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ABSTRACT: Doping carbon electrodes with heteroatoms such as nitrogen and oxygen 10° F=—=prstme Carbonprecieton
proves effective in improving the performance of aqueous supercapacitors. However, the
optimal conditions of N/O doping remain elusive due to the complexity of the porous
structure and electrochemical behavior. While physics-based models face challenges in
capturing the pseudocapacitance effects, direct empirical correlation of the capacitance
with machine-learning (ML) methods may lead to erroneous predictions. In this work,
we introduce a Gaussian process regression (GPR) method using a physical model as
prior knowledge to limit the coupling effects of different input parameters. The physics-
informed GPR proves effective in characterizing the capacitive behavior of N/O- ¥
codoped carbon electrodes in both 6 M KOH and 1 M H,SO, aqueous solutions. Our o L
machine-learning model suggests that the performance of aqueous supercapacitors can
be maximized under acidic conditions by enhancing both the mesopore surface area and

the O/N doping ratio of carbon electrodes.

1. INTRODUCTION

Supercapacitors have attracted great interest over the past few
decades for their applications in rapid energy storage devices,
such as regenerative braking systems in vehicles and power
levelers for electronics. In comparison with alternative means
of energy storage, supercapacitors have the advantages of high-
power density and cycling stability, allowing them to bridge the
gap between dielectric capacitors and electrochemical batteries
in terms of energy density and power delivery. The charging
mechanisms of supercapacitors are mostly associated with
electric double layer (EDL) capacitance and/or electro-
chemical pseudocapacitance.’ The EDL capacitance is
associated with electrostatic polarization at the electrolyte—
electrode interface. Electrochemical pseudocapacitance arises
from reversible faradaic redox reactions or the intercalation of
ionic species into the micropores of electrodes.”™* For
supercapacitors made of carbon electrodes and aqueous
electrolytes, both pseudocapacitance and EDL capacitance
contribute to energy storage, making them a popular choice for
practical applications.

Diverse electrode materials, including porous carbons, metal
oxides/nitrides/carbides, and conductive polymers, have been
investigated for optimizing the energy and power density of
aqueous supercapacitors.” ° From a practical perspective,
porous carbons remain a preferred choice due to their high
porosity, large specific surface area, good conductivity, long-
term cycle stability, and low production cost.” Given that the
capacitance of a carbon electrode primarily arises from the
EDL capacitance, we can enhance the device performance by
increasing the surface area available for the adsorption of ionic
species. However, the specific capacitance reaches a plateau
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when the electrode surface area is larger than about 1500 m?/ 47
g,/ suggesting that the EDL capacitance is also influenced by 4s
the pore structures. While micropores (pore diameter d < 2 49
nm) usually yield a higher specific surface area than both so
mesopores (2 nm < d < 50 nm) and macropores (d > S0 nm), s1
increasing the micropore surface area would also reduce the s2
electrical conductivity, interfere with ion adsorption in s3
neighboring pores, and restrict ion accessibility, making s4
micropores less significant in contributing to the EDL ss
capacitance.g_11 Inconsistent experimental results were s¢
reported when the pore sizes were comparable to those of s7
the ionic species, yet theoretical investigations are not fully ss
conclusive due to the complexities in the characterization of so
the pore structure and surface conditions of electrode 6o
materials.*~'* 61

Although ultrahigh EDL capacitance, up to 348 F/g, has e
been reported for aqueous supercapacitors,’> the specific 63
capacitance can be further improved by introducing heter- 64
oatoms into pristine carbon electrodes. Common strategies s
include doping porous carbon with electroactive elements such 66
as O, N, S, and P, using carbide-derived carbon with transition- 67
metal additives, and coating the electrode surface with metal 63

1216 .
oxides.” ® The further enhancement of supercapacitor 69
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Table 1. Comparison of Common ML Methods for Predicting Supercapacitor Behavior

ML Algorithm

Artificial neural network (ANN,
including multilayer perceptron
(MLP))

Support vector machine (SVM) and

Decision trees (including random
forest (RF), regression trees (RT),

outlier, easy to parallelize
etc.)

Generalized linear regression (GLM)
K-Nearest neighbor (KNN)

Simple to implement, nonparametric

Gaussian process (GP)

estimation
Gradient boosting (such as XGBoost)

Advantages

Effective nonlinear modeling, good generalizability as universal functional
estimation, implicit feature selection

Effective in high dimensions, robust to outliers,

good performance on imbalanced data, not prone to overfitting, low impact of

Easy to understand and use, high interpretability

High accuracy, high learning efficiency, reliable uncertainty quantification,
effective in high dimensions, good generalizability as universal functional

Usually used with decision trees, fast, easy to parallelize

Disadvantages

Prone to overfitting, hard to tune, a large
number of hyperparameters

Slow, tricky in kernel selection

High computational cost, low
interpretability, low efficiency in
nonlinearity

Low accuracy, easily impacted by
outliers, prone to overfitting

Sensitive to outliers, poor efficiency with
large data sets, hard to tune

High computational cost for large data
sets, tricky in kernel selection

Prone to overfitting if applied alone (not
in a decision tree), low interpretability

performance stems from various factors. First, heteroatom
doping improves the electrical conductivity of the carbon
electrodes and electrolyte wettability, thus facilitating better
ion accessibility of micropores and increasing the EDL
capacitance.”'®"” Second, doping with heteroatoms expands
the electronic density of states (DOS) of the carbon material,
leading to additional contributions due to quantum capaci-
tance.'~*° Finally, heteroatoms catalyze reversible redox
reactions and/or more electrosorption of the electrolyte
ions."”'® For example, capacitors made with graphene oxide
(GO), reduced graphene oxide (rGO), or nitrogen-doped
carbon nanotubes exhibit strong pseudocapacitance because of
the redox reactions of the oxygen- or nitro§e -containing
functional groups on the electrode surface.”'”>’ Besides,
heteroatom doping can improve the specific surface areas of
carbon materials. The theoretical upper limit for the specific
surface area of pristine carbonaceous materials was 2630 m*/g,
estimated from the infinite single-layer prefect graphene.”*
Introducing heteroatoms allows for the exposure of ring faces
and edges of the carbon material, thus significantly increasing
the possible surface area.”®> While the capacitance of pristine
carbon reaches a plateau at about 1500 m*/g, the capacitance
of doped carbon electrodes continues to increase with the
specific surface area, reaching 4000 m?2/ g.26

Physics-based models have been previously utilized to
unravel various mechanisms of enhanced capacitance due to
heteroatom doping.'”***” For example, ab initio methods has
been utilized to predict pseudocapacitances of certain chemi-
cally simple doped carbons, such as GO*' and pyrrolic
nitrogen (N-5)-doped carbon nanotubes.”® In general, the
quantum chemistry methods are extremely computationally
costly and not practical for systems with more than 1,000
atoms. A comprehensive description of the doping effects has
yet to be developed, especially concerning the pseudocapaci-
tance of mixed heteroatom-doped carbons and the geometric
effects of doping. In practice, supercapacitance performance is
often assessed under conditions remote from the thermody-
namic equilibrium. In contrast, ab initio calculations mostly
address the equilibrium properties at small scale, providing
little information about the dynamic behavior of the energy-
storage device because of the ultrahigh computational cost of
time-dependent models. As a result, existing physics-based
models face challenges in providing quantitative predictions of
capacitance under the operational conditions of practical
devices.

