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4 ABSTRACT: Doping carbon electrodes with heteroatoms such as nitrogen and oxygen
5 proves effective in improving the performance of aqueous supercapacitors. However, the
6 optimal conditions of N/O doping remain elusive due to the complexity of the porous
7 structure and electrochemical behavior. While physics-based models face challenges in
8 capturing the pseudocapacitance effects, direct empirical correlation of the capacitance
9 with machine-learning (ML) methods may lead to erroneous predictions. In this work,
10 we introduce a Gaussian process regression (GPR) method using a physical model as
11 prior knowledge to limit the coupling effects of different input parameters. The physics-
12 informed GPR proves effective in characterizing the capacitive behavior of N/O-
13 codoped carbon electrodes in both 6 M KOH and 1 M H2SO4 aqueous solutions. Our
14 machine-learning model suggests that the performance of aqueous supercapacitors can
15 be maximized under acidic conditions by enhancing both the mesopore surface area and
16 the O/N doping ratio of carbon electrodes.

1. INTRODUCTION
17 Supercapacitors have attracted great interest over the past few
18 decades for their applications in rapid energy storage devices,
19 such as regenerative braking systems in vehicles and power
20 levelers for electronics. In comparison with alternative means
21 of energy storage, supercapacitors have the advantages of high-
22 power density and cycling stability, allowing them to bridge the
23 gap between dielectric capacitors and electrochemical batteries
24 in terms of energy density and power delivery. The charging
25 mechanisms of supercapacitors are mostly associated with
26 electric double layer (EDL) capacitance and/or electro-
27 chemical pseudocapacitance.1 The EDL capacitance is
28 associated with electrostatic polarization at the electrolyte−
29 electrode interface. Electrochemical pseudocapacitance arises
30 from reversible faradaic redox reactions or the intercalation of
31 ionic species into the micropores of electrodes.2−4 For
32 supercapacitors made of carbon electrodes and aqueous
33 electrolytes, both pseudocapacitance and EDL capacitance
34 contribute to energy storage, making them a popular choice for
35 practical applications.
36 Diverse electrode materials, including porous carbons, metal
37 oxides/nitrides/carbides, and conductive polymers, have been
38 investigated for optimizing the energy and power density of
39 aqueous supercapacitors.5,6 From a practical perspective,
40 porous carbons remain a preferred choice due to their high
41 porosity, large specific surface area, good conductivity, long-
42 term cycle stability, and low production cost.2 Given that the
43 capacitance of a carbon electrode primarily arises from the
44 EDL capacitance, we can enhance the device performance by
45 increasing the surface area available for the adsorption of ionic
46 species. However, the specific capacitance reaches a plateau

47when the electrode surface area is larger than about 1500 m2/
48g,7 suggesting that the EDL capacitance is also influenced by
49the pore structures. While micropores (pore diameter d < 2
50nm) usually yield a higher specific surface area than both
51mesopores (2 nm < d < 50 nm) and macropores (d > 50 nm),
52increasing the micropore surface area would also reduce the
53electrical conductivity, interfere with ion adsorption in
54neighboring pores, and restrict ion accessibility, making
55micropores less significant in contributing to the EDL
56capacitance.8−11 Inconsistent experimental results were
57reported when the pore sizes were comparable to those of
58the ionic species, yet theoretical investigations are not fully
59conclusive due to the complexities in the characterization of
60the pore structure and surface conditions of electrode
61materials.12−14

62Although ultrahigh EDL capacitance, up to 348 F/g, has
63been reported for aqueous supercapacitors,15 the specific
64capacitance can be further improved by introducing heter-
65oatoms into pristine carbon electrodes. Common strategies
66include doping porous carbon with electroactive elements such
67as O, N, S, and P, using carbide-derived carbon with transition-
68metal additives, and coating the electrode surface with metal
69oxides.2,16 The further enhancement of supercapacitor
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70 performance stems from various factors. First, heteroatom
71 doping improves the electrical conductivity of the carbon
72 electrodes and electrolyte wettability, thus facilitating better
73 ion accessibility of micropores and increasing the EDL
74 capacitance.2,16,17 Second, doping with heteroatoms expands
75 the electronic density of states (DOS) of the carbon material,
76 leading to additional contributions due to quantum capaci-
77 tance.17−20 Finally, heteroatoms catalyze reversible redox
78 reactions and/or more electrosorption of the electrolyte
79 ions.17,18 For example, capacitors made with graphene oxide
80 (GO), reduced graphene oxide (rGO), or nitrogen-doped
81 carbon nanotubes exhibit strong pseudocapacitance because of
82 the redox reactions of the oxygen- or nitrogen-containing
83 functional groups on the electrode surface.21−23 Besides,
84 heteroatom doping can improve the specific surface areas of
85 carbon materials. The theoretical upper limit for the specific
86 surface area of pristine carbonaceous materials was 2630 m2/g,
87 estimated from the infinite single-layer prefect graphene.24

88 Introducing heteroatoms allows for the exposure of ring faces
89 and edges of the carbon material, thus significantly increasing
90 the possible surface area.25 While the capacitance of pristine
91 carbon reaches a plateau at about 1500 m2/g, the capacitance
92 of doped carbon electrodes continues to increase with the
93 specific surface area, reaching 4000 m2/g.26

94 Physics-based models have been previously utilized to
95 unravel various mechanisms of enhanced capacitance due to
96 heteroatom doping.17,28,29 For example, ab initio methods has
97 been utilized to predict pseudocapacitances of certain chemi-
98 cally simple doped carbons, such as GO21 and pyrrolic
99 nitrogen (N-5)-doped carbon nanotubes.30 In general, the
100 quantum chemistry methods are extremely computationally
101 costly and not practical for systems with more than 1,000
102 atoms. A comprehensive description of the doping effects has
103 yet to be developed, especially concerning the pseudocapaci-
104 tance of mixed heteroatom-doped carbons and the geometric
105 effects of doping. In practice, supercapacitance performance is
106 often assessed under conditions remote from the thermody-
107 namic equilibrium. In contrast, ab initio calculations mostly
108 address the equilibrium properties at small scale, providing
109 little information about the dynamic behavior of the energy-
110 storage device because of the ultrahigh computational cost of
111 time-dependent models. As a result, existing physics-based
112 models face challenges in providing quantitative predictions of
113 capacitance under the operational conditions of practical
114 devices.

