Graph Searching with Predictions

Siddhartha Banerjee &=
Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA

Vincent Cohen-Addad &

Google Research, Ziirich, Switzerland

Anupam Gupta &
Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Zhouzi Li =
ITIS, Tsinghua University, Beijing, China

—— Abstract

Consider an agent exploring an unknown graph in search of some goal state. As it walks around the
graph, it learns the nodes and their neighbors. The agent only knows where the goal state is when
it reaches it. How do we reach this goal while moving only a small distance? This problem seems
hopeless, even on trees of bounded degree, unless we give the agent some help. This setting with
“help” often arises in exploring large search spaces (e.g., huge game trees) where we assume access to
some score/quality function for each node, which we use to guide us towards the goal. In our case,
we assume the help comes in the form of distance predictions: each node v provides a prediction
f(v) of its distance to the goal vertex. Naturally if these predictions are correct, we can reach the
goal along a shortest path. What if the predictions are unreliable and some of them are erroneous?
Can we get an algorithm whose performance relates to the error of the predictions?

In this work, we consider the problem on trees and give deterministic algorithms whose total
movement cost is only O(OPT + A - ERR), where OPT is the distance from the start to the goal
vertex, A the maximum degree, and the FRR is the total number of vertices whose predictions
are erroneous. We show this guarantee is optimal. We then consider a “planning” version of the
problem where the graph and predictions are known at the beginning, so the agent can use this
global information to devise a search strategy of low cost. For this planning version, we go beyond
trees and give an algorithms which gets good performance on (weighted) graphs with bounded
doubling dimension.

2012 ACM Subject Classification Theory of computation — Online algorithms
Keywords and phrases Algorithms with predictions, network algorithms, graph search
Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.12

Funding The authors gratefully acknowledge funding received from the following sources:
Siddhartha Banerjee: NSF: ECCS-1847393, CNS-1955997, ARO: W911NF-19-0217.
Anupam Gupta: NSF awards CCF-1955785, CCF-2006953, and CCF-2224718.

Acknowledgements Part of this work was done when SB and AG were visitors to the Data-Driven

Decision Making program at the Simons Institute for Theoretical Computing in Berkeley.

1 Introduction

Consider an agent (say a robot) traversing an environment modeled as an undirected graph
G = (V,E). Tt starts off at some root vertex r, and commences looking for a goal vertex
g. However, the location of this goal is initially unknown to the agent, who gets to know
it only when it visits vertex g. So the agent starts exploring from r, visits various vertices
T =1vp,V1,- -,V -+ in G one by one, until it reaches g. The cost it incurs at timestep ¢ is

© Siddhartha Banerjee, Vincent Cohen-Addad, Anupam Gupta, and Zhouzi Li;
37 licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).

Editor: Yael Tauman Kalai; Article No. 12; pp. 12:1-12:24

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:sbanerjee@cornell.edu
https://orcid.org/0000-0002-8954-4578
mailto:cohenaddad@google.com
mailto:anupamg@cs.cmu.edu
mailto:zhouzi188763@gmail.com
https://doi.org/10.4230/LIPIcs.ITCS.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

Graph Searching with Predictions

the distance it travels to get from v;_; to v;. How can the agent minimize the total cost?
This framework is very general, capturing not only problems in robotic exploration, but also
general questions related to game tree search: how to reach a goal state with the least effort?

Since this is a question about optimization under uncertainty, we use the notion of
competitive analysis: we relate the cost incurred by the algorithm on an instance to the
optimal cost incurred in hindsight. The latter is just the distance D := d(r, g) between the
start and goal vertices. Sadly, a little thought tells us that this problem has very pessimistic
guarantees in the absence of any further constraints. For example, even if the graph is known
to be a complete binary tree and the goal is known to be at some distance D from the
root, the adversary can force any algorithm to incur an expected cost of Q(2P). Therefore
the competitiveness is unbounded as D gets large. This is why previous works in online
algorithms enforced topological constraints on the graph, such as restricting the graph to be
a path, or k paths meeting at the root, or a grid [3].

But in many cases (such as in game-tree search) we want to solve this problem for broader
classes of graphs — say for complete binary trees (which were the bad example above), or even
more general settings. The redeeming feature in these settings is that we are not searching
blindly: the nodes of the graph come with estimates of their quality, which we can use to
search effectively. What are good algorithms in such settings? What can we prove about
them?

In this paper we formalize these questions via the idea of distance predictions: each node
v gives a prediction f(v) of its distance dg (v, g) to the goal state. If these predictions are
all correct, we can just “walk downhill” — i.e., starting with vy being the start node, we can
move at each timestep ¢ to a neighbor vy of v;—; with f(v;) = f(vi—1) — 1. This reaches the
goal along a shortest path. However, getting perfect predictions seems unreasonable, so we
ask:

What if a few of the predictions are incorrect? Can we achieve an “input-sensitive” or
“smooth” or “robust” bound, where we incur a cost of d(g,)+ some function of the
prediction error?

We consider two versions of the problem:

The Exploration Problem. In this setting the graph G is initially unknown to the agent: it
only knows the vertex vg = r, its neighbors dvg, and the predictions on all these nodes.
In general, at the beginning of time ¢ > 1, it knows the vertices Vi_1 = {vg,v1,- -+ ,v:—1}
visited in the past, all their neighboring vertices dV;_1, and the predictions for all the
vertices in V;_1 UdV;_1. The agent must use this information to move to some unvisited
neighbor (which is now called v;), paying a cost of d(v¢—1, v:). It then observes the edges
incident to vy, along with the predictions for nodes newly observed.

The Planning Problem. This is a simpler version of the problem where the agent starts off
knowing the entire graph G, as well as the predictions at all its nodes. It just does not
know which node is the goal, and hence it must traverse the graph in some order.

The cost in both cases is the total distance traveled by the agent until it reaches the goal,
and the competitive ratio is the ratio of this quantity to the shortest path distance d(r, g)
from the root to the goal.

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

1.1 Our Results

Our first main result is for the (more challenging) exploration problem, for the case of trees.

» Theorem 1 (Exploration). The (deterministic) TREEX algorithm solves the graph explora-
tion problem on trees in the presence of predictions: on any (unweighted) tree with mazimum
degree A, for any constant § > 0, the algorithm incurs a cost of

d(r,g)(1+6) + O(A - |€]/9),
where £ :={v eV | f(v) # d(v,g)} is the set of vertices that give erroneous predictions.

One application of the above theorem is for the layered graph traversal problem (see §1.3
for a complete definition).

» Corollary 2 (Robustness and Consistency for the Layered Graph Traversal problem.). There ez-
ists an algorithm that achieves the following guarantees for the layered graph traversal problem
in the presence of predictions: given an instance with mazximum degree A and width k, for any
constant § > 0, the algorithm incurs an expected cost of at most min(O(k?1log A) OPT, OPT +
o(Ale])).

The proof of the above corollary is immediate: Since the input is a tree (with some
additional structure that we do not require) that is revealed online, we can use the algorithm
from Theorem 1. Hence, given an instance I of layered graph traversal (with predictions),
we can use the algorithm from Theorem 1 in combination with the [8], thereby being both
consistent and robust: if the predictions are of high quality, then our algorithm ensures that
the cost will be nearly optimal; otherwise if the predictions are useless, [8]’s algorithm gives
an upper bound in the worst case.

Moreover, we show that the guarantee obtained in Theorem 1 is the best possible, up to
constants.

» Theorem 3 (Exploration Lower Bound). Any algorithm (even randomized) for the graph
exploration problem with predictions must incur a cost of at least max(d(r, g), UA - |E])).

Proof. The lower bound of d(r, g) is immediate. For the second term, consider the setting
where the root r has A disjoint paths of length D leaving it, and the goal is guaranteed
to be at one of the leaves. Suppose we are given the “null” prediction, where each vertex
predicts f(v) = D + £(v) (where £(v) is the distance of the vertex from the root, which we
henceforth refer to as the level of the vertex). The erroneous vertices are the D vertices
along the r-g path. Since the predictions do not give any signal at all (they can be generated
by the algorithm itself), this is a problem of guessing which of the leaves is the goal, and any
algorithm, even randomized, must travel Q(A - D) = Q(A - |£|) before reaching the goal. <

Our next set of results are for the planning problem, where we know the graph and the
predictions up-front, and must come up with a strategy with this global information.

» Theorem 4 (Planning). For the planning version of the graph exploration problem, there is
an algorithm that incurs cost at most

(i) d(r,g9) + O(A - |&]) if the graph is a tree, where A is the maximal degree.

(i) d(r,g) +2°) . O(|€|?) where o is the doubling dimension of G.
Again, £ is the set of nodes with incorrect predictions.

12:3

ITCS 2023

12:4

Graph Searching with Predictions

Note that result (i) is very similar to that of Theorem 1 (for the harder exploration
problem): the differences are that we do not lose any constant in the distance d(r, g) term,
and also that the algorithm used here (for the planning problem) is simpler. Moreover, the
lower bound from Theorem 3 continues to hold in the planning setting, since the knowledge
of the graph and the predictions does not help the algorithm; hence result (i) is tight.

We do not yet know an analog of result (ii) for the exploration problem: extending
Theorem 1 to general graphs, even those with bounded doubling metrics remains a tantalizing
open problem. Moreover, we currently do not have a lower bound matching result (ii); indeed,
we conjecture that a cost of d(r,g) + 2°(®) . |€] should be achievable. We leave these as
questions for future investigation.

