. For any node v on the r-g path P ∗, and any time t,

(i) if f(Çi(v)) = d(Çi(v), g) for all i ∈ [∆v] then
∑

i ̸=1 |Ct
i (v)| f 3∆xt(v),

(ii) else
∑

i ̸=1 |Ct
i (v)| f 3∆xt(v) + ∆.

Proof. For the first case: if f(Çi(v)) = d(Çi(v), g) for all i, then f(Ç1(v)) is the smallest label

among all f(Çi(v)) since the predictions are all correct. Hence by the algorithm, the first

node reached among {Çi(v)} must be Ç1(v), which means the third statement in Lemma 16

cannot hold. By Lemma 16, for any i, t, Ãt
i(v) f 2Ãt

1(v) or 2Ãt
i(v) f |Ct

i (v)|.
If Ãt

i(v) f 2Ãt
1(v): |Ct

i (v)| − Ãt
i(v) + Ãt

1(v) g Ãt
1(v) g Ãt

i(v)/2; If 2Ãt
i(v) f |Ct

i (v)|:
|Ct

i (v)| − Ãt
i(v) + Ãt

1(v) g |Ct
i (v)| − Ãt

i(v) g Ãt
i(v). Either of them can lead to a conclusion

that

|Ct
i (v)| − Ãt

i(v) + Ãt
1(v) g Ãt

i(v)/2.

Denote xt
i(v) := |Ct

i (v)| − Ãt
i(v) + Ãt

1(v). Then by Ãt
1(v) g 0 and the inequality above, we

have |Ct
i (v)| f xt

i(v) + Ãt
i(v) f 3xt

i(v).

Hence
∑

i ̸=1 |Ct
i (v)| f 3

∑

i ̸=1 xt
i(v) = 3

∑

i ̸=1(|Ct
i (v)|−Ãt

i(v)+(∆−1)Ãt
1(v)) f 3∆(Ãt

1(v)+
∑

i ̸=1 |Ct
i (v)| − Ãt

i(v)) = 3∆xt(v). Here the last equality is because of Lemma 14.

Second, consider other cases. By Lemma 16, Ãt
i(v) f 2Ãt

1(v) + 1 or 2Ãt
i(v) f |Ct

i (v)|+ 1.

If Ãt
i(v) f 2Ãt

1(v) + 1: |Ct
i (v)| − Ãt

i(v) + Ãt
1(v) + 1/2 g Ãt

1(v) + 1/2 g Ãt
i(v)/2; If 2Ãt

i(v) f
|Ct

i (v)|+ 1: |Ct
i (v)| − Ãt

i(v) + Ãt
1(v) + 1/2 g |Ct

i (v)| − Ãt
i(v) + 1/2 g Ãt

i(v). Either of them can

lead to a conclusion that

|Ct
i (v)| − Ãt

i(v) + Ãt
1(v) + 1/2 g Ãt

i(v)/2.

Denote xt
i(v) := |Ct

i (v)| − Ãt
i(v) + Ãt

1(v), then |Ct
i (v)| f xt

i(v) + Ãt
i(v) f 3xt

i(v) + 1.

Consequently
∑

i ̸=1 |Ct
i (v)| f∑

i ̸=i(3xt
i(v) + 1) = 3∆xt(v) + ∆, where the last equality

is because of Lemma 14. ◀

We can finally bound the extra exploration.
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Proof of Lemma 12. Divide the set of nodes on P ∗ into two sets A, B: A contains the nodes

all of whose children are correctly labeled, and B contains the other nodes. Then

ExtraExp(t∗) =
∑

v∈A

∑

i ̸=1

|Ct∗

i (v)|+
∑

v∈B

∑

i ̸=1

|Ct∗

i (v)| (2)

(⋆)

f
∑

v∈A

3∆xt∗

(v) +
∑

v∈B

(3∆xt∗

(v) + ∆) (3)

= 3∆
∑

v∈P ∗

xt∗

(v) + ∆|B|
(⋆⋆)

f 6∆|Et∗ |+ ∆|Et∗ | = 7∆|Et∗ |. (4)

The inequality (⋆) uses Lemma 17, and (⋆⋆) uses Lemma 14. This proves Lemma 12. ◀

3.5 Bounding the Movement Cost

In this subsection, we bound the total movement cost (and not just the number of visited

nodes), thereby proving Lemma 13.

