
A Statistical Analysis of Duplication Errors in the
Nanopore Sequencing Channel

Sarvin Motamen, Hao Lou, Farzad Farnoud
Electrical and Computer Engineering,

University of Virginia, Charlottesville, VA, USA,
Email: {sarvin,haolou,farzad}@virginia.edu

Abstract—A duplication edit, which copies a substring and

inserts the copy immediately after the substring itself, is a type

of error in communication systems and DNA storage. In this

work, we devise an algorithm for computing the duplication

distance, i.e., the minimum cost of transforming one string to

another using insertions, deletions, substitutions, duplications

and deduplications, where each operation is assigned a weight

determining its contribution to the cost. With the help of this al-

gorithm, we perform a statistical analysis of simulated Nanopore

data to determine whether duplication and deduplication edits

are prevalent in the Nanopore sequencing channel. Our results

indicate a positive answer to this question.

I. INTRODUCTION

A tandem duplication, or simply a duplication, is a type of
string edit operation where a substring (the template) is copied
and the copy is inserted immediately after the template in
the string. The duplication channel, which was studied in [1]
for modeling timing errors in communication systems, has
received increasing attention, in part due to advances in DNA
data storage. A number of works [2]–[7] have been devoted
to developing codes for correcting duplication error.

As in most existing works, the prevalence of duplication
errors is assumed and there is a lack of analysis to verify the
presence of duplication errors based on data. In this work, we
aim to address this shortcoming by performing a statistical
analysis on errors that occur during DNA sequencing. Our
objective is to investigate the prevalence of duplication errors.
To achieve this, we analyze whether incorporating duplication
and deduplication edits provides a better explanation for
observed data as compared to solely allowing point edits, i.e.,
insertions, deletions, and substitutions.

We first devise an algorithm for computing an edit dis-
tance that allows duplication and deduplication operations, in
addition to insertions, deletions, and substitutions. We refer
to this distance as the duplication distance (even though
other operations are also permitted). To make computing the
distance feasible, however, we do not allow all duplication and
point edits, as described in the next section. In particular, only
duplications of length 1 are permitted.

We apply the algorithm to simulated Nanopore DNA se-
quencing data to determine the duplication distance between

This work was supported in part by the following NSF grants: CIF 1816409
and CAREER 2144974.

the input and output strings of the sequencing process. A
statistical test is designed and performed to evaluate the
hypothesis that duplication errors are present, which consists
of comparing the duplication distance of actual input-output
pairs with input-output pairs with the output being random but
at the same Levenshtein distance from the input. Our statistical
test strongly suggests that duplication edits are prevalent and
that including them in the set of error types better explains
edits encountered in DNA sequencing.

The rest of the paper is organized as follows. The dupli-
cation distance algorithm is presented in Section II. The data
analysis and its results are presented in Section III. The proof
of correctness of the algorithm is in Section IV and the con-
clusion in Section V. The source code of our implementation
of the algorithm and data analysis is available online1.

II. ALGORITHM FOR COMPUTING
THE DUPLICATION DISTANCE

Edit distance is a measure of dissimilarity of two strings, ob-
tained by evaluating the set of operations needed to transform
one string into the other. Depending on what operations are
permitted, different versions of edit distance can be defined.
The most common edit distance, called the Levenshtein dis-

tance, permits substitutions, insertions, and deletions of single
characters. For example, the Levenshtein distance between
‘hare’ and ‘shark’ is two, via an insertion and a substitu-
tion: hare ! share ! shark. Note also that ‘shark’ can be
transformed into ‘hare’ with a substitution and a deletion. We
denote the Levenshtein distance by L(·, ·). For our preceding
example, L(hare, shark) = 2.

Edit distance can be used to evaluate errors in a communi-
cation or storage channel. Specifically, edit distance provides
a lower bound on the number of errors that have occurred
to transform the input of the channel to its output. Assuming
that errors are not too likely, this lower bound can also act
as an approximation. Additionally, a code that can correct
that many errors will be able to recover the channel input.
In this paper, to evaluate the presence of duplication and
deduplication errors, we study the duplication distance, which
also allows duplications and deduplications, and is denoted by

1https://github.com/SarvMotamen/Edit-Distance-Codes

https://github.com/SarvMotamen/Edit-Distance-Codes

�(·, ·). The set of permitted operations is described in detail
in the next subsection.