1.2 Our Techniques

To get some intuition for the problem, consider the case where given a tree and a guarantee
that the goal is at distance D from the start node r. Suppose each node v gives the “null”
prediction of f(v) = D + d(r,v). In case the tree is a complete binary tree, then these
predictions carry no information and we would have to essentially explore all nodes within
distance D. But note that the predictions for about half of these nodes are incorrect, so
these erroneous nodes can pay for this exploration. But now consider a “lopsided” example,
with a binary tree on one side of the root, and a path on the other (Figure 1). Suppose the
goal is at distance D along the path. In this case, only the path nodes are incorrect, and we
only have O(D + |€|) = O(D) budget for the exploration. In particular, we must explore
more aggressively along the path, and balance the exploration on both sides of the root. But
such gadgets can be anywhere in the tree, and the predictions can be far more devious than
the null-prediction, so we need to generalize this idea.

---0y

o)
r =--0
- -0

a - =0
---0

iate)
-0
o)

/1

Figure 1 The subtree rooted on r’s child a is a complete binary tree, while the subtree rooted on
b is a path to the goal g. “Null” predictions f(v) = D + d(r,v) at every v have a total error D (only
nodes on the path from r to g have errors on predictions).

We start off with a special case which we call the known-distance case. This is almost
the same as the general problem, but with the additional guarantee that the prediction of
the root is correct. Equivalently, we are given the distance D := d(r, g) of the goal vertex
from the root/starting node r. For this setting, we can get the following very sharp result:

» Theorem 5 (Known-Distance Case). The TREEX-KNOWNDIST algorithm solves the graph
exploration problem in the known-distance case, incurring a cost of at most d(r, g) + O(A|E]).

Hence in the zero-error case, or in low-error cases where |£| < D, the algorithm loses
very little compared to the optimal-in-hindsight strategy, which just walks from the root to
the goal vertex, and incurs a cost of D. This algorithm is inspired by the “lopsided” example
above: it not only balances the exploration on different subtrees, but also at multiple levels.

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

To generalize this idea from predictions, we introduce the concepts of anchor and loads (see
§2). At a high level, for each node we consider the subtrees rooted at its children, and identify
subset of nodes in each of these subtrees which are erroneous depending on which subtree
contains the goal g. We ensure that these sets have near-equal sizes, so that no matter which
of these subtrees contains the goal, one of them can pay for the others. This requires some
delicacy, since we need to ensure this property throughout the tree. The details appear in §3.

Having proved Theorem 5, we use the algorithm to then solve the problem where the
prediction for the root vertex may itself be erroneous. Given Theorem 5 and Algorithm 1,
we can reduced the problem to finding some node v such that d(v, g) is known; moreover
this v must not be very far from the start node r. The idea is conceptually simple: as
we explore the graph, if most predictions are correct we can use these predictions to find
such a v, otherwise these incorrect predictions give us more budget to continue exploring.
Implementing this idea (and particularly, doing this deterministically) requires us to figure
out how to “triangulate” with errors, which we do in §4.

Finally, we give the ideas behind the algorithms for the planning version of the problem.
The main idea is to define the implied-error function ¢(v) := [{u | f(u) # d(u,v)}|, which
measures the error if the goal is sitting at node v. Since we know all the predictions and the
tree structure in this version of the problem, and moreover ¢(g) = ||, it is natural to search
the graph greedily in increasing order of the implied-error. However, naively doing this may
induce a large movement cost, so we bucket nodes with similar implied-error together, and
then show that the total cost incurred in exploring all nodes with op(v) &~ 2 is itself close
to 2¢ (times a factor that depends on the degree or the doubling dimension). It remains an
interesting open problem to extend this algorithm to broader classes of graphs. The details
here appear in §5.

1.3 Related Work

Graph Searching. Graph searching is a fundamental problem, and there are too many
variants to comprehensively discuss: we point to the works closest to ours. Baeza-Yates,
Culberson, and Rawlins [3] considered the exploration problem without predictions on the
line (where it is also called the “cow-path” problem), on k-spiders (i.e., where k semi-infinite
lines meet at the root) and in the plane: they showed tight bounds of 9 on the deterministic
competitive ratio of the line, 1 + 2k¥/(k — 1)*~! for k-spiders, among other results. Their
lower bounds (given for “monotone-increasing strategies”) were generalized by Jaillet and
Stafford [23]; [24] point out that the results for k-spiders were obtained by Gal [18] before [3]
(see also [1]). Kao et al. [29, 28] give tight bounds for both deterministic and randomized
algorithms, even with multiple agents.

The layered graph traversal problem [42] is very closely related to our model. A tree is
revealed over time. At each timestep, some of the leaves of the current tree die, and others
have some number of children. The agent is required to sit at one of the current (living)
leaves, so if the node the agent previously sat is no longer a leaf or is dead, the agent is forced
to move. The game ends when the goal state is revealed and objective is to minimize the
total movement cost. The width k of the problem is the largest number of leaves alive at any
time (observe that we do not parameterize our algorithm with this parameter). This problem
is essentially the cow-path problem for the case of w = 2, but is substantially more difficult

for larger widths. Indeed, the deterministic bounds lie between Q(2%) [17] and O(k2%) [9].

Ramesh [44] showed that the randomized version of this problem has a competitive ratio
at least Q(k?/(logk)'*¢) for any € > 0; moreover, his O(k!3?)-competitive algorithm was
improved to a nearly-tight bound of O(k? log A) in recent exciting result by Bubeck, Coester,
and Rabani [8].

12:5

ITCS 2023

12:6

Graph Searching with Predictions

Kalyanasundaram and Pruhs [26] study the exploration problem (which they call the
searching problem) in the geometric setting of k& polygonal obstacles with bounded aspect ratio
in the plane. Some of their results extend to the mapping problem, where they must determine
the locations of all obstacles. Deng and Papadimitriou [12] study the mapping problem,
where the goal is to traverse all edges of an unknown directed graph: they give an algorithm
with cost 2|E| for Eulerian graphs (whereas OPT = |E|), and cost exp(O(dlogd))|E| for
graphs with imbalance at most d. Deng, Kameda, and Papadimitriou [11] give an algorithm
to map two-dimensional rectilinear, polygonal environments with a bounded number of
obstacles.

Kalyanasundaram and Pruhs [27] consider a different version of the mapping problem,
where the goal is to visit all vertices of an unknown graph using a tour of least cost. They
give an algorithm that is O(1)-competitive on planar graphs. Megow et al. [37] extend
their algorithm to graphs with bounded genus, and also show limitations of the algorithm
from [27].

Blum, Raghavan and Schieber [6] study the point-to-point navigation problem of finding
a minimum-length path between two known locations s and ¢ in a rectilinear environment;
the obstacles are unknown axis-parallel rectangles. Their O(y/n)-competitiveness is best
possible given the lower bound in [42]. [30] give lower bounds for randomized algorithms in
this setting.

Our work is related in spirit to graph search algorithms like A*-search which use score
functions to choose the next leaf to explore. One line of work giving provably good algorithms
is that of Goldberg and Harrelson [19] on computing shortest paths without exploring the
entire graph. Another line of work related in spirit to ours is that of Karp, Saks, and
Wigderson [31] on branch-and-bound (see also [32]).

Noisy Binary Search. A very closely related line of work is that of computing under noisy
queries [16]. In this widely-used model, the agent can query nodes: each node “points” to a
neighbor that is closer to the goal, though some of these answers may be incorrect. Some
of these works include [41, 40, 15, 10, 13, 7]. Apart from the difference in the information
model (these works imagine knowing the entire graph) and the nature of hints (“gradient”
information pointing to a better node, instead of information about the quality/score of the
node), these works often assume the errors are independent, or adversarial with bounded
noise rate. Most of these works allow random-access to nodes and seek to minimize the
number of queries instead of the distance traveled, though an exception is the work of [7].
As far as we can see, the connections between our models is only in spirit. Moreover, we
show in §A.3 that results of the kind we prove are impossible if the predictions don’t give us
distance information but instead just edge “gradients”.

Algorithms with Predictions. Our work is related to the exciting line of research on
algorithms with predictions, such as in ad-allocation [35], auction pricing [36], page mi-
gration [22], flow allocation [34], scheduling [43, 33, 39|, frequency estimation [21], speed
scaling [4], Bloom filters [38], bipartite matching and secretary problems [2, 14], and online
linear optimization [5].

2 Problem Setup and Definitions

We consider an underlying graph G = (V, E) with a known root node r and an unknown
goal node g. (For most of this paper, we consider the unweighted setting where all edge have
unit length; §5.3 and §A.2 discuss cases where edge lengths are positive integers.) Each node
has degree at most A. Let d(u,v) denote the distance between nodes u,v for any u,v € V,
and let D :=d(r, g) be the optimal distance from r to the goal node g.

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

oV :‘
e IV, ©
-0

Figure 2 The observed vertices V; U 9V; (and extended subtree T = T[V; U0V4]) at some
intermediate stage of the algorithm. Visited nodes V; are shown in red, and their un-visited
neighbors dV; in blue.

