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Abstract

The study in [1] of divisibility properties of sums of k" powers of k-many consecutive
non-negative integers inspires an analogous study in the rings Z,,. Inquiry into this new
context uncovers interesting behavior.
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1. Introduction

It is a well-known fact that the sum of cubes of three consecutive integers is always
divisible by 9. The divisibility of sums of k** powers of k-many consecutive integers has
been well-studied by Ho, Mellblom, and Frodyma [1]. However, properties of sums over
the ring of integers modulo n have not; these sums will be the primary focus of this paper.

Throughout the paper, Z* will denote the set of positive integers, and Z, will denote
the ring of integers modulo n for n € Z*

Definition 1.1. For n,k € Z™", define
Apg={(a,.at+k—1)|acZ,} CZ.
A, i is the set of cyclically consecutive sequences of length k in Zy,.

With fixed k, each element in A, ; is uniquely determined by the first element a. Since
|Zpn| = n, this immediately implies that |A,, ;| = n, regardless of the choice of k. A more
interesting object, however, is a type of sum action over the elements in A, j.

Definition 1.2. For n,k € Z™T, define
k—1
k= {Z(a—i—i)k mod n | ozEZn}.

Sn k
1=0

Sh.k s the k" sum set of Zy,.
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The k" sum set of Z,, will be the primary focus of this paper. There are a few propo-
sitions that follow immediately: |S) x| =1 for all k € Z, and |S,, 1| = n for all n € Z since,
clearly, Sp1 = Zy,. Instances where |S,, ;| = n are of particular interest, as regardless of
choice of both n and k, we have [S, x| =n <= Spi = Zp.

To begin analyzing properties of these sum sets, we will first build some theory on sums
in Zy,.

Lemma 1.3. For o, € Z,, and k € ZT,

n—1 n—1
> (a+ i\ = > (B +i)* mod n
=0 =0

Proof. For a € Z,,
{a+i modn|0<i<n-—1}=7Z,,

which immediately implies

n—1 n—1
Z(a+i)k = Z(B +i)* mod n
i=0 i=0

O

This result provides a simple description of S,, ,, for n € Z*, and will produce a descrip-
tion of S, ; when n | k.

Proof. Suppose a, 8 € Z,,. Since a = a +n mod n, we have

Ha+i modn|0<i<n-1}=n Va€Z,.

Since |Zy| = n, this also implies

{a4+i modn|0<i<n—-1}={f+7¢ modn|0<i<n-—1},

which further implies

{(a+i)* modn|0<i<n—1}
={(B+i)* modn|0<i<n-—1}forkeZ".

Since both sets are equivalent, the sum over their respective elements will also be equiv-
alent. Thus,

n—1 n—1
Z(a + i)k = Z(ﬂ +4)% mod n
i=0 i=0

Proposition 1.4. For n,k € Z'* where n > 1, if n | k, then |S, x| = 1.
Proof. Suppose nlk. Then k = m - n for some m € Z*. Now, consider

mn—1
Sk = { Z (a+4)™ modn|ac Zn}.
i=0

For a € Z,,, we have
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mn—1 m—1n—1
Y (i)™ =3 S (a+int i)
=0 =0 j=0

m—1n—1

1
]
g

N
Il
3 ©
|
=
o

(a4 74)™ modn

m Y (a+i)™" mod n.

1=

[e=]

However, by applying Lemma 1, for all g € Z,,

n—1 n—1
m Z(a +3)™"=m) (B+49)™ mod n.
i=0 =0
Thus, |S, k| = 1. O

2. Results

Now that some preliminary results have been established, we can begin to examine
specific values of n to find values of k£ such that |S,, x| = n.

Proposition 2.1. For k € Z",|S5 x| = 3 if and only if

_J3t+1, tiseven
B 3t+2, tis odd.

Proof. Either k = 3t,k = 3t + 1 or k = 3t + 2. If k = 3t, by Proposition 1, |S535/ = 1.
Before we consider the remaining cases, note that in Zs,

Om 4 1m 4 om = 2 mod 3, m%seven

0 mod 3, misodd.

First, let £k = 3t + 1. Then there are three such general instances: first, the sequence
starts at 0, ends at 0 (1), second, starts at 1, ends at 1 (2), and third, starts at 2, ends
at 2 (3). For (1), we have

2t mod 3, k is even
OF +1F 42k yoF + ... +1F 4+ 2F 4 oF = ’
0 mod 3, £k isodd.

For (2), we have

2t+1 mod 3, £k iseven
P2k poF+1h 4 42k 4 0F + 1k = ’
1 mod 3, k is odd.

For (3), we have

2t+1 mod 3, kiseven
2 mod 3, k is odd.

Clearly, if k = 3t+1, then |S3 ;| = 3 if and only if £ is odd, which implies that ¢ is even.