First, we partition the edge traversals made by the algorithm into downwards (from a

parent to a child) and upwards (from a child to its parent) traversals, and denote the cost

incurred by the downwards and upwards traversals until time t by M t
d and M t

u respectively.

We start at the root and hence get M t
d = M t

u + d(r, vt); since we care about the time t∗ when

we reach the goal state g, we have

M t∗

= M t∗

u + M t∗

d = 2M t∗

u + d(r, vt). (5)

It now suffices to bound the upwards movement M t∗

u . For any edge (u, v) with v being the

parent and u the child, we further partition the upwards traversals along this edge into two

types:

(i) upward traversals when the if statement is true at time t for a node vs (which lies at or

below u) and we move the traversal to another subtree of Ä(vs) (which lies at or above

v), and

(ii) the unique upward traversal when we have completely visited the subtree under the

edge.

The second type of traversal happens only once, and it never happens for the edges on

the r-g path P ∗ (since those edges contain the goal state under it, which is not visited until

the very end). Hence the second type of traversals can be charged to the extra exploration

ExtraExp(t∗). It remains to now bound the first type of upwards traversals, which we refer

to as callback traversals.

We further partition the callback traversals based on the identity of the anchor which

was critical at that timestep: let M t
u(v) denote the callback traversal cost at those times s

when v = Ä(vs). Hence the total cost of callback traversals is
∑

v∈T t∗ M t∗

u (v), and

M t∗

= d(r, vt) + 2

(

ExtraExp(t∗) +
∑

v∈T t∗

M t∗

u (v)

)

. (6)

We now control each term of the latter sum.

▶ Lemma 18. For any time t and any node v ∈ T t, M t
u(v) f 4Ãt(v).
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Proof. For node v and index j, let S be the set of times s f t for which vs ∈ Cs
j (v) and the

if condition is satisfied with Ä(vs) = v (i.e, Ä(vs) = v, v is active and not degenerate and v is

critical w.r.t. the subtree containing vs at time s). The cost of the upwards movement at

this time is d(vs, v) f |Cs
j (v)| f 2Ãti

j (v); the latter inequality is true by criticality.

Lemma 15 ensures that we only enter Cj(v) from a node outside it at some time s when

j ∈ arg minq{Ãs
q(v)}. Hence, if S = {t1, . . . , tm} then for each i there must exist a time si

satisfying ti < si < ti+1 such that minq{Ãsi
q (v)} = Ãsi

j (v). Consequently,

Ã
ti+1

j g 2 min
q
{Ãti+1

q (v)} g 2 min
q
{Ãsi

q (v)} = 2Ãsi

j (v) g 2Ãti

j (v).

Hence, for each ti ∈ S,

m
∑

i=1

d(vti
, v) f

m
∑

i=1

2Ãti

j (v) f 4Ãtm

j (v) f 4Ãt
j(v). (7)

This is the contribution due to a single subtree TÇj(v); summing over all subtrees gives a

bound of 4Ãt(v), as claimed. ◀

Proof of Lemma 13. The equation (6) bounds the total movement cost M t∗

until time t∗

in terms of D, the extra exploration, and the “callback” (upwards) traversals
∑

v M t∗

u (v).

Lemma 18 above bounds each term M t∗

u (v) by 4Ãt∗

(v). To bound this last summation,

For each v ̸∈ P ∗, Ãt∗

(v) = xt∗

(v) by Lemma 14.

For each v ∈ P ∗, recall our assumption that g ∈ C1(v), so

∑

v∈P ∗

Ãt∗

(v) =
∑

v∈P ∗

(

Ãt∗

1 (v) +
∑

i ̸=1

Ãt∗

i (v)

)

f
∑

v∈P ∗

xt∗

(v) +
∑

v∈P ∗

∑

i ̸=1

|Ct∗

i (v)| =
∑

v∈P ∗

xt∗

(v) + ExtraExp(t∗),

where Ãt∗

1 (v) f xt∗

(v) is directly given by definition in Lemma 14.