Let us formally define the problem setup. An agent initially starts at root r, and wants to
visit goal g while traversing the minimum number of edges. In each timestep ¢ € {1,2,...},
the agent moves from some node v;_1 to node v;. We denote the visited vertices at the start
of round ¢ by V;_1 (with Vo = {r}), and use 0V;_; to denote the neighboring vertices — those
not in V;_; but having at least one neighbor in V;_;. Their union V;_; U dV;_; is the set of
observed vertices at the end of time ¢t — 1. Each time ¢ the agent visits a new node v; such
that V; := Vi_1 U {v:}, and it pays the movement cost d(vi—1,v:), where vg = r. Finally,
when v; = g and the agent has reached the goal, the algorithm stops. The identity of the
goal vertex is known when — and only when — the agent visits it, and we let 7* denote this
timestep. Our aim is to design an algorithm that reaches the goal state with minimum total
movement cost:

o
Z dt_l (Ut—l, ’Ut).
t=1

Within the above setting, we consider two problems:
In the planning problem, the agent knows the graph G (though not the goal g), and in
addition, is given a prediction f(v) € Z for each v € V of its distance to the goal g; it
can then use this information to plan its search trajectory.
In the ezploration problem, the graph G and the predictions f(v) € Z are initially
unknown to the agent, and these are revealed only via exploration; in particular, upon
visiting a node for the first time, the agent becomes aware of previously unobserved nodes
in v’s neighborhood. Thus, at the end of timestep ¢, the agent knows the set of visited
vertices Vi, neighboring vertices 0V}, and the predictions f(v) for each observed vertex
v eV, UaV,.
In both cases, we define £ := {v € V | f(v) # d(g,v)} to be the set of erroneous nodes.
Extending this notation, for the exploration problem, we define £ := £ NV, as the erroneous
nodes visited by time ¢.

3 Exploring with a Known Target Distance

Recall that our algorithm for the exploration problem on trees proceeds via the known-
distance version of the problem: in addition to seeing the predictions at the various nodes as
we explore the tree, we are promised that the distance from the starting node/root r to the
goal state g is is exactly some value D, i.e., d(r,g) = D. The main result of this section is
Theorem 5, and we restate a rigorous version here.

» Theorem 6. If D = d(r,g), the algorithm TREEX-KNOWNDIST(r, D, +00) finds the goal
node g incurring a cost of at most d(r,g) + O(A|E]).

12:7

ITCS 2023

12:8

Graph Searching with Predictions

Algorithm TREEX-KNOWNDIST is stated in Algorithm 1. For better understanding of it,
we first give some key definitions.

3.1 Definitions: Anchors, Degeneracy, and Criticality

For an unweighted tree T, we define the level of node v with respect to the root r to be
L(v) := d(r,v), and so level L denotes the set of nodes v such that d(r,v) = ¢(v) = L.
Since the tree is rooted, there are clearly defined notions of parent and child, ancestor and
descendent. Each node is both an ancestor and a descendant of itself. For any node v, let
T, denote the subtree rooted at v. Extending this notation, we define the visited subtree
T' :=T[V,], and the extended subtree T = TV, UdV;], and let T} and Ti be the subtrees
of T* and T' rooted at wv.

» Definition 7 (Active and Degenerate nodes). In the exploration setting, at the end of
timestep t, a node v € V, UV, is active if T # TZ, i.e., there are observed descendants of v
(including itself) that have not been visited.

An active node v € V; UV, is degenerate at the end of timestep t if it has a unique child
node in T' that is active.

In other words, all nodes which have un-visited descendants (including those in the
frontier 9V;) are active. Active nodes are further partitioned into degenerate nodes that have
exactly one child subtree that has not been fully visited, and active nodes that have at least
two active children. See Figure 3 for an illustration.

A crucial definition for our algorithms is that of anchor nodes:

» Definition 8 (Anchor). For node u € T, define its anchor 7(u) to be its ancestor in level
a(u) == L(D + l(u) — f(u)). If the value a(u) is negative, or is not an integer, or node u
itself belongs at level smaller than a(u), we say that u has no anchor and that T(u) = L.

Figure 3 demonstrates the location of an anchor node 7(u) for given node w; it also illustrates
the following claim, which forms the main rationale behind the definition:

> Claim 9. If the prediction for some node u is correct, then its anchor 7(u) is the least
common ancestor (in terms of level £) of u and the goal g. Consequently, if a node u has no
anchor, or if its anchor does not lie on the path P* from r to g, then u € £.

For any node v € T, define its children be x;(v) for i = 1,2,... A, where A, < A
is the number of children for v. Note that the order is arbitrary but prescribed and fixed
throughout the algorithm. For any time ¢, node v, and i € [A,], define the visited portion of

the subtree rooted at the ' child as C!(v) := Ty, (-

» Definition 10 (Loads o; and o). For any time t, node v, and index i € [A,], define
o;(v) == {u € Ci(v) | 7(u) = v}].

In other words, ot(v) is the number of nodes in C!(v) that have v as their anchor. Define

ot(v) = S22 ot (v) to be the total number of nodes in T\ {v} which have v as their anchor.

» Definition 11 (Critical Node). For any time t, active and non-degenerate node v, and
index j € [A,)], let ¢j := argmin,;2;{ot(v) | xi(v) is active at time t}. Call v a critical node
with respect to j at time ¢ if it satisfies
(i) of(v) > 20} (v), namely, the number of nodes of C%(v) that have v as their anchor is at
least twice larger than the number of nodes of C’éj (v) that have v as their anchor; and
(i) 20t (v) > [Ch(v)|, namely, at least half of the nodes of Cf(v) have v as their anchor.

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

7(u) T (u) Flu) o)
. B) i
-
Active and degenerate nodes Anchor node Tllustrating Claim 9

Figure 3 The first figure from the left illustrates active and degenerate nodes. Nodes such as a
(shaded in blue) are in 9V; while the rest are visited nodes in V;. Unshaded node b is inactive (since

it has no un-visited descendant), while all other shaded nodes (blue, yellow and red) are active.

Among the active nodes, nodes such as ¢ (shaded in yellow) are non-degenerate nodes as they have
at least two active children. Finally nodes such as d (shaded in red) are degenerate as they have
exactly one active child.

The second and third figures give an example of anchor node 7(u) (in yellow) at level 5 (D—+£(u)— f(u))
for given node u (in red) at level £(u). The rightmost figure (with root r and goal g also indicated)
illustrates Claim 9, showing that when u’s prediction f(u) is correct, then its anchor is the least
common ancestor of u and goal g (since D +¢(u) — f(u) is equal to twice the distance of 7(u) from 7).

3.2 The TreeX-KnownDist Algorithm

Equipped with the definitions in §3.1, at a high level, the main idea of the algorithm is
to balance the loads (as defined in Definition 10) of all the nodes v. Note that if the goal
g € C;(v), then the nodes u € C;(v) that have v as their anchor (i.e., 7(u) = v) have
erroneous predictions; hence balancing the loads automatically balances the cost and the
budget. To balance the loads, we use the definition of a critical node (see Definition 11):
whenever a node v becomes critical, the algorithm goes back and explores another subtree of
v, thereby maintaining the balance.

More precisely, our algorithm TREEX-KNOWNDIST does the following: at each time step
t, it checks whether there is a node that is critical. If there is no such node, the algorithm
performs one more step of the current DFS, giving priority to the unexplored child of v;
with smallest prediction. On the other hand, if there is a critical node v, then this v must be
the anchor 7(v;). In this case the algorithm pauses the current DFS, returns to the anchor

7(v;) and resumes the DFS in 7(v;)’s child subtree having the smallest load (say C,(7(vy))).

This DFS may have been paused at some time ¢’ < t, and hence is continued starting at
node vy. The variable mem(v) saves the vertex that the algorithm left the subtree rooted on
v last time. For example, in this case mem(x,(7(v;))) = vy. If no such time t’ exists, the
algorithm starts a new DFS from some child of 7(v;) whose subtree has the smallest load (in
this case, mem(x4(7(v¢))) = L). The pseudocode appears as Algorithm 1.

A few observations: (a) While D = d(r, g) does not appear explicitly in the algorithm, it
is used in the definition of anchors (recall Definition 8). Even when d(r, g), the predicted
distance at the root, is not the true distance to the goal (as may happen in Section 4),
given any input D in Algorithm 1, we will still define 7(v) to be v’s ancestor at level
a(u) :== (D + L(u) — f(u)). (b) The new node v, is always on the frontier: i.e., the nodes
which are either leaves of T' or have unvisited children. Moreover, (¢) the memory value
mem(v) = L if and only if v € V4, else mem(v) is on the frontier in the subtree below v.

12:9

ITCS 2023

12:10

Graph Searching with Predictions

Algorithm 1 TrReeX-KnowNDist(r, D, B).