In addition to physics-based modeling, machine learning
(ML) methods have also been introduced to predict the
performance of aqueous supercapacitors for energy stor-
age.'””” The data-driven approach allows us to establish
quantitative correlations between the characteristics of the
electrode materials and the in operando performance based on
extensive experimental data. Table 1 summarizes the
advantages and disadvantages of commonly used ML methods
for capacitance prediction. Previously, different ML methods,
including ANN, SVM, RT, and GLM models, have been
applied to quantitatively predict the EDL capacitance based on
the physicochemical features of carbon materials, such as
specific surface area, pore volume, and doping atoms, under
the same low-level charging—discharging rates.”*> ANN has
also been used to describe the synergetic effect of N/O doping
on supercapacitor performance® as well as to model the EDL
capacitance in terms of the physical features of carbon
materials and the charging current density. In our previous
studies,”"”* we tested multiple ML methods to predict the
overall capacitance of both pristine carbon and N/O-codoped
carbon electrodes in response to the changing scan rate of
cyclic voltammetry. We found that ANN models show the best
performance in capacitance prediction,”* " but its erroneous
behavior limits its application to materials with high mesopore
surface area.’® ML methods can also be used to find the
relative importance of the supercapacitor characteristics to
their capacitance behavior by applying sensitivity analysis
methods such as SHAP or Sobol indices. It is often observed
that the specific surface area (SSA), pore volume (PV), and
oxygen ratio are among the most important parameters
representing the properties of carbon electrodes.””*”** Th
ML predictions offer valuable insights into the synthesis of
better carbon materials, help to identify critical features,
optimize reaction conditions, and predict and optimize the
cycle life, thereby facilitating advancements in carbon material
synthesis.”**** Conversely, new experimental data can be
leveraged to refine and enhance the predictive accuracy of ML
models.

While data-driven methods are able to make valuable
predictions of supercapacitance performance, their pitfalls have
also been well recognized, such as low robustness, challenges in
interpretability, and the lack of reliable uncertainty assessment,
especially in extrapolation beyond the training data.’!
Integrating physics-based constraints and relations as prior
knowledge into the ML models can significantly enhance the
interpretability of ML methods.*’ To overcome these pitfalls,
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Figure 1. Physics-informed Gaussian process regression (PhysGPR) of the experimental data for the capacitance of carbon electrodes.

161 we propose in this work a physics-informed Gaussian process
162 regression (GPR) (PhysGPR) model for predicting the in
163 operando capacitance of aqueous supercapacitors based on the
164 properties of nitrogen- and/or oxygen-doped carbon electro-
165 des. The input parameters include the surface composition, the
166 micropore and mesopore surface areas of the electrode, and
167 the type of electrolyte and the operation conditions, as
168 represented by the charging—discharging scan rate used in the
169 cyclic voltammetry measurements. A phenomenological model
170 for the charging dynamics is used as prior knowledge to avoid
171 unphysical predictions. In general, GPR methods provide a
172 reliable uncertainty assessment of the model performance
173 compared with alternative ML methods such as ANN,
174 alongside excellent data efficiency and great accuracy. Its
175 mean or trend part can be tuned based on prior knowledge, as
176 demonstrated in the construction of PhysGPR later.
177 Previously, the GPR methods have been applied to predict
178 the optimized composition of rGO/ANF/CNT electrodes,
179 effectively balancing different qualities.*”

180  There are significant outcomes of this contribution. First, we
181 introduce novel input parameters, such as the proportion of
182 oxygen and nitrogen atoms and the type of electrolytes, for
183 constructing the PhysGPR model. These parameters are
184 independent of each other and can be manipulated separately
185 with little or a controllable impact on the others. The optimal
186 results can be achieved through materials synthesis. We do not
187 select highly correlated parameters such as the pore volume
188 and surface area of different pore sizes because they do not
189 change independently. Second, we implement the robust
190 estimation of the parameters in Gaussian processes, utilizing
191 the jointly robust prior function and marginal posterior mode
192 estimation”®***' and constructing the group automatic
193 relevance determination (gARD) kernel in order to produce
194 meaningful and accurate prediction by solving problems
195 ordinary GPR methods face. The performance of PhysGPR
196 is significantly improved in these ways compared to that of the
197 original PhysGPR used on pristine carbon in our previous
198 work.”® The previous version faltered when applied to doped
199 carbon due to the near-diagonal or near-singular correlation
200 matrix, likely stemming from the sparseness of high-dimen-
201 sional input parameters. Finally, harnessing the predictive
202 capabilities of PhysGPR across various input variable ranges
203 enables us to guide the experimental design of electrode
204 materials, aiming for maximum capacitances. We compared the
205 results with those predicted by the ANN models*”** and by
206 conventional GPR with different settings. Furthermore, we
207 tested different ways to train the PhysGPR model by
208 considering either individual electrolyte types or different
209 electrolytes together.

o

2. MODELS AND METHODS

In this section, we explain the preparation of the data set and 210
mathematical details for the construction of physics-informed 211
Gaussian process regression (PhysGPR) to predict the overall 212
capacitance and power density of N/O-codoped carbon 213
electrodes. Schematically, Figure 1 shows the training 214f1
flowchart for PhysGPR in comparison with that for conven- 215
tional ML methods. While the latter utilize experimental data 216
directly, PhysGPR begins with a physics model that can be 217
used to analyze the experimental results. In the present work, a 218
phenomenological model is adopted for representing the 219
dependence of the capacitance on the charging—discharging 220
rate (here, the cyclic voltammetry scan rate). The physical 221
model is then integrated into GPR with prior knowledge 222
within a supervised ML algorithm. The model parameters are 223
normalized and served as the input for the GPR training. The 224
incorporation of the physical model allows us to avoid 225
erroneous predictions that may otherwise occur in conven- 226
tional ML methods. 227

All ML models and sensitivity analysis methods are available 228
from packages kernlab, RobustGaSP, sensitivity, and DiceKri%— 229
ing of R programming language available from CRAN.*"*~% 23
The optimization of the capacitor behavior was performed by 231
using the “optim” function from R Stats packages. The default 232
optimization method (Nelder and Meas) was employed, with 233
multiple initial points to enhance robustness and accuracy. The 234
technical details of the conventional GPR method, jointly 235
robust (JR) prior, posterior mode estimation, and sensitivity 236
analysis can be found in the Supporting Information (SI). 237

2.1. Data Collection. The experimental data for training 238
our ML models were collected from the literature, and the 239
formulas for obtaining the processed data are introduced in 240
Table $2.°°**7% While there have been numerous inves- 241
tigations on the capacitance of heteroatom-doped carbons in 242
aqueous electrolytes, only a limited number have provided the 243
detailed structure parameters and the surface chemical 244
composition. The capacitance data employed in this study 245
were acquired through measurements conducted in three- 246
electrode cell configurations, all within the same potential 247
window range of 1 V. The three-electrode measurements 248
provide more precise control over potential and current than 249
two-electrode measurements. 250

The experimental data encompass two types of electrolytes, 251
namely, 6 M KOH and 1 M H,SO, aqueous solutions, which 252
are widely utilized as basic and acidic electrolytes in 253
supercapacitor research. In training the ML models, the 254
electrolyte type is represented by a dummy variable: 0 means 6 25
M KOH and 1 means 1 M H,SO,. All measurements were 256
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carried out with electrodes prepared by loading S mg of the
carbon material on a 1 cm X 1 cm plate. The charging—
discharging rates were determined by the cyclic voltammetry
scan rate in the range of 1 to 500 mV/s (most data are in the
range of S to 200 mV/s). The electrodes were made of carbon
materials doped with oxygen and/or nitrogen with no other
heteroatom doping except for a trace amount of hydrogen.