We use capital letters to denote strings, e.g., A. For a string
A, we use Ai to denote its ith character, and use A

j
i to denote

the substring AiAi+1 · · ·Aj�1Aj . We use lowercase letters to
denote characters from the alphabet.

A. Operations and Weights

In this paper, in addition to substitutions, insertions, and
deletions, we allow duplications and deduplications of single
characters. Specifically, in a duplication operation, a character
may be replaced by two copies, e.g., abc ! abbc, and in a
deduplication a pair of adjacent characters may be replaced
by a single occurrence, e.g., aabc ! abc.

In general, when defining an edit distance, each operation
may be assigned a weight. The distance is then the smallest
number s such that there is a sequence of operations transform-
ing one string into the other where the sum of the weights of
the operations in the sequence is s. We denote the weights
of substitutions, insertions, deletions, duplications, and dedu-
plications with wsub, win, wdel, wdup, and wded, respectively.
To ensure that our measure of dissimilarity is symmetric
(as required from any metric), we assume win = wdel and
wdup = wded.

We also assume that wdel < wded + wsub, as otherwise
each deletion can be replaced with a substitution followed by a
deduplication. Similarly, we need win < wdup+wsub, wdup <

win and wded < wdel to have insertions, duplications and
deduplications respectively.

We note that in general, a duplication may copy more
than one character and similarly a deduplication may remove
more than one character. The number of characters added
or removed is the length of the (de)duplication operation.
For example, a duplication of length 3 may be as follows:
abcde ! abcdbcde, where the duplicated segment is under-
lined. Allowing operations of length more than 1, however,
significantly increases the complexity of the problem. And
any algorithm capable of finding the distance with longer
duplications would have a high time complexity. Hence, for
simplicity, we limit our attention to duplications of length 1.

Furthermore, we assume that no operation can be performed
between two duplicated or two deduplicated characters. For
example, if we duplicate a to produce aa, we cannot then
insert a character between the two copies of a to produce,
e.g., aba. The reverse operation is also invalid, meaning we
cannot take aba and delete b to get aa, and then deduplicate to
obtain a. We also make the assumption that after a character
is duplicated, neither of the two resulting characters can be
substituted, and a substituted character cannot be deduplicated.

B. Algorithm

Similar to the edit distance algorithm introduced in [8],
our duplication distance algorithm is dynamic programming-
based, i.e., it computes the duplication distance based on
the duplication distances between prefixes. We demonstrate

the general recursion steps in the following. The proof of
correctness of the algorithm can be found in Section IV.

Given strings A and B of lengths |A| and |B|, respectively,
let d(i, j) be the edit distance between the prefix of A of length
i, i.e., Ai

1, and the prefix of B of length j, i.e., Bj
1.

We now describe how d(i, j), 1  i  |A| and 1  j  |B|,
can be found from the set of distances

{d(i0, j0) : i0  i, j
0  j, (i0, j0) 6= (i, j)}.

First, we initialize d(0, 0) = 0, since the distance between
two empty strings is always 0. For (i, j) where 0  i  |A|,
0  j  |B|, and (i, j) 6= (0, 0), there are multiple scenarios to
consider. For instance, if Ai = Bj , then the distance between
A

i
1 and B

j
1 can be the same as the distance between A

i�1
1 and

B
j�1
1 , i.e., d(i, j) = d(i � 1, j � 1). Or, when Ai 6= Bj , Ai

may be replaced by Bj and d(i, j) can be equal to d(i�1, j�
1)+wsub. These and other possibilities are considered below,
and the optimal distance d(i, j) is the minimum of all these
values:

d(i, j) = min

8
>>>>>>>><

>>>>>>>>:

d(i� 1, j � 1) i, j > 0, Ai = Bj

d(i� 1, j � 1) + wsub i, j > 0, Ai 6= Bj

d(i, j � 1) + wdup j > 1, Bj�1 = Bj

d(i� 1, j) + wded i > 1, Ai�1 = Ai

d(i, j � 1) + win j > 0

d(i� 1, j) + wdel i > 0
(1)

Therefore, the algorithm consists of two for loops, meaning,
for 0  i  |A|, for 0  j  |B| where (i, j) 6= (0, 0), d(i, j)
is computed. We denote the duplication distance between two
strings A, B as �(A,B) = d(|A|, |B|).

