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Abstract: Inland waters pose a unique challenge for water quality monitoring by remote sensing
techniques due to their complicated spectral features and small-scale variability. At the same time,
collecting the reference data needed to calibrate remote sensing data products is both time consuming
and expensive. In this study, we present the further development of a robotic team composed of
an uncrewed surface vessel (USV) providing in situ reference measurements and an unmanned
aerial vehicle (UAV) equipped with a hyperspectral imager. Together, this team is able to address
the limitations of existing approaches by enabling the simultaneous collection of hyperspectral
imagery with precisely collocated in situ data. We showecase the capabilities of this team using
data collected in a northern Texas pond across three days in 2020. Machine learning models for
13 variables are trained using the dataset of paired in situ measurements and coincident reflectance
spectra. These models successfully estimate physical variables including temperature, conductivity,
pH, and turbidity as well as the concentrations of blue-green algae, colored dissolved organic matter
(CDOM), chlorophyll-a, crude oil, optical brighteners, and the ions Ca2+, Cl—, and Na™. We extend
the training procedure to utilize conformal prediction to estimate 90% confidence intervals for the
output of each trained model. Maps generated by applying the models to the collected images
reveal small-scale spatial variability within the pond. This study highlights the value of combining
real-time, in situ measurements together with hyperspectral imaging for the rapid characterization of
water composition.

Keywords: water quality; robotic teams; hyperspectral imaging; machine learning; conformal
prediction

1. Introduction

For decades, remote sensing imagery has been used for environmental monitoring,
with applications ranging from resource mapping, land type classification, and urban
growth assessment to wildfire monitoring, natural disaster tracking, and many more [1,2].
Among these applications, the retrieval of water quality variables from remote sensing im-
agery remains challenging due to the difficulty of obtaining in situ reference data coincident
with available satellite imagery. Traditional approaches to obtain these data have relied
on serendipitous satellite passes over fixed sensing sites or sensor-equipped vessels. As a
consequence, curating comprehensive datasets can require decades of observations [3,4].
This poses a significant challenge for assessing natural and anthropogenic changes to water
composition in real time, for example, during oil spills [5].

Where remote sensing imagery and in situ measurements have been combined, studies
have demonstrated successful extraction of optically active water quality variables such
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as colored dissolved organic matter (CDOM), chlorophyll-a, and suspended sediment
concentrations by using combinations of spectral bands [6-8]. These approaches can be
further augmented by machine learning methods, which consist of nonlinear and non-
parametric models designed to learn representations of functions directly from data [9]. For
example, Petersen et al. utilized a deep neural network to successfully estimate blue—green
algae, chlorophyll-a, CDOM, dissolved oxygen, specific conductance, and turbidity from a
fused dataset of Landsat-8 and Sentinel-2 imagery [10]. Other methods such as support
vector machines and decision trees have also been successfully applied to retrieve water
quality parameters from remote sensing imagery [11,12]. However, the low spatial and
spectral resolution of available multiband remote sensing satellites makes it difficult to
analyze inland waters with small spatial features and complicated spectral signatures.

Advances in multispectral and hyperspectral imaging technology have led to consid-
erable reductions in size, making it possible to incorporate these cameras into the payloads
of autonomous aerial vehicles (UAVs) [13]. Flying at low altitudes enables the collection
of centimeter-scale imagery whilst limiting the need for complicated atmospheric correc-
tions to account for scattering by atmospheric aerosols and gasses [14,15]. Already, UAVs
equipped with multispectral and hyperspectral imagers are being used in a variety of
domains to great effect, including for biomass estimation, forest management, precision
agriculture, and, recently, water quality monitoring [14,16-19]. Despite the superior spec-
tral and spatial resolution enabled by UAV platforms, these improvements alone do not
address the limited spatial coverage of the in situ reference data used for the associated wa-
ter composition retrieval. For instance, Lu et al. used a UAV-born hyperspectral imager to
develop machine learning models for the inversion of chlorophyll-a and suspended solids
using samples from 33 fixed locations [20]. Similarly, Zhang et al. utilized a UAV equipped
with a hyperspectral imager to estimate water quality parameters by collecting imagery
coincident with samples taken from 18 sampling sites [21]. In both of these examples, the
collection of in situ reference data remains the key challenge for the application of UAV
systems to water quality quantification.

To address this gap and enable comprehensive, real-time evaluation of water composi-
tion, we have developed a robotic team comprised of an autonomous uncrewed surface
vessel (USV) equipped with a collection of reference grade instruments together with a
UAV carrying a hyperspectral imager. By incorporating reference instruments on a ma-
neuverable USV platform, we are able to rapidly collect large volumes of water quality
data for a comprehensive suite of physical, biochemical, and chemical variables that are
precisely collocated with spectra captured by the UAV. Critically, the USV enables the
collection of reference data with significantly improved spatial resolution compared to
other approaches. In our previous work, we introduced this paradigm and described how
in situ measurements collected by the USV can be used to provide the ground-truth data
for machine learning models that map the reflectance spectra captured by the hyperspectral
imager to the desired water quality variables [22].

The main objective of this study is to expand on our previous work in three new
ways: The first is to explore the breadth of water quality variables that can be inferred from
collected hyperspectral imagery. With the goal of comprehensive measurement in mind,
we demonstrate the ability to accurately predict physical variables such as temperature,
conductivity, pH, and turbidity as well as biochemical constituents, including blue-green
algae pigments, CDOM, and chlorophyll-a, in addition to concentrations of crude oil,
optical brighteners, and a variety of ions. The second addition is to demonstrate that
observations from separate collections can effectively be combined by carefully accounting
for variability in the viewing and illumination geometries of the scene. Finally, we expand
our machine learning approach to take advantage of the considerable volume of collected
data in order to determine reliable confidence intervals for each predicted parameter using
conformal prediction.
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2. Materials and Methods

The robotic team presented in this study consists of two key sensing sentinels: an
uncrewed surface vessel (USV) used to collect in situ reference measurements and an
unmanned aerial vehicle (UAV) for performing rapid, wide-area surveys to gather remote
sensing data products. Both platforms are coordinated using open-source QGroundControl
version 4.0.11 software for flight control and mission planning and are equipped with
high-accuracy GPS and INS such that all data points collected are uniquely geolocated and
time-stamped [23]. Both the USV and UAV include long-range Ubiquiti 5 GHz LiteBeam
airMAX WiFi to enable streaming of data products to a ground station with network-
attached storage to provide redundancy.