The input parameters used in the ML models include the
cyclic voltammetry scan rate, the type of electrolyte, the
structure parameters including the surface areas of micropores
and mesopores, and the chemical compositions of the
electrode surfaces, including the ratio of the O atom and the
N atom. As mentioned above, the type of electrolyte is
described with a dummy variable in the ML models. The
surface areas reported in the experiments were measured from
BET fitting of the N, adsorption isotherms at 77 K. Similar
features were used in our previous work for pristine carbon
electrodes and other ML models. The BET surface area
provides a reasonable estimate of the accessible area of
hydrated ions because their diameters are similar to that of a
N, molecule. The experimental data for the chemical
compositions of carbon surfaces were obtained exclusively
through X-ray photoelectron spectroscopy (XPS) measure-
ments.”® It should be noted that all capacitive processes occur
on the electrode surface and are virtually unrelated to the bulk
composition of the carbon electrodes.

Artificial zero capacitance points have been introduced into
the data set for electrodes with zero micro- and mesopore
surface areas. The addition of these boundary points improves
the model performance because they compensate for the lack
of experimental data for materials with low specific surface
areas (SSA), which are of limited practical significance. While
these materials may still exhibit some capacitance from the
surface area of macropores, these values would be small and
sensitive to the electrode shape, particle size, and packing
geometry.69

Outlier detection was performed by comparing the
Mahalanobis distance of all of the samples to the cutoff
distance derived from the y* distribution with a 0.95
confidence level. Any outliers, excluding the artificial zero
capacitance points, are subsequently removed.

Table 2. Input and Output Parameters Used for Training
Machine-Learning Models”

Input
SAiero (1*/g)
SA e, (M*/g)
Scan rate (mV/s)
Oxygen (at. %)
Nitrogen (at. %)
Electrolyte type (dummy variable)

Output

Specific capacitance (F/g)

aSA means surface area.

2.2. Physically Informed GPR and Parameter Space.
Both experimental observations and theoretical models
indicate that the overall capacitance decreases monotonically
with increasing scan rate. The trend can be attributed to
limitations in ion transfer rates within micropores, alongside
constraints in charge transfer and ion desolvation rates related
to pseudocapacitance.”” Whereas sophisticated molecular
models have been developed to describe the charging
dynamics of EDL capacitors,””’* a quantitative prediction of

pseudocapacitance remains a theoretical challenge. Here, we
apply the PhysGPR model introduced in our previous work for
predicting the overall capacitance of pristine carbons.”> The
physics-informed ML method offers simplicity in incorporating
contributions due to different charging mechanisms, including
pseudocapacitance. To avoid unphysical predictions, we use a
semiempirical formula to correlate the specific capacitance as a
function of the scan rate

—ki
Cp=Coe ™ (1)

where C, represents the equilibrium capacitance of the
electrode material, k > 0 is a characteristic rate constant, and
v is the charging—discharging rate (i.e., the scan rate of cyclic
voltammetry). As shown in Figure S1, eq 1 accurately
represents the experimental data concerning the scan rate
dependence of capacitance.

313

321

In training our ML models, we use the natural logarithm of 322

the specific capacitance as the response vector for data
.7
regression:

y:lnCszlnCD—kl/ )

To accommodate a large number of input parameters in the
PhysGPR model, we introduce a new basis function, H(X),
which consists of two components for the mean:

H(X) = [UHI(Xmat)) HZ(Xmat)] (3)

In eq 3, Xput = [Smicrer Smesr O%, N%, electrolyte] is a matrix
that encapsulates the most important features of the electrode
material. This matrix is defined by the experimental data for
the micropore surface area SA,,, mesopore surface area
SA,,.» Oxygen and nitrogen doping ratios in atomic surface
percentage compositions O at. % and N at. %, and a dummy
variable indicating the electrolyte type. While H,(X,,.,) = [1,

represents the “pure quadratic” basis for X, as defined in eqs

323

324

328

326

327

328

329

330

S9 and S10. Because X, represents the half-vectorization of 339

the quadratic form of X, the PhysGPR model can be
expressed as

y = [VH(X,00), HZ(Xmat)][ﬂl’ ﬂz] +2(X,,,) + €
= HX)p + z(X,,,) + € (4)

where f§ = [f,,0,] is a vector of the basis coefficients, z(X,,,)
follows a zero-mean Gaussian process, and & ~ N(0, ¢%) is
independent zero-mean Gaussian noise with a standard
deviation of o. By incorporating the semiempirical formula
for C,, with GPR, we take the artificial zero surface area points
as 0.041 F/g such that their standardized values remain
consistent before and after natural logarithm transformation.

According to the GPR, the marginal distribution of the
response vector y follows a multivariate normal distribution.
Given a vector of observations, the predictive distribution also
follows a normal distribution. Consequently, the predictive
distribution of specific capacitance Cg, follows a log-normal
distribution. The mean and standard deviation of the response
value (RV) of the capacitance are given by

—_ _ A+( 2/2)

Cp =™ (s)
2 A 2

o(C,) = (eh — 1)+ ©)
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Table 3. Training Set Root Mean Square Error (RMSE), Cross-Validation Root Mean Square Error (CVRMSE), and Mean

Absolute Percentage Error (MAPE) for Different ML Models”

ML method Kernel/training function

gARD-JR-PhysGPR Matérn 3/2

Matérn 5/2

Radial basis function (RBF)
ARD-JR-PhysGPR Matérn 3/2

Matérn 5/2

RBF
gARD-MLE-PhysGPR Matérn 5/2
ARD-MLE-PhysGPR Matérn S5/2
gARD-JR-ConvGPR Matérn 5/2
ARD-JR-ConvGPR Matérn 3/2
gARD-MLE -ConvGPR RBF

