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Abstract

In traditional hydraulic robotics, actuators must be sized for the highest possible load, resulting in
significant energy losses when operating in lower force regimes. Variable recruitment fluidic
artificial muscle (FAM) bundles offer a novel bio-inspired solution to this problem. Divided into
individual MUs, each with its own control valve, a variable recruitment FAM bundle uses a
switching control scheme to selectively bring MUs online according to load demand. To date, every
dynamic variable recruitment study in the literature has considered homogeneous bundles
containing MUs of equal size. However, natural mammalian muscle MUs are heterogeneous and
primarily operate based on Henneman’s size principle, which states that MUs are recruited from
smallest to largest for a given task. Is it better for a FAM variable recruitment bundle to operate
according to this principle, or are there other recruitment orders that result in better performance?
What are the appropriate criteria for switching between recruitment states for these different
recruitment orders? This paper seeks to answer these questions by performing two case studies
exploring different bundle MU size distributions, analyzing the tradeoffs between tracking
performance and energetics, and determining how these tradeoffs are affected by different MU
recruitment order and recruitment state transition thresholds. The only difference between the two
test cases is the overall force capacity (i.e. total size) of the bundle. For each test case, a Pareto
frontier for different MU size distributions, recruitment orders, and recruitment state transition
thresholds is constructed. The results show that there is a complex relationship between overall
bundle size, MU size distributions, recruitment orders, and recruitment state transition thresholds
corresponding to the best tradeoffs change along the Pareto frontier. Overall, these two case studies
validate the use of Henneman’s Size Principle as a variable recruitment strategy, but also
demonstrate that it should not be the only variable recruitment method considered. They also
motivate the need for a more complex variable recruitment scheme that dynamically changes the
recruitment state transition threshold and recruitment order based on loading conditions and
known system states, along with a co-design problem that optimizes total bundle size and MU size
distribution.

1. Introduction muscles, it is no surprise that one of the primary
goals of mobile robotics over the past few decades
has been to mimic the behavior of these muscles as

closely as possible. One of the ways through which

1.1. An overview of mammalian muscle-inspired
recruitment in mobile robotics

Considering the wide range of motions that can be
achieved seemingly effortlessly by human skeletal
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this has been achieved has been through the imitation
of the hierarchical structure of mammalian muscle.
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This structure is inherently redundant, as each muscle
consists of thousands of MUs (groups of muscles
fibers, sometimes as few as three) with their own
nerve ending that can be activated independently of
one another [1]. Muscle force can be increased either
by increasing the neurological excitation rate of a
particular MU, or through the recruitment of new
MUs [1].

In the literature, the concept of muscle-inspired
actuator recruitment is leveraged to achieve several
different goals. For example, Mathijssen et al develop
a compliant solenoid-based actuator that uses recruit-
ment to achieve variable stiffness and redundancy
in the case of failure [2]. Odhner and Asada also
frame the concept of recruitment as a way to achieve
a desired force behavior through a redundant actu-
ation scheme using an SMA-based artificial muscle
[3]. Corrado de Pascali et al employ the concept
of recruitment on pneumatic 3D printed actuators
in parallel, bipennate, and fusiform topologies to
illustrate that using recruitment allows for regula-
tion of force without changing actuator contraction.
The most common application of muscle-inspired
recruitment is in hydraulic mobile robotics. In con-
ventional hydraulic actuation systems, the actuator
must be sized based on the maximum force required
by its application. When lower forces are needed, the
actuator pressure must be throttled by a valve to a
lower pressure, which results in significant energy
losses. Therefore, the closer that an actuator can oper-
ate to its source pressure, the more efficient it will be.
Bai et al apply muscle-inspired recruitment to a con-
ventional hydraulic piston-cylinder system by creat-
ing a piston with multiple chambers, each of which
can be independently pressurized to better match
changing force demands [4]. However, the most pre-
valent implementation of muscle-inspired recruit-
ment is in fluidic artificial muscles (FAMs), otherwise
known as McKibben muscles. A typical FAM consists
of an elastic bladder surrounded by a braided mesh
which, when pressurized, expands radially and con-
tracts axially, generating a tensile force. Although the
mechanism through which FAMs are actuated is dif-
ferent from that of biological muscles, the similarity
of their force-length characteristics to those of biolo-
gical muscles makes them a good choice for biologic-
ally inspired actuation systems. In FAM literature, the
hierarchical muscle-inspired recruitment of actuators
is more specifically referred to as variable recruitment,
so this term will be adopted for the remainder of this
paper.

A variable recruitment bundle consists of a single
‘actuator tissue’ with multiple FAMs that can be
selectively pressurized (‘recruited’) or depressurized
(‘derecruited’) by the control system to actuate a
single joint. The FAMs within the bundle can be
sequentially based on required load, allowing them
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to operate much closer to source pressure, increasing
overall efficiency. This was first shown to be true for
a bundle in quasistatic conditions [5], and was later
shown in both dynamic simulation and experimental
studies [6—10]. Variable recruitment studies have
been performed for both pneumatic and hydraulic
artificial muscles bundles, both of which offer certain
advantages. Pneumatic artificial muscles are cleaner,
do not require a hydraulic reservoir, and offer the
potential for reduced weight in a mobile robotics
application. However, from an efficiency standpoint,
it is more desirable to consider the hydraulic case,
as the incompressibility of hydraulic fluid inher-
ently leads to greater efficiency [11]. Therefore, most
variable recruitment studies that focus heavily on
energy consumption or efficiency consider hydraulic-
ally actuated FAMs. In fact, several system-level ana-
lyses have been performed (in which hydraulic system
components such as the pump, accumulator, and ser-
vovalves are considered) to study how the benefits of
variable recruitment are affected by electrohydraulic
coupling, and have found that variable recruitment
can increase overall hydraulic system efficiency and
bandwidth [12, 13].