Next, let kK = 3t 4+ 2. Then there are again three general instances: first, the sequence
starts at 0, ends at 1 (1), second, starts at 1, ends at 2 (2), and third, starts at 2, ends
at 0 (3). For (1), we have

2’“+0’“+1’f+2’“+...+0’“+1’“+2’f:{

2t+1 mod 3, k iseven

0F +1F 2k L oF +1F 4 42k 4 0F +1F =
+ + + 1 mod 3, k is odd.
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For (2), we have

2(t+1) mod 3, kiseven

P2k ofF 1P 428+ 40P +1F 42k =
0 mod 3, k is odd.
For (3), we have

(2t4+1) mod 3, kiseven
2 mod 3, k is odd.

Clearly, if k = 3t + 2, then |S3 ;| = 3 if and only if £ is odd, which implies ¢ is odd. O

2’“+0"/’+1’“+2’“+0’“+...+1k+2k+0"3z{

It is of interest to find some criterion by which |S,, x| = n is immediate. From the above
result, it is evident that no even value of k satisfies |S3 ;| = 3, which is a special case of
our next result.

Proposition 2.2. For n,k € Zt where n > 1, if 2 | k, then |S, x| < n.
Proof. For k € Z*, suppose 2 | k. First, note that since k is even,

(@) =(—a)* modn VacZ, (2.1)
It suffices to show that 3 «, 8 € Z,, distinct such that

k—1 k—1

Z(a + i)k = Z(ﬁ +i)* mod n. (2.2)
=0 i=0
First, suppose 1 # (—k) mod n. Then by (1), we have

WE .+ (B = (k) + .+ (—D"
Using —k = —k mod n where —k € {0,...,n — 1}, we have

k—1 k=1
Z(l +i)" =Y (“k+i)F modn,
i=0 i=0
meaning 1 and —k satisfy (2). But 1 # —k mod n, so we are done.

Next, suppose 1 = (—k) mod n. Then
1+4k=0 modn=nisoddand k=n—1 mod n.

This also means n > 2, so consider distinct elements 0,2 € Z,,. We have
SO =0+ (1) +(2)F + .+ (k—1)F

and

k—1
e+ =@F+ -0+ )+ (k+ 1)

=2)F+..+*)*+(0)* mod n.

However, since (1)¥ = (—=k)* = (k)* mod n, we have

k—1 k—1
Z(z)k = 2(2 +9)F mod n,
=0 =0

or that 0,2 € Z,, satisfy (2). But 0 # 2 mod n, meaning we can conclude that if 2 | k,
then |Sy, 1| < n for n > 1. O
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Next, we will prove a result for k" sum sets of Z, where p € Z* is prime
Proposition 2.3. Ifp,t € Z* where p is prime, k = pt—(t—1), and p { k, then |Sp x| = p.
Proof. For a € Z, \ {0}, since a” = a mod p, we have

Pt (t=1) = oot . o1t

=al ol

=a mod p.

Since (0)?'~(—1) = 0, we have that a?*~(*~1) = o mod p for all a € Z,,.
Therefore, for a € Zj, we have

t(p—1) t(p—1) t(p—1) t(p—1)

Z (o + )P~ DL = Z a+i modp= Z o+ Z i.
1=0

i=0 i=0 i=0
The second term is constant, meaning we need only consider the first term. We have
t(p—1)

Z a=altlp—1)+1).
=0

Since k =t(p —1)+1# 0 mod p and Z, is a field, we obtain that |[{ak | a € Zy}| = p.
Thus,

|Sp.k| = p.

3. Conclusion

Note that this does not provide every k such that |S, ;| = p for some prime p. Experi-
mental data suggests that for most primes p, the smallest non-trivial k& such that [S, | = p
is of the form k& = 2p — 1, or the ¢ = 2 instance of the above proposition. However, this is
not true for all primes. For instance, we have that |Sa3 5| = 23 and |S37,7| = 37, meaning
that kK = 2p — 1 is not the smallest non-trivial value to have that property. This leads to
an interesting open question: for n € Z™, what is the smallest non-trivial k¥ € Z* such
that | Sy, k| = n?

Another open problem that has not been resolved is that of the instance when 4 | n.
The following has been conjectured through experimental data:

Conjecture 3.1. Forn,k € Z*, if 4 | n, then |S, x| <n for k > 1.

Again through experimental data, the following conjecture suggests the strongest char-
acterization yet of our main problem:

Conjecture 3.2. Forn,k € Z*t, if |Spx| =n and t = n(n — 1) + k, then |Sy.| = n.

This conjecture is immediately true for S, ;, where p is prime by using similar techniques
from the proof of Proposition 4. However, the general case has not yet been proven. This
conjecture would immediately imply that, given n € Z*, every instance where |S,, x| = n
can be determined by testing finitely many k € Z*.

Acknowledgement. This research was supported by NSF Grant No. 1950563.

References

[1] Chungwu Ho, Gregory Mellblom, & Marc Frodyma, On the sum of powers of consec-
utive integers, The College Mathematics Journal, 2020, 51(4), 295-301.