ARD-MLE -ConvGPR
gARD-JR-PhysGPR for KOH
gARD-JR-PhysGPR for H,SO,
ANN

Standard deviation

rational quadratic kernel
Matérn 5/2
Matérn 3/2

Bayesian regularization

Training RMSE CVMAPE CVRMSE
26.62 14.33% 30.44
25.38 17.06% 38.25
33.66 16.09% 35.21
22.87 15.52% 33.26
23.06 21.78% 40.69
24.96 30.52% 51.87
20.37 18.22% 38.63
26.11 20.14% 48.25
15.87 8.25% 30.79
17.09 13.75% 41.55
12.83 9.12% 28.14
14.47 10.01% 41.93
36.03 11.6% 58.05
24.35 7.03% 30.47
35.00 84.63% 52.50

123.34

“Here, gARD-MLE-PhysGPR and ARD-MLE-PhysGPR denote physics-informed Gaussian process regression (GPR) models utilizing group
automatic relevance determination (gARD) and conventional ARD methods, respectively. All ML models were optimized using marginal posterior
mode estimation with joint robustness (JR) prior to or with an ordinary maximum likelihood estimation (MLE). For comparison, also shown are
the results from fitting with an artificial neural network (ANN) and conventional GPR (ConvGPR) methods and the single-electrolyte-type gARD-

JR-PhysGPR model using the kernel with the best correlation.

o(C,) _ /—(6de D

RV(C,) =
(Cy) £(C,) .

359

—

360 In the above equations, C,

361 the specific capacitance, o( Csp) denotes the standard deviation,
362 and RV/( Csp) is the relative standard deviation. These equations
363 are derived from the fact that ¥ and y, are the mean and
364 standard deviation of In(C,,) predicted by the GPR model.

365 Unlike our previous work for pristine carbon electrodes,”* in
366 this study, we do not use the automatic relevance
367 determination (ARD) kernel or separable kernel to decouple
368 the input parameters, as ARD models show clear evidence of
369 overfitting, as discussed in the next section. Instead, we
370 collectively calculate the length scale parameters of the input
371 data with the same unit. This implies that all parameters
372 remain coupled in the GPR models, including (i) the surface
373 areas of micropores and mesopores (in units of m*/g) and (ii)
374 the surface chemical compositions of N and O atoms expressed
375 as the atomic surface percentage compositions (in units of at.
376 %). As demonstrated below, this treatment substantially
377 reduces the sparseness of the input data, thereby leading to a
378 significant improvement in the correlation between the ML
379 predictions and experimental data.*® The refined ML model is
3s0 termed the group ARD PhysGPR (gARD-PhysGPR), dis-
381 tinguishing itself from our previous work that utilized the ARD
382 kernels (ARD-PhysGPR). In gARD-PhysGPR, we employed
383 the jointly robust (JR) prior for the range parameters and
384 marginal posterior mode estimation from the RobustGaSP
385 package. Posterior mode estimation enhances the robustness of
386 the range parameters by avoiding the near-diagonal or near-
387 singular correlation matrix’®**”>”® while the JR prior enables
388 fast computation as an ordinary method such as the maximum
389 likelihood estimation (MLE). The GPR models incorporating
390 these techniques are marked as JR- (such as gARD-JR-
391 PhysGPR), in contrast to the ordinary GPR implemented in
392 the kernlab package using the maximum likelihood estimation
393 (MLE), which is marked as MLE-. As will be discussed in the

represents the mean prediction of

—_

<3

(=}

next section, MLE models exhibit an overly robust mean
function, as evidenced by predicting an ellipse-shaped contour
and a highly stable predictive interval.

In the GPR analysis conducted in this study, we tested the
squared exponential kernel (also known as the Gaussian kernel
or the radial basis function (RBF) kernel), Matérn 3/2 kernel,
and Matérn 5/2 kernel. The exponential kernel was not
considered in this work because it is not first-order
differentiable and produces erratic predictions. Additionally,
the rational quadratic kernel was not utilized because it was not
supported in RobustGaSP. For all GPR models, the fitting
parameters (including the kernel, the parameter space variance
parameter o, and the nugget variance ratio 77) were optimized
with the random-sampling k-fold cross validation method. In
this study, we use a k value of 5 with 10 different repartitions.
This choice of the k value is based on the loss-training data
ratio relationship, as demonstrated in Figure S2, where an 80%
training data set proves sufficient to optimize the test set
RMSE. The overall capacitance for different electrode materials
was predicted by the final models using the fitting parameters
found in cross validation. To evaluate the numerical
performance of different ML models in correlating the
experimental data, we used the cross-validation root-mean-
square error (CVRMSE) as the loss function. This quantity
and the CV mean absolute percentage error (MAPE) are

calculated from
k
C SE Zj:l Z:;l (Csp,CV;j - ui)z
B nk (8)
k n (CSP'CVY' —u)
XX,
CVMAPE = - X 100%
nk 9)

where n and k are the number of data points and the number
of repartitions in cross-validation, respectively, u; denotes the

—

experimental values of C,,, and

- ,Cv, Tepresents the prediction
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Figure 2. Correlation of experimental data for the specific capacitance of active carbons with different machine-learning (ML) models from one
cross-validation test, with training:test = 8:2 for GPR models and training:validation:test = 8:1:1 for ANN. In each panel, the diagonal line
represents the perfect correlation. (A) Group ARD physics-informed GPR with JR prior (gARD-JR-PhysGPR), marginal posterior mode
estimation, and Matérn 3/2 kernel; (B) conventional ARD physics-informed GPR with JR prior (ARD-JR-PhysGPR), posterior mode estimation,
and Matérn 3/2 kernel; (C) conventional ARD physics-informed GPR (ARD-MLE-PhysGPR) with maximum likelihood estimation (MLE) and
Matérn S/2 kernel; (D) gARD conventional GPR with JR prior (gARD-JR-ConvGPR), posterior mode estimation, and squared exponential kernel;
(E) conventional GPR (ARD-MLE-ConvGPR) with pure quadratic basis and ARD rational quadratic kernel; and (F) artificial neural network

(ANN).

425 for the test set in the jth repartition of the k-fold cross-
426 validation.

3. RESULTS AND DISCUSSION

427  3.1. Model Evaluation. In this section, we first discuss the
428 cross-validation correlation of gARD PhysGPR models with
429 experimental data to access their prediction capabilities. We
430 will compare the results with those obtained from the
431 conventional GPR, PhysGPR with ARD kernels (all input
432 parameters decoupled), and the artificial neural network
433 (ANN) reported in our previous work. The fitting hyper-
434 parameters were optimized by S-fold cross validation (CV)
435 with 10 repartitions (80% training, 20% test, trained S X 10 =
436 SO0 times). Table 3 summarizes the training and cross-
437 validation error measured by CVRMSE for different ML
438 models as well as the training set RMSE and CV mean absolute
439 percentage error (MAPE).

440  Figure 2 illustrates the correlations of the experimental data
441 with different ML models. In comparison with our previous
442 work for pristine carbon electrodes, all ML models, except
443 convGPR, exhibit improved fitting of the specific capacitance.