1.2. Gaps in the current literature and motivation
for study

Previous dynamic variable recruitment studies,
whether in experiments or in simulations, have lim-
ited their scopes to bundles containing MUs of the
same size, while in mammalian skeletal muscle,
MUs vary in size. As a general rule, these MUs are
recruited according to Henneman’s size principle,
which states that MUs are recruited in the order
of smallest to largest [14]. However, recent mus-
culoskeletal studies have shown that there may be
exceptions to Henneman’s size principle in which
MUs are recruited in a different order [15-17]. Since
no studies have been performed for heterogeneous
FAM bundles, the question of whether a Henneman-
based approach is desirable for FAM variable recruit-
ment bundles remains unanswered. Another relat-
ively unexplored aspect of variable recruitment is the
criterion used to shift between MU activation levels
(also known as recruitment states). Some studies wait
to transition until a MU has completely saturated
[6], while others use certain activation thresholds
(determined ad hoc) to decide when the next MU
should be recruited [7]. A more thorough explora-
tion of how recruitment state transition points should
be determined is needed to more optimally design
variable recruitment controllers.

To address these gaps in the literature, dynamic
system-level electrohydraulic simulations are per-
formed for heterogeneous variable recruitment
bundles. In these simulations, three important
parameters are varied for a bundle while keeping its
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maximum force output and electrohydraulic system
parameters constant:

1. The fraction of the total bundle force that
each MU can contribute, called the MU size
distribution.

2. The order in which each MU is recruited (e.g.

Smallest—Medium— Largest, Largest - Medium —

etc)
3. The pressure at which a new MU is recruited, also
known as the recruitment state transition threshold.

The purpose of these simulations is to develop an
understanding of how the variation of these three dif-
ferent factors affects the overall tracking and energetic
performance of the system. For each different MU size
distribution, a Pareto frontier is developed that shows
the performance-energetics tradeoffs associated with
the recruitment orders and recruitment state trans-
ition thresholds for that distribution. These tradeoffs
are then compared across different MU force distri-
butions to determine a global Pareto frontier, which
can be viewed as a co-design tool with the goal of
determining the optimal individual MU sizing within
a given bundle. This study is performed for two case
studies with different total bundle force capacities,
and the results are compared.

The remainder of this paper is laid out as follows.
Section 2 defines the robotic system of interest and the
generalized recruitment architecture for this study.
Section 3 outlines a model of the electrohydraulic sys-
tem used in the study. Section 4 provides more details
regarding the study methodology, shows results for
both test cases, and discusses the implications of those
results. Finally, section 5 offers final conclusions and
suggestions for how the study can be expanded in
future work.

2. Variable recruitment control
architecture

2.1. Defining a robotic system of interest

Consider a heterogeneous variable recruitment
bundle consisting of three motor units (MUs) actu-
ating a simple 1-DOF robotic arm. The bundle and
the arm are shown in figure 1.

A well-documented phenomenon associated
exclusively with variable recruitment is the buck-
ling of inactive MUs during contraction in lower
recruitment states. This phenomenon is undesirable
because it results in the generation of resistive forces
that reduce overall bundle force output and reduces
total bundle volumetric energy density [18, 19]. In
this study, it is assumed that each MU is attached
to a flexible but inextensible tendon that prevents it
from ever going into compression when inactive or
at a low pressure. This mitigation technique allows
resistive forces to be neglected, simplifying the system
modeling [19].
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Figure 1. 1-DOF arm actuated by heterogeneous 3-MU
variable recruitment bundle. The arm has a mass M and
length L. There is an external mass .y attached to the arm
that represents a specific payload or task for the robotic arm
to complete. The arm is attached to a pulley of radius rp,
and the FAM bundle is attached to this pulley and exerts a
torque on the arm through the pulley.

The 1-DOF arm can be modeled like a compound
pendulum, using the following equation of motion:

.. . L
J0 = Fpamrp — b0 — Mgisinﬁ — MexgLsing (1)

where J is the mass moment of inertia, Fpays is the total
force exerted on the arm by the FAM bundle, r, is the
arm pulley radius, b is the damping coefficient, M is
the total mass of the arm, m. is the external (load)
mass at the end of the arm, g is the acceleration due
to gravity, and L is the total length of the arm.

Each MU in the bundle exerts a force according
to a corrected version of the Tondu ideal FAM model
[20] that uses the experimentally determined blocked
force and free strain of a FAM with the same radius,
length and initial braid angle as the one in the model
to improve accuracy. This model is given by the fol-
lowing equation:

F= kem 2Py (a(l —kee) — b) 2)

where kg is the blocked force empirical correction
factor, k. is the free strain empirical correction factor,
Pyy is the MU pressure, 1y is the initial outer radius
of the FAM, L is the initial length of the FAM, ¢ is the
FAM strain (the ratio of muscle contraction to initial
FAM length), and a and b are braid angle-dependent
kinematic parameters:

3
a= 3
tanZqy (3)
1
b= ——. (4)
SIN“ g

Although many different curve-fit equations can
be used for the correction factor terms, in this paper,
the ones used are from Meller et al [7], and are
given by:

kr = constant (5)
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Figure 2. High-level variable recruitment controller. The controller uses model-based feedforward control but also has outer loop
and inner loop P controllers to account for lag and system dynamics. An inverse model of the 1-DOF robotic limb is used to
generate a feedforward force command for the bundle. Inverse models of the FAMs in the bundle are used to generate desired
pressures for each MU based on the desired force, desired strain (which is a function of the desired trajectory angle) and
recruitment state. Each desired pressure goes to a P-controller (with a gain of 0.0005 V/Pa) that controls the pressure in each MU
by adjusting the spool position of an electrohydraulic servovalve. The measured pressures in each MU are used to determine the
recruitment state through state machine logic. The measured angle of the 1-DOF robotic limb is fed back to a P controller (with a
gain of 50 N rad —!), which adjusts the desired force according to the tracking error.
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Figure 3. Generalized variable recruitment scheme for a 3-MU bundle. When the pressure in MU1, Pyui,meas> €xceeds the upshift
recruitment state transition threshold, Prsz,up, MU2 is recruited and the bundle enters RS2. The same logic applies for the
transition from RS2 to RS3. Transitions can also occur from a higher recruitment state to a lower recruitment state. For example,
if PMU3,meas falls below Prss down, then the bundle transitions from RS3 to RS2.

ke =1+ agee P (6)
where a. and by, are both constants. The advant-
age of this model, commonly used in variable recruit-
ment literature [6, 7], is that it does not require
any physics-based understanding of FAM properties
(such as bladder elasticity) or knowledge of para-
meters that would be difficult to determine accur-
ately. However, the disadvantage of it is that because
it requires an experimental characterization of the
blocked force and free strain characteristics of a par-
ticular FAM, it is only valid for a FAM with those
parameters. For this study, this is not an issue, because
it will be assumed that although each MU is a dif-
ferent size, the FAMs within each individual MU are
identical, requiring only one set of experiments to
determine the empirical correction factors.

2.2. Generalized variable recruitment architecture

The control scheme for the robotic arm’s motion,
shown in figure 2, consists of a feedforward term and
two feedback loops. The feedforward term is calcu-
lated using the desired plant angular position, the
inverse arm dynamics, and the arm pulley radius to
calculate the force required to achieve the desired
arm motion. It contains an inner feedback loop

that controls the pressure in each MU and an outer
force feedback loop that accounts for errors in angu-
lar position due to pressure dynamics or model
mismatches.

The desired pressure for each MU is calculated
using an inverse model of the MUs in the variable
recruitment bundle. This model receives the desired
force, which is the sum of the feedback force and the
feedforward force terms, the desired strain (which is
directly proportional to the desired arm angle) and
the current recruitment state of the bundle, and out-
puts the desired pressure to each MU. The recruit-
ment scheme is executed using a finite state machine,
the logic for which is shown in figure 3.

In recruitment state 1 (RS1), MU1 is the only act-
ive MU. The bundle remains in RS1 until the pres-
sure in MU1 exceeds a certain threshold percent of
the maximum source pressure (called the recruitment
state transition threshold), at which point the bundle
enters RS2 and MU2 is activated. Similarly, when
the pressure in MU2 exceeds the recruitment state
transition threshold for RS3, the bundle enters RS3
and MUS3 is activated. The bundle can also downshift
from a higher recruitment state to a lower recruit-
ment state if the pressure in that MU decreases below
a given threshold.
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Figure 4. Generalized force allocation scheme for a heterogeneous variable recruitment bundle. Each MU has an initial radius
denoted by 7,,,0, where n represents the nth MU. A fraction of the overall desired force Fye, is allocated to each MU through Fi,c .
The desired pressure in each MU is then determined based on the desired force to that MU and the desired strain using an inverse

model of the FAM.

For an idealized variable recruitment bundle,
there would be no need for a recruitment transition
threshold. Instead, recruitment transitions would
simply be triggered once the MU pressure reached
100% of the source pressure and the system would
track the desired trajectory perfectly. However, in
an actual system, one must consider valve spool
dynamics, the nonlinearity of the valve flow rate, MU
pressure dynamics, the deslacking of newly recruited
MUs, and feedforward model mismatches, all of
which introduce significant error to the system. To
address this, recruitment upshift thresholds Pgs; up
and Pgs3,p are introduced. These thresholds determ-
ine when the bundle should shift between recruit-
ment states and can be set anywhere between 0% of
the source pressure (all MUs active from the very
beginning and no variable recruitment) or 100% of
the source pressure (recruitment transition does not
occur until MU pressure saturates for a given recruit-
ment state). These thresholds are implemented in
Meller et al and are chosen ad hoc based on sys-
tem performance [7]. In Vemula et al, recruitment
thresholds are used, but only to eliminate slack from
MUs before they are recruited, not to provide addi-
tional force capabilities before a previously recruited
MU reaches saturation [10].

The desired force in each MU for a given recruit-
ment state can be allocated in many ways, especially
for a bundle with differently sized MUs. The general-
ized form of the desired MU force allocation scheme
is shown in figure 4.

In this scheme, a certain fraction Fg,, of the
desired force is allocated to each active MU (if an
MU is not yet active, this fraction is equal to zero by
default). This force allocation can be different for each
MU and it can change over time. The simplest way to
allocate force to each active MU is to make the force
distribution fraction of each active MU directly pro-
portional to the ratio of the individual MU area to the
overall active area of the bundle, as shown in the fol-
lowing equations:

Amun
E = — 7
frac,1 Abun, - ( )
A
Ffrac,Z = £7 RS >1 (8)
Abun, act
_ Amus
Ffrac,S ) RS >2 (9)
Abun, act

where Apup, ot 1 total area of active MUs within the
bundle, which is a function of the current recruitment
state. Because the FAM force is linearly dependent on
cross-sectional area and upon pressure, when this MU
force allocation scheme is used, the desired pressures
in each active MU for a given recruitment state are
equivalent. This is similar to the ‘batch’ recruitment
scheme that has been proposed in other studies [6, 7].
If another MU force allocation scheme was used, the
desired pressure in all three MUs would be different.
For this study, the batch recruitment scheme is imple-
mented due to its simplicity and its similarity to other
schemes already implemented in the literature.