1.1 vg1,t0

1.2 mem(r) < r and mem(v) < L for all v # r

1.3 while v; # g and |V;| < B do

1.4 if 7(v¢) # L and 7(vy) is active and not degenerate and 7(vy) is critical w.r.t. the
index of the subtree containing vy at time t then

1.5 L q < the child index ¢ s.t. 7(v¢) is critical w.r.t. ¢

1.6 if mem(x,(7(vy))) = L then vi41 < xq(7(vy) else u < mem(x,(7(vy))
1.7 else
1.8 L U <— Ut
1.9 while vy, 1 undefined and u has no child do
1.10 w <— u’s closest active ancestor
1.11 q + argmin;{o}(w) | xi(w) active }
1.12 if mem(xq(w)) = L then v < xq(w) else u < mem(xq(w))
1.13 if vy 1 undefined then vy, 1 < u’s child with smallest prediction
1.14 foreach ancestor u of v411 do mem(u) < vi4q

1.15 t+—t+1

3.3 Analysis for the TreeX-KnownDist Algorithm

The proof of Theorem 6 proceeds in two steps. The first step is to show that the total amount
of “extra” exploration, i.e., the number of nodes that do not lie on the r-¢g path, is O(A - |£]).
Formally, let P* denote the r-g path; for the rest of this section, suppose g € Cy(v) for
all v € P*. Define the extra exploration to be the number of nodes visited in the subtrees
hanging off this path:

ExtraExp(t) := Z Z |CE(v)].

veEP* i#1

» Lemma 12 (Bounded Extra Exploration). For all times t*, ExtraBExp(t*) < 7A - |

Next, we need to control the total distance traveled, which is the second step of our
analysis:

» Lemma 13 (Bounded Cost). For all times t*,

Z d(vi_1,v¢) < d(r,v+) + 10 ExtraExp(t*) 4+ 16/ |.

<t

Using the lemmas above (setting t* to be the time 7* when we reach the goal) proves
Theorem 5. In the following sections, we now prove Lemmas 12 and 13.

3.4 Bounding the Extra Exploration

» Lemma 14. For any node v € T*, define x*(v) as follows:
(i) if g ¢ T, then zt(v) = ot(v).
(i) 9 € T\ (v}, let g € Ty, (). Define yl(v) = o4(v), 35(v) = So, (CLW)] — 01())
and ' (v) := yi(v) + y5(v).
Then Y, e 2 (v) < 2|EF].

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

Proof. Let P* be the r-g path in T. If g ¢ T, (i.e., v ¢ P*), then by Claim 9 all the nodes
with v as anchor belong to £. Else suppose g € T, (i.e., v € P*), and suppose g € Ty;(v)-
Now all nodes w in C}(v) having anchor v belong to &, since the least common ancestor of u
and g can be no higher than x;(v). This means

Do A+ D) wi) <) Huef|r(w) =} <€
veTt\ P* veEP* veTt
Finally, suppose g € T, (i.e., v € P*) and g € T (- Now for any node u € T\, () for i # j,
the least common ancestor of u and g is v. Hence nodes in T\, for 7 # j whose anchor
is not v must be wrongly predicted. Denote the set of such nodes by Y#(v). Note that

[Y4(v)| = 94 (v), and Y{(v) for each v € P* are disjoint. Hence we have

Yo u) < Y IVE) < €.

vEP* veEP*

Summing the two inequalities we get the proof. <

» Lemma 15. For any node v € T and any index i € {1,2,...,A,} such that ot(v) >
ming {0} (v) | x4(v) is active at time t}. If v; € Ty, () for some j # i then vip1 ¢ Ty, (v)-

Proof. The proof is by contradiction. Assume there is such a time ¢, and let w :=
argming{o}(v) | x4(v) is active at time t}. Since vi1 € Ty, (v, the subtree under node
xi(v) was not fully visited at time r and hence x;(v) was active. By the definition of w and
the condition on i in the lemma statement, we have of(v) > of, (v). Now Algorithm 1 will
ensure that vy either remains in 7' () or moves into Ty, (y)- |

» Lemma 16. For any node v on the r-g path P*, recall the assumption that g € Cy(v). For
any time t and any i # 1, at least one of the following statements must hold:

(i) oi(v) < 207(v).

(i) 207 (v) < [C}(v)].

(iii) of(v) = |C}(v)| = 1,01 (v) =0.

Proof. For sake of a contradiction, assume there exists ¢,4 such that at time ¢ none of the
three statements are true, and this is the first such time. If |C!(v)| = 1, then the falsity of
second statement gives of(v) > 1/2|Cf(v)| = 1/2, and so ¢}(v) = 1. Then the first statement
being false implies o (v) < 1/2, which means the third statement must hold.

Henceforth let us assume |C!(v)| > 2. Let ¢’ < ¢ be the latest time such vy € C;(v) and
7(vy) = v. Because the second statement is false, of(v) > 1/2|C!(v)| > 1, and so such a time
t’ exists.

Since ¢’ is the latest time satisfying the condition, we have of(v) < o' (v) + 1. Moreover,
the number of nodes in C!(v) whose anchor is not v does not decrease, hence |C}(v)|— ot (v) >
|CY (v)| — ot (v). Also, the number of nodes in C(v) whose anchor is v does not decrease,
hence ot (v) > o' (v).

Thus we can get
ol (v) — 20% (v) > ot (v) — 2% (V) =1 >0

’ ’ ’ (1)
207 (v) = |C (v)| = 207 (v) = |C{(v)| =120
Now if C (v) is completely visited, then obviously vy 41 ¢ Ci(v). Otherwise, C? (v)

is active. Also because g € Ci(v), hence C;(v) cannot be completely visited unless the

algorithm ends, which means v is not degenerate and C’{,(v) is still active. Furthermore,

12:11

ITCS 2023

12:12

Graph Searching with Predictions

we have inequalities (1), hence v must be critical w.r.t. the subtree containing v (because
taking ¢ = 1 we get the two inequalities for critical hold, although Jf/ (v) may not be the
smallest one). Hence at time ¢’ + 1 the algorithm will go to a node which is not in C;(v).

If v, ¢ C!(v): Note that one of the three statements holds for ¢'. If one of the first two
statements is true to ', then the same statement is also true to ¢ because of(v) = of (v),
ICt(v)| = |CY (v)| and of(v) > ot (v). Otherwise we have of(v) = of (v) = |CH(v)| =

|C¥ (v)| = 1. Then if o%(v) = 0, then the third statement is true to t; if ot (v) > 1, then the
first statement is true to t.

Otherwise v; € C!(v): By Lemma 15, there must exist a time ¢ > ¢” > ¢’ such that
ol (v) > 0! (v) (otherwise the algorithm will never enter C;(v) since C(v) is always active).
Hence by the analysis before, we have ¢! (v) > ¢! (v) > 1. Because t' is defined as the
latest time before ¢ when v, € C;(v), we have ¢! (v) = ¢! (v). Hence of(v) < of (v) +1 <

20" (v) < 201" (v) < 20% (v), which is the first statement in this lemma. <

» Lemma 17. For any node v on the r-g path P*, and any time t,
() i f(xi(v) = d(xi(v),) for alli € [A,] then 3-,,, |C{(v)| < 3Az'(v),
(ii) else 32,4 [CFH(v)] < 3Az'(v) + A.

Proof. For the first case: if f(x;(v)) = d(x;(v), g) for all 4, then f(x1(v)) is the smallest label
among all f(x;(v)) since the predictions are all correct. Hence by the algorithm, the first
node reached among {x;(v)} must be x1(v), which means the third statement in Lemma 16
cannot hold. By Lemma 16, for any i,t, of(v) < 20} (v) or 20t (v) < |C}(v)].

It ol(v) < 208(0): [CHu) — 0t(v) + ol() 2 ot(v) = ot(v)/2 1f 20%(v) < [CH)L:
|ICE(v)| — ot(v) + ot (v) > |Ct(v)] — ol (v) > ol(v). Either of them can lead to a conclusion
that

|Ci(v)] = 0} (v) + 01(v) > 77 (v)/2.

Denote zt(v) := |C!(v)| — ol (v) + o} (v). Then by o}(v) > 0 and the inequality above, we
have |C!(v)| < zt(v) + of(v) < 3zt(v).

Hence 37,1 [CH(0)] <33, i(v) = 332, (ICH(v)[=i (v)+(A=1)a (v)) < 3A(07(v)+
>iz1 |CH)| = of(v)) = 3Az"(v). Here the last equality is because of Lemma 14.

Second, consider other cases. By Lemma 16, of(v) < 20! (v) + 1 or 20t (v) < |CE(v)| + 1.

If of(v) < 207 (v) + 1: |Ci(v)] — o(v) + 01 (v) + Y2 > 01 (v) + Y2 > 07(v) /2; Tf 207 (v) <
|ICtH ()| + 10 |CL(w)| — ot (v) + ol (v) + Y2 > |CE(v)| — ot(v) + /2 > ot(v). Either of them can
lead to a conclusion that

|Ci(v)] = o (v) + 01 (v) +1/2 2 0} (v) /2.

Denote zt(v) := |C(v)| — ot(v) + o} (v), then |C!(v)| < zi(v) + ot(v) < 3zi(v) + 1.
Consequently 37, |Cf(v)| < 3°,;(3zi(v) + 1) = 3Az*(v) + A, where the last equality

is because of Lemma 14. <

We can finally bound the extra exploration.

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

Proof of Lemma 12. Divide the set of nodes on P* into two sets A, B: A contains the nodes
all of whose children are correctly labeled, and B contains the other nodes. Then

ExtraExp(t*) = Z Z |CY (v)] + Z Z CF (v)] (2)

vEA i#l vEB i#1

) . .

