Correcting a substring edit error of bounded length

Yuanyuan Tang*, Sarvin Motamen*, Hao Lou*, Kallie Whritenour?,
Shuche Wang', Ryan Gabrys?, and Farzad Farnoud*$
*Electrical & Computer Engineering, $Computer Science, University of Virginia, U.S.A.,
{yt 5tz,awz4up, hl2nu, kwSkm, farzad}@virginia .edu
fInstitute of Operations Research and Analytics, National University of Singapore, shuche .wang@u.nus.edu
fCalit2, University of California-San Diego, U.S.A., rgabrys@ucsd.edu

Abstract—Localized errors, which occur in windows with
bounded lengths, are common in a range of applications. Such
errors can be modeled as k-substring edits, which replace one
substring with another string, both with lengths upper bounded
by k. This generalizes errors such as localized deletions or
burst substitutions studied in the literature. In this paper, we
show through statistical analysis of real data that substring edits
better describe differences between related documents compared
to independent edits, and thus commonly arise in problems
related to data synchronization. We also show that for the dataset
under study, assuming codes exist that can achieve the Gilbert-
Varshamov (GV) bound, substring-edit-correcting codes can
synchronize two documents with much lower overhead compared
to general indel/substitution-correcting codes. Furthermore, given
a constant k, we construct binary codes of length n for correcting
a single k-substring edit that achieves the GV bound and
subsequently has redundancy of asymptotically 2 log n, compared
to 4k log n, the lowest redundancy achievable by an existing code
for this problem. The time complexities of both encoding and
decoding are polynomial with respect to n.

Index Terms—JLocalized errors, k-substring edit, GV bound,
statistical analysis, error-correcting codes, low redundancy

I. INTRODUCTION

In a wide range of applications, including wireless com-
munication, magnetic data storage, DNA data storage, and
document synchronization, errors that appear close to each
other are common. Such errors are referred to as burst errors
or localized errors. Due to the prevalence of these errors,
problems related to their correction have drawn significant
attention [1]-[11]. The focus of the present paper lies in
correcting a k-substring edit error, where one substring is
replaced with another string at the same position, with both
substrings having lengths bounded by k. Since substring edits
encompass various specific errors, including burst insertions,
burst deletions, and burst substitutions, as well as combinations
of these errors occurring in a bounded window, our work
presents a unified solution to correcting a diverse set of
burst/localized errors.

We first present an experimental analysis demonstrating
the prevalence of burst errors in real data, which to the
best of our knowledge is the first such analysis. Specifically,
statistical analysis of two datasets, one containing two versions
of the Bash source code and the other comprising noisy

This paper was presented in part at the IEEE ISIT2023 [1].
This work was supported in part by NSF grants under grant nos. CCF-
1816409, CAREER-2144974, CCF-2212437, and CCF-2312871.

nanopore DNA sequencing reads, strongly supports rejecting
the uniform distribution of errors/edits in these sequences.
Furthermore, through this analysis, we demonstrate that for
these representative datasets, substring edit-correcting codes
achieve a lower redundancy compared to existing codes for
correcting indels and substitutions.

Codes for correcting burst/localized errors have been studied
by many recent works, including codes for bursts of substitu-
tions [2], [4], a burst of exactly k deletions [5]-[7], a burst
of at most k deletions (or k insertions) [6], [8], [11], [12],
and localized deletions occurring in a window with bounded
length & [9], [10]. The problem of correcting a substring edit,
studied here, is closest to correcting deletions and bursts of
deletions.However, as we will show in Lemma 1, a code that
can correct a burst of at most ¢ deletions (or one that can
correct a burst of at most ¢ insertions) cannot necessarily
correct a k-substring edit, even if ¢ is much larger than k.
On the other hand, a k-substring edit can be corrected by a
code that can correct 2 bursts of at most k£ deletions or, as
we show in Lemma 1, by a code that can correct at most
2k deletions. These observations lead to the conclusion that
existing codes for correcting multiple deletions [13], [14] or
multiple bursts of deletions [15] can correct a k-substring edit
with redundancy at least 4k logn [14]. The goal of the current
work is to construct codes that can correct a k-substring edit
with less redundancy.

While codes for correcting a burst of at most k deletions
cannot correct a k-substring edit, the idea of first identifying an
approximate location for the error presented in Lenz et al. [§]
and Bitar et al. [9] using the position of specific patterns is
useful for our problem. We divide k-substring edits into strict
k-substring edits (that will change the length in the outputs)
and bursts of at most k£ substitutions, referred to as k-burst
substitutions. For strict edits, we first extend the codes in [8],
[9] to locate the error to be in an interval of length O((log n)?)
and then correct it. For k-burst substitutions, which cannot be
located using the patterns mentioned above, we adapt the Fire
code [2]. Then we combine the two error-correcting codes in a
manner that enables polynomial-time encoding and decoding.

Compared to the conference version of this work [1],
the current paper provides omitted proofs, presents models
for all hypothesis tests in Section III, analyzes the average
redundancy of correcting substring edit errors for the datasets
discussed in Table II, and provides a more detailed analysis
of Figure 4, regarding the differences between pairs of files in

the Bash dataset.

The rest of the paper is organized as follows. Section II
presents the notation and preliminaries. Section III discusses
the prevalence of burst errors in real data and the utility of
substring-edit-correcting codes. Finally, Section IV presents
the code constructions and an analysis of the time complexity
of encoding/decoding and the redundancy.