Summing over all v (using Lemma 14), and substituting into (6) gives the claim. ◀

4 The General Tree Exploration Algorithm

We now build on the ideas from known-distance case to give our algorithm for the case where

the true target distance d(g, r) is not known in advance, and we have to work merely with

the predictions. Recall the guarantee we want to prove:

▶ Theorem 1 (Exploration). The (deterministic) TreeX algorithm solves the graph explora-

tion problem on trees in the presence of predictions: on any (unweighted) tree with maximum

degree ∆, for any constant ¶ > 0, the algorithm incurs a cost of

d(r, g)(1 + ¶) + O(∆ · |E|/¶),

where E := {v ∈ V | f(v) ̸= d(v, g)} is the set of vertices that give erroneous predictions.

Note that Algorithm TreeX-KnownDist requires knowing D exactly in computing

anchors; an approximation to D does not suffice. Because of this, a simple black-box use

of Algorithm TreeX-KnownDist using a “guess-and-double” strategy does not seem to

work. The main idea behind our algorithm is clean: we explore increasing portions of the

tree. If most of the predictions we see have been correct, we show how to find a node whose

prediction must be correct. Now running Algorithm 1 rooted at this node can solve the

problem. On the other hand, if most of predictions that we have seen are incorrect, this

gives us enough budget to explore further.
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4.1 Definitions

▶ Definition 19 (Subtree Γ(u, v)). Given a tree T , node v and its neighbor u, let Γ(u, v)

denote the set of nodes w such that the path from w to v contains u.

▶ Lemma 20 (Tree Separator). Given a tree T with maximum degree ∆ and |T | = n > 2∆

nodes, there exists a node v and two neighbors a, b such that |Γ(a, v)| > |T |
2∆ and |Γ(b, v)| > |T |

2∆ .

Moreover, such v, a, b can be found in linear time.

Proof. Let v be a centroid of tree T , i.e., a vertex such that deleting v from T breaks it

into a forest containing subtrees of size at most n/2 [25]. Each such subtree corresponds

to some neighbor of v. Let a, b be the neighbors corresponding to the two largest subtrees.

Then |Γ(a, v)| g n−1
∆ > n

2∆ . Moreover the second largest subtree may contain n−|Γ(a,v)|−1
∆−1 g

n/2−1
∆−1 > n

2∆ when ∆ < n/2. ◀

▶ Definition 21 (Vote µ(u, c) and Dominating vote µ(S, c)). Given a center c, let the vote of

any node u ∈ T be µ(u, c) := f(u)− d(u, c). For any set of nodes S, define the dominating

vote to be µ(S, c) := x if µ(u, c) = x for at least half of the nodes u ∈ S. If such majority

value x does not exist, define µ(S, c) := −1.

4.2 The TreeX Algorithm

Given these definitions, we can now give the algorithm. Recall that Theorem 6 says that

Algorithm 1 finds g in d(rÄ, g) + c1∆ · |E| steps, for some constant c1 g 1. We proceed in

rounds: in round Ä we run Algorithm 1 and visit approximately ∆ · (c1 + ´)Ä vertices, where

´ g 1 is a parameter to be chosen later. Now we focus on two disjoint and “centrally located”

subtrees of size ≈ (c1 + ´)Ä within the visited nodes. Either the majority of these nodes have

correct predictions, in which case we use their information to identify one correct node. Else

a majority of them are incorrect, in which case we have enough budget to go on to the next

round. A formal description appears in Algorithm 2.

Algorithm 2 TreeX(r, ´).

2.1 r0 ← r, D0 ← f(v), Ä← 0

2.2 while goal g not found do

2.3 BÄ ← (c1 + ´)Ä · (2∆ + 1)

2.4 if BÄ < DÄ/´ then

2.5 run TreeX-KnownDist(rÄ, DÄ, BÄ)

2.6 else

2.7 run TreeX-KnownDist(rÄ, DÄ, DÄ + c1BÄ)

2.8 T Ä+1 ← tree induced by nodes that have ever been visited so far

2.9 rÄ+1, aÄ+1, bÄ+1 ← centroid for T Ä and its two neighbors promised by Lemma 20

2.10 let Da,Ä+1 ← µ(Γ(aÄ+1, rÄ+1), rÄ+1) and Db,Ä+1 ← µ(Γ(bÄ+1, rÄ+1), rÄ+1)

2.11 define new distance estimate DÄ+1 ← max{Da,Ä+1, Db,Ä+1}
2.12 move to vertex rÄ+1

2.13 Ä← Ä + 1
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4.3 Analysis of the TreeX Algorithm

▶ Lemma 22. If the goal is not visited before round Ä when BÄ g 4|E|(2∆ + 1), we have

DÄ = d(rÄ, g).