< > 3Ax (v) + Y (3Az" (v) + A) (3)
vEA veEB

- (0 - -
=3A > 2" (v) + AIB| < 6AIET [+ AT | =TAIEY]. (4)
veP*
The inequality (*) uses Lemma 17, and (xx) uses Lemma 14. This proves Lemma 12. <«

3.5 Bounding the Movement Cost

In this subsection, we bound the total movement cost (and not just the number of visited
nodes), thereby proving Lemma 13.

First, we partition the edge traversals made by the algorithm into downwards (from a
parent to a child) and upwards (from a child to its parent) traversals, and denote the cost

incurred by the downwards and upwards traversals until time ¢ by M}, and M}, respectively.

We start at the root and hence get MY = M! + d(r,v;); since we care about the time t* when
we reach the goal state g, we have

MY =M + MY =2ME +d(r,v). (5)

It now suffices to bound the upwards movement M! . For any edge (u,v) with v being the
parent and u the child, we further partition the upwards traversals along this edge into two
types:
(i) upward traversals when the if statement is true at time ¢ for a node vy (which lies at or
below u) and we move the traversal to another subtree of 7(vs) (which lies at or above
v), and
(ii) the unique upward traversal when we have completely visited the subtree under the
edge.

The second type of traversal happens only once, and it never happens for the edges on
the r-g path P* (since those edges contain the goal state under it, which is not visited until
the very end). Hence the second type of traversals can be charged to the extra exploration
ExtraExp(t*). It remains to now bound the first type of upwards traversals, which we refer
to as callback traversals.

We further partition the callback traversals based on the identity of the anchor which
was critical at that timestep: let M (v) denote the callback traversal cost at those times s
when v = 7(v,). Hence the total cost of callback traversals is), MY (v), and

MY =d(r,v) + 2<ExtraExp(t*) + Z MY (v)) (6)
vETt™
We now control each term of the latter sum.

» Lemma 18. For any time t and any node v € T, M!(v) < 40t(v).

12:13

ITCS 2023

12:14

Graph Searching with Predictions

Proof. For node v and index j, let S be the set of times s <t for which vs € C¢(v) and the
if condition is satisfied with 7(vs) = v (i.e, 7(vs) = v, v is active and not degenerate and v is
critical w.r.t. the subtree containing v, at time s). The cost of the upwards movement at
this time is d(vs,v) < |C5(v)| < 20;’7 (v); the latter inequality is true by criticality.

Lemma 15 ensures that we only enter C;(v) from a node outside it at some time s when
J € argming{o;(v)}. Hence, if S = {t1,...,t} then for each i there must exist a time s;
satisfying ¢; < s; < t;41 such that min {0}’ (v)} = 07" (v). Consequently,

iyl 3 i : Si — Si i
o> qum{afl t(v)} > 2111;11{0(1 (v)} =207 (v) > 20§ (v).

Hence, for each t; € S,
Z d(vg,,v) < ZQU?’ (v) < 4U§"‘ (v) < 4of(v). (7)
i=1 i=1

This is the contribution due to a single subtree T\ (,); summing over all subtrees gives a
bound of 4¢t(v), as claimed. <

Proof of Lemma 13. The equation (6) bounds the total movement cost M*" until time ¢*
in terms of D, the extra exploration, and the “callback” (upwards) traversals >, M! (v).
Lemma 18 above bounds each term M? (v) by 40" (v). To bound this last summation,

For each v ¢ P*, o'" (v) = 2t (v) by Lemma 14.

For each v € P*, recall our assumption that g € C1(v), so

Yoot =3 <ai*(v)+Zaf*(v))

veP* veP* i#1
< Z ¥ (v) + Z Z Ct (v)| = Z 2¥ (v) + ExtraBxp(t*),
veEP* vEP* i#l veEP*

where ot (v) < 2% (v) is directly given by definition in Lemma 14.
Summing over all v (using Lemma 14), and substituting into (6) gives the claim. <

4 The General Tree Exploration Algorithm

We now build on the ideas from known-distance case to give our algorithm for the case where
the true target distance d(g,r) is not known in advance, and we have to work merely with
the predictions. Recall the guarantee we want to prove:

» Theorem 1 (Exploration). The (deterministic) TREEX algorithm solves the graph explora-
tion problem on trees in the presence of predictions: on any (unweighted) tree with maximum
degree A, for any constant § > 0, the algorithm incurs a cost of

d(r,g)(1+6) + O(A - [€]/9),
where £ :={v € V| f(v) # d(v,9)} is the set of vertices that give erroneous predictions.

Note that Algorithm TREEX-KNOWNDIST requires knowing D exactly in computing
anchors; an approximation to D does not suffice. Because of this, a simple black-box use
of Algorithm TREEX-KNOWNDIST using a “guess-and-double” strategy does not seem to
work. The main idea behind our algorithm is clean: we explore increasing portions of the
tree. If most of the predictions we see have been correct, we show how to find a node whose
prediction must be correct. Now running Algorithm 1 rooted at this node can solve the
problem. On the other hand, if most of predictions that we have seen are incorrect, this
gives us enough budget to explore further.

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

4.1 Definitions

» Definition 19 (Subtree I'(u,v)). Given a tree T, node v and its neighbor u, let T'(u,v)
denote the set of nodes w such that the path from w to v contains u.

» Lemma 20 (Tree Separator). Given a tree T with mazimum degree A and |T| =n > 2A
nodes, there exists a node v and two neighbors a,b such that |T'(a,v)| > % and |T'(b,v)| > %.
Moreover, such v,a,b can be found in linear time.

Proof. Let v be a centroid of tree T, i.e., a vertex such that deleting v from T breaks it
into a forest containing subtrees of size at most n/2 [25]. Each such subtree corresponds
to some neighbor of v. Let a,b be the neighbors corresponding to the two largest subtrees.
Then |['(a,v)| > 251 > J&. Moreover the second largest subtree may contain %71”71 >

A
"f:ll > 5% when A <n/2. <

» Definition 21 (Vote y(u, c) and Dominating vote v(S,c)). Given a center c, let the vote of
any node u € T be y(u,c) := f(u) — d(u,c). For any set of nodes S, define the dominating
vote to be v(S,c) := x if v(u,c) = x for at least half of the nodes u € S. If such majority
value x does not exist, define y(S,c) := —1.

4.2 The TreeX Algorithm

Given these definitions, we can now give the algorithm. Recall that Theorem 6 says that
Algorithm 1 finds g in d(r,, g) + c1A - |€] steps, for some constant ¢; > 1. We proceed in
rounds: in round p we run Algorithm 1 and visit approximately A - (¢; + (§)° vertices, where
B > 1is a parameter to be chosen later. Now we focus on two disjoint and “centrally located”
subtrees of size & (c; + 8)” within the visited nodes. Either the majority of these nodes have
correct predictions, in which case we use their information to identify one correct node. Else
a majority of them are incorrect, in which case we have enough budget to go on to the next
round. A formal description appears in Algorithm 2.

Algorithm 2 TRrREEX(r, 5).

2.1 79 71, Do+ f(v), p< 0

2.2 while goal g not found do

2.3 B, + (a1 +B)" - (2A+1)

2.4 if B, < D,/B then

2.5 | run TREEX-KNOWNDIST(r,, D, B,)

2.6 else
2.7 | run TREEX-KNOWNDIST(r,, D), D, + 1 B,)

2.8 TP+l « tree induced by nodes that have ever been visited so far

2.9 Tpt1,Apt1, Dpy1 4 centroid for 77 and its two neighbors promised by Lemma 20
2.10 let Do pp1 = YT (@pt1,7p41),7p+1) and Dy py1 <= Y(T(bps1,7ps1)s Tpt1)
2.11 define new distance estimate D, <— max{Dg p11, Dy pt1}
2.12 move to vertex r,1q

2.13 p—p+1

12:15

ITCS 2023

12:16

Graph Searching with Predictions

4.3 Analysis of the TreeX Algorithm

» Lemma 22. If the goal is not visited before round p when B, > 4|E|(2A + 1), we have
D, =d(r,,9).

Proof. First, if |€] = 0, then the conclusion holds obviously. So next we assume |£| > 0.
The execution of Algorithm 1 in round p — 1 visits at least B,_1 = (c¢; + 8)P~Y - (2A + 1)
distinct nodes. Using the assumption on B, we have

TP > 41€| - (2A + 1) > 4A|E] > 2A.

Lemma 20 now implies that both the subtrees I'(a,,r,) and I'(b,,7,) contain more than
7% |T*| > 2|€| nodes. Since at most |£| nodes are erroneous, more than half of the nodes in
each of I'(a,,r,) and T'(b,,7,) have correct predictions.

Finally, observe that if g & I'(a,,7,), then for any correct node x in I'(a,,r,) we have
f(z) =d(z,g9) = d(x,r,) + d(r,, g), and hence its vote v(z,r,) = d(r,, g). Since a majority
of nodes in I'(a,, r,) are correct, we get

Da,p = V(F(apvrp)’ rﬂ) = d(’f’p,g). (8)

On the other hand, if g € I'(a,,r,), then for any correct node z in I'(a,,7,) we have
flx) =d(z,g9) < d(z,a,) + d(ap, g) < d(x,r,) + d(r,,g). Thus its vote, and hence the vote
of a strict majority of nodes in the subtree I'(a,, r,) have

Da,p < d(?”p,g). (9)

If no value is in a strict majority, recall that we define D, , = —1, which also satisfies (9).
The same arguments hold for the subtree I'(b,,r,) as well. Since the goal g belongs to at
most one of these subtrees, we have that D, = max(D, , Dy) = d(r), g), as claimed. <«

» Lemma 23. For any round p, d(r,,v) < O(B,). Moreover, for any round p such that
B, > 428 + 1), d(rp,1) < O(B,1) + O(BIE]).