115In addition to physics-based modeling, machine learning
116(ML) methods have also been introduced to predict the
117performance of aqueous supercapacitors for energy stor-
118age.17,27 The data-driven approach allows us to establish
119quantitative correlations between the characteristics of the
120electrode materials and the in operando performance based on
121 t1extensive experimental data. Table 1 summarizes the
122advantages and disadvantages of commonly used ML methods
123for capacitance prediction. Previously, different ML methods,
124including ANN, SVM, RT, and GLM models, have been
125applied to quantitatively predict the EDL capacitance based on
126the physicochemical features of carbon materials, such as
127specific surface area, pore volume, and doping atoms, under
128the same low-level charging−discharging rates.31,32 ANN has
129also been used to describe the synergetic effect of N/O doping
130on supercapacitor performance26 as well as to model the EDL
131capacitance in terms of the physical features of carbon
132materials and the charging current density. In our previous
133studies,31,32 we tested multiple ML methods to predict the
134overall capacitance of both pristine carbon and N/O-codoped
135carbon electrodes in response to the changing scan rate of
136cyclic voltammetry. We found that ANN models show the best
137performance in capacitance prediction,32−35 but its erroneous
138behavior limits its application to materials with high mesopore
139surface area.36 ML methods can also be used to find the
140relative importance of the supercapacitor characteristics to
141their capacitance behavior by applying sensitivity analysis
142methods such as SHAP or Sobol indices. It is often observed
143that the specific surface area (SSA), pore volume (PV), and
144oxygen ratio are among the most important parameters
145representing the properties of carbon electrodes.34,37,38 The
146ML predictions offer valuable insights into the synthesis of
147better carbon materials, help to identify critical features,
148optimize reaction conditions, and predict and optimize the
149cycle life, thereby facilitating advancements in carbon material
150synthesis.26,39,40 Conversely, new experimental data can be
151leveraged to refine and enhance the predictive accuracy of ML
152models.
153While data-driven methods are able to make valuable
154predictions of supercapacitance performance, their pitfalls have
155also been well recognized, such as low robustness, challenges in
156interpretability, and the lack of reliable uncertainty assessment,
157especially in extrapolation beyond the training data.31

158Integrating physics-based constraints and relations as prior
159knowledge into the ML models can significantly enhance the
160interpretability of ML methods.41 To overcome these pitfalls,

Table 1. Comparison of Common ML Methods for Predicting Supercapacitor Behavior

ML Algorithm Advantages Disadvantages

Artificial neural network (ANN,
including multilayer perceptron
(MLP))

Effective nonlinear modeling, good generalizability as universal functional
estimation, implicit feature selection

Prone to overfitting, hard to tune, a large
number of hyperparameters

Support vector machine (SVM) and Effective in high dimensions, robust to outliers, Slow, tricky in kernel selection
Decision trees (including random
forest (RF), regression trees (RT),
etc.)

good performance on imbalanced data, not prone to overfitting, low impact of
outlier, easy to parallelize

High computational cost, low
interpretability, low efficiency in
nonlinearity

Generalized linear regression (GLM) Easy to understand and use, high interpretability Low accuracy, easily impacted by
outliers, prone to overfitting

K-Nearest neighbor (KNN) Simple to implement, nonparametric Sensitive to outliers, poor efficiency with
large data sets, hard to tune

Gaussian process (GP) High accuracy, high learning efficiency, reliable uncertainty quantification,
effective in high dimensions, good generalizability as universal functional
estimation

High computational cost for large data
sets, tricky in kernel selection

Gradient boosting (such as XGBoost) Usually used with decision trees, fast, easy to parallelize Prone to overfitting if applied alone (not
in a decision tree), low interpretability
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161 we propose in this work a physics-informed Gaussian process
162 regression (GPR) (PhysGPR) model for predicting the in
163 operando capacitance of aqueous supercapacitors based on the
164 properties of nitrogen- and/or oxygen-doped carbon electro-
165 des. The input parameters include the surface composition, the
166 micropore and mesopore surface areas of the electrode, and
167 the type of electrolyte and the operation conditions, as
168 represented by the charging−discharging scan rate used in the
169 cyclic voltammetry measurements. A phenomenological model
170 for the charging dynamics is used as prior knowledge to avoid
171 unphysical predictions. In general, GPR methods provide a
172 reliable uncertainty assessment of the model performance
173 compared with alternative ML methods such as ANN,
174 alongside excellent data efficiency and great accuracy. Its
175 mean or trend part can be tuned based on prior knowledge, as
176 demonstrated in the construction of PhysGPR later.
177 Previously, the GPR methods have been applied to predict
178 the optimized composition of rGO/ANF/CNT electrodes,
179 effectively balancing different qualities.42

180 There are significant outcomes of this contribution. First, we
181 introduce novel input parameters, such as the proportion of
182 oxygen and nitrogen atoms and the type of electrolytes, for
183 constructing the PhysGPR model. These parameters are
184 independent of each other and can be manipulated separately
185 with little or a controllable impact on the others. The optimal
186 results can be achieved through materials synthesis. We do not
187 select highly correlated parameters such as the pore volume
188 and surface area of different pore sizes because they do not
189 change independently. Second, we implement the robust
190 estimation of the parameters in Gaussian processes, utilizing
191 the jointly robust prior function and marginal posterior mode
192 estimation26,32,41 and constructing the group automatic
193 relevance determination (gARD) kernel in order to produce
194 meaningful and accurate prediction by solving problems
195 ordinary GPR methods face. The performance of PhysGPR
196 is significantly improved in these ways compared to that of the
197 original PhysGPR used on pristine carbon in our previous
198 work.36 The previous version faltered when applied to doped
199 carbon due to the near-diagonal or near-singular correlation
200 matrix, likely stemming from the sparseness of high-dimen-
201 sional input parameters. Finally, harnessing the predictive
202 capabilities of PhysGPR across various input variable ranges
203 enables us to guide the experimental design of electrode
204 materials, aiming for maximum capacitances. We compared the
205 results with those predicted by the ANN models43,44 and by
206 conventional GPR with different settings. Furthermore, we
207 tested different ways to train the PhysGPR model by
208 considering either individual electrolyte types or different
209 electrolytes together.

2. MODELS AND METHODS
210In this section, we explain the preparation of the data set and
211mathematical details for the construction of physics-informed
212Gaussian process regression (PhysGPR) to predict the overall
213capacitance and power density of N/O-codoped carbon
214 f1electrodes. Schematically, Figure 1 shows the training
215flowchart for PhysGPR in comparison with that for conven-
216tional ML methods. While the latter utilize experimental data
217directly, PhysGPR begins with a physics model that can be
218used to analyze the experimental results. In the present work, a
219phenomenological model is adopted for representing the
220dependence of the capacitance on the charging−discharging
221rate (here, the cyclic voltammetry scan rate). The physical
222model is then integrated into GPR with prior knowledge
223within a supervised ML algorithm. The model parameters are
224normalized and served as the input for the GPR training. The
225incorporation of the physical model allows us to avoid
226erroneous predictions that may otherwise occur in conven-
227tional ML methods.
228All ML models and sensitivity analysis methods are available
229from packages kernlab, RobustGaSP, sensitivity, and DiceKrig-
230ing of R programming language available from CRAN.31,45−47

231The optimization of the capacitor behavior was performed by
232using the “optim” function from R Stats packages. The default
233optimization method (Nelder and Meas) was employed, with
234multiple initial points to enhance robustness and accuracy. The
235technical details of the conventional GPR method, jointly
236robust (JR) prior, posterior mode estimation, and sensitivity
237analysis can be found in the Supporting Information (SI).
2382.1. Data Collection. The experimental data for training
239our ML models were collected from the literature, and the
240formulas for obtaining the processed data are introduced in
241Table S2.26,48−67 While there have been numerous inves-
242tigations on the capacitance of heteroatom-doped carbons in
243aqueous electrolytes, only a limited number have provided the
244detailed structure parameters and the surface chemical
245composition. The capacitance data employed in this study
246were acquired through measurements conducted in three-
247electrode cell configurations, all within the same potential
248window range of 1 V. The three-electrode measurements
249provide more precise control over potential and current than
250two-electrode measurements.
251The experimental data encompass two types of electrolytes,
252namely, 6 M KOH and 1 M H2SO4 aqueous solutions, which
253are widely utilized as basic and acidic electrolytes in
254supercapacitor research. In training the ML models, the
255electrolyte type is represented by a dummy variable: 0 means 6
256M KOH and 1 means 1 M H2SO4. All measurements were