The calculate the desired pressure in a MU for
a specified motion trajectory, equation (2) can be
inverted to give the following equation:

(Fdes) (Ffrac,n)
NFAM,nkF,nﬂ' rio (a(l - k£7n5des)2 - b)
(10)

PMU,n,des =

where Fg is the total desired force required from the
bundle and Ngap, 7 is the is the number of FAMs in
the nth MU. From the equation, it can be observed
that Pyu ndes is @ function of both desired bundle
force and desired bundle strain, requiring the use of
either an iterative solver or lookup table.

3. Electrohydraulic system modeling

In a realistic, non-idealized electrohydraulic robotic
system, the hydraulic pump (and the electric motor
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Vper — net flow into or out of accumulator

Vg — flow into relief

Vy — flow into FAMs

9,D — flow from pump
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Gas — charged accumulator

FAM Bundle and
Associated Control

Relief Valvei

WW&

Motor Electrical Circuit

Switch for intermittent operating

Valves

Hydraulic Pump

Motor Shaft

L]

Hydraulic Reservoir

Figure 5. Hydraulic circuit diagram. The hydraulic circuit consists of a hydraulic pump driven by an electric motor circuit that
can be switched on and off to allow for intermittent operation, a gas-charged accumulator, a relief valve, the FAM MUs and their

corresponding control valves.

used to drive it), accumulator, and valve dynam-
ics play a significant role in determining sys-
tem performance, and it is necessary to build a
system-level model with sufficient fidelity to cap-
ture these effects. The electrohydraulic system model
developed by Chapman et al and Kim et al to analyze
system-level performance is adapted for this study,
with a few important modifications from their ori-
ginal work [12, 13].

3.1. Electrohydraulic system—motor-pump and
accumulator equations

A diagram of the electrohydraulic circuit is shown in
figure 5.

The circuit is driven by a motor-pump assembly
connected to a gas-charged accumulator. The pur-
pose of the accumulator is to store hydraulic fluid at
a given pressure and release it when it is needed by
the system. The output of the accumulator is con-
nected to each FAM MU in a variable recruitment
bundle. The motor-pump assembly is also connec-
ted to a relief valve. The purpose of this relief valve
is to ensure that the accumulator pressure remains at
or below its maximum pressure regardless of the flow
rate supplied by the pump or demanded by the FAM
bundle. The pressure of each MU is controlled by a
two-stage servo-valve.

The motor-pump assembly is governed by the
standard electromechanical equations for a DC
motor. The electrical equation is given by the
following:

dar 1

¢ (VfIR—kbé)

dt L (11)

where Vis the constant voltage supplied to the motor,
I is the current supplied to the motor, L is the motor

inductance, R is the motor resistance, k;, is the motor
back EMF constant, and 6 is the rotational speed of
the motor. The mechanical equation is given by:

6, = ]i (keI— By6, — rp) (12)

p
where J is the mass moment of inertia of the motor
shaft, k, is the motor torque constant, By, is the motor
damping constant, and 7, is the torque that acts on
the motor shaft due to the pump impeller. This torque
is given by:

Tp = PaccD (13)
where P, is the accumulator pressure and D is the
pump displacement. It is important to note that in
this equation, the units for pump displacement are
in m’ rad~!, while many times pump displacement
is expressed in mL/rev. Pump displacement is used to
calculate the flow rate:

Q=6,D. (14)

Because of the impeller torque term in the mech-
anical equation, the performance of the motor-pump
assembly (flow rate, current draw, etc) is coupled with
the pressure in the accumulator. This pressure is a
function of both the volume input to the accumulator
from the pump and the volume drawn from the pump
by the FAM MUs. The equation for pressure can be
derived using the constant-temperature ideal gas law
relation that relates change in pressure to change in
volume:

Pacc,max Vacc,max

Pacc: (15)

Vacc,max - Vnet
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If pump flow is greater than or equal to flow to FAMs

TRUE

If accum. pressure is equal to max. accum. pressure

TRUE

Pace = Pacemax

A

FALSE

\ 4

Vnet: = épD = Vm.

VR=0

Fluid flows out of accumulator
to meet flow demand

A A

Viet =0

Ve = 6,D — Wy,

Vnet = ng - Vm

Vg=0

No flow in or out of accumulator

Pump provides required flow, the remaining flow
is shunted to relief

Pump provides flow to accumulator

No relief flow

Figure 6. Hydraulic relief valve logic. This logic determines the net flow rate into the accumulator and relief based on the
instantaneous flow demand from the FAMs and the instantaneous pressure in the accumulator.

where Pyccmax and Vieemax are the maximum pres-
sure and volume of the gas in the accumulator,
respectively, and Vi, is the net volume of fluid added
or drawn from the accumulator. To keep the accu-
mulator pressure at or below its maximum pressure,
a relief valve must be used. The relief valve can be
modeled quasistatically using simple if-logic for the
flow rate of the motor-pump assembly, shown in
figure 6.

This logic ensures that if the pressure is at or
exceeds the maximum accumulator pressure, the flow
rate is constrained such that the pressure remains
or quickly returns to that maximum value. Any
remaining flow passes through the relief valve to the
reservoir.