Proof. Since r, is at distance at most (¢1 + ¢3)B,—1 = B, from 7,_1, an inductive argument
shows that its distance from ro = r is at most (By +---+ B,) = O(B,).

Moreover, when B, > 4|£|(2A + 1), we have d(r,,9) = D, by Lemma 22. Hence if
B, > D,/f, the algorithm finds the goal in this round by Theorem 6. Therefore, for any
rounds p when B, > 4|E|(2A + 1) except the last round, the number of nodes visited by
Algorithm 1 is at most B,, hence we have d(r,41,7) < d(r,,r) + B,. We denote p’ to be the
first round p’ such that B, > 4|€|(2A 4 1). Thus by induction we have

p—1
d(rp,m) < Z B; + d(TpUT) < O(Bpfl) +O(By) <O(By-1) + O(BIE]A). <

i=p’

Proof of Theorem 1. Firstly, for the rounds p when B, < 4|£|(2A + 1): in each round,
Algorithm 1 at most visits (¢1 + 5)B, = Bp41 nodes, the cost incurred is at most 198,41,
by Lemma 13. Moreover, the distance from the ending node to r,41 is a further O(B,41) by
Lemma 23. Therefore, since the bounds B, increase geometrically, the cost summed over all
rounds until round p is O(B,41) = O(B|€|A).

Secondly, for any rounds p when B, > 4|€|(2A + 1) except the last round, by Lemma 22
and Theorem 6, the number of nodes visited by Algorithm 1 is at most B, (the reasoning
is the same as that in Lemma 23). Hence the cost incurred is at most 19B,. Moreover, by
Lemma 23 the distance from the ending node to r,41 is at most O(B,) + O(BA|E|), which
means the total cost in round p is at most O(B,) + O(BA|E]).

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

Moreover, if we denote round p’ to be the first round such that B, > 4|£|(2A + 1), then
we have, for any round p > p’, B, > SA|E|. Hence the cost in round p is O(B,).

Finally, consider the last round p*. We only need to consider the case when B,- >
4|€](2A + 1), otherwise the cost has been included in the first case. By Theorem 6, the cost
incurred in this round is at most D« + c1A|E] < d(r, g) + d(rp-,7) + c1A|€]. So summing
the bounds above, the total cost is at most

p*—1
O(BAIE]) + O(By) + OBAIE) + > O(Bi) +d(r,g) +d(ry-,7) + c1AE]
i=p’+1

< d(r,g) + O(By-—1) + O(BAIE|) < d(r. 9) + O(d(r, g)/B) + O(BAIE])
Here the final inequality uses that

Bye_1 < Dpe—1/B < (d(r,9) + O(BBy+—1))/B < (d(r,9) + O(Bp-—1))/B.

Setting 8 = O(1/0) gives the proof. <

5 The Planning Problem

In this section we consider the planning version of the problem when the entire graph G (with
unit edge lengths, except for §5.3), the starting node r, and the entire prediction function
f:V — Z are given up-front. The agent can use this information to plan its exploration
of the graph. We propose an algorithm for this version and then prove the cost bound for
trees, and then for a graph with bounded doubling dimension. We begin by defining the
implied-error function p(v), which gives the total error if the goal is at node v.

» Definition 24 (Implied-error). The implied-error function ¢ : V. — Z maps each node
veV topw):={ueV|du,v)# f(u)}|, which is the £y error if the goal were at v.

The search algorithm for this planning version is particularly simple: we visit the nodes in
rounds, where round p visits nodes with implied-error ¢ value at most ~ 2” in the cheapest
possible way. The challenge is to show that the total cost incurred until reaching the goal is
small. Observe that |E] = ¢(g), so if this value is at most 2°, we terminate in round p.

Algorithm 3 FuLLINFOX.

31 p+0,S 1+ 0, r_1+7r

3.2 while g not found do

3.3 S, {veT|pw) <20} \ (UZ1,S)
3.4 | if S, # 0 then

3.5 C) < min-length Steiner Tree on S,

3.6 go to an arbitrary node r, in S,

3.7 visit all nodes in C, using an Euler tour of cost at most 2|C,|, and return to r,
3.8 else

3.9 L Ty 4 Tp—1

310 | pp+1

12:17

ITCS 2023

12:18

Graph Searching with Predictions

5.1 Analysis

Recall our main claim for the planning algorithm:

» Theorem 4 (Planning). For the planning version of the graph exploration problem, there is
an algorithm that incurs cost at most

(i) d(r,g) + O(A - |&]) if the graph is a tree, where A is the mazimal degree.

(i) d(r,g) + 290 - O(|€|?) where a is the doubling dimension of G.
Again, € is the set of nodes with incorrect predictions.

The proof relies on the fact that Algorithm 3 visits a node in S, only after visiting all
nodes in Us<,S, and not finding the goal g; this serves a proof that |£] = ¢(g) > 2°. The
proof below shows that (a) the cost of the tour of C), is bounded and (b) the total cost of
each transition is small. Putting these claims together then proves Theorem 4. We start
with a definition.

» Definition 25 (Midpoint Set). Given a set of nodes U, define its midpoint set M(U) to be
the set of points w such that the distance from w to all points in U is equal.

» Lemma 26 (p-Bound Lemma). For any two sets of nodes S,U C G, we have

> o) =[S\ M(U)).

velU

Proof. If node w € S does not lie in M(U), then there are two nodes u,v € U for which
d(u,w) # d(v,w). This means f(w) cannot equal both of them, and hence contributes to at
least one of p(u) or ¢(v). <

» Corollary 27. For any two nodes u,v € G, we have d(u,v) < ¢(u) + ¢(v).

Proof. Apply Lemma 26 for set U = {u,v} and S being a (shortest) path between them
(which includes both u,v). All edges have unit lengths so |S| = d(u,v) + 1; moreover,
IM(U)NS|<1. <

5.1.1 Analysis for Trees (Theorem 4(i))
» Lemma 28 (Small Steiner Tree). If p = 0 then |C,| =1 else |C,| < O(A - 2°).

Proof. If p = 0, then S, contains all nodes with ¢(v) = 0; there can be only one such
node. Else if |S,| < 1 then |C,| < 1 < 27, so assume that |S,| > 1 and let uq,up =
arg max, yes,{d(u,v)} be a farthest pair of nodes in S,. Consider path p from u; to us:
if all nodes w € p have d(w,u1) # d(w,uz), then the midpoint set |M ({u1,us2})] = 0, so
Lemma 26 says |C)| < ¢(u1) +¢(ug) < 2 x 2 = 201 giving the proof. Hence, let’s consider
the case where there exists w € p with d(w,u1) = d(w, ug).

Let w’s neighbors in C), be qi,...,q; for some k < A. If we delete w and its incident
edges, let C,; be the subtree of C, containing ¢;; suppose that u; € C,1 and uy € C, 5.
Choose any arbitrary vertex u; € (C,;NS,); such a vertex exists because C, is a min-length
Steiner tree connecting S,. Let U := {uq,...,ux}.

Consider any node z # w in C,: this means z € C, ; for some j. Choose i € {1,2}
such that ¢ # j. By the tree properties, d(z,u;) = d(z,w) + d(w,u;). Moreover, we have
d(ui, us—;) > d(uj,ua—;) by our choice of {u1,uz}, so d(w,u;) > d(w, u;). This means

d(z,u;) = d(z,w) + d(w,u;) > d(z,w) + d(w,u;) = d(z, q;) + d(uj, q;) + 2 > d(z, u;),

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

which means z ¢ M(U). In summary, M(U) = {w} or [M(U)| = 0, so applying Lemma 26
in either case gives
k

Col <10\ MUY+ 1< Y plu) + 1< A- (24 1), 4
=1

» Lemma 29 (Small Cost for Transitions). Consider the first round po such that r,, # r, then
d(r,mp,) < d(r,g) + |E] + 2701 g0y For each subsequent round p > po, d(rp,—1,r,) < 20T

Proof. If the first transition happens in round pg, its cost is
d(r,7pe) < d(r,g) + d(g,mp,) < d(r,9) +0(9) +0(rp,) < d(r,9) + [E] + 271 (p>0),

where we used Corollary 27 for the second inequality. For all other transitions, Corollary 27
again gives d(r,_1,7,) < o(rp—1) + ¢(r,) <2071+ 20 < 20T <

Proof of Theorem 4(i). Suppose g belongs to S,, then |£] > 2771 .1,.,. But now the cost
over all the transitions is at most d(r, g) + |&] + O(2”) - 1,50 by summing the results of
Lemma 29. The cost of the Euler tours are at most >, 2(|Cs| — 1) by Lemma 28, which
gives at most O(A - 27) - 1,50. Combining these proves the theorem. <

5.2 Analysis for Bounded Doubling Dimension (Theorem 4(ii))

For a graph G = (V, E) with doubling dimension «, and unit-length edges, we consider
running Algorithm 3, as for the tree case. We merely replace Lemma 28 by the following
lemma, and the rest of the proof is the same as the proof of the tree case:

Figure 4 Let u”,v” be the diameter of the set S, (i.e, u™,v* = argmax, ,¢g, d(u,v)). cis any
node in N and B(c) is its neighbor. We show in Claim 31 that the size of B(c) is O(2°).