Figure 1. Physics-informed Gaussian process regression (PhysGPR) of the experimental data for the capacitance of carbon electrodes.
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257 carried out with electrodes prepared by loading 5 mg of the
258 carbon material on a 1 cm × 1 cm plate. The charging−
259 discharging rates were determined by the cyclic voltammetry
260 scan rate in the range of 1 to 500 mV/s (most data are in the
261 range of 5 to 200 mV/s). The electrodes were made of carbon
262 materials doped with oxygen and/or nitrogen with no other
263 heteroatom doping except for a trace amount of hydrogen.
264 The input parameters used in the ML models include the
265 cyclic voltammetry scan rate, the type of electrolyte, the
266 structure parameters including the surface areas of micropores
267 and mesopores, and the chemical compositions of the
268 electrode surfaces, including the ratio of the O atom and the
269 N atom. As mentioned above, the type of electrolyte is
270 described with a dummy variable in the ML models. The
271 surface areas reported in the experiments were measured from
272 BET fitting of the N2 adsorption isotherms at 77 K. Similar
273 features were used in our previous work for pristine carbon
274 electrodes and other ML models. The BET surface area
275 provides a reasonable estimate of the accessible area of
276 hydrated ions because their diameters are similar to that of a
277 N2 molecule. The experimental data for the chemical
278 compositions of carbon surfaces were obtained exclusively
279 through X-ray photoelectron spectroscopy (XPS) measure-
280 ments.68 It should be noted that all capacitive processes occur
281 on the electrode surface and are virtually unrelated to the bulk
282 composition of the carbon electrodes.
283 Artificial zero capacitance points have been introduced into
284 the data set for electrodes with zero micro- and mesopore
285 surface areas. The addition of these boundary points improves
286 the model performance because they compensate for the lack
287 of experimental data for materials with low specific surface
288 areas (SSA), which are of limited practical significance. While
289 these materials may still exhibit some capacitance from the
290 surface area of macropores, these values would be small and
291 sensitive to the electrode shape, particle size, and packing
292 geometry.69

293 Outlier detection was performed by comparing the
294 Mahalanobis distance of all of the samples to the cutoff
295 distance derived from the χ2 distribution with a 0.95
296 confidence level. Any outliers, excluding the artificial zero

t2 297 capacitance points, are subsequently removed.

298 2.2. Physically Informed GPR and Parameter Space.
299 Both experimental observations and theoretical models
300 indicate that the overall capacitance decreases monotonically
301 with increasing scan rate. The trend can be attributed to
302 limitations in ion transfer rates within micropores, alongside
303 constraints in charge transfer and ion desolvation rates related
304 to pseudocapacitance.70 Whereas sophisticated molecular
305 models have been developed to describe the charging
306 dynamics of EDL capacitors,71,72 a quantitative prediction of

307pseudocapacitance remains a theoretical challenge. Here, we
308apply the PhysGPR model introduced in our previous work for
309predicting the overall capacitance of pristine carbons.73 The
310physics-informed ML method offers simplicity in incorporating
311contributions due to different charging mechanisms, including
312pseudocapacitance. To avoid unphysical predictions, we use a
313semiempirical formula to correlate the specific capacitance as a
314function of the scan rate

C C esp
k

0=
315(1)

316where C0 represents the equilibrium capacitance of the
317electrode material, k > 0 is a characteristic rate constant, and
318ν is the charging−discharging rate (i.e., the scan rate of cyclic
319voltammetry). As shown in Figure S1, eq 1 accurately
320represents the experimental data concerning the scan rate
321dependence of capacitance.
322In training our ML models, we use the natural logarithm of
323the specific capacitance as the response vector for data
324regression:72

y C C kln lnsp o= =
325(2)

326To accommodate a large number of input parameters in the
327PhysGPR model, we introduce a new basis function, H(X),
328which consists of two components for the mean:

H X H HX X( ) ( ), ( )mat mat1 2= [ ] 329(3)

330In eq 3, Xmat = [Smicro, Smeso, O%, N%, electrolyte] is a matrix
331that encapsulates the most important features of the electrode
332material. This matrix is defined by the experimental data for
333the micropore surface area SAmicro, mesopore surface area
334SAmeso, oxygen and nitrogen doping ratios in atomic surface
335percentage compositions O at. % and N at. %, and a dummy
336variable indicating the electrolyte type. While H1(Xmat) = [1,
337Xmat] serves the linear basis for Xmat, H2(Xmat) = [1, Xmat, Xmat2]
338represents the “pure quadratic” basis for Xmat, as defined in eqs
339S9 and S10. Because Xmat2 represents the half-vectorization of
340the quadratic form of Xmat, the PhysGPR model can be
341expressed as

X

y H H z

H z

X X X

X

( ), ( ) , ( )

( ) ( )

mat mat mat

mat

1 2 1 2= [ ][ ] + +

+ + 342(4)

343where β = [β1,β2] is a vector of the basis coefficients, z(Xmat)
344follows a zero-mean Gaussian process, and ε ≈ N(0, σ2) is
345independent zero-mean Gaussian noise with a standard
346deviation of σ. By incorporating the semiempirical formula
347for Csp with GPR, we take the artificial zero surface area points
348as 0.041 F/g such that their standardized values remain
349consistent before and after natural logarithm transformation.
350According to the GPR, the marginal distribution of the
351response vector y follows a multivariate normal distribution.
352Given a vector of observations, the predictive distribution also
353follows a normal distribution. Consequently, the predictive
354distribution of specific capacitance Csp follows a log-normal
355distribution. The mean and standard deviation of the response
356value (RV) of the capacitance are given by

C esp
y y( /2)sd

2
= +

357(5)

C e e( ) ( 1)sp
y y y( /2)sd sd

2 2
= +

358(6)

Table 2. Input and Output Parameters Used for Training
Machine-Learning Modelsa

Input Output

SAmicro (m2/g)
SAmeso (m2/g)
Scan rate (mV/s) Specific capacitance (F/g)
Oxygen (at. %)
Nitrogen (at. %)
Electrolyte type (dummy variable)

aSA means surface area.
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RV C
C

E C
e( )

( )

( )
( 1)sp

sp

sp

ysd
2

= =
359 (7)