This improvement is likely due to the increased number of
data points and more input parameters. All kinds of PhysGPR
and convGPR (JR or MLE) provide a good correlation of the
experimental data for the specific capacitance, with different
accuracies. Among various ML methods tested in this work,
convGPR with the ARD rational quadratic kernel yields the
lowest predictive error (CVRMSE = 28.14). However, as
illustrated in Figure 3, both ANN and convGPR exhibit the
unphysical prediction of capacitance increasing with the scan
rate, resembling the behavior observed in pristine carbon
electrodes. Consequently, these models may not always be
suitable for accurate capacitance predictions. For all of the
Phys-GPR models, using joint robust (JR) prior and posterior
mode estimation reduces the cross-validation predictive error.
Similarly, in most of the convGPR models, the improved
robustness of the range parameters increases the model
stability and accuracy for test set predictions.

Table 3 shows that all types of PhysGPR models tested in
this study can correlate the experimental capacitance data
better than ANN (CVRMSE = 52.50). Among various
PhysGPR models, gARD-JR-PhysGPR with the Matérn 3/2
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) versus the scan rate (1) predicted by different machine-learning methods: (A) group ARD, jointly robust (JR)

prior, posterior mode estimation physics-informed GPR (gARD-JR-PhysGPR) with Matérn 3/2 kernel; (B) automatic relevance determination
(ARD) physics-informed GPR with Matérn 5/2 kernel; (C) conventional GPR with pure quadratic basis and ARD rational quadratic kernel; and
(D) artificial neural network (ANN). The lines show the predicted mean value, while the shadow shows the standard deviation predicted by GPR.
The input parameters for the electrode material are sample 1: SA;.,, = 429 m?/g, SA, ., = 118 m*/g, O and N = 0 at. %, 6 M KOH electrolyte;
sample 2: SA o = 173 m?/g, SA g0 = 994 m?/g, O = 5.23 at. % N = 3.69 at. %, 6 M KOH electrolyte; sample 3: SA_;.,, = 1347 m?/g, SA .o = 84
m*/g, O = 13.86 at. %, N = 0 at. %, 1 M H,SO, electrolyte; sample 4: SA ., = 1167 m*/g, SAs, = 330 m?/g, O =9.25 at. %, N =69 at. %, | M

H,SO, electrolyte.

kernel achieves the best performance (CVRMSE= 30.44).
Coupling the input parameters with the same units improves
the cross-validation (CV) correlation of the ML models
compared to ARD-JR-PhysGPR (ARD Matérn 5/2,
CVRMSE= 33.26), where all input parameters are decoupled.
The reduced correlation accuracy may be attributed to the

471 ARD kernel using many parameters (parameter space length

472
473
474
475
476
477
478
479
480
48
482
483
484
485
486
487
488
489
490
49
492

—

—_-

scale), which increases data sparseness and results in
overfitting. The fitted length parameter in the mesopore
direction becomes too small for ARD models, resulting in
significant frustration in that direction and unrealistically large
predictions (Figure S7). Separate gARD-JR-PhysGPR models
were developed for different electrolyte types. In comparison
with the gARD-JR-PhysGPR model trained with all data, the
single-electrolyte-type model yields similar correlation for
samples with 1 M H,SO, electrolyte (CVRMSE = 30.47).
However, its performance is much worse for samples with 6 M
KOH electrolyte (CVRMSE = 58.05). All ML models predict
the artificial zero surface area—zero capacitance data points
better than similar models for the pristine carbon electrodes.”
The enhanced performance could be ascribed to the amplified
influence of artificial points, stemming from the sparseness of
the input data set induced by the higher dimensionality of the
input parameter space.

As demonstrated in our previous work,” the direct
application of ML models to correlate experimental data may
result in problematic predictions of the capacitance for certain
electrode materials. For example, Figure 3 shows that both

493 ANN and convGPR models predict an upsurge in capacitance

494

with the scan rate in the high-scan-rate region. The PhysGPR

models circumvent the unphysical predictions because of the
use of prior knowledge about the scan-rate dependence of the
capacitance. PhysGPR shows significantly improved perform-
ance in the high-scan-rate region, making it the preferred
choice for predicting the capacitance of doped carbon
materials in the subsequent analyses. Additionally, the

500

Gaussian process methods allow for the calculation of so1

predictive standard deviation alongside the prediction mean,
providing an uncertainty measurement. The comparison
between ordinary ML models (using MLE) and posterior
mode estimation with the JR prior underscores the importance
of robustness in estimating the range parameter, which is
crucial for avoiding near-diagonal or near-singular issues in
these calculations.

Table SI compares the capacitance prediction performance
of our model and previously developed models from the
literature.””***%””7% Because of the choice of experimentally
adjustable input parameters and the use of prior knowledge to
avoid overfitting, our developed models do not outperform all
previous models, and the accuracy of our results is comparable
to that of other models with a reasonable number of input
parameters.

3.2. Effect of Chemical Compositions and Structure
Parameters. To comprehend the impact of heteroatom
doping on the capacitive behavior of carbon electrodes, we
conducted sensitivity analysis (SA) by computing the main
effect and total effect Sobol indices of the trained ML model
on all input parameters. The specifics of the SA methods are
provided in the SI. We assumed that the input parameters are
independent of each other and follow a uniform distribution
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Figure S. Specific capacitance versus the surface areas of micro- and mesopores of carbon electrodes predicted by gARD-JR-PhysGPR. (A) Pristine
carbon, (B) single-doped carbon with N = 14.1 at. %, (C) single-doped carbon with O = 3.7 at. %, (D) codoped carbon with O = 13.3 at. % and N
= 4.8 at. %, and (E) capacitance versus doping composition at SA ;.o = 619 m*/g and SA,,.,, = 1973 m?/g. In all cases, the capacitance corresponds

to 6 M KOH aqueous electrolyte at a scan rate of 1 mV/s.

525 with the same mean and standard deviation as for the training
526 samples. From the main effect Sobol indices, we observed that
527 the micropore surface area and mesopore surface area are the
528 primary parameters influencing the overall capacitance.
529 Additionally, the total effect Sobol indices were found to be
s30 significantly higher than the main effect indices for every
s31 parameter, indicating strong interactions between different
532 parameters.

533 Then ML models were employed to explore the variation of
s34 specific capacitance with the structure parameters at a low scan
535 rate (1 mV/s). The electrode materials considered in this study
536 include pristine carbon, active carbon with single heteroatom

doping, and active carbon with mixed doping of oxygen and s37
nitrogen at different chemical compositions. 538

Figures 5 and 6 present the capacitance predicted by gARD- 539 fasfs

JR-PhysGPR for carbon electrodes in 1 M H,SO, and 6 M s40
KOH electrolytes, respectively. In these figures, each panel s41
displays the capacitance as a function of two variables, and the s42
chemical composition of the electrode is described by the s43
atomic percent of N/O doping (e.g,, 20 at. % oxygen means s44
20% of the surface atoms are oxygen atoms). The input s4s
variables of the prediction are selected within the ranges of s46
SA icro < 4000 m?/g, SA,,., < 2500 m*/s, O ratio < 20%, and s47
N ratio < 10%. These values are chosen based on the sis
experimental data set. Further extrapolation is problematic for s49
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Figure 6. Capacitance vs surface areas of micropores and mesopores of carbon electrodes predicted by gARD-JR-PhysGPR. (A) Pristine carbon,
(B) single-doped carbon with N = 8.0 at. %, (C) single-doped carbon with O = 20 at. %, (D) codoped carbon with O = 17.6 at. % and N = 10.0 at.
%, and (E) capacitance versus doping composition at SA_;,, = 1704 m?/g and SA,..,, = 1737 m*/g. In all cases, the electrolyte is a 1 M H,SO,

aqueous solution, and the scan rate is fixed at 1 mV/s.