Proof. First, if |E| = 0, then the conclusion holds obviously. So next we assume |E| > 0.

The execution of Algorithm 1 in round Ä− 1 visits at least BÄ−1 = (c1 + ´)(Ä−1) · (2∆ + 1)

distinct nodes. Using the assumption on BÄ, we have

|T Ä| g 4|E| · (2∆ + 1) > 4∆|E| > 2∆.

Lemma 20 now implies that both the subtrees Γ(aÄ, rÄ) and Γ(bÄ, rÄ) contain more than
1

2∆ |T Ä| > 2|E| nodes. Since at most |E| nodes are erroneous, more than half of the nodes in

each of Γ(aÄ, rÄ) and Γ(bÄ, rÄ) have correct predictions.

Finally, observe that if g ̸∈ Γ(aÄ, rÄ), then for any correct node x in Γ(aÄ, rÄ) we have

f(x) = d(x, g) = d(x, rÄ) + d(rÄ, g), and hence its vote µ(x, rÄ) = d(rÄ, g). Since a majority

of nodes in Γ(aÄ, rÄ) are correct, we get

Da,Ä = µ(Γ(aÄ, rÄ), rÄ) = d(rÄ, g). (8)

On the other hand, if g ∈ Γ(aÄ, rÄ), then for any correct node x in Γ(aÄ, rÄ) we have

f(x) = d(x, g) f d(x, aÄ) + d(aÄ, g) < d(x, rÄ) + d(rÄ, g). Thus its vote, and hence the vote

of a strict majority of nodes in the subtree Γ(aÄ, rÄ) have

Da,Ä < d(rÄ, g). (9)

If no value is in a strict majority, recall that we define Da,Ä = −1, which also satisfies (9).

The same arguments hold for the subtree Γ(bÄ, rÄ) as well. Since the goal g belongs to at

most one of these subtrees, we have that DÄ = max(Da,Ä, Db,Ä) = d(rÄ, g), as claimed. ◀

▶ Lemma 23. For any round Ä, d(rÄ, r) f O(BÄ). Moreover, for any round Ä such that

BÄ g 4|E|(2∆ + 1), d(rÄ, r) f O(BÄ−1) + O(´|E|∆).

Proof. Since rÄ is at distance at most (c1 + c3)BÄ−1 = BÄ from rÄ−1, an inductive argument

shows that its distance from r0 = r is at most (B0 + · · ·+ BÄ) = O(BÄ).

Moreover, when BÄ g 4|E|(2∆ + 1), we have d(rÄ, g) = DÄ by Lemma 22. Hence if

BÄ g DÄ/´, the algorithm finds the goal in this round by Theorem 6. Therefore, for any

rounds Ä when BÄ g 4|E|(2∆ + 1) except the last round, the number of nodes visited by

Algorithm 1 is at most BÄ, hence we have d(rÄ+1, r) f d(rÄ, r) + BÄ. We denote Ä′ to be the

first round Ä′ such that BÄ′ g 4|E|(2∆ + 1). Thus by induction we have

d(rÄ, r) f
Ä−1
∑

i=Ä′

Bi + d(rÄ′ , r) f O(BÄ−1) + O(BÄ′) f O(BÄ−1) + O(´|E|∆). ◀

Proof of Theorem 1. Firstly, for the rounds Ä when BÄ < 4|E|(2∆ + 1): in each round,

Algorithm 1 at most visits (c1 + ´)BÄ = BÄ+1 nodes, the cost incurred is at most 19BÄ+1,

by Lemma 13. Moreover, the distance from the ending node to rÄ+1 is a further O(BÄ+1) by

Lemma 23. Therefore, since the bounds BÄ increase geometrically, the cost summed over all

rounds until round Ä is O(BÄ+1) = O(´|E|∆).