2.1. USV: In Situ Measurements

The USV employed in the robot team is a Maritime Robotics Otter equipped with an
in situ sensing payload consisting of a combination of Eureka Manta + 40 multiprobes.
These sensors include fluorometers, ion-selective electrodes, and other physical sensors
and are mounted on the underside of the boat as illustrated in Figure 1. Together, this
sensor array enables the collection of comprehensive near-surface measurements including
colored dissolved organic matter (CDOM), crude oil, blue—green algae (phycoerythrin and
phycocyanin), chlorophyll-a, Na™, CaZt, Cl-, temperature, conductivity, and many others.
The full list of measurements utilized in this study is outlined in Table 1 and is categorized
into four distinct types: physical measurements, ion measurements, biochemical measure-
ments, and chemical measurements. Additionally, the USV is equipped with an ultrasonic
weather monitoring sensor for measuring air speed and direction as well as a BioSonics
MX Aquatic Habitat Echosounder sonar, which are not explored in this study.

(b)

Underwater Sensors

Figure 1. Configuration of the USV: (a) Frontal view of the USV showing the Eureka Manta + 40 mul-
tiprobes mounted on the underside of the boat. (b) The USV deployed in the water.

As shown in Table 1, the physical measurements and ion sensors are largely based
on different electrode configurations, while the chemical and biochemical measurements
are all optically significant in UV and visible light, enabling their determination by flu-
orometry [24-26]. The pigments phycoerythrin and phycocyanin are used to determine
the blue—green algae content, which together with chlorophyll-a enables us to assess the
distribution of photosynthetic life in the pond [27,28]. In addition, we also measured the
concentration of colored dissolved organic matter (CDOM), which impacts light penetra-
tion and serves as a primary source of bioavailable carbon. Crude oil (natural petroleum)
and optical brightener concentrations are also measured with fluorometers and are relevant
for identifying sources of industrial contamination, natural seepage, and sewage [29,30].
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Table 1. In situ reference sensors utilized in this study.

Sensor Units Resolution Sensor Type Target Category
Temperature °C 0.01 Thermistor Physical
. Four-Electrode .
Conductivity uS/cm 0.01 Graphite Sensor Physical
. . Flowing-Junction .
pH logarithmic (0-14) 0.01 Reference Electrode Physical
Turbidity FNU 0.01 Ion-Selective Electrode Physical
Ca?t mg/L 0.1 Ion-Selective Electrode Ions
Cl~ mg/L 0.1 Ion-Selective Electrode Ions
Na* mg/L 0.1 Ion-Selective Electrode Ions
Blue-Green Algae b 0.01 Fluorometer Biochemical
(phycoerythrin) PP ’
Blue-Green Algae ppb 0.01 Fluorometer Biochemical
(phycocyanin)
CDOM ppb 0.01 Fluorometer Biochemical
Chlorophyll-a ppb 0.01 Fluorometer Biochemical
Optical Brighteners ppb 0.01 Fluorometer Chemical
Crude Oil ppb 0.01 Fluorometer Chemical

The inclusion of optically inactive variables such as conductivity, pH, and ion concen-
trations was motivated by a desire to be comprehensive. Multiple studies have classified
inland water bodies according to their ionic compositions [31,32]. Other research indicates
that the structure of dissolved organic matter is affected by changes in pH and cation
concentration [33]. Therefore, changes in physical parameters and ionic content can be
expected to be related to the observed distribution of optically active variables in the
water. It is therefore reasonable to expect that these parameters may be estimated from
hyperspectral images at a given site.

2.2. UAV: Hyperspectral Data Cubes

A Freefly Alta-X autonomous quadcopter was used as a UAV platform for the robotic
team. The Alta-X is specifically designed to carry cameras and has a payload of up to
35 lbs. We equipped the UAV with a Resonon Pika XC2 visible+near-infrared (VNIR)
hyperspectral imager. For each image pixel, this camera samples 462 wavelengths ranging
from 391 to 1011 nm. Additionally, the UAV includes an upward facing Ocean Optics
UV-Vis-NIR spectrometer with a cosine corrector to capture the incident downwelling
irradiance spectrum. Data collection by the hyperspectral imager is controlled by an
attached Intel NUC small-form-factor computer. A second processing NUC is also included
for onboard georectification and generation of data products. The collected hyperspectral
images (HSIs) are stored locally on a solid state drive that is simultaneously mounted by
the processing computer. The configuration of the drone is shown in Figure 2.

Downwelling
(b) Spectrometer

Hyperspectral
Imager

Acquisition
Computer

Visible/Thermal Processing
Imager Computer

Figure 2. Configuration of the UAV: (a) The hyperspectral imager and acquisition computer. (b) The

assembled UAV with secondary processing computer and (upward facing) downwelling irradiance
spectrometer.
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To effectively utilize the spectra collected by our UAV, we must account for the variabil-
ity of the incident light that illuminates the water and transform the raw hyperspectral data
cubes from their native imaging reference frame to a chosen coordinate system compatible
with the data collected by the USV. This procedure is illustrated in Figure 3.