360 In the above equations, Csp represents the mean prediction of
361 the specific capacitance, σ(Csp) denotes the standard deviation,
362 and RV(Csp) is the relative standard deviation. These equations
363 are derived from the fact that ŷ and ysd are the mean and
364 standard deviation of ln(Csp) predicted by the GPR model.
365 Unlike our previous work for pristine carbon electrodes,74 in
366 this study, we do not use the automatic relevance
367 determination (ARD) kernel or separable kernel to decouple
368 the input parameters, as ARD models show clear evidence of
369 overfitting, as discussed in the next section. Instead, we
370 collectively calculate the length scale parameters of the input
371 data with the same unit. This implies that all parameters
372 remain coupled in the GPR models, including (i) the surface
373 areas of micropores and mesopores (in units of m2/g) and (ii)
374 the surface chemical compositions of N and O atoms expressed
375 as the atomic surface percentage compositions (in units of at.
376 %). As demonstrated below, this treatment substantially
377 reduces the sparseness of the input data, thereby leading to a
378 significant improvement in the correlation between the ML
379 predictions and experimental data.36 The refined ML model is
380 termed the group ARD PhysGPR (gARD-PhysGPR), dis-
381 tinguishing itself from our previous work that utilized the ARD
382 kernels (ARD-PhysGPR). In gARD-PhysGPR, we employed
383 the jointly robust (JR) prior for the range parameters and
384 marginal posterior mode estimation from the RobustGaSP
385 package. Posterior mode estimation enhances the robustness of
386 the range parameters by avoiding the near-diagonal or near-
387 singular correlation matrix36,44,75,76 while the JR prior enables
388 fast computation as an ordinary method such as the maximum
389 likelihood estimation (MLE). The GPR models incorporating
390 these techniques are marked as JR- (such as gARD-JR-
391 PhysGPR), in contrast to the ordinary GPR implemented in
392 the kernlab package using the maximum likelihood estimation
393 (MLE), which is marked as MLE-. As will be discussed in the

394next section, MLE models exhibit an overly robust mean
395function, as evidenced by predicting an ellipse-shaped contour
396and a highly stable predictive interval.
397In the GPR analysis conducted in this study, we tested the
398squared exponential kernel (also known as the Gaussian kernel
399or the radial basis function (RBF) kernel), Mateŕn 3/2 kernel,
400and Mateŕn 5/2 kernel. The exponential kernel was not
401considered in this work because it is not first-order
402differentiable and produces erratic predictions. Additionally,
403the rational quadratic kernel was not utilized because it was not
404supported in RobustGaSP. For all GPR models, the fitting
405parameters (including the kernel, the parameter space variance
406parameter σ, and the nugget variance ratio η) were optimized
407with the random-sampling k-fold cross validation method. In
408this study, we use a k value of 5 with 10 different repartitions.
409This choice of the k value is based on the loss-training data
410ratio relationship, as demonstrated in Figure S2, where an 80%
411training data set proves sufficient to optimize the test set
412RMSE. The overall capacitance for different electrode materials
413was predicted by the final models using the fitting parameters
414found in cross validation.43 To evaluate the numerical
415performance of different ML models in correlating the
416experimental data, we used the cross-validation root-mean-
417square error (CVRMSE) as the loss function. This quantity
418and the CV mean absolute percentage error (MAPE) are
419calculated from

C u

nk
CVRMSE

( )j
k

i
n

sp CV i1 1 ,
2

ij= = =

420(8)

nk
CVMAPE 100%

j
k

i
n C u

u1 1

( )sp CVij i

i

,

= ×
= =

421(9)

422where n and k are the number of data points and the number
423of repartitions in cross-validation, respectively, ui denotes the

424experimental values of Csp, andCsp CV, ij
represents the prediction

Table 3. Training Set Root Mean Square Error (RMSE), Cross-Validation Root Mean Square Error (CVRMSE), and Mean
Absolute Percentage Error (MAPE) for Different ML Modelsa

ML method Kernel/training function Training RMSE CVMAPE CVRMSE

gARD-JR-PhysGPR Mateŕn 3/2 26.62 14.33% 30.44
Mateŕn 5/2 25.38 17.06% 38.25
Radial basis function (RBF) 33.66 16.09% 35.21

ARD-JR-PhysGPR Mateŕn 3/2 22.87 15.52% 33.26
Mateŕn 5/2 23.06 21.78% 40.69
RBF 24.96 30.52% 51.87

gARD-MLE-PhysGPR Mateŕn 5/2 20.37 18.22% 38.63
ARD-MLE-PhysGPR Mateŕn 5/2 26.11 20.14% 48.25
gARD-JR-ConvGPR Mateŕn 5/2 15.87 8.25% 30.79
ARD-JR-ConvGPR Mateŕn 3/2 17.09 13.75% 41.55
gARD-MLE -ConvGPR RBF 12.83 9.12% 28.14
ARD-MLE -ConvGPR rational quadratic kernel 14.47 10.01% 41.93
gARD-JR-PhysGPR for KOH Mateŕn 5/2 36.03 11.6% 58.05
gARD-JR-PhysGPR for H2SO4 Mateŕn 3/2 24.35 7.03% 30.47
ANN Bayesian regularization 35.00 84.63% 52.50
Standard deviation 123.34

aHere, gARD-MLE-PhysGPR and ARD-MLE-PhysGPR denote physics-informed Gaussian process regression (GPR) models utilizing group
automatic relevance determination (gARD) and conventional ARD methods, respectively. All ML models were optimized using marginal posterior
mode estimation with joint robustness (JR) prior to or with an ordinary maximum likelihood estimation (MLE). For comparison, also shown are
the results from fitting with an artificial neural network (ANN) and conventional GPR (ConvGPR) methods and the single-electrolyte-type gARD-
JR-PhysGPR model using the kernel with the best correlation.
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425 for the test set in the jth repartition of the k-fold cross-
426 validation.

3. RESULTS AND DISCUSSION
427 3.1. Model Evaluation. In this section, we first discuss the
428 cross-validation correlation of gARD PhysGPR models with
429 experimental data to access their prediction capabilities. We
430 will compare the results with those obtained from the
431 conventional GPR, PhysGPR with ARD kernels (all input
432 parameters decoupled), and the artificial neural network
433 (ANN) reported in our previous work. The fitting hyper-
434 parameters were optimized by 5-fold cross validation (CV)
435 with 10 repartitions (80% training, 20% test, trained 5 × 10 =

t3 436 50 times). Table 3 summarizes the training and cross-
437 validation error measured by CVRMSE for different ML
438 models as well as the training set RMSE and CV mean absolute
439 percentage error (MAPE).

f2 440 Figure 2 illustrates the correlations of the experimental data
441 with different ML models. In comparison with our previous
442 work for pristine carbon electrodes, all ML models, except
443 convGPR, exhibit improved fitting of the specific capacitance.