Under the assumption that accessing the data structure
takes constant time, updating each d(i, j) has time complex-
ity of O(1). Therefore, the algorithm has time complexity
O(|A||B|).

III. DATA ANALYSIS

In this section, we evaluate the presence of duplications
among the errors observed in Nanopore sequencing [9] in
DNA data storage. To do so, we analyze a dataset consisting of
1000 input-output pairs. The input represents the (true) base
sequence of a DNA molecule (we call this string A). Each
input string is of length 200, with bases randomly generated
from {A,C,G, T}. The output (string B) represents the output
of sequencing this molecule using a Nanopore sequencer,
as simulated by the Nanopore Deep Simulator [10] and the
Guppy basecaller [11].

Our goal is to statistically test whether duplications and
deduplications are a significant source of errors in Nanopore
sequencing. We do so by comparing the duplication distance
�(A,B) of the input-output pairs (A,B) with the duplication
distance �(A,B

0) for a randomly generated string B
0 such that

L(A,B
0) = L(A,B). The idea behind this statistical analysis

is that in the absense of duplication and deduplication errors,
the output B behaves no differently in terms of the duplication

distance from A compared to a randomly-generated string with
the same Levenshtein edit distance from the input A.

The first step is to generate a random string (denoted B
0)

for each input string A with length |A|, where L(A,B) =
L(A,B0). In addition, we require the number of operations
of each type (insertion, deletion, and substitution) needed to
transform A to B be the same as those needed to transform
A to B

0. In order to generate such a string, we first find ` =
L(A,B) and nin, ndel, nsub, i.e., the number of insertions,
deletions, and substitutions associated with that distance (` =
nin + ndel + nsub). Next, we produce a sequence of edits
S = (s1, s2, ..., s`) with nin insertions, ndel deletions, and
nsub substitutions, where the order of the operations is random.
For example, if nin = 2, ndel = 1, nsub = 2, a possible
sequence of edits would be S = (sub, del, in, in, sub).

We then generate a set of ` random positions P =
{p1, p2, ..., p`} where for 1  i  `, pi  |A|. After sorting
P in descending order, we perform edit si in position pi

for all 1  i  ` to obtain a candidate string B
0. Let

`
0 = L(A,B0) and let the number of edits of each type

corresponding to `
0 be n

0
in, n

0
del, and n

0
sub. If the equality

(`0, n0
in, n

0
del, n

0
sub) = (`, nin, ndel, nsub) is not satisfied, we

discard this candidate for B
0 and generate another candidate,

repeating the process until the equality is satisfied.
With this process, B0 could be found for 973 out of 1000

input strings in a reasonable time (at most 200 strings were
generated for each input A).

The next step is to calculate the duplication distance be-
tween the input A and the two outputs B,B

0. We denote
�t = �(A,B) and �r = �(A,B

0). Our null hypothesis is that
the events �r > �t and �r < �t have equal probability, i.e.,
p = 0.5 (assuming that in the case of �r = �t, the string is
put in one of the other two groups with probability 0.5).

For the 973 triples (A,B,B
0), we compute �r and �t, and

categorized them into three groups: strings where �r > �t,
�r = �t, and �r < �t. For calculating the duplication distance,
we consider the weights to satisfy win = wdel = wsub =
1, wdup = wded = w < 1, and conduct the test for 3 values
of w = 0.1, 0.5, 0.9. The results are shown in Table I.

TABLE I
�r VS. �t FOR 973 GUPPY SEQUENCES. THE TEST WAS CONDUCTED FOR 3

DIFFERENT VALUES OF w, AS WRITTEN IN THE FIRST COLUMN.

w �r > �t �r = �t �r < �t
0.1 655 35 283
0.5 636 108 229
0.9 629 112 232

We observe for all values of w, in the majority of the
cases, the duplication distance for the output B is smaller
than the random string B

0. This suggests that duplications and
deduplications played a part in producing B.

More formally, based on the null hypothesis, the number
of strings in each of the two groups is a Binomial random
variable with n = 973 and p = 0.5. As a result, under
the null hypothesis, one would expect to see roughly equal

numbers for �t < �r and �t > �r. The null hypothesis
can be rejected with p-value < 10�8. This implies that the
fact that �t < �r appears more often is not the result of
random chance. Our alternative explanation is that some of
the insertions and deletions needed to achieve the Levenshtein
distance are in fact duplications and deduplications, resulting
in reduced distance when (de)duplications are allowed with a
cost lower than that of insertions and deletions. In other words,
our results suggest that in the Nanopore dataset, the number of
duplication and deduplication edits are more than a randomly-
generated string, which implies the significance of duplication
and deduplication edits in the Nanopore sequencing channel.