Previous studies have shown that the system-level
efficiency benefits of variable recruitment are most
pronounced when the motor-pump-accumulator
assembly is operated intermittently during cyclic
motion of the robotic system of interest [12, 13].
For intermittent pump operation, electrical power is
only supplied to the pump once the accumulator has
been sufficiently depleted. Once this occurs and the
pump turns on, it runs until the accumulator pres-
sure is restored to its maximum value, at which time
it turns off. This operation mode saves energy by only
operating the pump only when necessary.

The condition for turning on the pump is when
the accumulator pressure is less than or equal to
99% of the maximum accumulator pressure. This
threshold is chosen to prevent chattering when the
pump initially turns on. When the accumulator pres-
sure recovers to its maximum value, the pump turns
off, and the current supplied to the pump becomes

zero. However, because the voltage and motor shaft
velocity are nonzero, the derivative of current is
nonzero. This effect is undesirable, so it is assumed
that the electrical circuit for the motor-pump has a
flyback diode that prevents this from happening. The
practical effect of this assumption in the dynamic
model of the motor-pump assembly is that it sets the
derivative of motor current equal to zero when the
pump is turned off.

3.2. Electrohydraulic system: valve flow and
pressure dynamics

The pressure of each individual FAM bundle MU
is controlled by a two-stage pilot-driven electro-
hydraulic servovalve. The equation for flow rate from
the accumulator through the valve is given by the fol-
lowing if/else logic statement:

Qv:Cvvaign(Pacc_Pv> ‘Pacc_Pv|7 ifxv>0
Qv = ¢yxysign (Py — Pr) /|Py — Pr|, if x, <0
Q, =0, otherwise (16)

where ¢, is the valve coefficient, x, is the valve spool
displacement, P, is the pressure immediately down-
stream of the servovalve, and Pr is the pressure of the
fluid reservoir (for an ideal reservoir this pressure is
equal to zero). The motion of the servovalve spool can
be represented using a second-order dynamic model,
but in this paper, it is assumed that the dynamics
of the spool are negligible, making the spool posi-
tion directly proportional to the input voltage given to
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the valve. The valve coefficient can be approximated
using the nominal flow information from the valve’s
datasheet:

Qn
\V APN/Z-Xv,max

where Qy is the nominal flow rate across the valve,
/APy is the nominal pressure drop across the valve,
and Xy max is the maximum valve position.

The pressure directly downstream of the valve is
governed by the following differential equation:

(17)

Cy =

de _ E/ Qv - Vv
dt Ve

(18)

where E’ is the effective bulk modulus of the hydraulic
fluid, V is the volume of fluid in the conduit between
the valve and its associated FAM MU. In this paper,
this volume is assumed to be constant, which implies
that V, is equal to zero. If the conduit radius and
length are known, then the volume of the conduit can
readily be calculated.

As a result of the conduit, the instantaneous pres-
sure immediately downstream of the servovalve and
the instantaneous pressure in an individual MU are
not the same. The flow rate into an individual MU
as a result of this pressure difference is given by the
Hagen—Poiseuille equation for steady and laminar
flow [21]:

™ fc{down (PV - PMU)
877Lc,down

Qumu = (19)
where 7 gown is the downstream conduit radius,
Lcdown 1s the downstream conduit length, 7 is the
dynamic viscosity of hydraulic oil, and Py is MU
pressure. In a system with variable recruitment, the
equation governing the pressure growth inside of an
individual MU is more complex than the one gov-
erning pressure growth downstream of the servo-
valve due to the nature of variable recruitment and
the pressure-dependent free strain observed in non-
idealized FAMs. These pressure dynamics will be dis-
cussed in full detail in the next section.

3.3. MU pressure dynamics and the de-slacking of
newly recruited MUs

The pressure dynamics of MUI1 (i.e. the first MU
recruited in a variable recruitment bundle), are given
by an equation that is very similar to the one
for the pressure growth directly downstream of the
servovalve:

dPymy _ E/QMU — Vmu
dt VMmu

(20)

where Vy is the volume inside of the MU. An expres-
sion for this volume, developed by Tondu and Lopez
[22], is given by the following:

Vamu = 12k [b(l —&)—a (3(1 —5)3)} NEA))

N Mazzoleni and M Bryant

The equation for the rate of change of this volume
is thus given by:

2
Vaty = 7 la(1—’£“> —b)] (22)

0

where x;, is equal to the MU contraction.

The pressure dynamics for subsequently recruited
MUs are more complicated than they are for the first
MU. When a new MU is recruited, its contraction
is initially zero, while the bundle contraction may
be greater than zero. Due to the pressure-dependent
free contraction behavior of the MU, it will not begin
to generate force until its internal pressure becomes
sufficiently large for its contraction to equal that of
the bundle. This is known as ‘de-slacking’ [10, 19].
During de-slacking, it is assumed that the force on
the MU is zero, and thus the pressure in the MU
is equal to the free contraction pressure correspond-
ing to the MU’s instantaneous length. Once the con-
traction of the MU catches up to that of the over-
all bundle, the pressure dynamics of that MU follow
equation (20).

4. Simulation case studies: exploring effect
of MU size distribution, recruitment state
transition threshold, and recruiment
order

4.1. Methodology

A dynamic simulation study is designed to char-
acterize the tradeoffs between tracking perform-
ance and energetics for a variety of different MU
sizes, MU recruitment orders, and recruitment state
transition thresholds for a given set of dynamic
system, trajectory, and electrohydraulic system
parameters.