Secondly, for any rounds Ä when BÄ g 4|E|(2∆ + 1) except the last round, by Lemma 22

and Theorem 6, the number of nodes visited by Algorithm 1 is at most BÄ (the reasoning

is the same as that in Lemma 23). Hence the cost incurred is at most 19BÄ. Moreover, by

Lemma 23 the distance from the ending node to rÄ+1 is at most O(BÄ) + O(´∆|E|), which

means the total cost in round Ä is at most O(BÄ) + O(´∆|E|).
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Moreover, if we denote round Ä′ to be the first round such that BÄ′ g 4|E|(2∆ + 1), then

we have, for any round Ä > Ä′, BÄ > ´∆|E|. Hence the cost in round Ä is O(BÄ).

Finally, consider the last round Ä∗. We only need to consider the case when BÄ∗ g
4|E|(2∆ + 1), otherwise the cost has been included in the first case. By Theorem 6, the cost

incurred in this round is at most DÄ∗ + c1∆|E| f d(r, g) + d(rÄ∗ , r) + c1∆|E|. So summing

the bounds above, the total cost is at most

O(´∆|E|) + O(BÄ′) + O(´∆|E|) +

Ä∗−1
∑

i=Ä′+1

O(Bi) + d(r, g) + d(rÄ∗ , r) + c1∆|E|

f d(r, g) + O(BÄ∗−1) + O(´∆|E|) f d(r, g) + O(d(r, g)/´) + O(´∆|E|)

Here the final inequality uses that

BÄ∗−1 f DÄ∗−1/´ f (d(r, g) + O(´BÄ∗−1))/´ f (d(r, g) + O(BÄ∗−1))/´.

Setting ´ = O(1/¶) gives the proof. ◀

5 The Planning Problem

In this section we consider the planning version of the problem when the entire graph G (with

unit edge lengths, except for §5.3), the starting node r, and the entire prediction function

f : V → Z are given up-front. The agent can use this information to plan its exploration

of the graph. We propose an algorithm for this version and then prove the cost bound for

trees, and then for a graph with bounded doubling dimension. We begin by defining the

implied-error function φ(v), which gives the total error if the goal is at node v.

▶ Definition 24 (Implied-error). The implied-error function φ : V → Z maps each node

v ∈ V to φ(v) := |{u ∈ V | d(u, v) ̸= f(u)}|, which is the ℓ0 error if the goal were at v.

The search algorithm for this planning version is particularly simple: we visit the nodes in

rounds, where round Ä visits nodes with implied-error φ value at most ≈ 2Ä in the cheapest

possible way. The challenge is to show that the total cost incurred until reaching the goal is

small. Observe that |E| = φ(g), so if this value is at most 2Ä, we terminate in round Ä.

Algorithm 3 FullInfoX.

3.1 Ä← 0, S−1 ← ∅, r−1 ← r

3.2 while g not found do

3.3 SÄ ← {v ∈ T | φ(v) < 2Ä} \ (∪Ä−1
i=−1Si)

3.4 if SÄ ̸= ∅ then

3.5 CÄ ← min-length Steiner Tree on SÄ

3.6 go to an arbitrary node rÄ in SÄ

3.7 visit all nodes in CÄ using an Euler tour of cost at most 2|CÄ|, and return to rÄ

3.8 else

3.9 rÄ ← rÄ−1

3.10 Ä← Ä + 1

ITCS 2023
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5.1 Analysis

Recall our main claim for the planning algorithm:

▶ Theorem 4 (Planning). For the planning version of the graph exploration problem, there is

an algorithm that incurs cost at most

(i) d(r, g) + O(∆ · |E|) if the graph is a tree, where ∆ is the maximal degree.

(ii) d(r, g) + 2O(³) ·O(|E|2) where ³ is the doubling dimension of G.

Again, E is the set of nodes with incorrect predictions.

The proof relies on the fact that Algorithm 3 visits a node in SÄ only after visiting all

nodes in ∪s<ÄSs and not finding the goal g; this serves a proof that |E| = φ(g) g 2Ä. The

proof below shows that (a) the cost of the tour of CÄ is bounded and (b) the total cost of

each transition is small. Putting these claims together then proves Theorem 4. We start

with a definition.

▶ Definition 25 (Midpoint Set). Given a set of nodes U , define its midpoint set M(U) to be

the set of points w such that the distance from w to all points in U is equal.

▶ Lemma 26 (φ-Bound Lemma). For any two sets of nodes S, U ¦ G, we have

∑

v∈U

φ(v) g |S \M(U)|.