IV. ALGORITHM’S PROOF OF CORRECTNESS

In this section, we prove the correctness of the algorithm for
computing the duplication distance. At a high level, our proof
follows that of Wagner and Fischer [8] for the Levenshtein edit
distance algorithm. However, the introduction of duplications
and deduplications substantially increases the complexity of
the problems, including requiring modifying the trace structure
and its properties as well as a comprehensive analysis of
various cases that may occur in the execution of the algorithm.

In subsection IV-A, the notation used in the proof is
provided. Subsection IV-B defines the trace structure, which
is then used to prove the correctness of (1) in subsection IV-C.

A. Notation

For a sequence of edits S = s1s2...sm, let �(S) =Pm
i=1 w(si) be the sum of the weights of all edits in S, with

possible edits being point edits and (de)duplications respecting
the conditions in II-A. For two strings A and B, define

�(A,B) = min{�(S) : S is an edit sequence taking A to B}.

For 1  i  |A| and 1  j  |B|, let d(i, j) = �(Ai
1, B

j
1).

Also, we define d(0, j) = �(?, B
j
1), d(i, 0) = �(Ai

1,?), and
d(0, 0) = �(?,?), with ? being the empty string.

B. Trace

Consider a graph G with a vertex set consisting of |A|+ |B|
vertices, namely, the characters of A and B, arranged in two
lines, as shown in Fig. 1. The edge set of this graph is denoted
by T = (TAB , TA, TB), where TAB is the set of edges between
A and B, while the edges in TA are of the form (Ai, Ai+1),
and similarly for TB . Let GA = (A, TA) and GB = (B, TB)
denote subgraphs of G. We refer to the set T as a trace from

string A to B if it satisfies the following properties:

Fig. 1. An example of a trace for A = xxzzzwtwxz and B = yyyxzxyxw.
Edges in TAB are blue, TA yellow, and TB red.

1) No two edges of TAB share an endpoint. Further-
more, no two edges of TAB cross each other, i.e., if
(Ai1 , Bj1), (Ai2 , Bj2) 2 TAB and i1 < i2, then j1 < j2.

2) Endpoints of edges in GA are identical characters, i.e.,
Ai = Ai+1. Let VC be the vertices of a component in
GA. There is at most one edge in TAB with an endpoint
in VC , and that endpoint can only be the left-most vertex
of VC . The same properties hold for GB .

Let I be the set of components in GA where no vertex
in the component has an edge in TAB , and J be the sets of
components in GB where, again, no vertex in the component
has an edge in TAB . We define the cost of T as below:

cost(T) =
X

(i,j)2T,Ai 6=Bj

wsub +
X

(i,i+1)2TA

wdup+

X

(j,j+1)2TB

wded +
X

i2I

wdel +
X

j2J

win

Theorem 1: For any two strings A and B,

�(A,B) = min{cost(T)|T is a trace from A to B}. (2)

Proof: We show that traces have the properties:
(I) For every trace T from A to B, there is an edit sequence

S taking A to B such that �(S) = cost(T).
(II) For every edit sequence S taking A to B, there is a

trace T from A to B such that cost(T)  �(S).
In order to prove property (I), we build the edit sequence S

such that �(S) = cost(T) as follows:
Deduplicate Ai+1 for all (Ai, Ai+1) 2 TA, delete Ai for

all C 2 I with left-most vertex Ai, substitute Ai with Bj

for (Ai, Bj) 2 TAB where Ai 6= Bj , insert Bj for every
component C 2 J with left-most vertex Bj , and duplicate Bj

to get BjBj+1 for (Bj , Bj+1) 2 TB .
Induction is used to build trace T and prove property (II).