The system-of-interest (shown in figure 1) is com-
manded to track a sine wave trajectory from 0 to
30 degrees at a specified frequency. This trajectory
is based on a standard trajectory for FAM-based
robotics in previous variable recruitment simulation
studies [12, 13]. For a given test case, the total max-
imum bundle cross-sectional area is kept constant
and is chosen based on the desired ratio of the bundle
blocked force to the maximum force required to per-
form the desired trajectory for the specified dynamic
system. However, the way in which this area is dis-
tributed within the bundle is varied. In a particu-
lar test case, each MU is assigned a certain fraction
of the overall bundle area, which determines its size.
The MU size distributions used for this simulation
study are shown in table 1. It is worth noting that
the results for each size distribution will be com-
pared to a baseline case, in which each MU is the
same size.

The MU size distributions are chosen specific-
ally to provide a range of size differences between
the largest MU and the size of the smallest MU. As
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Table 1. MU size distributions (as a fraction of overall bundle force) for simulation study.

Smallest MU  Medium MU Largest MU
MU size distribution 1 0.1 0.15 0.75
MU size distribution 2 0.1 0.3 0.6
MU size distribution 3 0.25 0.3 0.45

mentioned previously, to achieve different recruit-
ment behavior, the percentage of the desired force,
or MU force distribution, can be allocated differ-
ently to different MUs to achieve different recruit-
ment behavior. For this study, the MU force dis-
tribution used is the same as the MU size distri-
bution, resulting in the ‘batch’ recruitment scheme,
where the desired pressures in each active MU are
equivalent. In addition to sweeping through differ-
ent MU size distributions, this study also exam-
ines the effects of different recruitment orders. For a
bundle consisting of three MUs, there are six pos-
sible recruitment orders (note that for equally sized
MUs, these six recruitment orders will yield identical
results).

Finally, for each combination of MU size distri-
bution and recruitment order, the recruitment state
transition thresholds for RS2 and RS3 are varied
independently from 0%-90% of maximum accu-
mulator pressure, resulting in 100 different recruit-
ment state transition threshold combinations. The
results of each test case are evaluated using a track-
ing performance metric and a system energetics
metric. The tracking performance metric is based
on the integrated absolute error (IAE) between the
actual arm angle 6, and the desired arm angle
Odes:

i

IAE — / (0act — Oace]) d. (23)

(=]

The energetics performance metric is based on
the amount of electrical energy consumed by the
motor-pump assembly in a single motion cycle,
given by:

i
Emotor = / (VI)dt. (24)

0

For each test case, these performance metrics are
plotted against one another, and the Pareto frontier is
determined, displaying the tradeoffs between the two
metrics for a given set of MU size distributions and/or
recruitment orders.

The parameters used for the simulation study can
be summarized in the following set of tables.

Table 2. Fixed FAM parameters used for both case studies.

ayp (rad)

Lo (m) Nram,n Gken ki Dien

0.2286 (9 in) 0.5760 1 200 0.7 0.2

Table 2 shows the FAM parameters used for the
study. The FAM length and braid angle paramet-
ers are chosen to be reasonable for a typical mobile
robotics application, and the correction factor para-
meters are chosen to be representative of the force-
strain behavior commonly observed in FAMs with
elastic bladder material [5, 7]. The correction factors
for each FAM in the bundle are assumed to be the
same. For the first case study, the total bundle cross-
sectional area (i.e. the sum of the cross-sectional area
of each individual MU) is kept fixed at 466 mm?, and
the MUs in for each size distribution are sized based
on this total area. This area is chosen such that ratio of
the maximum bundle blocked force to the maximum
required trajectory force is approximately equal to
2. For the second case study, the bundle total cross-
sectional area is doubled, making this ratio equal to 4.

Table 3. Fixed SDOF robotic arm parameters used for each test
case.

M (kg) L (m) ¢

Mlext (kg) p (m)

12.5 0.452 0.01 5 0.05

Table 3 contains the robotic arm parameters used
for the study. The robotic arm mass and length para-
meters are approximately representative of the leg
mass and length of a human male who weighs 75 kg
and is 183 cm tall [23]. The external load mass is
chosen not based on any physical quantity but is
simply chosen to provide additional torque to resist
motion.

Table 4. Fixed motor parameters used for each test case.

ke ky B,
Vimotor L (Nm (Vs ]p (N-m-s
(V) R(©) (mH) A~!) rad™!) (kgm?) rad—!)

12 1.250 89 0.0171 0.028 4.2 x 1077 1.74 x 1077

Tables 4 and 5 contain the electrohydraulic system
parameters, which are chosen to be similar to those
used in previous system-level electrohydraulic studies
[12, 13].
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Table 5. Fixed pump/valve/accumulator hydraulic parameters used for each test case.

Pace,max (kPa) Vace,max (mS) Emnax (kPa) n (N-s miz) D (m3 radiz)
689.48 (100 psi) 0.0001 1800 0.2742 5.0930 x 108
APN (kPa) Xy,max (m) QN (1’1’13 571) Tc,down (m) Lc,down (m)
3500 0.007 92 0.000 95 0.006 25 0.4572
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Figure 7. (a) Error vs motor energy consumption plot of each combination of MU size distribution, recruitment order, and
recruitment state transition threshold tested during the simulation. (b) Plot of the Pareto frontiers for each MU size distribution.

The different plot markers are used to represent the different MU

size distributions, and the different plot colors are used to

represent the different recruitment orders (note: S-M-L stands for Smallest-Medium-Largest, S-L-M stands for
Smallest-Largest-Medium, etc). The recruitment state transition thresholds have been omitted from the plots for visual clarity.