sso the ML models. The predicted capacitance refers to the
ss1 capacitor material properties shown at the cross section in the
ss2 direction of the structural parameters, SA,;,, and SA, ., (4D
ss3 and SD), or chemical compositions, 0% and N% (4E and SE),
ss4 at the position of the optimized material in different
sss electrolytes.

ss6¢  Figure 6E shows that, for the single-doped carbon materials
ss7 in 1 M H,SO, aqueous solution, the O doping enhances the
ss8 performance within the range of less than O = 20 at. %. In 6 M
ss9 KOH solution, however, the capacitance begins to decrease at
s60 13 at. % O doping, as illustrated in Figure SE. The single N
s61 doping to the carbon electrode shows different effects in
se2 different electrolytes, as shown in Figures SE and 6E. In 6 M
s63 KOH electrolyte, the ML model predicts a peak in specific
se4 capacitance at about N = 4.4 at. %. Conversely, in the acid
s6s solution, the capacitance increases with the N composition.
seé6 Furthermore, the increase in capacitance due to doping is
se7 much stronger in the acidic electrolyte than in the alkaline
ses electrolyte. In the former case, the maximum capacitance of N-
s69 doped carbon reaches 546 F/g, whereas under the alkaline
s70 condition, it is only 240 F/g.

571 Multiple configurations are possible for N doping on carbon
572 materials, including pyrrolic nitrogen (N-5), pyridinic nitrogen
573 (N-6), quaternary nitrogen (N-Q), and pyridinic oxide (N-X),
s74 with different effects on the capacitance.’® N-X does not exist
575 in N-doped carbon without oxygen. Previous experiments and
576 theoretical investigations show that both N-5 and N-6 nitrogen
577 doping would increase the capacitance by their contributions
578 to pseudocapacitance, especially in an acidic electrolyte.”"*
579 Figure 7 presents three possible photon-participating redox

+e +H"

|

Ir—2=

C:

(>c:o)2 +2H + 26— (>/C—OH )

Figure 7. Possible redox reactions on N/O-doped carbon with
pseudocapacitance effects.>*” (A) Pyridinic nitrogen (N-6), (B)
pyrrolic nitrogen (N-5), and (C) quinone oxygen.

reactions. While N-5 is electrochemically more active than N- ss0
6, the latter has a redox reaction potential window larger than 1 ss81
V in a basic electrolyte. On the other hand, N-Q doping does ss2
not make any significant contribution to pseudocapacitance; its 383
effect is limited to a slight increase in the EDL capacitance, ss4
primarily through the improvement of the electronic sss
conductivity of the electrode material. The three kinds of N sss
doping (N-5, N-6, and N-Q) can occur simultaneously during ss7
the material synthesis. The N-Q ratio rises in high N-doped sss
materials, leading to the observed peak in capacitance. 589

Figures S and 6 elucidate how the N/O-codoped carbon s90
electrodes exhibit distinct capacitive behaviors in different so1
electrolyte solutions. For N-doped carbon materials, increasing s92
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Table 4. Summary of Optimal Carbon Electrodes in 6 M KOH Electrolyte Predicted by Different ML Models in Comparison

to the Best Material Identified in the Experiment

Properties of the optimized electrode

Cy (F/g) at S mV/s

SA o (m’/g) SA eso (m?/g)

Optimization method

Experiment 327 1280
ANN 1400 1000
PhysGPR“ 691 1973

O at. % N at. % Source” ANN* Phys-GPR““
6.8 4.8 309.5 292 312
11.3 9.0 570 / 491
133 4.8 568 301 /

“¢ARD-JR-PhysGPR is shown as PhysGPR. bOptimized specific capacitance. “ML predictions with alternative inputs.

Table 5. Same as for Table 3 but for the 1 M H,SO4 Electrolyte

Properties of the optimized electrode

C,, (F/g) at S mV/s

SA o (m?/g) SA e0 (m?/g)

Optimization method

Experiment 3650 826
ANN 1710 1050
PhysGPR 1704 1737

O at. % N at. % Source ANN Phys-GPR
11.78 1.56 610 583 617
20 2.3 692 / 673
17.6 10 769 501 /

593 oxygen doping reduces the capacitance in both acidic and
s94 alkaline electrolytes when the oxygen content is beyond O =
595 12—16 at. %. The potential reason lies in the formation of N-X
s96 instead of N-6 in N/O-codoped carbon materials, which
597 provides much less pseudocapacitance because its redox
s98 potential is higher than the experimental potential window of
5991 V. A comparison of different panels of Figures S and 6
600 illustrating the specific capacitance versus the structure
601 parameters (viz, micropore and mesopore surface areas)
602 suggests that in an alkaline electrolyte heteroatom doping shifts
603 the maximum capacitance to a higher mesopore surface area.
604 Additionally, oxygen doping significantly improves the
605 performance in materials with high mesopore surface area
606 but worsens in those with high micropore surface area. The
607 trend may be attributed to the increased surface wettability and
608 thus higher ion accessibility of the micropores. By contrast, in
609 an acidic electrolyte, oxygen doping shifts the maximum
610 capacitance to a higher micropore surface area while nitrogen
611 doping shifts the peak capacitance to a higher overall surface
612 area and a slightly higher micropore surface area. These trends
613 align with the physical mechanism of proton-participating
614 redox pseudocapacitance.

615 We conclude this subsection by emphasizing the importance
616 of incorporating the jointly robust (JR) prior to accurately
617 capture the capacitive behavior using the Gaussian process
618 model. To elucidate the effect of JR prior, we compared the
619 results from gARD-MLE-PhysGPR and gARD-JR-PhysGPR
620 predictions. As shown in Figure S8, the reference prior (ARD-
621 MLE-PhysGPR) vyields only one capacitance peak when the
622 micropore and mesopore surface areas vary at different doping
623 compositions, forming an ellipse-shaped contour. This result
624 seems unrealistic and indicative of too strong a mean function
625 in GPR. In theory, the variation in capacitance with respect to
626 surface area should not be symmetric and will vary with
627 chemical composition, owing to different charging mecha-
628 nisms. Posterior mode estimation avoids the near-diagonal or
629 near-singular correlation matrix and ensures the effectiveness
630 of the parameter estimation, and the JR prior accelerates the
631 decay of the tail of the kernel function compared to the
632 reference prior, thereby reducing the range parameter of the
633 inert inputs and long-range correlations.””""