Assume we have strings A and B and edit sequence S =
s1, s2, ..., sn that transforms A into B. Let A(k) be the string
after performing edits S

(k) = s1, ..., sk on A, and A
(0) =

A. The trace T
(k) refers to the trace from A to A

(k) where
cost(T (k))  �(S(k))

As the base case, the trace T
(0) from A to A

(0) is built
as follows: T

(0)
AB = {(Ai, A

(0)
j)|i = j, 1  i  |A|},

T
(0)
A = T

(0)
B = ?. The graph of this trace is a bipartite graph

with |A| vertices in each set and an edge between vertices
corresponding to the characters in the same position in A and
A

(0) . In this case, �(S(0)) = cost(T (0)) = 0, since for all
(Ai, A

(0)
j) 2 T

(0)
AB , Ai = A

(0)
j .

Next, we assume that for trace T
(k�1) from A to A

(k�1),
we have cost(T (k�1))  �(S(k�1)), and we will build trace
T

(k) from A to A
(k) where cost(T (k))  �(S(k)).

We first introduce two shift operations on trace T from A

to B. The result of these operations are also traces.
Let Sright(T,A,B, t) = (T 0

AB , TA, T
0
B), where:

T
0
AB =TAB \ {(Ai, Bj)|(Ai, Bj) 2 TAB , j > t}

[{(Ai, Bj+1)|(Ai, Bj) 2 TAB , j > t}
T

0
B =TB \ {(Bj , Bj+1)|(Bj , Bj+1) 2 TB , j > t}

[{(Bj+1, Bj+2)|(Bj , Bj+1) 2 TB , j > t}

The Sright operation shifts all edges corresponding to a
character in B after Bt to the right by one position.

Let Sleft(T,A,B, t) = (T 0
AB , TA, T

0
B), where:

T
0
AB =TAB \ {(Ai, Bj)|(Ai, Bj) 2 TAB , j > t}

[{(Ai, Bj�1)|(Ai, Bj) 2 TAB , j > t}
T

0
B =TB \ {(Bj , Bj+1)|(Bj , Bj+1) 2 TB , j > t}

[{(Bj�1, Bj)|(Bj , Bj+1) 2 TB , j > t}

Similarly, the Sleft operation shifts all edges corresponding
to a character in B after Bt to the left by one position.

Edges are added or deleted based on what edit operation sk

is as follows:
1) substitution: A(k�1)

i is being substituted with A
(k)
i , there-

fore �(S(k)) = �(S(k�1)) + wsub. Note that A
(k�1)
i

cannot have an edge in T
(k�1)
B since no duplicated

character can be substituted.
• A

(k�1)
i does not have an edge in T

(k�1): A
(k�1)
i

is associated with an insertion in T
(k�1), therefore

replacing it with A
(k)
i can be considered as an

insertion of A
(k)
i instead of A

(k�1)
i in A, meaning

no additional operation is performed, T (k) = T
(k�1)

and cost(T (k)) = cost(T (k�1))  �(S(k)).
• A

(k�1)
i has an edge (Al, A

(k�1)
i) 2 T

(k�1)
AB : Since

duplicated characters cannot be substituted, A(k�1)
i

does not have an edge in T
(k�1)
B . We replace A

(k�1)
i

with A
(k)
i and keep the edge (Al, A

(k)
i) 2 T

(k)
AB .

cost(T (k�1)) increases by at most wsub, which means
cost(T (k))  �(S(k)).

2) insertion: A
(k)
i+1 is inserted right after A

(k�1)
i , and

�(S(k)) = �(S(k�1)) + win: in this case, T
(k) =

Sright(T (k�1)
, A,A

(k�1)
, i). We have no insertion be-

tween two duplicated characters, therefore all edges in
T

(k)
B are still valid, and cost(T (k)) = cost(T (k�1)) +

win  �(S(k)).
3) deletion: A(k�1)

i is deleted, and �(S(k)) = �(S(k�1)) +
wdel:

• A
(k�1)
i does not have an edge in T

(k�1): A
(k�1)
i

is associated with an insertion in T
(k�1), therefore

by deleting it, cost(T (k)) = cost(T (k�1)) � win 
�(S(k)).

• A
(k�1)
i has an edge (Al, A

(k�1)
i) 2 T

(k�1)
AB but no

edge in T
(k�1)
B : We delete this edge, which implies

the deletion of Al, and cost(T (k�1)) increases by at
most wdel, meaning cost(T (k))  �(S(k)).