444This improvement is likely due to the increased number of
445data points and more input parameters. All kinds of PhysGPR
446and convGPR (JR or MLE) provide a good correlation of the
447experimental data for the specific capacitance, with different
448accuracies. Among various ML methods tested in this work,
449convGPR with the ARD rational quadratic kernel yields the
450lowest predictive error (CVRMSE = 28.14). However, as
451 f3illustrated in Figure 3, both ANN and convGPR exhibit the
452unphysical prediction of capacitance increasing with the scan
453rate, resembling the behavior observed in pristine carbon
454electrodes. Consequently, these models may not always be
455suitable for accurate capacitance predictions. For all of the
456Phys-GPR models, using joint robust (JR) prior and posterior
457mode estimation reduces the cross-validation predictive error.
458Similarly, in most of the convGPR models, the improved
459robustness of the range parameters increases the model
460stability and accuracy for test set predictions.
461Table 3 shows that all types of PhysGPR models tested in
462this study can correlate the experimental capacitance data
463better than ANN (CVRMSE = 52.50). Among various
464PhysGPR models, gARD-JR-PhysGPR with the Mateŕn 3/2

Figure 2. Correlation of experimental data for the specific capacitance of active carbons with different machine-learning (ML) models from one
cross-validation test, with training:test = 8:2 for GPR models and training:validation:test = 8:1:1 for ANN. In each panel, the diagonal line
represents the perfect correlation. (A) Group ARD physics-informed GPR with JR prior (gARD-JR-PhysGPR), marginal posterior mode
estimation, and Mateŕn 3/2 kernel; (B) conventional ARD physics-informed GPR with JR prior (ARD-JR-PhysGPR), posterior mode estimation,
and Mateŕn 3/2 kernel; (C) conventional ARD physics-informed GPR (ARD-MLE-PhysGPR) with maximum likelihood estimation (MLE) and
Mateŕn 5/2 kernel; (D) gARD conventional GPR with JR prior (gARD-JR-ConvGPR), posterior mode estimation, and squared exponential kernel;
(E) conventional GPR (ARD-MLE-ConvGPR) with pure quadratic basis and ARD rational quadratic kernel; and (F) artificial neural network
(ANN).
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465 kernel achieves the best performance (CVRMSE= 30.44).
466 Coupling the input parameters with the same units improves
467 the cross-validation (CV) correlation of the ML models
468 compared to ARD-JR-PhysGPR (ARD Mate ́rn 5/2,
469 CVRMSE= 33.26), where all input parameters are decoupled.
470 The reduced correlation accuracy may be attributed to the
471 ARD kernel using many parameters (parameter space length
472 scale), which increases data sparseness and results in
473 overfitting. The fitted length parameter in the mesopore
474 direction becomes too small for ARD models, resulting in
475 significant frustration in that direction and unrealistically large
476 predictions (Figure S7). Separate gARD-JR-PhysGPR models
477 were developed for different electrolyte types. In comparison
478 with the gARD-JR-PhysGPR model trained with all data, the
479 single-electrolyte-type model yields similar correlation for
480 samples with 1 M H2SO4 electrolyte (CVRMSE = 30.47).
481 However, its performance is much worse for samples with 6 M
482 KOH electrolyte (CVRMSE = 58.05). All ML models predict
483 the artificial zero surface area−zero capacitance data points
484 better than similar models for the pristine carbon electrodes.44

485 The enhanced performance could be ascribed to the amplified
486 influence of artificial points, stemming from the sparseness of
487 the input data set induced by the higher dimensionality of the
488 input parameter space.
489 As demonstrated in our previous work,45 the direct
490 application of ML models to correlate experimental data may
491 result in problematic predictions of the capacitance for certain
492 electrode materials. For example, Figure 3 shows that both
493 ANN and convGPR models predict an upsurge in capacitance
494 with the scan rate in the high-scan-rate region. The PhysGPR

495models circumvent the unphysical predictions because of the
496use of prior knowledge about the scan-rate dependence of the
497capacitance. PhysGPR shows significantly improved perform-
498ance in the high-scan-rate region, making it the preferred
499choice for predicting the capacitance of doped carbon
500materials in the subsequent analyses. Additionally, the
501Gaussian process methods allow for the calculation of
502predictive standard deviation alongside the prediction mean,
503providing an uncertainty measurement. The comparison
504between ordinary ML models (using MLE) and posterior
505mode estimation with the JR prior underscores the importance
506of robustness in estimating the range parameter, which is
507crucial for avoiding near-diagonal or near-singular issues in
508these calculations.
509Table S1 compares the capacitance prediction performance
510of our model and previously developed models from the
511literature.22,34,38,77,78 Because of the choice of experimentally
512adjustable input parameters and the use of prior knowledge to
513avoid overfitting, our developed models do not outperform all
514previous models, and the accuracy of our results is comparable
515to that of other models with a reasonable number of input
516parameters.
5173.2. Effect of Chemical Compositions and Structure
518Parameters. To comprehend the impact of heteroatom
519doping on the capacitive behavior of carbon electrodes, we
520conducted sensitivity analysis (SA) by computing the main
521effect and total effect Sobol indices of the trained ML model
522on all input parameters. The specifics of the SA methods are
523provided in the SI. We assumed that the input parameters are
524independent of each other and follow a uniform distribution

Figure 3. Specific capacitance (Csp) versus the scan rate (ν) predicted by different machine-learning methods: (A) group ARD, jointly robust (JR)
prior, posterior mode estimation physics-informed GPR (gARD-JR-PhysGPR) with Mateŕn 3/2 kernel; (B) automatic relevance determination
(ARD) physics-informed GPR with Mateŕn 5/2 kernel; (C) conventional GPR with pure quadratic basis and ARD rational quadratic kernel; and
(D) artificial neural network (ANN). The lines show the predicted mean value, while the shadow shows the standard deviation predicted by GPR.
The input parameters for the electrode material are sample 1: SAmicro = 429 m2/g, SAmeso = 118 m2/g, O and N = 0 at. %, 6 M KOH electrolyte;
sample 2: SAmicro = 173 m2/g, SAmeso = 994 m2/g, O = 5.23 at. % N = 3.69 at. %, 6 M KOH electrolyte; sample 3: SAmicro = 1347 m2/g, SAmeso = 84
m2/g, O = 13.86 at. %, N = 0 at. %, 1 M H2SO4 electrolyte; sample 4: SAmicro = 1167 m2/g, SAmeso = 330 m2/g, O = 9.25 at. %, N = 6.9 at. %, 1 M
H2SO4 electrolyte.
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525 with the same mean and standard deviation as for the training
526 samples. From the main effect Sobol indices, we observed that
527 the micropore surface area and mesopore surface area are the
528 primary parameters influencing the overall capacitance.
529 Additionally, the total effect Sobol indices were found to be
530 significantly higher than the main effect indices for every
531 parameter, indicating strong interactions between different
532 parameters.
533 Then ML models were employed to explore the variation of
534 specific capacitance with the structure parameters at a low scan
535 rate (1 mV/s). The electrode materials considered in this study
536 include pristine carbon, active carbon with single heteroatom

537doping, and active carbon with mixed doping of oxygen and
538nitrogen at different chemical compositions.
539 f4f5f6Figures 5 and 6 present the capacitance predicted by gARD-
540JR-PhysGPR for carbon electrodes in 1 M H2SO4 and 6 M
541KOH electrolytes, respectively. In these figures, each panel
542displays the capacitance as a function of two variables, and the
543chemical composition of the electrode is described by the
544atomic percent of N/O doping (e.g., 20 at. % oxygen means
54520% of the surface atoms are oxygen atoms). The input
546variables of the prediction are selected within the ranges of
547SAmicro < 4000 m2/g, SAmeso < 2500 m2/s, O ratio < 20%, and
548N ratio < 10%. These values are chosen based on the
549experimental data set. Further extrapolation is problematic for

Figure 4. (A) Main effect and (B) total effect Sobol indices of the gARD-JR-PhysGPR model with the error bar showing the standard deviation.