HSI and Downwelling Spectrometer
Capture Raw Spectra For Each Pixel

Drone Flies Over Target

i

Cube

Downwelling Irradiance

Raw Spectra are Converted Pixels are Georectified
\ To Reflectance To Produce Final Data

- Radiance

Sl

Wavelength

Reflectance

IMU/GPS Captures Position
And Orientation of Drone Wavelength

Latitude
Longitude
Altitude

HecdmI

Figure 3. Hyperspectral image processing: Hyperspectral data cubes are collected one scan-line

at a time (left). By utilizing downwelling irradiance spectra, we convert each pixel from spectral
radiance to reflectance. By using orientation and position data from the on-board GPS and INS, we
georeference each pixel to assign it a latitude and longitude on the ground. The final data product is
the georectified hyperspectral reflectance data cube (right) visualized as a pseudo-color image with
reflectance as a function of wavelength along the z-axis.

The hyperspectral imager utilized in our robot team is in a so-called pushbroom
configuration: that is, each image captured by the drone is formed one scan line at a time as
the UAV flies. Each scan line consists of 1600 pixels, for which incoming light is diffracted
into 462 wavelength bins. In the collection software, a regular cutoff of 1000 lines is chosen
so that each resulting image forms an array of size 462 x 1600 x 1000 called a hyperspectral
data cube. Initially, the captured spectra are in units of spectral radiance (measured in
microflicks); however, this does not account for the variability of incident light illuminating
the water. To this end, we convert the hyperspectral data cubes into units of reflectance by
utilizing the skyward-facing downwelling irradiance spectrometer. When the camera is
normal to the water surface, the reflectance is given by

R(A) = 7L(A)/Ea(A) (1)

where L is the spectral radiance, E; is the downwelling irradiance, and a factor of 7
steradians results from assuming the water surface is Lambertian (diffuse) [34].

Having converted the hyperspectral data cube to units of reflectance, we must also
georeference each pixel into a geographic coordinate system so that each image pixel can
be assigned a latitude and longitude corresponding to the location on the ground from
which it was sampled. During our three surveys, the UAV was flown at an altitude of
approximately 50 m above the water. At this scale, the surface is essentially flat, so the
hyperspectral data cube can be reliably georectified without the need for an on-board
digital elevation map (DEM). We adopt the approach outlined in [35-37] whereby each
scan line is georeferenced using the known field of view (30.8°) together with the position
and orientation of the UAV as provided by the on-board GPS/INS. After a sequence of
coordinate transformations, the pixel coordinates are obtained in the relevant UTM zone
(in meters). The resulting image is then re-sampled to a final output resolution. For these
collections, a resolution of 10 cm was utilized; however, this can be adjusted to optimize
the processing time and final resolution for real-time applications. Finally, the UTM pixel
coordinates obtained are transformed to latitude and longitude for easy comparison with
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in situ data collected by the USV. The final result is a georectified hyperspectral reflectance
data cube. In Figure 4, we visualize one such data cube, highlighting a selection of exemplar
pixel spectra as well as the incident downward irradiance spectrum. A pseudo-color image
is generated (plotted on the top of the data cube) to illustrate the scene.

Downwelling Irradiance

Dry Grass
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Reflectance
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800 900 1000 400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
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Chlorophyll A in Algae
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Figure 4. A georectified reflectance data cube is visualized (center) with the log,, reflectance along the
z-axis and a pseudo-color image on the top. In the top left, we visualize the downwelling irradiance
spectrum (the incident light). The surrounding plots showcase exemplar pixel reflectance spectra for
open water, dry grass, algae, and a rthodamine dye plume used to test the system.

The above processing workflow was implemented using the Julia programming lan-
guage: a just-in-time compiled language with native multi-threading support [38]. By
running this pipeline on the onboard computer, we are able to process the collected hyper-
spectral data cubes in near real time. This feature is critical for time-sensitive applications
wherein we need to quickly assess if an area is safe and cannot afford to wait to download
and post-process collected imagery after a flight.

2.3. Data Collection

The robot team was deployed at a private pond in Montague, Texas, close to the
Oklahoma border for three separate collections on 23 November 2020, 9 December 2020,
and 10 December 2020. The pond spans an area < 0.1 km? and has a maximum depth
of 3 m. As shown in Figure 5, the area includes multiple distinct regions with significant
small-scale variability. For each acquisition, the UAV first completed a broad survey of the
pond, capturing multiple hyperspectral data cubes. Subsequently, the USV sampled across
the pond, collecting in situ reference measurements. Each of these reference measurements
was then collocated with individual pixel spectra, whereby the USV track overlapped
with the UAV’s pixels. To account for any time lag in the values measured by the in situ
instruments and to account for the USV’s size in comparison to the data cube’s spatial
resolution, each in situ measurement is associated with a 3 x 3 grid of HSI pixels: that is, a
30 cm x 30 cm square. These combined data form the tabular dataset on which we train
regression models; pixel spectra form input features, and each separate USV sensor forms a
distinct target variable.
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Figure 5. The pond in Montague, Texas, where the robot team was deployed. The pond includes
multiple distinct regions separated by small islands and grasses.

Each collection was performed near solar noon to maximize the amount of incident
sunlight illuminating the water. For the site in northern Texas, this corresponded to average
solar zenith angles of 54.9°, 56.7°, and 56.75° for 23 November 2020, 9 December 2020, and
10 December 2020, respectively. Given the hyperspectral imager acquires data cubes at nadir,
there was little concern for effects due to sunglint. However, to account for any potential
variation in lighting conditions between data cubes, we augment the training set with
additional features including the drone’s viewing geometry (roll, pitch, and heading) and
solar illumination geometry (solar azimuth, solar elevation, and solar zenith) as well as the
total at-pixel intensity before reflectance conversion, the total downwelling intensity, and
the drone’s altitude. Further feature engineering is performed to add additional spectral
indices that utilize combinations of specific wavelength bands such as the normalized
difference vegetation index (NDVI), normalized difference water index (NDWI), simple
ratio (SR), photochemical reflectance index (PRI), and more, as outlined in [39-42]. A
comprehensive list of these added features is provided in Supplementary Table S1. The
final dataset includes a total of 526 features (462 reflectance bands plus 64 additional
features) with over 120,000 records.