• A
(k�1)
i has one or both of the edges

(A(k�1)
i�1 , A

(k�1)
i) 2 T

(k�1)
B and (A(k�1)

i , A
(k�1)
i+1) 2

T
(k�1)
B but no edge in T

(k�1)
AB : The edge(s) in

T
(k�1)
B are deleted. If A

(k�1)
i has both edges,

we add the edge (A(k�1)
i�1 , A

(k�1)
i+1) to T

(k�1)
B . In

any case, we have one less duplication, therefore
cost(T (k)) = cost(T (k�1))� wdup  �(S(k)).

• A
(k�1)
i has edges (Al, A

(k�1)
i) 2 T

(k�1)
AB and

(A(k�1)
i , A

(k�1)
i+1) 2 T

(k�1)
B : Both edges are deleted

and (Al, A
(k+1)
i+1) is added to T

(k�1)
AB , which, again,

implies deleting a duplication, and cost(T (k)) =
cost(T (k�1)) � wdup  �(S(k)). Note that after
deleting A

(k�1)
i , character A

(k�1)
i+1 becomes the left-

most vertex of its component in GB .
Lastly T

(k) = Sleft(T (k�1)
, A,A

(k�1)
, i)).

4) duplication: A
(k�1)
i is duplicated to give us

A
(k)
i A

(k)
i+1, and �(S(k)) = �(S(k�1)) + wdup. First,

T
(k) = Sright(T (k�1)

, A,A
(k�1)

, i). Then, the
edge (A(k)

i , A
(k)
i+1) is added to T

(k)
B , and we have

cost(T (k)) = cost(T (k�1)) + wdup  �(S(k)).
5) deduplication: A

(k�1)
i A

(k�1)
i+1 is deduplicated to give us

A
(k)
i , and �(S(k)) = �(S(k�1)) + wded.
• At most one of A

(k�1)
i and A

(k�1)
i+1 has an edge

in T
(k�1)
AB : At least one character is inserted, we

delete that character and all its edges in T
(k�1)
B

(if it has two edges to A
(k�1)
i�1 and A

(k�1)
i+1 , those

edges are deleted and the edge (A(k�1)
i�1 , A

(k�1)
i+1) is

added to T
(k�1)
B), therefore we have cost(T (k)) =

cost(T (k�1))� win  �(S(k)).
• Both A

(k�1)
i and A

(k�1)
i+1 have an edge in T

(k�1)
AB :

Since no deletion can happen between two dedu-
plicated characters, (Al, A

(k�1)
i) 2 T

(k�1) and
(Al+1, A

(k�1)
i+1) 2 T

(k�1), and since no substituted
character can be deduplicated, Al = A

(k�1)
i and

Al+1 = A
(k�1)
i+1 . Here, (Al+1, A

(k�1)
i+1) is deleted

from T
(k�1)
AB and (Al, Al+1) is added to T

(k�1)
A .

If A
(k�1)
i+1 has an edge in T

(k�1)
B , it is not with

A
(k�1)
i , since two characters connected with an edge

in TB cannot both have edges in TAB . Therefore,
the edge is (A(k�1)

i+1 , A
(k�1)
i+2), which is deleted and

(A(k�1)
i , A

(k�1)
i+2) is added to T

(k�1)
B . In this case,

cost(T (k)) = cost(T (k�1)) + wded  �(S(k)).
Lastly, T (k) = Sleft(T (k�1)

, A,A
(k�1)

, i+ 1))
This completes the proof of property (II). From properties

(I) and (II) of traces, equation 2 follows.

C. Proof of Correctness

Theorem 2: Consider two string A and B and let d(0, 0) =
0. Furthermore, for 0  i  |A| and 0  j  |B| where
(i, j) 6= (0, 0), let d(i, j) be given by (1). Then, d(i, j) =
�(Ai

1, B
j
1).

Proof: Let T be a least cost trace from A
i
1 to B

j
1.

If Ai and Bj both have an edge TAB , they must both be
connected to the same edge, since otherwise we have edges
(Ai1 , Bj1), (Ai2 , Bj2) 2 TAB where i1 < i2 and j1 > j2,
which contradicts the definition of trace. Then, at least one of
the following cases must hold:

Case 1: (Ai, Bj) 2 TAB and Ai = Bj : m1 = d(i�1, j�1).
Case 2: (Ai, Bj) 2 TAB and Ai 6= Bj : we have a

substitution and m2 = d(i� 1, j � 1) + wsub.
Case 3: (Bj�1, Bj) 2 TB : then we have a duplication and

m3 = d(i, j � 1) + wdup.