Figure 5. Specific capacitance versus the surface areas of micro- and mesopores of carbon electrodes predicted by gARD-JR-PhysGPR. (A) Pristine
carbon, (B) single-doped carbon with N = 14.1 at. %, (C) single-doped carbon with O = 3.7 at. %, (D) codoped carbon with O = 13.3 at. % and N
= 4.8 at. %, and (E) capacitance versus doping composition at SAmicro = 619 m2/g and SAmeso = 1973 m2/g. In all cases, the capacitance corresponds
to 6 M KOH aqueous electrolyte at a scan rate of 1 mV/s.
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550 the ML models. The predicted capacitance refers to the
551 capacitor material properties shown at the cross section in the
552 direction of the structural parameters, SAmicro and SAmeso (4D
553 and 5D), or chemical compositions, O% and N% (4E and 5E),
554 at the position of the optimized material in different
555 electrolytes.
556 Figure 6E shows that, for the single-doped carbon materials
557 in 1 M H2SO4 aqueous solution, the O doping enhances the
558 performance within the range of less than O = 20 at. %. In 6 M
559 KOH solution, however, the capacitance begins to decrease at
560 13 at. % O doping, as illustrated in Figure 5E. The single N
561 doping to the carbon electrode shows different effects in
562 different electrolytes, as shown in Figures 5E and 6E. In 6 M
563 KOH electrolyte, the ML model predicts a peak in specific
564 capacitance at about N = 4.4 at. %. Conversely, in the acid
565 solution, the capacitance increases with the N composition.
566 Furthermore, the increase in capacitance due to doping is
567 much stronger in the acidic electrolyte than in the alkaline
568 electrolyte. In the former case, the maximum capacitance of N-
569 doped carbon reaches 546 F/g, whereas under the alkaline
570 condition, it is only 240 F/g.
571 Multiple configurations are possible for N doping on carbon
572 materials, including pyrrolic nitrogen (N-5), pyridinic nitrogen
573 (N-6), quaternary nitrogen (N-Q), and pyridinic oxide (N-X),
574 with different effects on the capacitance.36 N-X does not exist
575 in N-doped carbon without oxygen. Previous experiments and
576 theoretical investigations show that both N-5 and N-6 nitrogen
577 doping would increase the capacitance by their contributions
578 to pseudocapacitance, especially in an acidic electrolyte.21,80

f7 579 Figure 7 presents three possible photon-participating redox

580reactions. While N-5 is electrochemically more active than N-
5816, the latter has a redox reaction potential window larger than 1
582V in a basic electrolyte. On the other hand, N-Q doping does
583not make any significant contribution to pseudocapacitance; its
584effect is limited to a slight increase in the EDL capacitance,
585primarily through the improvement of the electronic
586conductivity of the electrode material. The three kinds of N
587doping (N-5, N-6, and N-Q) can occur simultaneously during
588the material synthesis. The N-Q ratio rises in high N-doped
589materials, leading to the observed peak in capacitance.
590Figures 5 and 6 elucidate how the N/O-codoped carbon
591electrodes exhibit distinct capacitive behaviors in different
592electrolyte solutions. For N-doped carbon materials, increasing

Figure 6. Capacitance vs surface areas of micropores and mesopores of carbon electrodes predicted by gARD-JR-PhysGPR. (A) Pristine carbon,
(B) single-doped carbon with N = 8.0 at. %, (C) single-doped carbon with O = 20 at. %, (D) codoped carbon with O = 17.6 at. % and N = 10.0 at.
%, and (E) capacitance versus doping composition at SAmicro = 1704 m2/g and SAmeso = 1737 m2/g. In all cases, the electrolyte is a 1 M H2SO4
aqueous solution, and the scan rate is fixed at 1 mV/s.

Figure 7. Possible redox reactions on N/O-doped carbon with
pseudocapacitance effects.36,79 (A) Pyridinic nitrogen (N-6), (B)
pyrrolic nitrogen (N-5), and (C) quinone oxygen.
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593 oxygen doping reduces the capacitance in both acidic and
594 alkaline electrolytes when the oxygen content is beyond O =
595 12−16 at. %. The potential reason lies in the formation of N-X
596 instead of N-6 in N/O-codoped carbon materials, which
597 provides much less pseudocapacitance because its redox
598 potential is higher than the experimental potential window of
599 1 V. A comparison of different panels of Figures 5 and 6
600 illustrating the specific capacitance versus the structure
601 parameters (viz., micropore and mesopore surface areas)
602 suggests that in an alkaline electrolyte heteroatom doping shifts
603 the maximum capacitance to a higher mesopore surface area.
604 Additionally, oxygen doping significantly improves the
605 performance in materials with high mesopore surface area
606 but worsens in those with high micropore surface area. The
607 trend may be attributed to the increased surface wettability and
608 thus higher ion accessibility of the micropores. By contrast, in
609 an acidic electrolyte, oxygen doping shifts the maximum
610 capacitance to a higher micropore surface area while nitrogen
611 doping shifts the peak capacitance to a higher overall surface
612 area and a slightly higher micropore surface area. These trends
613 align with the physical mechanism of proton-participating
614 redox pseudocapacitance.
615 We conclude this subsection by emphasizing the importance
616 of incorporating the jointly robust (JR) prior to accurately
617 capture the capacitive behavior using the Gaussian process
618 model. To elucidate the effect of JR prior, we compared the
619 results from gARD-MLE-PhysGPR and gARD-JR-PhysGPR
620 predictions. As shown in Figure S8, the reference prior (ARD-
621 MLE-PhysGPR) yields only one capacitance peak when the
622 micropore and mesopore surface areas vary at different doping
623 compositions, forming an ellipse-shaped contour. This result
624 seems unrealistic and indicative of too strong a mean function
625 in GPR. In theory, the variation in capacitance with respect to
626 surface area should not be symmetric and will vary with
627 chemical composition, owing to different charging mecha-
628 nisms. Posterior mode estimation avoids the near-diagonal or
629 near-singular correlation matrix and ensures the effectiveness
630 of the parameter estimation, and the JR prior accelerates the
631 decay of the tail of the kernel function compared to the
632 reference prior, thereby reducing the range parameter of the
633 inert inputs and long-range correlations.30,81

634 3.3. Capacitor Performance under Fast Charging−
635 Discharging Conditions. In the preceding subsection, we
636 discuss the interplay between pore structure and doping
637 composition of carbon electrodes, unraveling their impact on