» Lemma 30. The total length of the tree C, is at most 20(@) . 92p,

Proof. If |S,| < 1, then |C,| < 1. Hence next we assume that |S,| > 2. Define R :=
maxy ves, d(u,v), and let u*,v* € S, be some points at mutual distance R. Let N be an
R/8-net of S,. (An e-net N for a set S satisfies the properties (a) d(z,y) > € for all z,y € N,
and (b) for all s € S there exists © € N such that d(xz, s) < e.) Since the metric has doubling
dimension «, it follows that |N| < (RL/S)O(Q) = 209(2) [20]. Let each point in S, choose a
closest net point (breaking ties arbitrarily), and let B(c) C S, be the points that chose ¢ € N
as their closest net point (see Figure 4 for a sketch).

> Claim 31. For each net point ¢ € N, we have |B(c)| < O(27).

12:19

ITCS 2023

12:20

Graph Searching with Predictions

Proof. Because d(v*,c)+d(u*, c) > d(u*,v*) = R, hence without loss of generality we assume
d(v*,¢) > R/2. For any point w € B(c), d(w,v*) > d(v*,¢) —d(c,w) > R/2— R/8 > R/8 >
d(w,c). Hence w is not in M ({c,v*}). Hence by Lemma 26,

201 > o(c) + (") =[S, \ M({v”, c})| > |B(c)]. <

There are 2°(%) net points, so 1S,] < 20(2) . 27 Finally, Corollary 27 holds for general
unit-edge-length graphs, so the cost of connecting any two nodes in S, is at most 27, and
therefore |C,| < 20(@) . 22¢, <

Using Lemma 30 instead of Lemma 28 in the proof of Theorem 4(i) gives the claimed
bound of 2°0(®) . |£]2) and completes the proof of Theorem 4(ii).
5.3 Analysis for Bounded Doubling Dimension: Integer Lengths

In this part, we further generalize the proof above to the case when the edges can have
positive integer lengths. Consider an graph G = (V, E) with doubling dimension « and
general (positive integer) edge lengths. Define the ¢; analog of the implied-error function to
be:

p1(v) =Y |f(w) = d(u,v)].

ueV

Since we are in the full-information case, we can compute the ¢ value for each node. Observe
that ¢1(g) is the ¢1-error; we prove the following guarantee.

» Theorem 32. For graph exploration on arbitrary graphs with positive integer edge lengths,
the analog of Algorithm 3 that uses @1 instead of p, incurs a cost d(r,g) + 29 - O(p1(g)).

The proof is almost the same as that for the unit length case. We merely replace Corol-
lary 27 and Claim 31 by the following two lemmas.

» Lemma 33. For any two vertices u,v, their distance d(u,v) < 1/2(p1(u) + ¢1(v)).

Proof. By definition of ¢ we have 1 (u)+p1(v) > |f(u)|+]f(v) —d(u,v)|+| f(u) —d(u, v)|+
|f(0)| > 2d(u,v). <

> Claim 34. For each net point ¢ € N, we have }_ g d(v,u") < O(2°).

Proof. Let w be the node among u*,v* that is further from ¢; by the triangle inequality,
d(c,w) > R/2. By the properties of the net, d(v,c) < R/8. Again using the triangle
inequality, d(v,w) > 3R/8. Hence

pr(w) +o1(e) = Y (If(v) = d(v,w)| + |f(0) = d(v, o)) = |B(e)] - (38fs — Fs).

vEB(c)
Since both w, c € §),, this implies that
[B(c)| - B < 4(p1(w) + ¢1(c)) < O(2°).
Finally, we use that d(v,u*) < R by our choice of R to complete the proof. <

Now to prove Theorem 32, we mimic the proof of Theorem 4(ii), just substituting
Lemma 33 and Claim 34 instead of Corollary 27 and Claim 31.

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

6 Closing Remarks

In this paper we study a framework for graph exploration problems with predictions: as the
graph is explored, each newly observed node gives a prediction of its distance to the goal.
While graph searching is a well-explored area, and previous works have also studied models
where nodes give directional/gradient information (“which neighbors are better”), such
distance-based predictions have not been previously studied, to the best of our knowledge.
We give algorithms for exploration on trees, where the total distance traveled by the agent
has a relatively benign dependence on the number of erroneous nodes. We then show results
for the planning version of the problem, which gives us hope that our exploration results
may be extendible to broader families of graphs. This is the first, and most natural open
direction.

Another intriguing direction is to reduce the space complexity of our algorithms, which
would allow us to use them on very large implicitly defined graphs (say computation graphs
for large dynamic programming problems, say those arising from reinforcement learning
problems,; or from branch-and-bound computation trees). Can we give time-space tradeoffs?
Can we extend our results to multiple agents? A more open-ended direction is to consider
other forms of quantitative hints for graph searching, beyond distance estimates (studied in
this paper) and gradient information (studied in previous works).

—— References

1 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, volume 55 of
International series in operations research and management science. Kluwer, 2003.

2 Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary
and online matching problems with machine learned advice. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, ed-
itors, NeurIPS 2020, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
5a378£8490c8d6af8647a753812f6e31-Abstract.html.

3 R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins. Searching in the plane. Information
and Computation, 106(2):234-252, 1993. doi:10.1006/inco.1993.1054.

4 TEtienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learn-
ing augmented energy minimization via speed scaling. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, ed-
itors, NeurIPS 2020, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
af94ed0d6£5acc95£97170e3685f16c0-Abstract.html.

5 Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning with
imperfect hints. In International Conference on Machine Learning, pages 822-831. PMLR,
2020.

6 Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar geometric
terrain. SIAM J. Comput., 26(1):110-137, 1997. doi:10.1137/S0097539791194931.

7 Lucas Boczkowski, Uriel Feige, Amos Korman, and Yoav Rodeh. Navigating in trees with
permanently noisy advice. ACM Trans. Algorithms, 17(2):15:1-15:27, 2021. doi:10.1145/
3448305.

8 Sébastien Bubeck, Christian Coester, and Yuval Rabani. Shortest paths without a map, but
with an entropic regularizer, 2022. doi:10.48550/ARXIV.2202.04551.

9 William R. Burley. Traversing layered graphs using the work function algorithm. J. Algorithms,
20(3):479-511, 1996. doi:10.1006/jagm.1996.0024.

10 Argyrios Deligkas, George B. Mertzios, and Paul G. Spirakis. Binary search in graphs revisited.
Algorithmica, 81(5):1757-1780, 2019. doi:10.1007/s00453-018-0501-y.

12:21

ITCS 2023

https://proceedings.neurips.cc/paper/2020/hash/5a378f8490c8d6af8647a753812f6e31-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5a378f8490c8d6af8647a753812f6e31-Abstract.html
https://doi.org/10.1006/inco.1993.1054
https://proceedings.neurips.cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html
https://doi.org/10.1137/S0097539791194931
https://doi.org/10.1145/3448305
https://doi.org/10.1145/3448305
https://doi.org/10.48550/ARXIV.2202.04551
https://doi.org/10.1006/jagm.1996.0024
https://doi.org/10.1007/s00453-018-0501-y

12:22

Graph Searching with Predictions

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Xiaotie Deng, Tiko Kameda, and Christos H. Papadimitriou. How to learn an unknown
environment I: the rectilinear case. J. ACM, 45(2):215-245, 1998. doi:10.1145/274787.
274788.

Xiaotie Deng and Christos H Papadimitriou. Exploring an unknown graph. Journal of Graph
Theory, 32(3):265-297, 1999.

Dariusz Dereniowski, Stefan Tiegel, Przemyslaw Uznanski, and Daniel Wolleb-Graf. A
framework for searching in graphs in the presence of errors. In Jeremy T. Fineman and Michael
Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January
8-9, 2019, San Diego, CA, USA, volume 69 of OASIcs, pages 4:1-4:17. Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2019. doi:10.4230/0ASIcs.S0SA.2019.4.

Paul Diitting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with
advice. In Péter Bir6, Shuchi Chawla, and Federico Echenique, editors, EC ’21: The 22nd
ACM Conference on Economics and Computation, Budapest, Hungary, July 18-23, 2021, pages
409-429. ACM, 2021. doi:10.1145/3465456.3467623.

Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabilistic
binary search in graphs. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 519-532. ACM, 2016. doi:10.1145/2897518.2897656.
Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM J. Comput., 23(5):1001-1018, 1994. doi:10.1137/S0097539791195877.

Amos Fiat, Dean P. Foster, Howard J. Karloff, Yuval Rabani, Yiftach Ravid, and Sundar
Vishwanathan. Competitive algorithms for layered graph traversal. SIAM J. Comput.,
28(2):447-462, 1998. doi:10.1137/S0097539795279943.

Shmuel Gal. Search games, volume 149 of Mathematics in Science and Engineering. Academic
Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980.

Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A search meets
graph theory. In Proceedings of the Sixzteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages
156-165. STAM, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070455.
Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals,
and low-distortion embeddings. In 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 534-543. IEEE
Computer Society, 2003. doi:10.1109/SFCS.2003.1238226.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In International Conference on Learning Representations, 2019.