2.4. Machine Learning Methods

For each of the 13 target variables listed in Table 1, the data were randomly partitioned
into a 90:10 training/testing split. To model the data, we chose to use the random forest
regressor (RFR) as implemented in the Machine Learning framework for Julia (MLJ) [43,44].
Random forests are an ensembling technique based on bagged predictions of individual
decision tree regressors trained using the classification and regression trees (CART) algo-
rithm. Each tree in an RFR is trained on a random subset of features and a random subset of
training records [45,46]. Random forests are particularly attractive due to their fast training
and inference times. Furthermore, studies continue to observe that tree-based models like
random forest remain superior for tabular datasets [47,48].

As reflectance values in adjacent wavelength bins tend to correlate with each other
and, therefore, may not necessarily contribute additional information content to the final
model, it is desirable to evaluate the relative importance of each feature to the trained model
predictions. This is useful both for identifying the most relevant features and for performing
feature selection to reduce the final model size. By default, tree-based methods such as RFR
allow for impurity-based ranking as described in [46,49]. However, these methods have
been shown to be biased towards high cardinality and correlated features [50]. Therefore,
we choose to use the model-agnostic permutation importance as described by [51]. To do
this, we further partition the training dataset, resulting in an 80:10:10 split with 80% of the
points used for model training, 10% of the points used for validation and determination
of feature importance, and the final 10% held out as an independent testing set. The
importance of the jth feature is then computed as

Imp; = R*(f (Xyat), Yat) — R2(F(XL)), Yva) @)
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where (Xya1, Yval) is the validation set, f(-) is the trained model, R?(-, -) is the coefficient

of determination, and X\(/Ql is the validation feature set with the jth column randomly
permuted. The permutation importance is therefore understood to be the decrease in model
performance when the jth feature is replaced by random values from the validation set.

To assess the uncertainty of the final model’s predictions, we employed inductive con-
formal prediction as described in [52-55]. To do this, we computed a set of nonconformity
scores of the trained model on the validation set using an uncertainty heuristic: in this case,
the absolute error:

si = s(Xi, yi) = |f(Xi) —yil = [9i — yil 3)
where f(X;) = §; denotes the trained ML model applied to the ith calibration record. These

n-many scores are sorted, and the interval half width, 4, is calculated as the w
quantile of this set in order to achieve coverage of 1 — « on the calibration set. Prediction
intervals for new data are then formed as f(X) %+ d. For this study, we chose &« = 0.1 for
coverage corresponding to a 90% confidence interval.

Using these tools, the training procedure for each model was as follows: First, each
model was trained using six-fold cross-validation on the full 526-feature training set with
default hyperparameter values. Feature importances for the trained model were then
computed, and the top 25 features were identified. A second model was then trained
using the same six-fold cross-validation scheme with only these 25 most important features
together with hyperparameter optimization using a random search over the number of
trees and sampling fraction. The number of trees was optimized, as it has a significant
impact on both model performance and inference time. The sampling ratio determines the
fraction of training records that each individual tree is exposed to during training. Tuning
this parameter helps limit overfitting by increasing the diversity of trees in the ensemble.
Additionally, we chose to fix the maximum tree depth to 20 to control the final model size
such that each trained model can fit in-memory on the onboard UAV processing computer.
The remaining hyperparameters were left to their default values in order to constrain the
total optimization space. The performance of each model was evaluated by computing
out-of-fold scores for the coefficient of determination as well as the

(5)

where RMSE is the root-mean-square error, and MAE is the mean absolute error between
the true measurements y; and the predictions f;.

Having identified the model with the best out-of-fold performance, we proceeded to
train the final hyperparameter-optimized model on the full training set with the associated
uncertainty estimated using conformal prediction. Then, each final model was evaluated
on the previously untouched testing set. We visualize model performance across the
distribution of the testing data with a scatter diagram and a quantile-quantile plot, for
which successful model predictions should lie close to a 1:1 line.

These trained models can then easily be deployed on the onboard processing computer
so that during subsequent surveys, target concentrations can be inferred as imagery are
collected and processed. The application of each model to the collected hyperspectral data
cubes results in a map of the distribution of the water composition across the pond.

3. Results

The final dataset of combined observations from each of the three separate collections
contains more than 120,000 individual records. Based on the size of the UAV payload and
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the available battery capacity, the collection on 23 November 2020 was chosen to cover
the broadest possible area, resulting in small horizontal gaps between flight tracks. The
collections on 9 December 2020 and 10 December 2020 were designed to complement this
collection by sampling a smaller spatial extent with uniform coverage.

The variability of incident lighting conditions for each collection is visualized in
Figure 6, wherein the distribution of the total downwelling intensity measured by the
downwelling irradiance spectrometer across all hyperspectral data cubes is visualized.
Despite performing all UAV flights near solar noon, there were differences in the minimum
solar zenith angles between collections due to the time of year. Additionally, there was
some slight cloudiness during the 9 December and 10 December collections.

Downwelling Intensity Variation
1n-23
12-09

12-10

10,000 |

Counts

5000 i |

N

200 300 400 500 600 700 800
Downwelling Intensity (W/m?2)

Figure 6. Distribution of total downwelling intensity during each of the three HSI collection flights.
The multi-modal nature of these distributions reflects the impact of the relative orientation of the
drone to the sun as well as potential occlusion due to the presence of clouds.

The results of the model training procedure are presented in Table 2. The performance
of the model is identified by the R?, RMSE, and MAE out-of-fold estimates (mean =+ stan-
dard deviation) of the final hyperparameter-optimized model in the training set, with the
target variables ranked in descending order by the R? value and separated by sensor type
(physical variables, ions, biochemical variables, and chemical variables). The final hyperpa-
rameter values for each model are listed in Table Al in Appendix A. The small variation
in values across folds confirms that the reported performance is independent of how the
training set was sampled. Furthermore, we report the interval width that yields a 90%
confidence interval on the holdout validation set determined by the conformal prediction
procedure. We then evaluate how the estimated uncertainty generalizes by computing
the empirical coverage on the holdout testing set: that is, we compute the percentage of
predictions in the test set that actually fall within the estimated 90% confidence interval.