Proof. If node w ∈ S does not lie in M(U), then there are two nodes u, v ∈ U for which

d(u, w) ̸= d(v, w). This means f(w) cannot equal both of them, and hence contributes to at

least one of φ(u) or φ(v). ◀

▶ Corollary 27. For any two nodes u, v ∈ G, we have d(u, v) f φ(u) + φ(v).

Proof. Apply Lemma 26 for set U = {u, v} and S being a (shortest) path between them

(which includes both u, v). All edges have unit lengths so |S| = d(u, v) + 1; moreover,

|M(U) ∩ S| f 1. ◀

5.1.1 Analysis for Trees (Theorem 4(i))

▶ Lemma 28 (Small Steiner Tree). If Ä = 0 then |CÄ| = 1 else |CÄ| f O(∆ · 2Ä).

Proof. If Ä = 0, then SÄ contains all nodes with φ(v) = 0; there can be only one such

node. Else if |SÄ| f 1 then |CÄ| f 1 f 2Ä, so assume that |SÄ| > 1 and let u1, u2 :=

arg maxu,v∈SÄ
{d(u, v)} be a farthest pair of nodes in SÄ. Consider path p from u1 to u2:

if all nodes w ∈ p have d(w, u1) ̸= d(w, u2), then the midpoint set |M({u1, u2})| = 0, so

Lemma 26 says |CÄ| f φ(u1) + φ(u2) f 2× 2Ä = 2Ä+1, giving the proof. Hence, let’s consider

the case where there exists w ∈ p with d(w, u1) = d(w, u2).

Let w’s neighbors in CÄ be q1, . . . , qk for some k f ∆. If we delete w and its incident

edges, let CÄ,i be the subtree of CÄ containing qi; suppose that u1 ∈ CÄ,1 and u2 ∈ CÄ,2.

Choose any arbitrary vertex ui ∈ (CÄ,i ∩ SÄ); such a vertex exists because CÄ is a min-length

Steiner tree connecting SÄ. Let U := {u1, . . . , uk}.
Consider any node x ̸= w in CÄ: this means x ∈ CÄ,j for some j. Choose i ∈ {1, 2}

such that i ≠ j. By the tree properties, d(x, ui) = d(x, w) + d(w, ui). Moreover, we have

d(ui, u2−i) g d(uj , u2−i) by our choice of {u1, u2}, so d(w, ui) g d(w, uj). This means

d(x, ui) = d(x, w) + d(w, ui) g d(x, w) + d(w, uj) = d(x, qj) + d(uj , qj) + 2 > d(x, uj),
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which means x /∈M(U). In summary, M(U) = {w} or |M(U)| = 0, so applying Lemma 26

in either case gives

|CÄ| f |CÄ \M(U)|+ 1 f
k

∑

i=1

φ(ui) + 1 f ∆ · (2Ä + 1). ◀

▶ Lemma 29 (Small Cost for Transitions). Consider the first round Ä0 such that rÄ0
̸= r, then

d(r, rÄ0
) f d(r, g) + |E|+ 2Ä01(Ä0>0). For each subsequent round Ä > Ä0, d(rÄ−1, rÄ) f 2Ä+1.

Proof. If the first transition happens in round Ä0, its cost is

d(r, rÄ0) f d(r, g) + d(g, rÄ0) f d(r, g) + φ(g) + φ(rÄ0) f d(r, g) + |E|+ 2Ä01(Ä0>0),

where we used Corollary 27 for the second inequality. For all other transitions, Corollary 27

again gives d(rÄ−1, rÄ) f φ(rÄ−1) + φ(rÄ) f 2Ä−1 + 2Ä f 2Ä+1. ◀

Proof of Theorem 4(i). Suppose g belongs to SÄ, then |E| g 2Ä−1 · 1Ä>0. But now the cost

over all the transitions is at most d(r, g) + |E| + O(2Ä) · 1Ä>0 by summing the results of

Lemma 29. The cost of the Euler tours are at most
∑

sfÄ 2(|Cs| − 1) by Lemma 28, which

gives at most O(∆ · 2Ä) · 1Ä>0. Combining these proves the theorem. ◀

5.2 Analysis for Bounded Doubling Dimension (Theorem 4(ii))

For a graph G = (V, E) with doubling dimension ³, and unit-length edges, we consider

running Algorithm 3, as for the tree case. We merely replace Lemma 28 by the following

lemma, and the rest of the proof is the same as the proof of the tree case:

u∗ v∗

c

B(c)

Figure 4 Let u∗, v∗ be the diameter of the set Sρ (i.e, u∗, v∗ = argmaxu,v∈SÄ
d(u, v)). c is any

node in N and B(c) is its neighbor. We show in Claim 31 that the size of B(c) is O(2ρ).