63+ 3.3. Capacitor Performance under Fast Charging—
63s Discharging Conditions. In the preceding subsection, we
636 discuss the interplay between pore structure and doping
637 composition of carbon electrodes, unraveling their impact on

—_

—

—

=

the capacitance of aqueous supercapacitors. This exploration 638
was conducted under a low scan rate, a regime closely aligned 639
with the equilibrium condition and reflective of the maximum 640
energy density. In practical applications, the performance of 641
supercapacitors is often assessed under rapid charging and 642
discharging conditions. In this subsection, we explore the 643
influence of the pore structure and doping composition of 644
carbon electrodes on the capacitance at higher scan rates. The 645
results predicted by our ML model are shown in Figures S3— 646
S6. The cross-sectional figures are similar to those in Figures 4 647
and 5 but at higher scan rates. The relative standard deviation 648
(rSD) serves as an indicator of the uncertainty in GPR 649
predictions. In comparison to the MLE models, the posterior 650
mode estimation with the JR prior provides distinct 651
uncertainty assessments for their predictions at various points. 652
The relative predictive intervals of MLE models are highly 653
stable, nearly fixed at rSD = 65% (Figure S9). This stability ¢s4
suggests potential overly robust mean function in the ordinary s6ss
MLE GPR models, likely resulting from strong long-range 656
correlation induced by the large kernel parameter length scale 657
and a nearly diagonal correlation matrix. The reduced long- 6ss
range correlation from the JR prior contributes to an effective 659
uncertainty assessment. 660

In the KOH electrolyte, the specific capacitance drops more 661
rapidly for materials with a high micropore surface area, 662
whereas it remains little changed under high scan rates for 63
materials with a high mesopore—low micropore surface area. In 664
the acidic electrolyte, the specific capacitance declines with the 665
rising scan rate, and the trend is not sensitive to chemical 666
composition. In this case, the reduction in specific capacitance 667
at high scan rate is relatively small compared to that for pristine 668
carbons™** or for the same electrodes in the KOH electrolyte 669
solution (Figure 4). The probable reason is that pseudocapa- 670
citance dominates the performance of doped carbons in the 671
acidic electrolyte. As a result, the limiting factor for the 672
charging—discharging rate is similar for most carbon materials 673
with the same doping composition. In the alkaline electrolyte, 674
the ML model predicts that the retention rate of capacitance 675
with scan rate is the highest for materials with 12—15% O and 676
10% N. The optimized condition is not observed in the acid 677
electrolyte because the proton transfer process is much faster 678
between doped sites and the solution under the acidic 679
condition. 680

3.4. Optimizing Capacitive Performance with the ML ¢s:
Model. With the quantitative correlations between the 6s2
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Figure 8. Specific capacitance versus scan rate predicted by the gARD-JR-PhysGPR model for nitrogen- and oxygen-codoped carbon electrodes
that yield the highest capacitance at 1 and 200 mV/s scan rates in two different electrolytes. (A) Figure with error bar predicted by gARD-JR-
PhysGPR. (B) Figure without error bar for clearance. The properties of the electrode materials are listed in Tables 4 and §

material properties and specific capacitance derived from the
gARD-JR-PhysGPR model, we can now explore the optimal
structural parameters and doping compositions of carbon
electrodes under different electrolyte conditions. In both acid
and alkaline electrolytes, the optimal materials remain the same
at scan rates of 1 and 200 mV/s, as illustrated in Figures S3—
S6. An ultrahigh capacitance of 769 F/g can be achieved in
H,SO, at a scan rate of 1 mV/s. The characteristics of the
optimized electrodes predicted by the gARD-JR-PhysGPR
model are shown in Tables 4 and 5, in comparison with the
optimized results by ANN and the best materials identified in
the experiment. Figure 7 shows the specific capacitance versus
the scan rate for the top materials predicted by the gARD-JR-
PhysGPR model.

As anticipated, both ANN and gARD-JR-PhysGPR predict
specific capacitance close to the experimental values for the
optimized materials identified by experiment, demonstrating
the robustness of these ML models. In the case of a 6 M KOH
electrolyte solution, the two ML models also yield a similar
value for the maximum specific capacitance (568 vs 570 F/g).
However, the best electrode material predicted by the gARD-

704 JR-PhysGPR model has a much higher mesopore surface area

708
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717
718
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720
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722
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725
726
727
728

—

(1973 vs 1000 m*/g) yet a smaller micropore surface area (691
vs 1400 m?/ g). It should be noted that the optimal material
identified by ANN falls in the region where it predicts an
unphysical increase in the capacitance with the scan rate. As
depicted in Figure S10A, ANN predicts erroneous capacitive
behavior in the high mesopore—low micropore surface area
region, even at low to moderate scan rates. In a 1 M H,SO,
solution, the maximum specific capacitance predicted by
gARD-JR-PhysGPR (769 F/g) is much higher than that
predicted by ANN (692 F/g). The discrepancy likely arises
from the fact that ANN systemically underestimates the
capacitance at low scan rate in the high mesopore surface area
region. Figure S10B illustrates that the unphysical increase in
capacitance with the scan rate is most pronounced under the
conditions where gARD-JR-PhysGPR predicts a maximum
capacitance.

Figure 8 illustrates the variation of specific capacitance
versus scan rate predicted by the gARD-JR-PhysGPR model
for the electrode materials that yield the maximum capacitance.
In the alkaline electrolyte, the optimized material is within the
range of high retention rate with a high mesopore surface area
and a 13% oxygen doping rate. In the acid electrolyte, the
retention rate is not significantly impacted by the structural
parameters.

3.5. Energy Storage Performance Comparison by the
Ragone Plot. To provide further insights into the perform-
ance of supercapacitors with optimal electrode materials, we
prepared a Ragone plot as commonly used to compare the
energy density and power density of different energy storage

devices. Figure 9 is constructed based on the in operando
105 === pristine Carbon prediction
—— Doped Carbon Prediction by GPR
o) * doped best points by GPR
4 104 [~ — -Doped Carbon Prediction by ANX
= [ [
; | S~
N \
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Figure 9. Ragone plot for aqueous supercapacitors consisting of
nitrogen/oxygen-codoped carbon electrodes in 6 M KOH or 1 M
H,SO, electrolyte solution. The red solid line is predicted by the
gARD-PhysGPR, the violet dashed line is the prediction of ANN, and
the blue dashed line corresponds to that for pristine carbon
electrodes. The red stars highlight the maximum energy density and
power density, both obtained in the 1 M H,SO, electrolyte.

capacitance of all N/O-codoped carbon materials in the
parameter ranges of S,,.,, < 4000 m?>/g, S,,., < 2500 m*/g, O-
doped ratio < 20 at. %, and N-doped ratio < 10 at. % with a
scan rate of S mV/s < v < 100 mV/s. The results are predicted
by the gARD-JR-GPR model and compared with those
predicted by the ANN model for N/O-doped carbon
electrodes.” Figure 9 also shows the energy density and
power density of other energy storage devices such as batteries
and conventional capacitors.”> We observe that the maximum
energy density predicted by gARD-JR-PhysGPR is slightly
larger than that from the ANN prediction, while the ANN
predicts a much higher power density. The red stars highlight
the best energy density and power density for the optimal
electrodes that are identified from the capacitance at scan rates
of 1 and 200 mV/s, respectively.
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The gARD-JR-PhysGPR model predicts that the optimized
electrode structure has a micropore surface area of SA,,,, =
1704 m*/g and a mesopore surface area of SA,,,,,, = 1737 m*/g.
These numbers may be compared with the best experimental
samples with SA,,.,, = 3650 m*/g and SA,,, = 820 n12/g,36
indicating a preference for synthesizing materials with a higher
mesopore surface area but a lower micropore surface area.
Among previously synthesized materials, those with a high
mesopore surface area (>1000 m*/g) typically exhibit relatively
low micropore surface areas, with the highest recorded value
being less than 620 m?/g, thereby limiting their performance.
According to our ML model, enhanced performance can be
achieved by increasing the mesopore surface area while
maintaining the micropore surface area at a relatively high
level, around approximately 1500 m?/g. Additionally, the ML
model predicts that a higher capacitance can be attained by
increasing the level of nitrogen doping.