From Table 2, we see that the empirical coverage achieved by the inferred confidence
interval evaluated in the independent test set is within 1% of our desired coverage for each
target modeled. This indicates that the uncertainties obtained by the conformal prediction
procedure are reliable—at least within the bounds of the collected dataset. We also note
that in all cases, the inferred model uncertainties are larger than the resolution of the in situ
sensors. This lends further credence to the inferred uncertainty estimates, as we should
not expect to be able to have lower uncertainty than the smallest resolvable difference in
reference sensor measurements.

To further examine the differences in model performance between the target variables,
we can consider the difference between the RMSE and MAE scores. The MAE is less
sensitive to the impact of outliers than the RMSE, and as a consequence, any large difference
between the two is indicative of impacts due to the distribution of target values. Indeed,
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this is the case for turbidity, for which almost all measurements were below 10 FNU, with
only a small fraction of observations from a small area near the shore being above this
value. The rest of the models all show mean per-fold RMSE values with sizes comparable
to the mean per-fold MAEs.

In the remainder of this section, we compare the models within each target category.

Table 2. Summary of fitting statistics for each target measurement. Models were evaluated using
6-fold cross-validation on the training set. The estimated uncertainty is evaluated so that a prediction
7 £ Ay achieves 90% coverage on the calibration holdout set. The empirical coverage is the percentage
of predictions in the testing set that fall within the inferred confidence interval.

Estimated Empirical
; 2 P
Target Units R RMSE MAE Uncertainty Coverage (%)
Temperature °C 1.0 £6.04 x 107¢  0.0289 + 0.000466 0.0162 + 0.00016 +0.039 90.3
Conductivity uS/cm 1.0+ 1.54 x 107 0.574 + 0.0128 0.322 + 0.00579 +0.76 90.6
pH 0-14 0.994 + 0.000288  0.0145 + 0.000304  0.00739 = 9.49 x 107> +0.017 89.5
Turbidity FNU 0.897 + 0.00611 3.13 + 0.084 0.736 + 0.0156 +1.1 89.8
Ca** mg/L 1.0 £ 1.06 x 1073 0.285 + 0.00357 0.137 + 0.00224 +0.33 89.8
Cl™- mg/L 0.995 + 0.000196 0.895 + 0.0202 0.516 + 0.00759 +1.2 90.1
Na* mg/L 0.993 + 0.000229 6.16 + 0.102 2.83 +0.0303 +7.3 90.0
Blue-Green
Algae ppb 0.995 + 0.000601 0.783 + 0.0489 0.287 + 0.00959 +0.73 89.3
(Phycoerythrin)
CDOM ppb 0.965 + 0.00352 0.248 + 0.0142 0.0921 + 0.0024 +0.15 89.9
Chlorophyll-a ppb 0.908 + 0.00664 0.37 + 0.00934 0.131 + 0.00228 +0.27 89.2
Blue-Green
Algae ppb 0.708 + 0.00689 0.749 + 0.0129 0.446 + 0.00405 +0.93 89.8
(Phycocyanin)
Crude Oil ppb 0.949 + 0.00267 0.247 + 0.00597 0.0935 + 0.00114 +0.17 89.8
B Optical ppb 0.943+0.00122  0.0806  0.0014 0.0481 = 0.000416 +0.095 89.8
righteners

3.1. Physical Variables

Physical variables included temperature, conductivity, pH, and turbidity. In the
combined dataset, the distributions for temperature and conductivity had two distinct,
nonoverlapping regions corresponding to the measurements from 23 November and the
measurements from 9 December and 10 December, respectively. The pH value of the pond
was slightly alkaline, showing a multimodal spatial distribution with values ranging from
8.0 to 8.6. As mentioned above, the pond water was very clear for each observation period,
with most turbidity values ranging between 1 and 3 FNU and very few above 10.

The results of the hyperparameter-optimized RFR fits are shown in Figure 7. Tempera-
ture and conductivity show the best performance in the independent training set, with R?
values of 1.0 (to three decimal places). Similarly, the pH model achieves an excellent fit,
with most predictions falling close to the 1:1 line. Quantile-quantile plots for these three
models further confirm that the distributions of the true and predicted values match. The
turbidity model also achieves a strong fit, with a R? value of 0.905. The scatter diagram
and quantile-quantile plot for this target show that the model performance degrades with
larger values, for which deviation in the predicted distribution is apparent past 25 FNU.
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Figure 7. Scatter diagrams (left) and quantile-quantile plots (right) for the hyperparameter-optimized

RFR models for the physical variables measured by the USV.

The permutation importance of the top 25 features for each of the models of the
physical variables is shown in Figure 8. All four models show strong dependence on
the solar illumination geometry (solar azimuth, elevation, and solar zenith) as well as
the viewing geometry (pitch, altitude, heading, etc.). All four models also include the
total downwelling intensity and the total pixel intensity as highly important features. The
temperature, conductivity, and pH models all include red-to-infrared reflectance bins and a
combination of spectral indices within their most important features. Finally, the turbidity
model relies mainly on blue wavelengths from 462 to 496 nm and did not include any
spectral indices amongst the 25 most important features.
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By applying the trained models to the full hyperspectral data cubes, we can produce
maps of the distributions of the target variables as in Figure 9. Here, we have chosen to
show the map produced from the imagery collected during the 23 November collection
period, as it showcases the largest spatial extent. The temperature map shows lower
values near the shore, which is to be expected as the air temperature was below the water
temperature. The temperature, conductivity, and pH maps all show a distinction between
the main body of water and the alcove to the east, which receives little flow from the main
body. The turbidity map confirms that the water is largely clear but has elevated levels
near the shore.
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Figure 8. Ranked permutation importance for each feature in the physical variable models. Permuta-
tion importance measured the decrease in the model’s R? value after replacing each feature in the
prediction set with a random permutation of its values.