▶ Lemma 30. The total length of the tree CÄ is at most 2O(³) · 22Ä.

Proof. If |SÄ| f 1, then |CÄ| f 1. Hence next we assume that |SÄ| g 2. Define R :=

maxu,v∈SÄ
d(u, v), and let u∗, v∗ ∈ SÄ be some points at mutual distance R. Let N be an

R/8-net of SÄ. (An ε-net N for a set S satisfies the properties (a) d(x, y) g ε for all x, y ∈ N ,

and (b) for all s ∈ S there exists x ∈ N such that d(x, s) f ε.) Since the metric has doubling

dimension ³, it follows that |N | f ( R
R/8 )O(³) = 2O(³) [20]. Let each point in SÄ choose a

closest net point (breaking ties arbitrarily), and let B(c) ¦ SÄ be the points that chose c ∈ N

as their closest net point (see Figure 4 for a sketch).

▷ Claim 31. For each net point c ∈ N , we have |B(c)| f O(2Ä).

ITCS 2023
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Proof. Because d(v∗, c)+d(u∗, c) g d(u∗, v∗) = R, hence without loss of generality we assume

d(v∗, c) g R/2. For any point w ∈ B(c), d(w, v∗) g d(v∗, c)− d(c, w) g R/2−R/8 > R/8 g
d(w, c). Hence w is not in M({c, v∗}). Hence by Lemma 26,

2Ä+1 g φ(c) + φ(v∗) g |SÄ \M({v∗, c})| g |B(c)|. ◁

There are 2O(³) net points, so |SÄ| f 2O(³) · 2Ä. Finally, Corollary 27 holds for general

unit-edge-length graphs, so the cost of connecting any two nodes in SÄ is at most 2Ä, and

therefore |CÄ| f 2O(³) · 22Ä. ◀

Using Lemma 30 instead of Lemma 28 in the proof of Theorem 4(i) gives the claimed

bound of 2O(³) · |E|2, and completes the proof of Theorem 4(ii).

5.3 Analysis for Bounded Doubling Dimension: Integer Lengths

In this part, we further generalize the proof above to the case when the edges can have

positive integer lengths. Consider an graph G = (V, E) with doubling dimension ³ and

general (positive integer) edge lengths. Define the ℓ1 analog of the implied-error function to

be:

φ1(v) :=
∑

u∈V

|f(u)− d(u, v)|.

Since we are in the full-information case, we can compute the φ1 value for each node. Observe

that φ1(g) is the ℓ1-error; we prove the following guarantee.

▶ Theorem 32. For graph exploration on arbitrary graphs with positive integer edge lengths,

the analog of Algorithm 3 that uses φ1 instead of φ, incurs a cost d(r, g) + 2O(³) ·O(φ1(g)).

The proof is almost the same as that for the unit length case. We merely replace Corol-

lary 27 and Claim 31 by the following two lemmas.

▶ Lemma 33. For any two vertices u, v, their distance d(u, v) f 1/2(φ1(u) + φ1(v)).

Proof. By definition of φ1 we have φ1(u)+φ1(v) g |f(u)|+ |f(v)−d(u, v)|+ |f(u)−d(u, v)|+
|f(v)| g 2d(u, v). ◀

▷ Claim 34. For each net point c ∈ N , we have
∑

v∈B(c) d(v, u∗) f O(2Ä).

Proof. Let w be the node among u∗, v∗ that is further from c; by the triangle inequality,

d(c, w) g R/2. By the properties of the net, d(v, c) f R/8. Again using the triangle

inequality, d(v, w) g 3R/8. Hence

φ1(w) + φ1(c) g
∑

v∈B(c)

(

|f(v)− d(v, w)|+ |f(v)− d(v, c)|
)

g |B(c)| · (3R/8− R/8).

Since both w, c ∈ SÄ, this implies that

|B(c)| ·R f 4(φ1(w) + φ1(c)) f O(2Ä).