Piotr Indyk, Frederik Mallmann-Trenn, Slobodan Mitrovi¢, and Ronitt Rubinfeld. Online
page migration with ml advice. arXiv preprint arXiv:2006.05028, 2020.

Patrick Jaillet and Matthew Stafford. Online searching. Oper. Res., 49(4):501-515, 2001.
doi:10.1287/opre.49.4.501.11227.

Patrick Jaillet, Matthew Stafford, and Shmuel Gal. Note: Online searching / on the optimality
of the geometric sequences for the m ray search online searching. Oper. Res., 50(4):744-745,
2002.

Camille Jordan. Sur les assemblages de lignes. J. Reine Angew. Math., 70:185-190, 1869.
doi:10.1515/cr11.1869.70.185.

Bala Kalyanasundaram and Kirk Pruhs. A competitive analysis of algorithms for searching
unknown scenes. Computational Geometry, 3(3):139-155, 1993. doi:10.1016/0925-7721(93)
90032-2.

Bala Kalyanasundaram and Kirk R Pruhs. Constructing competitive tours from local informa-
tion. Theoretical Computer Science, 130(1):125-138, 1994.

Ming-Yang Kao, Yuan Ma, Michael Sipser, and Yiqun Lisa Yin. Optimal constructions of
hybrid algorithms. J. Algorithms, 29(1):142-164, 1998. doi:10.1006/jagm.1998.0959.

https://doi.org/10.1145/274787.274788
https://doi.org/10.1145/274787.274788
https://doi.org/10.4230/OASIcs.SOSA.2019.4
https://doi.org/10.1145/3465456.3467623
https://doi.org/10.1145/2897518.2897656
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1137/S0097539795279943
http://dl.acm.org/citation.cfm?id=1070432.1070455
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1287/opre.49.4.501.11227
https://doi.org/10.1515/crll.1869.70.185
https://doi.org/10.1016/0925-7721(93)90032-2
https://doi.org/10.1016/0925-7721(93)90032-2
https://doi.org/10.1006/jagm.1998.0959

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Ming-Yang Kao, John H. Reif, and Stephen R. Tate. Searching in an unknown environment:
An optimal randomized algorithm for the cow-path problem. Inf. Comput., 131(1):63-79, 1996.
doi:10.1006/inco.1996.0092.

Howard J. Karloff, Yuval Rabani, and Yiftach Ravid. Lower bounds for randomized k-server
and motion-planning algorithms. SIAM J. Comput., 23(2):293-312, 1994. doi:10.1137/
S0097539792224838.

Richard M. Karp, Michael E. Saks, and Avi Wigderson. On a search problem related to
branch-and-bound procedures. In 27th Annual Symposium on Foundations of Computer
Science, Toronto, Canada, 27-29 October 1986, pages 19-28. IEEE Computer Society, 1986.
doi:10.1109/SFCS.1986.34.

Richard M. Karp and Yanjun Zhang. Randomized parallel algorithms for backtrack search and
branch-and-bound computation. J. ACM, 40(3):765-789, 1993. doi:10.1145/174130.174145.

Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1859-1877. SIAM, 2020.

Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and instance-
robust predictions for online matching, flows and load balancing, 2020. arXiv:2011.11743.

Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Allocating online advertisement
space with unreliable estimates. In Jeffrey K. MacKie-Mason, David C. Parkes, and Paul
Resnick, editors, Proceedings 8th ACM Conference on Electronic Commerce (EC-2007), San

Diego, California, USA, June 11-15, 2007, pages 288-294. ACM, 2007. doi:10.1145/1250910.

1250952.

Andrés Munoz Medina and Sergei Vassilvitskii. Revenue optimization with approximate
bid predictions. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 1856—1864, 2017.

Nicole Megow, Kurt Mehlhorn, and Pascal Schweitzer. Online graph exploration: New
results on old and new algorithms. Theoretical Computer Science, 463:62-72, 2012. doi:
10.1016/j.tcs.2012.06.034.

Michael Mitzenmacher. A model for learned bloom filters, and optimizing by sandwiching. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pages 462-471, 2018.

Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum fir Informatik, 2020.

Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching strategy
in linear time. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January
20-22, 2008, pages 1096-1105. STAM, 2008. URL: http://dl.acm.org/citation.cfm?id=
1347082.1347202.

Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and
forest-like partial orders. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
379-388. IEEE Computer Society, 2006. doi:10.1109/F0CS.2006.32.

Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a map. Theoretical
Computer Science, 84(1):127-150, 1991. doi:10.1016/0304-3975(91)90263-2.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML
predictions. In Advances in Neural Information Processing Systems, pages 9661-9670, 2018.
Hariharan Ramesh. On traversing layered graphs on-line. J. Algorithms, 18(3):480-512, 1995.
doi:10.1006/jagm.1995.1019.

12:23

ITCS 2023

https://doi.org/10.1006/inco.1996.0092
https://doi.org/10.1137/S0097539792224838
https://doi.org/10.1137/S0097539792224838
https://doi.org/10.1109/SFCS.1986.34
https://doi.org/10.1145/174130.174145
https://arxiv.org/abs/2011.11743
https://doi.org/10.1145/1250910.1250952
https://doi.org/10.1145/1250910.1250952
https://doi.org/10.1016/j.tcs.2012.06.034
https://doi.org/10.1016/j.tcs.2012.06.034
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dl.acm.org/citation.cfm?id=1347082.1347202
https://doi.org/10.1109/FOCS.2006.32
https://doi.org/10.1016/0304-3975(91)90263-2
https://doi.org/10.1006/jagm.1995.1019

12:24

Graph Searching with Predictions

A Further Discussion

A.1 ¢y-versus-£, Error in Suggestions

Most of the paper deals with £y error: namely, we relate our costs to |€|, the number of
vertices that give incorrect predictions of their distance to the goal. Another reasonable
notion of error is the ¢, error:) |f(v) —d(v,g)|.

For the case of integer edge-lengths and integer predictions, both of which we assume
in this paper, it is immediate that the fp-error is at most the ¢i-error: if v is erroneous
then the former counts 1 and the latter at least 1. If we are given integer edge-lengths but
fractional predictions, we can round the predictions to the closest integer to get integer-valued
predictions f’, and then run our algorithms on f’. Any prediction that is incorrect in f’
must have incurred an ¢;-error of at least 1/2 in f. Hence all our results parameterized by
the ¢y error imply results parameterized with the ¢, error as well.

A.2 Extending to General Edge-Lengths

A natural question is whether a guarantee like the one proved in Theorem 1 can be shown

for trees with general integer weights: let us see why such a result is not possible.

1. The first observation is that the notion of error needs to be changed from ¢, error
something that is homogeneous in the distances, so that scaling distances by C' > 0 would
change the error term by C as well. One such goal is to guarantee the total movement
to be

O(d(r, g) + some function of the £, error),

where £,-error is (3, |f(v) — d(v, g)[P)'/P.

2. Consider a complete binary tree of height h, having 2" leaves. Let all edges between
internal nodes have length 0, and edges incident to leaves have length L > 1. The goal
is at one of the leaves. Let all internal nodes have f(v) = L, and let all leaves have
prediction 2L. Hence the total £, error is 2L, whereas any algorithm would have to
explore half the leaves in expectation to find the goal; this would cost ©(2" - L), which is
unbounded as h gets large.

3. The problem is that zero-length edges allow us to simulate arbitrarily large degrees.
Moreover, the same argument can be simulated by changing zero-length edges to unit-
length edges; the essential idea remains the same. and setting f(v) for each node v to be
L plus its distance to the root. Setting L > 2" gives the total £, error to be O(L + 2"),
whereas any algorithm would incur cost at least ~ L - 2",

This suggests that the right extension to general edge-lengths requires us to go beyond just

parameterizing our results with the maximum degree A; this motivates our study of graphs

with bounded doubling dimension in §5.

A.3 Gradient Information

Consider the information model where the agent gets to see gradient information: each edge
is imagined to be oriented towards the endpoint with lower distance to the goal. The agent
can see some noisy version of these directions, and the error is the number of edges with
incorrect directions. We now show an example where both the optimal distance and the error
are D, but any algorithm must incur cost Q(2%). Indeed, take a complete binary tree of
depth D, with the goal at one of the leaves. Suppose the agent sees all edges being directed
towards the root. The only erroneous edges are the D edges on the root-goal path. But any
algorithm must suffer cost Q(2P).

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Problem Setup and Definitions
	3 Exploring with a Known Target Distance
	3.1 Definitions: Anchors, Degeneracy, and Criticality
	3.2 The TreeX-KnownDist Algorithm
	3.3 Analysis for the TreeX-KnownDist Algorithm
	3.4 Bounding the Extra Exploration
	3.5 Bounding the Movement Cost

	4 The General Tree Exploration Algorithm
	4.1 Definitions
	4.2 The TreeX Algorithm
	4.3 Analysis of the TreeX Algorithm

	5 The Planning Problem
	5.1 Analysis
	5.1.1 Analysis for Trees (Theorem 4(i))

	5.2 Analysis for Bounded Doubling Dimension (Theorem 4(ii))
	5.3 Analysis for Bounded Doubling Dimension: Integer Lengths

	6 Closing Remarks
	A Further Discussion
	A.1 l_0-versus-l_1 Error in Suggestions
	A.2 Extending to General Edge-Lengths
	A.3 Gradient Information