Remote Sens. 2024, 16, 996

13 of 25

Collection Date: 11-23 Collection Date: 11-23
- - =

o

@
o
o

337030
138

2

Conductivity (uSfcm)

136
337020

Latitude

Temperature (°C)
Latitude
3
(=]

3
@
o

i »
-97716 -97.715 -97.74 -97.73 -97.716 -97.715 -97. N4 -97.713

Longitude Longitude

Collection Date: 11-23 Collection Date: 11-23

~
*

84

N
o

o]

pH (0-14)
Latitude

@
o
3
2
=
11
i |

3
Turbidity (FNU)

[

80
B

-97.716 -9775 -97 N4 -97.713

-97.716 -97.715 -97.714 -97.713
Longitude Longitude

Figure 9. Maps generated by applying each of the physical variable models to the hyperspectral
data cubes collected on 23 November. Overlaid over the predictions are color-filled squares showing
the associated in situ reference data for the same collection period. The size of the squares has been
exaggerated for visualization. We note that there is good agreement between the model predictions

and the reference data.

3.2. Ions

The measured ions include Ca?t, Cl~, and Na™. All three measurements showed
multimodal spatial distributions throughout the pond on each of the three collections. The
scatter diagrams and quantile-quantile graphs for the resulting fits are shown in Figure 10.
All three models achieved excellent fits, with R? values of 1.0, 0.996, and 0.993 on the
independent testing set, respectively. Furthermore, there is no clear decrease in model
performance for low or high concentrations; rather, for C1~ and Nat, the models have the
most difficulty in the middle of the target distributions.

The permutation importance rankings for the top 25 features of each of the ion models
is shown in Figure 11. Here, we see that all three models depend on the solar illumination
and viewing geometries as well as the total downwelling intensity and the total pixel
intensity measured by the hyperspectral imager. All three models utilize a combination of
spectral indices that combine green, red, and infrared reflectance bins. The Cat and CI™
models depend on specific red wavelengths of 740 to 769 nm. C1~ and Na™ also depend
on green and yellow reflectance bins of 541 to 589 nm.

The maps produced by applying the fitted models to the hyperspectral data cubes
for 23 November are shown in Figure 12. Both positive ions Ca*" and Na™ show high
concentrations in the northwest portion of the pond, with lower values being measured
in the alcove on the eastern side. Positive ion concentrations also appear to decrease near
the shore. The negative ion C1~ shows the opposite distribution, with larger values in
the alcove to the east and the lowest values on the western side of the pond. The C1™ ion
concentration also appears to increase near the shore.
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Figure 10. Scatter diagrams (left) and quantile-quantile plots (right) for the hyperparameter-
optimized RFR models for the ion measurements made by the USV.
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Figure 11. Ranked permutation importance for the top 25 features of the ion models. The permutation
importance measures the decrease in the model’s R? value when each feature is replaced by a random
permutation of its values.
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Figure 12. Maps generated by applying the trained ion models to the data cubes collected on 23
November. Overlaid on the maps are the in situ reference measurements for the same collection
period. The size of the squares has been exaggerated for the visualization. We note that there is good
agreement between the generated map and the reference data.

3.3. Biochemical Variables

The measured biochemical variables include the pigments phycoerythrin, phyco-
cyanin, and chlorophyll-a, as well as CDOM. Phycoerythrin and phycocyanin are both
present in blue-green algae, and chlorophyll-a is found in all photosynthetic organisms
except bacteria. In the combined dataset, the three pigments showed multimodal distribu-
tions separated by the collection day and with little spatial variation within each individual
collection. CDOM showed a variable spatial distribution throughout the pond between the
main water body and the eastern alcove on 23 November.

The results of the RFR fits for the biochemical variables are shown in Figure 13.
Phycoerythrin showed the best model performance, with an R? value of 0.995 in the
training set. Both CDOM and chlorophyll-a achieved good performance, with R? values
of 0.967 and 0.917 in the training set. Quantile-quantile plots indicate that the CDOM
model degrades for values below 16 ppb, where data are sparse. The chlorophyll-a model
shows the opposite trend, with poorer performance for concentrations above 5 ppb, for
which there are very few records. The phycocyanin model had the lowest performance
of the biochemical sensors, with an R? value of 0.727 and with model predictions rapidly
decreasing in quality for concentrations greater than 3 ppb.

The permutation importance ranking of the top 25 features of each biochemical model
is shown in Figure 14. Again, all four models include the solar illumination and view-
ing geometries amongst their most important features as well as the total downwelling
intensity and total pixel intensity at the imager. Additionally, all four models include some
vegetation indices amongst the top features, which utilize combinations of blue, green,
yellow, red, and infrared reflectance bands. The phycoerythrin model shows a preference
for green reflectance bins from 544 to 556 nm, while the phycocyanin model prefers blue
and red reflectance bins. The CDOM model uses mainly red reflectance values, whereas
the chlorophyll-a model includes red, green, and blue reflectance bins.
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The maps generated for the 23 November collection by applying trained biochemical
models are shown in Figure 15. The three pigments show low concentrations in the body of
water but elevated levels near the shore. The CDOM distribution shows spatial variability,
with higher values in the eastern alcove—similar to the separation seen in the maps for
temperature, conductivity, Ca>*, C1~, and Na™.
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Figure 13. Scatter plots (left) and quantile-quantile plots (right) for the final hyperparameter-
optimized models for the biochemical targets blue-green algae (phycoerythrin), CDOM, chlorophyll-
a, and blue—green algae (phycocyanin).
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Figure 14. Ranked permutation importance for each feature in the trained biochemical models. The
permutation importance measures the decrease in the model’s R? value after replacing each feature
with a random permutation of its values.
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Figure 15. Maps generated by applying the trained biochemical models to the data cubes collected
on 23 November. Overlaid are the in situ reference data for the same collection period. The size of
the squares has been exaggerated for the visualization. We note there is good agreement between the

predicted map and the reference data.
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3.4. Chemical Variables