The hydraulic oil parameters are chosen based on
nominal values for ISO 32 hydraulic motor oil and the
servovalve parameters are based on the datasheet for
a MOOG G773 servovalve [24]. The maximum accu-
mulator volume is chosen such that the accumulator
would deplete to at least 90% of its maximum pres-
sure over the course of a motion cycle and the max-
imum accumulator pressure is chosen to be a reason-
able actuation pressure for hydraulic FAMs.

The P-Controller Gains for the outer control loop
and the inner control loop are equal to 50 N rad~!
and the 0.0005 V/psi. These gains were hand-tuned
based for the simulation study based on overall sys-
tem performance.

4.2. Results and discussion

The IAE vs. motor energy consumption plot for each
combination of MU size distribution, recruitment
order, and recruitment state transition threshold
is shown in figure 7, alongside a plot overlaying
the Pareto frontiers for each MU size distribution
(including the case for which each MU is the same
size). For the other MU size distribution Pareto fron-
tiers, there are several different recruitment orders
that appear, indicating that the choice of how to
recruit MUs for this test case does not always follow
Henneman’s size principle. In general, points with
lower energy consumption and higher error are asso-
ciated with recruitment orders in which the small
or medium MUs are recruited first, whereas points
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with higher energy consumption and lower error
are associated with the recruitment of the large MU
first.

A global Pareto frontier, as shown in figure 8, can
be constructed across the different MU size distribu-
tions to determine which size distributions within a
given test case offer the best tradeoffs between per-
formance and energetics.

Several trends can be observed from the global
Pareto frontier of this test case. For one, there is not
a single point with the equal MU size distribution
that appears on the global Pareto frontier. This is
significant because it demonstrates that for a given
total bundle cross-sectional area, the tradeoff between
tracking and energetic performance can be improved
simply by intelligently sizing the MUs within the
bundle. An additional trend that can be observed is
that the points on the global Pareto frontier asso-
ciated with lower energy consumption and higher
error tend to have higher RS2 and RS3 recruitment
state thresholds, and the points with higher energy
consumption and lower error have lower RS2 and
RS3 thresholds. This result is intuitive; delaying the
shift to a higher RS reduces working fluid volume
consumption and therefore motor energy required—
but decreases control authority and force potential.
However, the thresholds at which these Pareto front
points occur may be unexpected. For example, one
might expect that the points with the lowest energy
consumption should be when both the RS2 and RS3
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Figure 8. (a) Global Pareto frontier across MU size distributions. The ratio of maximum bundle blocked force to the maximum
force required to complete the desired trajectory is equal to 2. The different plot markers are used to represent the different MU
size distributions, and the different plot colors are used to represent the different recruitment orders. Selected points are also
labeled with two numbers indicating the RS2 and RS3 recruitment state transition thresholds associated with that point. Due to
the limited space between points, (b) and (c) provide zoomed-in callouts of the space to allow for the recruitment state thresholds
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e
n o

©
~

Trajectory Angle (rad)
o o
N w

e
—_

0 : ; :
0 0.5 1 1.5 2

Time (s)

700

600

500 1

Accumulator Pressure (kPa)

L L 1

0 0.5 1 1.5
Time (s)

Figure 9. (a) Trajectory angle vs. time and (b) accumulator vs. time plots corresponding to the points that lie along the global
Pareto frontier. Color is used to denote recruitment order, but MU size distribution is not indicated for the sake of plot visibility.

thresholds are at 90% (the largest fraction considered)
of source pressure. However, this is not the case. These
trends can be better understood by observing traject-
ory angle vs. time and accumulator pressure vs. time
plots corresponding to the points on the global Pareto
frontier, as shown in figure 9.

The trajectory angle vs. time plot visualizes what
can be seen in the global Pareto frontier, which is
that the points with lower energy consumption have
higher tracking error. In the accumulator pressure
plot, for the points on the Pareto frontier corres-
ponding to the L-M-S recruitment order, it takes
longer for the next MU to be recruited, and thus it
takes longer for the accumulator pressure to drop.
Because of the electrohydraulic coupling between
the accumulator pressure and the motor driving the
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pump, higher accumulator pressure results in higher
required motor torque, and therefore, higher required
motor current. This electrohydraulic coupling largely
explains why the schemes that recruit the largest
MU first result in higher energy consumption, and
it also explains why the recruitment state transition
thresholds corresponding to the lowest energy con-
sumption are not as straightforward as they would be
for an analysis that does not consider this coupling.
One final observation from the global Pareto fron-
tier for this test case is that over half of the points
on the frontier correspond to the MU size distribu-
tion that allocates 10% of overall force to the smal-
lest MU, 15% to the medium MU, and 75% to largest
MU (i.e. the most heavily biased toward the largest
MU of the distributions considered). Since the range
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Figure 10. (a) Global Pareto frontier across MU size distributions for a bundle. The ratio of maximum bundle blocked force to
the maximum force required to complete the desired trajectory is equal to 4. The different plot markers are used to represent the
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Figure 11. (a) Trajectory angle vs. time and (b) accumulator vs. time plots corresponding to the points that lie along the global
Pareto frontier. Color is used to denote recruitment order, but MU size distribution is not indicated for the sake of plot visibility.

of MU size distributions tested is not exhaustive, it is
not known whether this distribution is the best choice
for this test case. However, there clearly exists a pre-
ferred distribution of MU sizes within a bundle that
achieves the best tradeoffs between tracking perform-
ance and energetics.