Multiple strategies can be explored for synthesizing carbon
materials with a high surface area through the activation of
biomass or synthetic polymers. Materials with a high total
surface area can often be achieved by chemical activation with
KOH or ZnCl,. While most chemical activation methods
produce predominantly micropores, mesopores can be
introduced in different ways, ranging from hard or soft
templating to nontemplating methods such as simultaneous
physical and chemical activation to enlarge micropores.””*"**
Hard templating means that the mesoporosity properties are
introduced by nanocasting techniques using inorganic
templates, such as mesoporous silica and zeolites. This method
can reach a total surface area of 3840 m?/ g, with a relatively
high mesopore surface area ratio (S,, can reach 940 m*/g).
Soft templating refers to the adoption of ordered mesoporous
frameworks that can be achieved by the cooperative assembly
of amphiphilic molecules or block copolymers. Materials
produced by soft templating tend to exhibit a highly ordered
pore structure, albeit with a trade-off in their total surface area
owing to a low micropore surface area. Nontemplating
strategies are usually used to improve the mesopore surface
area of active carbon from natural sources. Templating and
nontemplating methods can be combined to reach higher
mesopore surface area and volume at the cost of the ordered
structure from the template. Meanwhile, heteroatom doping
can be achieved by adding an element source in the synthesis
steps, such as using a heteroatom-rich polymer as the carbon
source or a separate nitrogen precursor, using postchemical
treatment of carbon materials through an oxidation reaction,
thermal polymerization, and replacement reactions, or using
chemical vapor deposition.'® The best material in the
experiment is produced by the nontemplating treatment of a
soft-templated material with cross-linked polymer produced by
a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly-
(ethylene oxide) (PEO-PPO-PEO)/phloroglucinol system as
its carbon source and precursor with a nitrogen cross-linker.**
Highly N/O-codoped porous carbon can be synthesized by
activating a cross-linked polymer with a nitrogen precursor
such as sodium amide, with a very hi§h micropore surface area
and a high mesopore surface area.”” Applying the colloid-
templated methods while synthesizing the cross-linked
polymer is a possible route to improving the mesopore surface
area for the porous carbon material further, while no
templating methods such as additional physical activation
can be used to transform a micropore into a mesopore.'’
Combining these methods may prove instrumental in

achieving the optimal materials predicted by our ML models
for capacitive energy storage.

4. CONCLUSIONS

We extended the PhysGPR model reported in our previous
work for correlating the capacitive behavior of the pristine
carbon supercapacitors to N/O-codoped carbon electrodes. A
fixed-unit-relevance kernel was introduced to improve the
model performance and reduce the likelihood of overfitting the
sparse data. We demonstrated that the physics-informed ML
model eliminates unphysical predictions that conventional
GPR and ANN might encounter when fitting the capacitance
versus scan rate curves. Quantitative correlations were
established between the capacitive behaviors and a combina-
tion of structural information and surface chemical composi-
tion, in good agreement with the experimental data. This work
demonstrates that incorporating physical knowledge into the
learning algorithm can yield more meaningful and accurate
predictions.

After incorporating capacitance data for carbon electrodes in
a 1 M H,SO, aqueous electrolyte, we observed that N/O-
codoped carbon can achieve a higher capacitance under acidic

817

conditions owing to the pH-related pseudocapacitance of 833

pyrrolic nitrogen and pyridinic nitrogen groups. Among
various forms of PhysGPR models, gARD-JR-PhysGPR with
a Matérn 3/2 kernel provides the best correlation of the

834
83S
836

experimental data. Sensitivity analysis by the calculation of 837

Sobol indices shows that the mesopore and micropore areas
made more of a contribution to the capacitive behavior, with a
strong correlation between different properties. The gARD-JR-
PhysGPR model predicts that the specific capacitance of a N/

838
839
840
841

O-codoped carbon can be optimized with an O-doping ratio of 84

about 13 at. % and a high N-doping ratio, a micropore surface

843

area of SA,,, = 1704 m*/g, and a mesopore surface area of s

SA eso = 1737 m?/g. The preferred structure parameters of the
doped carbon materials are different from those of the pristine
carbons. High surface areas of both mesopores and micropores
are preferred, but the performance of doped materials can be
further optimized with medium to high micropore surface
areas, consistent with the predictions of physics-based models
of higher wettability of carbon electrodes and pore accessibility
by ions.

In comparison with existing experimental results, the ML
model predicts that materials with a higher mesopore surface
area and a lower micropore surface area would be preferable
for enhancing the capacitive performance of carbon electrodes
in aqueous electrolytes. Meanwhile, the surface chemical
compositions can be optimized by increasing the N-doping
ratio with a comparable O ratio. The optimal material
predicted by the ML model could potentially be synthesized
by employing a more nitrogen-rich precursor in the soft
template method, combining soft and hard templating to
increase the mesopore surface area, or utilizing post-treatment
methods to enhance the nitrogen doping ratio.

While conventional GPR methods offer uncertainty
quantification, the sparsity of input data in the increasing

845
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849
850
851
852

865
866

order of the input parameter space diminishes the relevance of 867

such uncertainty assessments. This results in uncertainty levels
that remain medium to high across the parameter space,
casting doubt on their applicability for single-point predictions.
By employing the JR prior and posterior mode estimation in
RobustGaSP, our gARD-JR-PhysGPR model offers a mean-
ingful prediction interval as an uncertainty assessment. This
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method enhances the range parameter estimation and
mitigates the long-range effects of the training data,
contributing to a more accurate and reliable uncertainty
prediction. In general, random sampling high-dimensional
model representation (RS-HDMR) methods would be a
valuable approach for addressing sparse data as they are
designed to effectively handle high-dimensional spaces and
offer insights into the relationships between input variables and
model output. However, RS-HDMR does not perform well in
this work due to the limited number of input parameters and
the occurrence of strong correlations between different
parameters.””*> The gARD-JR-PhysGPR model allows us to
account for the synergetic effects of nitrogen and oxygen
doping and identify the best codoped carbon materials with
desirable structural and chemical properties.
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