The final two models to consider are for the measured chemical concentrations of
crude oil (CO) and optical brighteners (OB). The crude oil measurement includes natural
unprocessed petroleum, whereas optical brighteners consist of whitening agents that are
often added to products such as soaps, detergents, and cleaning agents. Both the crude oil
and optical brightener measurements show multi-modal spatial distributions across each
collection period. Scatter diagrams and quantile-quantile plots for the fitted models are
shown in Figure 16. Both models achieve good performance, with R? values of 0.957 and
0.941 for CO and OB on the holdout test set. The performance of the CO model degrades
for concentrations below 24 ppb, for which there are few records. Similarly, the OB model
shows worse performance for concentrations below roughly 3.5 ppb.

The ranked permutation importances of the top 25 features for each model are shown
in Figure 17. Both models rank the solar illumination and viewing geometries together
with the total downwelling intensity and total pixel intensities amongst the top features.
Both models include a combination of spectral indices using blue, green, yellow, red, and
infrared reflectance bins. Additionally, the CO model includes green—yellow reflectances
from 539 to 589 nm as well as red reflectances from 749 to 769 nm. The OB model includes
yellow reflectance at 584.6 nm and red reflectance bins.

The maps generated by applying the CO and OB models to the 23 November data
cubes are shown in Figure 18. Both models show a distinct spatial distribution, with
elevated values in the eastern alcove of the pond—similar to the CDOM distribution in
Figure 15.
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Figure 16. Scatter diagrams (left) and quantile-quantile plots (right) for the hyperparameter-
optimized RFR models for the chemical variables measured by the USV.
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Figure 17. Ranked permutation importance for the top 25 features of the chemical models. The
permutation importance measures the decrease in the model’s R? value after replacing each feature
in the prediction set with a random permutation of its values.
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Figure 18. Maps generated by applying the trained chemical variable models to the hyperspectral
data cubes collected on 23 November. Overlaid are color-filled squares showing the in situ reference
data for the same collection period. The size of the squares is exaggerated for the visualization. We
note that there is good agreement between the model predictions and reference data.

4. Discussion

In recent years, much effort has been spent on the curation of comprehensive datasets
combining water quality records with decades of satellite imagery to enable the develop-
ment of new methods for retrieving water quality parameters. For example, Aurin et al.
curated over 30 years of oceanographic field campaign data with associated coincident
satellite imagery [3]. Similarly, Ross et al. combined more than 600,000 records of dissolved
organic carbon, chlorophyll-a and other water quality variables with historical Landsat
reflectance data for the period 1984-2019 [4]. The sensing paradigm we have demonstrated
here was able to rapidly collect comparable volumes of data within the span of just three
observation periods. Therefore, despite the fact that individual UAV tracks cover far less
spatial extent than remote sensing imagery, the ability to collect coordinated in situ mea-
surements together with detailed hyperspectral images offers a significant improvement
over these traditional approaches. With a coordinated robot team, one does not need to rely
on infrequent satellite overpasses when planning data collection. Furthermore, the time
offset between reference measurements and remote sensing is significantly reduced from
days to minutes.

This study is not the first to employ UAVs equipped with multispectral or hyperspec-
tral imagers for the purpose of assessing water composition and quality. Indeed there
are many such examples focused on inferring optically active and inactive water quality
parameters using band ratios and machine learning methods [20,21,56]. The key advance-
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ment demonstrated by our robot team is the ability to combine UAV-borne hyperspectral
imagers together with comprehensive, in situ sensing for a significant improvement in
data volume. Purposefully coordinating USV sampling with the flight tracks of the UAV
greatly accelerates data collection by removing the need to acquire individual samples for
the calibration of water quality models. Additionally, the USV facilitates rapid validation
of model predictions. When a trained model applied to collected hyperspectral imagery
suggests elevated levels of a particular water quality parameter, the USV can quickly be
provisioned to confirm these estimates with its reference instruments.

In [22], we introduced this paradigm. In this study, we have built on this approach in
three new ways. First, we have demonstrated the ability to effectively combine observations
from disparate collections by augmenting the machine learning models with sufficient
features describing the illumination and viewing geometries. As Figure 6 indicates, we
observed variation in the total downwelling intensity between the images collected on the
same day and between each separate collection period. These within-collection variations
are due to a combination of the stability of the UAV (on which the upward facing down-
welling irradiance spectrometer is mounted) together with the occasional interference of
clouds. Moreover, the assumption that the water’s surface can be treated as Lambertian
is clearly violated when the water is not perfectly still. Despite the potential impact of
these limitations on the quality of the resulting reflectance data cubes, the smoothness of
the maps generated by our models suggests that we have provided sufficient context by
including the relevant solar illumination and viewing angles as additional features in the
final dataset. This fact is reinforced by the position of these variables as the most important
features for each of the estimated water quality variables. As long as we are primarily
interested in these values and not the reflectances themselves, we are able to successfully
account for these lighting effects when combining data from multiple collections.

The second contribution of this study is to explore the breadth of possible water
quality and composition parameters that can be accurately mapped by hyperspectral
imagery collected by the UAV. The results presented here confirm the ability of the robot
team to predict optically active parameters including blue—green algae, chlorophyll-a,
CDOM, crude oil, optical brighteners, turbidity, and temperature. Additionally, we are also
able to infer the distributions of optically inactive variables including conductivity, pH, and
ion concentrations. Other studies using multispectral and hyperspectral remote sensing
imagery have also estimated optically inactive water quality parameters, with the ability
to do so stemming from the relationship of these variables to optically active properties
of the water [57-59]. We note that in our investigation, the models trained for many of
these variables outperformed their optically active counterparts. As the abundance of these
variables is likely tied to the specific composition and content of the pond, it is unlikely
that models trained for these optically inactive variables will generalize to other bodies
of water.