Case 4: (Ai�1, Ai) 2 TA: then we have a deduplication and
m4 = d(i� 1, j) + wded.

Case 5: C 2 J where the left-most vertex is Bj : then we
have an insertion and m5 = d(i, j � 1) + win

Case 6: C 2 I where the left-most vertex is Ai: then we
have a deletion and m6 = d(i� 1, j) + wdel

Since one of the six cases above must hold, d(i, j) =
min(m1�6).
The preceding theorem implies that �(A,B) = d(|A|, |B|),
thereby establishing the correctness of the proposed algorithm.

V. CONCLUSION

In this paper, we defined duplication distance as the distance
between two strings where duplication and deduplication edits
of a single character subject to specified conditions are allowed
along with insertion, deletion, and substitution. Using dynamic
programming, we developed an algorithm for computing this
distance, and used it to show that duplication and deduplication
edits are prevalent in the Nanopore sequencing channel.

Directions of interest for future work include developing an
algorithm for computing the distance when (de)duplications
of length larger than 1 are allowed, as well as eliminating
other limitations that we enforced for the sake of simplicity.
The analysis can also be expanded from Nanopore sequencing
to other channels including DNA synthesis and channels
with timing errors, and to real data compared to simulated
data. Such analyses can enable designing more capable error-
correcting codes with reduced redundancy.

REFERENCES

[1] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Ex-
plicit constructions and prefixing methods,” SIAM Journal on Discrete

Mathematics, vol. 23, no. 4, pp. 2120–2146, 2010.
[2] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting

codes for data storage in the dna of living organisms,” IEEE Transactions

on Information Theory, vol. 63, no. 8, pp. 4996–5010, 2017.
[3] Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Deciding

the confusability of words under tandem repeats in linear time,” ACM

Transactions on Algorithms (TALG), vol. 15, no. 3, pp. 1–22, 2019.
[4] M. Kovačević and V. Y. Tan, “Asymptotically optimal codes correcting

fixed-length duplication errors in dna storage systems,” IEEE Commu-

nications Letters, vol. 22, no. 11, pp. 2194–2197, 2018.
[5] A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Duplication-correcting

codes,” Designs, Codes and Cryptography, vol. 87, pp. 277–298, 2019.
[6] Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-error

detection and correction for duplication and substitution channels,” IEEE

Transactions on Information Theory, vol. 66, no. 11, pp. 6908–6919,
2020.

[7] Y. Tang and F. Farnoud, “Error-correcting codes for noisy duplication
channels,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp.
3452–3463, 2021.

[8] R. Wagner and M. Fischer, “The string-to-string correction problem,”
Journal of the ACM, vol. 21, no. 1, pp. 168–173, 1974.

[9] D. Deamer, M. Akeson, and D. Branton, “Three decades of nanopore
sequencing,” Nature Biotechnology, vol. 34, no. 5, pp. 518–524, May
2016.

[10] Y. Li, S. Wang, C. Bi, Z. Qiu, M. Li, and X. Gao, “Deepsimulator1. 5: a
more powerful, quicker and lighter simulator for nanopore sequencing,”
Bioinformatics, vol. 36, no. 8, pp. 2578–2580, 2020.

[11] “Guppy software overview,” https://community.nanoporetech.com/docs/
prepare/library prep protocols/Guppy-protocol/v/gpb 2003 v1 revax
14dec2018/guppy-software-overview, accessed: 12/5/2023.

https://community.nanoporetech.com/docs/prepare/library_prep_protocols/Guppy-protocol/v/gpb_2003_v1_revax_14dec2018/guppy-software-overview
https://community.nanoporetech.com/docs/prepare/library_prep_protocols/Guppy-protocol/v/gpb_2003_v1_revax_14dec2018/guppy-software-overview
https://community.nanoporetech.com/docs/prepare/library_prep_protocols/Guppy-protocol/v/gpb_2003_v1_revax_14dec2018/guppy-software-overview

	Introduction
	Algorithm for Computing the Duplication Distance
	Operations and Weights
	Algorithm

	Data Analysis
	Algorithm's Proof of Correctness
	Notation
	Trace
	Proof of Correctness

	Conclusion
	References