Finally, we use that d(v, u∗) f R by our choice of R to complete the proof. ◁

Now to prove Theorem 32, we mimic the proof of Theorem 4(ii), just substituting

Lemma 33 and Claim 34 instead of Corollary 27 and Claim 31.
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6 Closing Remarks

In this paper we study a framework for graph exploration problems with predictions: as the

graph is explored, each newly observed node gives a prediction of its distance to the goal.

While graph searching is a well-explored area, and previous works have also studied models

where nodes give directional/gradient information (“which neighbors are better”), such

distance-based predictions have not been previously studied, to the best of our knowledge.

We give algorithms for exploration on trees, where the total distance traveled by the agent

has a relatively benign dependence on the number of erroneous nodes. We then show results

for the planning version of the problem, which gives us hope that our exploration results

may be extendible to broader families of graphs. This is the first, and most natural open

direction.

Another intriguing direction is to reduce the space complexity of our algorithms, which

would allow us to use them on very large implicitly defined graphs (say computation graphs

for large dynamic programming problems, say those arising from reinforcement learning

problems, or from branch-and-bound computation trees). Can we give time-space tradeoffs?

Can we extend our results to multiple agents? A more open-ended direction is to consider

other forms of quantitative hints for graph searching, beyond distance estimates (studied in

this paper) and gradient information (studied in previous works).
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A Further Discussion

A.1 ℓ0-versus-ℓ1 Error in Suggestions

Most of the paper deals with ℓ0 error: namely, we relate our costs to |E|, the number of

vertices that give incorrect predictions of their distance to the goal. Another reasonable

notion of error is the ℓ1 error:
∑

v |f(v)− d(v, g)|.
For the case of integer edge-lengths and integer predictions, both of which we assume

in this paper, it is immediate that the ℓ0-error is at most the ℓ1-error: if v is erroneous

then the former counts 1 and the latter at least 1. If we are given integer edge-lengths but

fractional predictions, we can round the predictions to the closest integer to get integer-valued

predictions f ′, and then run our algorithms on f ′. Any prediction that is incorrect in f ′

must have incurred an ℓ1-error of at least 1/2 in f . Hence all our results parameterized by

the ℓ0 error imply results parameterized with the ℓ1 error as well.

A.2 Extending to General Edge-Lengths

A natural question is whether a guarantee like the one proved in Theorem 1 can be shown

for trees with general integer weights: let us see why such a result is not possible.

1. The first observation is that the notion of error needs to be changed from ℓ0 error

something that is homogeneous in the distances, so that scaling distances by C > 0 would

change the error term by C as well. One such goal is to guarantee the total movement

to be

O(d(r, g) + some function of the ℓp error),

where ℓp-error is (
∑

v |f(v)− d(v, g)|p)1/p.

2. Consider a complete binary tree of height h, having 2h leaves. Let all edges between

internal nodes have length 0, and edges incident to leaves have length Lk 1. The goal

is at one of the leaves. Let all internal nodes have f(v) = L, and let all leaves have

prediction 2L. Hence the total ℓp error is 2L, whereas any algorithm would have to

explore half the leaves in expectation to find the goal; this would cost Θ(2h · L), which is

unbounded as h gets large.

3. The problem is that zero-length edges allow us to simulate arbitrarily large degrees.

Moreover, the same argument can be simulated by changing zero-length edges to unit-

length edges; the essential idea remains the same. and setting f(v) for each node v to be

L plus its distance to the root. Setting L g 2h gives the total ℓp error to be O(L + 2h),

whereas any algorithm would incur cost at least ≈ L · 2h.

This suggests that the right extension to general edge-lengths requires us to go beyond just

parameterizing our results with the maximum degree ∆; this motivates our study of graphs

with bounded doubling dimension in §5.

A.3 Gradient Information

Consider the information model where the agent gets to see gradient information: each edge

is imagined to be oriented towards the endpoint with lower distance to the goal. The agent

can see some noisy version of these directions, and the error is the number of edges with

incorrect directions. We now show an example where both the optimal distance and the error

are D, but any algorithm must incur cost Ω(2D). Indeed, take a complete binary tree of

depth D, with the goal at one of the leaves. Suppose the agent sees all edges being directed

towards the root. The only erroneous edges are the D edges on the root-goal path. But any

algorithm must suffer cost Ω(2D).
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