The third contribution of this work is the extension of our machine learning approach
to enable uncertainty quantification through conformal prediction. For water quality risk
assessment, the trustworthiness of model predictions is of equal or greater importance to
the values themselves. However, robust uncertainty quantification has historically been
challenging for many machine learning models, which behave like black boxes. Conformal
prediction is an attractive approach to enable model-agnostic uncertainty estimation and
has recently seen adoption to remote sensing classification tasks such as land-type classi-
fication and object identification [60,61]. In this setting, the goal is to produce predictive
sets guaranteed to contain the correct class labels at a predetermined confidence level.
Nevertheless, conformal prediction works equally well for regression tasks. By leveraging
the large data volume collected by the robot team, we are able to simultaneously train
predictive models and evaluate confidence intervals for their predictions. As the final
column of Table 2 confirms, the empirical coverage on the holdout testing set provided by
the inferred confidence intervals achieves the desired coverage to within 1%. We chose
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to use a 90% confidence interval for this study, but this can easily be adapted to suite the
needs of a specific application if greater confidence is required.

Despite the wealth of information provided by the increased resolution of hyper-
spectral images, their considerable size impedes their complete utilization in real-time
applications. Often, much of the available spectral information is discarded in favor of
indices like the NDVI, which can be quickly computed as images are captured [62]. Uti-
lizing machine learning allows us to take advantage of the full spectrum captured by
each pixel while simultaneously reducing the size of the final data product to single-band
“images” of selected water quality variables. We note that training a reduced-feature model
without further hyperparameter optimization takes roughly one minute per target variable
of interest using the processing computer included on the UAV. This means that, in prin-
ciple, training data can be collected by the USV, imagery can be acquired and processed
by the UAV, coincident records can be selected, and the resulting dataset can be used to
train machine learning models all while investigators are still in the field. Analyzing the
maps produced by applying each trained model enables areas of interest to be readily
pinpointed, as demonstrated by the identification of slightly elevated levels of crude oil,
optical brighteners, and CDOM in the eastern alcove of the pond on 23 November.

Finally, we note that the high spectral resolution of the UAV imagery together with the
ability to collect precisely co-located reference measurements provides fertile ground for
the development of new spectral indices targeted towards water quality variables. In this
paper, we have shown that permutation importance ranking for trained machine learning
models enables a straightforward interpretation of the relative values of each reflectance bin
to the final model predictions. In future work, we plan to utilize this information to identify
combinations of spectral bands that can be applied to remote sensing imagery captured
by satellites equipped with hyperspectral imagers. The recently launched Environmental
Mapping and Analysis Program (EnMAP) is one such example and includes over 91 spectral
bands in the VNIR that overlap with those of our hyperspectral imager [63].

5. Conclusions

In this study, we address two key limitations of current remote sensing approaches to
characterize water quality: namely, the limited spatial, spectral, and temporal resolution
provided by existing satellite platforms and the lack of comprehensive in situ measure-
ments needed to validate remote sensing data products. By equipping an autonomous
USV with a suite of reference sensors, we rapidly collect significantly more data than
existing approaches that rely on the collection of individual samples for lab analysis or are
constrained to continuous sensing at fixed sites. Utilizing an autonomous UAV equipped
with a hyperspectral imager in tandem with the USV allows us to quickly generate aligned
datasets that are used to train machine learning models mapping measured reflectance
spectra to the desired water quality variables. By virtue of this increased data volume,
we are able to simultaneously estimate the uncertainty of our models by using conformal
prediction. Finally, the hyperspectral data cube processing workflow employed onboard
the UAV makes it possible to deploy these trained models to swiftly generate maps of the
target variables across bodies of water. The rapid turnaround time from data collection to
model deployment is critical for real-time water quality evaluation and risk assessment.
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Abbreviations

The following abbreviations are used in this manuscript:

GPS Global Positioning System

INS Inertial Navigation System

UTM Universal Transverse Mercator
uv Ultraviolet

ML Machine Learning

Uusv Uncrewed Surface Vessel

UAV Unmanned Aerial Vehicle

CDOM Colored Dissolved Organic Matter
CcO Crude Oil

OB Optical Brighteners

FNU Formazin Nephelometric Unit
RFR Random Forest Regressor

MLJ Machine Learning framework for Julia
RMSE Root Mean Square Error

MAE Mean Absolute Error

RENDVI  Red-Edge Normalized Difference Vegetation Index

Appendix A

Table Al. Final hyperparameter values for each target model. The number of trees and the sampling
ratio were optimized using a random search. The maximum tree depth was fixed to 20 to limit
overfitting and to control the size of the final model. The number of sub-features was set to the square
root of the total number of features, and the minimum samples per leaf and minimum samples per
split were left to their default values.

. . Number of Minimum Minimum
Number of Sampling Maximum
Target . Sub- Samples per Samples per
Trees Ratio Tree Depth .
Features Leaf Split
Temperature 153 0.979 20 5 1 2
Conductivity 154 0.992 20 5 1 2

pH 103 0.972 20 5 1 2
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Table Al. Cont.

Number of Sampling Maximum Number of Minimum Minimum
Target Trees Ratio Tree Depth Sub- Samples per Sample's per
4 Features Leaf Split

Turbidity 158 0.998 20 5 1 2
Ca%* 172 0.984 20 5 1 2
Cl~ 110 0.999 20 5 1 2
Nat 103 0.972 20 5 1 2
Phycoerythrin 158 0.998 20 5 1 2
CDOM 157 0.982 20 5 1 2
Chlorgphyu' 158 0.998 20 5 1 2
Phycocyanin 142 0.995 20 5 1 2
Crude Oil 154 0.992 20 5 1 2
B%}’lttfirs 157 0.982 20 5 1 2
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