638the capacitance of aqueous supercapacitors. This exploration
639was conducted under a low scan rate, a regime closely aligned
640with the equilibrium condition and reflective of the maximum
641energy density. In practical applications, the performance of
642supercapacitors is often assessed under rapid charging and
643discharging conditions. In this subsection, we explore the
644influence of the pore structure and doping composition of
645carbon electrodes on the capacitance at higher scan rates. The
646results predicted by our ML model are shown in Figures S3−
647S6. The cross-sectional figures are similar to those in Figures 4
648and 5 but at higher scan rates. The relative standard deviation
649(rSD) serves as an indicator of the uncertainty in GPR
650predictions. In comparison to the MLE models, the posterior
651mode estimation with the JR prior provides distinct
652uncertainty assessments for their predictions at various points.
653The relative predictive intervals of MLE models are highly
654stable, nearly fixed at rSD = 65% (Figure S9). This stability
655suggests potential overly robust mean function in the ordinary
656MLE GPR models, likely resulting from strong long-range
657correlation induced by the large kernel parameter length scale
658and a nearly diagonal correlation matrix. The reduced long-
659range correlation from the JR prior contributes to an effective
660uncertainty assessment.
661In the KOH electrolyte, the specific capacitance drops more
662rapidly for materials with a high micropore surface area,
663whereas it remains little changed under high scan rates for
664materials with a high mesopore−low micropore surface area. In
665the acidic electrolyte, the specific capacitance declines with the
666rising scan rate, and the trend is not sensitive to chemical
667composition. In this case, the reduction in specific capacitance
668at high scan rate is relatively small compared to that for pristine
669carbons23,44 or for the same electrodes in the KOH electrolyte
670solution (Figure 4). The probable reason is that pseudocapa-
671citance dominates the performance of doped carbons in the
672acidic electrolyte. As a result, the limiting factor for the
673charging−discharging rate is similar for most carbon materials
674with the same doping composition. In the alkaline electrolyte,
675the ML model predicts that the retention rate of capacitance
676with scan rate is the highest for materials with 12−15% O and
67710% N. The optimized condition is not observed in the acid
678electrolyte because the proton transfer process is much faster
679between doped sites and the solution under the acidic
680condition.
6813.4. Optimizing Capacitive Performance with the ML
682Model. With the quantitative correlations between the

Table 4. Summary of Optimal Carbon Electrodes in 6 M KOH Electrolyte Predicted by Different ML Models in Comparison
to the Best Material Identified in the Experiment

Properties of the optimized electrode Csp (F/g) at 5 mV/s

Optimization method SAmicro (m2/g) SAmeso (m2/g) O at. % N at. % Sourceb ANNc Phys-GPRa,c

Experiment 327 1280 6.8 4.8 309.5 292 312
ANN 1400 1000 11.3 9.0 570 / 491
PhysGPRa 691 1973 13.3 4.8 568 301 /

agARD-JR-PhysGPR is shown as PhysGPR. bOptimized specific capacitance. cML predictions with alternative inputs.

Table 5. Same as for Table 3 but for the 1 M H2SO4 Electrolyte

Properties of the optimized electrode Csp (F/g) at 5 mV/s

Optimization method SAmicro (m2/g) SAmeso (m2/g) O at. % N at. % Source ANN Phys-GPR

Experiment 3650 826 11.78 1.56 610 583 617
ANN 1710 1050 20 2.3 692 / 673
PhysGPR 1704 1737 17.6 10 769 501 /
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683 material properties and specific capacitance derived from the
684 gARD-JR-PhysGPR model, we can now explore the optimal
685 structural parameters and doping compositions of carbon
686 electrodes under different electrolyte conditions. In both acid
687 and alkaline electrolytes, the optimal materials remain the same
688 at scan rates of 1 and 200 mV/s, as illustrated in Figures S3−
689 S6. An ultrahigh capacitance of 769 F/g can be achieved in
690 H2SO4 at a scan rate of 1 mV/s. The characteristics of the
691 optimized electrodes predicted by the gARD-JR-PhysGPR

t4t5 692 model are shown in Tables 4 and 5, in comparison with the
693 optimized results by ANN and the best materials identified in
694 the experiment. Figure 7 shows the specific capacitance versus
695 the scan rate for the top materials predicted by the gARD-JR-
696 PhysGPR model.
697 As anticipated, both ANN and gARD-JR-PhysGPR predict
698 specific capacitance close to the experimental values for the
699 optimized materials identified by experiment, demonstrating
700 the robustness of these ML models. In the case of a 6 M KOH
701 electrolyte solution, the two ML models also yield a similar
702 value for the maximum specific capacitance (568 vs 570 F/g).
703 However, the best electrode material predicted by the gARD-
704 JR-PhysGPR model has a much higher mesopore surface area
705 (1973 vs 1000 m2/g) yet a smaller micropore surface area (691
706 vs 1400 m2/g). It should be noted that the optimal material
707 identified by ANN falls in the region where it predicts an
708 unphysical increase in the capacitance with the scan rate. As
709 depicted in Figure S10A, ANN predicts erroneous capacitive
710 behavior in the high mesopore−low micropore surface area
711 region, even at low to moderate scan rates. In a 1 M H2SO4
712 solution, the maximum specific capacitance predicted by
713 gARD-JR-PhysGPR (769 F/g) is much higher than that
714 predicted by ANN (692 F/g). The discrepancy likely arises
715 from the fact that ANN systemically underestimates the
716 capacitance at low scan rate in the high mesopore surface area
717 region. Figure S10B illustrates that the unphysical increase in
718 capacitance with the scan rate is most pronounced under the
719 conditions where gARD-JR-PhysGPR predicts a maximum
720 capacitance.

f8 721 Figure 8 illustrates the variation of specific capacitance
722 versus scan rate predicted by the gARD-JR-PhysGPR model
723 for the electrode materials that yield the maximum capacitance.
724 In the alkaline electrolyte, the optimized material is within the
725 range of high retention rate with a high mesopore surface area
726 and a 13% oxygen doping rate. In the acid electrolyte, the
727 retention rate is not significantly impacted by the structural
728 parameters.

7293.5. Energy Storage Performance Comparison by the
730Ragone Plot. To provide further insights into the perform-
731ance of supercapacitors with optimal electrode materials, we
732prepared a Ragone plot as commonly used to compare the
733energy density and power density of different energy storage
734 f9devices. Figure 9 is constructed based on the in operando

735capacitance of all N/O-codoped carbon materials in the
736parameter ranges of Smicro < 4000 m2/g, Smeso < 2500 m2/g, O-
737doped ratio < 20 at. %, and N-doped ratio < 10 at. % with a
738scan rate of 5 mV/s ≤ ν ≤ 100 mV/s. The results are predicted
739by the gARD-JR-GPR model and compared with those
740predicted by the ANN model for N/O-doped carbon
741electrodes.45 Figure 9 also shows the energy density and
742power density of other energy storage devices such as batteries
743and conventional capacitors.32 We observe that the maximum
744energy density predicted by gARD-JR-PhysGPR is slightly
745larger than that from the ANN prediction, while the ANN
746predicts a much higher power density. The red stars highlight
747the best energy density and power density for the optimal
748electrodes that are identified from the capacitance at scan rates
749of 1 and 200 mV/s, respectively.