To further explore how the system parameters
affect the recruitment trends, an additional case study
is performed. In this study, the ratio of the total
bundle blocked force (which is proportional to cross-
sectional area) is doubled to be equal to 4. The global
Pareto frontier for this case is shown in figure 10 and
the trajectory vs. time and accumulator pressure vs.
time plots are shown in figure 11. The results in these
plots differ significantly from those in the previous
case study. For one, the global Pareto frontier does
not contain a single point for which the largest MU
is recruited first. In addition, both the point with
the lowest energy consumption and the point with
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the lowest tracking error correspond to the S-M-L
recruitment order.

In addition, while for the first test case the MU size
distribution with the most significant size difference
between the largest and smallest MU showed up most
frequently, for the second test case, this size distribu-
tion did not appear at all, suggesting that there is a
high degree of coupling between overall bundle force
capacity and MU size distribution. The trend for the
recruitment state thresholds is the same in the second
test case as it is in the first test case, in which lower
energy consumption/higher error is associated with
higher recruitment state transition thresholds, and
higher energy consumption/lower error is associated
with lower recruitment state transition thresholds.
The trajectory vs. time plot shows that the sensitivity
of the bundle tracking to recruitment order is much
lower for the second test case than it is for the first test
case. This makes sense, as the bundle force capacity is
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doubled, and the accumulator, while depleting more
than for the first test case due to the larger size of
each MU, can still provide the pressure differential
required to meet the necessary flow demand to track
the trajectory.

The results from both case studies show that
for a given electrohydraulic system, there is a rich
variable recruitment co-design problem that must
consider overall bundle force capacity and MU size
distribution (both of which are design paramet-
ers) in addition to the choice of recruitment order
and recruitment state transition thresholds (both
of which are control scheme parameters). Due to
the high number of parameters and the signific-
ant coupling between the electrohydraulic system
parameters and the performance metrics, the choice
of MU size distribution, recruitment order, and
recruitment state transition threshold is complex and
motivates the application of more formal system-
controller co-design optimization methods in the
future.

5. Conclusions

This study examined the effects of MU size distribu-
tion, the order in which these MUs are recruited, and
the pressure at which the MUs are newly recruited on
variable recruitment bundle tracking and perform-
ance. To do this, two simulation-based case studies
were performed for two different variable recruit-
ment bundles with different total force capacities.
The results of these case studies demonstrate that if
the proper MU size distribution is chosen, recruit-
ing new MUs from smallest to largest results in the
lowest amount of energy consumption, validating
the Henneman-inspired approach to variable recruit-
ment. However, to achieve the lowest tracking error,
sometimes it is desirable to recruit from largest to
smallest. In addition, many of the points that lie in
the middle of the global frontier, offering a comprom-
ise between tracking and energetics, correspond to
the recruitment of the medium MU first, followed
by either the small MU or the large MU. The results
of the second case study show that if the total size
of the bundle is not constrained, then a bundle size
can be chosen such that it is never desirable to recruit
from largest to smallest, and that either a recruitment
that begins with the smallest or medium MU should
always be chosen. This result is novel and shows that
the optimal variable recruitment actuation strategy
may not always be the Henneman-inspired approach
and is constrained by the requirements of a trajectory,
the maximum amount of bundle force available, and
electrohydraulic system coupling.

The results of these studies also show that
the choice of which recruitment state transition
thresholds to use seems to be highly coupled with
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electrohydraulic system parameters, but as a general
trend, higher recruitment thresholds coupled with
the correct MU size distribution result in lower energy
consumption and vice versa. The complexity of this
dependence motivates the need to develop a dynamic
variable recruitment scheme that can shift its trans-
ition threshold based on current loading conditions
or system states, explored in close coordination with
the effects of MU size distribution and recruitment
order. For future work, a more exhaustive search of
MU size distributions and recruitment state trans-
ition thresholds could be performed to make the res-
ults more optimal.

One of the primary limitations of this study is that
it only considers a single degree-of-freedom system
actuated by three motor units with a constant lever
arm attachment point. Such a system was chosen for
this study because it was a system that could be plaus-
ibly incorporated into hydraulically powered robots,
and despite their relative simplicity, can deliver sig-
nificant benefits for performance metrics like effi-
ciency and bandwidth, as discussed earlier. The ana-
lysis performed in this study could readily be applied
to multi-DOF systems, but the increased dynamic sys-
tem complexity would have made it more difficult
to study the relationships the electrohydraulic sys-
tem parameters, actuator configuration, and recruit-
ment control scheme. Now that some of these rela-
tionships have been established, future studies can
increase the complexity of the dynamic system-of-
interest. For example, a study could be performed
that considers a 1-DOF system actuated by an ant-
agonistic pair of variable recruitment FAM bundles.
This would allow for the bi-directional motion typ-
ically associated with biological mammalian muscu-
lature. After this, a study with a double pendulum or
triple pendulum could be performed to observe the
more complicated motions typically associated with
bipedal walking. However, the first thing that will be
performed in future work is the experimental valida-
tion of the results for the simple system in this study.

As a final point of discussion, in this study, the
fraction of desired force allocated to each MU dur-
ing a trajectory was kept constant and proportional to
MU size. This is the most straightforward implement-
ation of variable recruitment, but it is not a require-
ment for the methods presented here. In the future, it
may be useful to frame variable recruitment as a more
formal dynamic control allocation problem, in which
the two primary ways that force is allocated dur-
ing the trajectory are through changing recruitment
state transition thresholds and changing the fraction
of desired force allocated to each MU. This, along
with a co-design approach to finding optimal MU size
distribution and electrohydraulic system parameters,
will become the new dynamic variable recruitment
paradigm.
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