Figure 8. Specific capacitance versus scan rate predicted by the gARD-JR-PhysGPR model for nitrogen- and oxygen-codoped carbon electrodes
that yield the highest capacitance at 1 and 200 mV/s scan rates in two different electrolytes. (A) Figure with error bar predicted by gARD-JR-
PhysGPR. (B) Figure without error bar for clearance. The properties of the electrode materials are listed in Tables 4 and 5

Figure 9. Ragone plot for aqueous supercapacitors consisting of
nitrogen/oxygen-codoped carbon electrodes in 6 M KOH or 1 M
H2SO4 electrolyte solution. The red solid line is predicted by the
gARD-PhysGPR, the violet dashed line is the prediction of ANN, and
the blue dashed line corresponds to that for pristine carbon
electrodes. The red stars highlight the maximum energy density and
power density, both obtained in the 1 M H2SO4 electrolyte.
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750 The gARD-JR-PhysGPR model predicts that the optimized
751 electrode structure has a micropore surface area of SAmicro =
752 1704 m2/g and a mesopore surface area of SAmeso = 1737 m2/g.
753 These numbers may be compared with the best experimental
754 samples with SAmicro = 3650 m2/g and SAmeso = 820 m2/g,
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755 indicating a preference for synthesizing materials with a higher
756 mesopore surface area but a lower micropore surface area.
757 Among previously synthesized materials, those with a high
758 mesopore surface area (>1000 m2/g) typically exhibit relatively
759 low micropore surface areas, with the highest recorded value
760 being less than 620 m2/g, thereby limiting their performance.
761 According to our ML model, enhanced performance can be
762 achieved by increasing the mesopore surface area while
763 maintaining the micropore surface area at a relatively high
764 level, around approximately 1500 m2/g. Additionally, the ML
765 model predicts that a higher capacitance can be attained by
766 increasing the level of nitrogen doping.
767 Multiple strategies can be explored for synthesizing carbon
768 materials with a high surface area through the activation of
769 biomass or synthetic polymers. Materials with a high total
770 surface area can often be achieved by chemical activation with
771 KOH or ZnCl2. While most chemical activation methods
772 produce predominantly micropores, mesopores can be
773 introduced in different ways, ranging from hard or soft
774 templating to nontemplating methods such as simultaneous
775 physical and chemical activation to enlarge micropores.26,31,82

776 Hard templating means that the mesoporosity properties are
777 introduced by nanocasting techniques using inorganic
778 templates, such as mesoporous silica and zeolites. This method
779 can reach a total surface area of 3840 m2/g, with a relatively
780 high mesopore surface area ratio (Smeso can reach 940 m2/g).
781 Soft templating refers to the adoption of ordered mesoporous
782 frameworks that can be achieved by the cooperative assembly
783 of amphiphilic molecules or block copolymers. Materials
784 produced by soft templating tend to exhibit a highly ordered
785 pore structure, albeit with a trade-off in their total surface area
786 owing to a low micropore surface area. Nontemplating
787 strategies are usually used to improve the mesopore surface
788 area of active carbon from natural sources. Templating and
789 nontemplating methods can be combined to reach higher
790 mesopore surface area and volume at the cost of the ordered
791 structure from the template. Meanwhile, heteroatom doping
792 can be achieved by adding an element source in the synthesis
793 steps, such as using a heteroatom-rich polymer as the carbon
794 source or a separate nitrogen precursor, using postchemical
795 treatment of carbon materials through an oxidation reaction,
796 thermal polymerization, and replacement reactions, or using
797 chemical vapor deposition.16 The best material in the
798 experiment is produced by the nontemplating treatment of a
799 soft-templated material with cross-linked polymer produced by
800 a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly-
801 (ethylene oxide) (PEO-PPO-PEO)/phloroglucinol system as
802 its carbon source and precursor with a nitrogen cross-linker.83

803 Highly N/O-codoped porous carbon can be synthesized by
804 activating a cross-linked polymer with a nitrogen precursor
805 such as sodium amide, with a very high micropore surface area
806 and a high mesopore surface area.84 Applying the colloid-
807 templated methods while synthesizing the cross-linked
808 polymer is a possible route to improving the mesopore surface
809 area for the porous carbon material further, while no
810 templating methods such as additional physical activation
811 can be used to transform a micropore into a mesopore.16

812 Combining these methods may prove instrumental in

813achieving the optimal materials predicted by our ML models
814for capacitive energy storage.

4. CONCLUSIONS
815We extended the PhysGPR model reported in our previous
816work for correlating the capacitive behavior of the pristine
817carbon supercapacitors to N/O-codoped carbon electrodes. A
818fixed-unit-relevance kernel was introduced to improve the
819model performance and reduce the likelihood of overfitting the
820sparse data. We demonstrated that the physics-informed ML
821model eliminates unphysical predictions that conventional
822GPR and ANN might encounter when fitting the capacitance
823versus scan rate curves. Quantitative correlations were
824established between the capacitive behaviors and a combina-
825tion of structural information and surface chemical composi-
826tion, in good agreement with the experimental data. This work
827demonstrates that incorporating physical knowledge into the
828learning algorithm can yield more meaningful and accurate
829predictions.
830After incorporating capacitance data for carbon electrodes in
831a 1 M H2SO4 aqueous electrolyte, we observed that N/O-
832codoped carbon can achieve a higher capacitance under acidic
833conditions owing to the pH-related pseudocapacitance of
834pyrrolic nitrogen and pyridinic nitrogen groups. Among
835various forms of PhysGPR models, gARD-JR-PhysGPR with
836a Mateŕn 3/2 kernel provides the best correlation of the
837experimental data. Sensitivity analysis by the calculation of
838Sobol indices shows that the mesopore and micropore areas
839made more of a contribution to the capacitive behavior, with a
840strong correlation between different properties. The gARD-JR-
841PhysGPR model predicts that the specific capacitance of a N/
842O-codoped carbon can be optimized with an O-doping ratio of
843about 13 at. % and a high N-doping ratio, a micropore surface
844area of SAmicro = 1704 m2/g, and a mesopore surface area of
845SAmeso = 1737 m2/g. The preferred structure parameters of the
846doped carbon materials are different from those of the pristine
847carbons. High surface areas of both mesopores and micropores
848are preferred, but the performance of doped materials can be
849further optimized with medium to high micropore surface
850areas, consistent with the predictions of physics-based models
851of higher wettability of carbon electrodes and pore accessibility
852by ions.
853In comparison with existing experimental results, the ML
854model predicts that materials with a higher mesopore surface
855area and a lower micropore surface area would be preferable
856for enhancing the capacitive performance of carbon electrodes
857in aqueous electrolytes. Meanwhile, the surface chemical
858compositions can be optimized by increasing the N-doping
859ratio with a comparable O ratio. The optimal material
860predicted by the ML model could potentially be synthesized
861by employing a more nitrogen-rich precursor in the soft
862template method, combining soft and hard templating to
863increase the mesopore surface area, or utilizing post-treatment
864methods to enhance the nitrogen doping ratio.
865While conventional GPR methods offer uncertainty
866quantification, the sparsity of input data in the increasing
867order of the input parameter space diminishes the relevance of
868such uncertainty assessments. This results in uncertainty levels
869that remain medium to high across the parameter space,
870casting doubt on their applicability for single-point predictions.
871By employing the JR prior and posterior mode estimation in
872RobustGaSP, our gARD-JR-PhysGPR model offers a mean-
873ingful prediction interval as an uncertainty assessment. This
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874 method enhances the range parameter estimation and
875 mitigates the long-range effects of the training data,
876 contributing to a more accurate and reliable uncertainty
877 prediction. In general, random sampling high-dimensional
878 model representation (RS-HDMR) methods would be a
879 valuable approach for addressing sparse data as they are
880 designed to effectively handle high-dimensional spaces and
881 offer insights into the relationships between input variables and
882 model output. However, RS-HDMR does not perform well in
883 this work due to the limited number of input parameters and
884 the occurrence of strong correlations between different
885 parameters.26,85 The gARD-JR-PhysGPR model allows us to
886 account for the synergetic effects of nitrogen and oxygen
887 doping and identify the best codoped carbon materials with
888 desirable structural and chemical properties.
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