II. NOTATION AND PRELIMINARIES
A. Notation

Without loss of generality, let 3, = {0,1,...,q — 1} be
a finite alphabet of size g. The set of length-n strings and
finite strings over X, are denoted as X' and X7, respectively.
The empty string, denoted A, is also considered a member of
25 In this paper, we focus on the binary alphabet 5. For
a,b € Z, let [a,b] = {a,a+1,...,b} and [b] = [1,b]. Unless
otherwise stated, logarithms are to the base of 2.

For x,y € X3, let Ty = xo---2p and T =
Zg -+ Zp—1, and let zy and (x,y) denote the concatenation
of ,y. For z,v € ¥}, v is a substring of = if ¢ = uvw
for some uw,w € X7. Furthermore, |z| is the length of a
sequence x and ||S|| is the number of elements in a set S.
Given an integer r and a symbol a € X, let a” denote
a run of r consecutive symbols a. Given an integer string
x € Z", define the Varshamov-Tenengolts (VT) check sum as

VT (z) =Y i

B. The k-substring edit channel

Given a string x, a k-burst deletion (resp. insertion) in x
removes (resp. inserts) at most k consecutive symbols, while a
k-substring edit replaces a substring v of @ by another string
v’, where |v|, |v'| < k and at least one of v, v’ is non-empty.
The k-substring edit is a k-burst substitution if |v| = |v’| and
we say it is a strict k-substring edit otherwise. In particular,
v’ = A results in a burst deletion addressed by previous works.
For example, given & = 100111011101 € 7%, a 4-substring
edit may generate z = 10010101101 by replacing x5 5 =
1101 with z[5 7; = 010.

The next lemma discusses the relationship between deletion-
correcting codes and codes that can correct a k-substring edit.

Lemma 1. The codes in the statements below are over E'g,
where n,q > 2. Let k be a positive integer.

1) A code that can correct 2 k-burst deletions can correct
a k-substring edit.

2) For any £ < n, there exists a code that can correct a
burst of at most £ deletions but not a k-substring edit.

3) For any £ < n, if { < 2k, then there exists a code that
can correct up to £ deletions but not a k-substring edit.

Proof:

1) Let S(x) denote the set of all strings that can be generated
from x by a k-substring edit. Let * = ax1bxsc, y =
ay1bysc, and z = ay,bxac with |:131|, |.’132|, |y1|7 |y2‘ <
k. Then z € S(x) N S(y). Furthermore, a, b, and ¢ are
substrings of both & and y. Let 2’ = abc. Then z’ can

be generated by simply deleting 1 and x5 from x and
similarly deleting ¥; and y» from y. Since ®1, x2, Y1,
and ys are substrings with length bounded by k, 2’ is
generated from « and y by 2 k-burst deletions. If an
error-correcting code C can correct 2 k-burst deletions
and x € C, then it can distinguish = from y by 2z’ as
well as z.

2) Consider the code C = {0™,10" 2?1}, which can correct
any burst of at most £ < n deletions since 0" can only
produce 0™, m € [n], while the 10" =21 cannot. Note that
0"~11 can be obtained from both 0" and 10”21 through
a single substitution. So C cannot correct a k-substring
edit for k& > 0.

3) Let h = min{n, 2k} and note that £ < h. Consider the
code {0"v, 1"}, v € Zg_h, which can correct any < /
deletions. However, each of the codewords can produce
0Lr/211Th/214 via a k-substring edit.

|

Given a code C C Zg, the redundancy of the code C is
defined as nlog g —log||C||. For binary, which is the focus of
our code construction, part 1 of the above lemma implies the
code given in [14] for correcting < 2k deletions can correct a
k-substring edit over the binary alphabet with the redundancy
of asymptotically 4k logn bits. Furthermore, the k-substring
edit can also be viewed as s substitutions and h insertions
(or deletions) with s + h < k, then the code in [14] can
correct a substring edit with the redundancy of asymptotically
4k logn bits. To the best of our knowledge, that is the lowest
redundancy that can be achieved by an existing code for this
problem. The code we present in Theorem 19 has redundancy
of asymptotically 2log n.

Given a string x € X}/, let Dy () C 3% denote the set of
strings generated from x by at most b k-substring edit errors
and let By i(x) C 3y denote the confusable set of z, ie.,
the set of sequences y other than x for which D ;(x) N
Dy 1 (y) # @. When b = 1 and k is clear from the context,
we use D(x), B(x) instead of Dy, (), Bp i ().

We now find the Gilbert-Varshamov (GV) bound on the size
of the code. Define r, (b, k) = maXgesy By ()] + 1.

Lemma 2. Assuming an alphabet of size q, we have
n(b k) < (n+ bk)? (k + 1) g0

and there exists a code C C X7 of length n capable of
correcting at most b k-substring edits with the size at least

ICIl = ¢" /rn (b, k).

Proof: For x € X, let By i(x) C ¥y denote the set of
sequences that can produce the same output as & by at most
b k-substring edits. That is y € By () if and only if there
exists z that can be produced from both & and y through at
most b k-substring edit errors. Furthermore, each k-substring
edit is reversible, i.e., if ; € D(x;_1), then x;_; € D(x;).
Then each y € By (x) can be generated from « by & —
Ty — D> Xpo] > Z = Yp1 —> - — Y1 — Yy by 2b
k-substring edits, where ©* = x(and y = yo. This sequence
of edits consists of at most 2b burst deletions and 2b burst
insertions. There are < (k+1)** ways to choose their lengths

and < ¢?*" to choose the inserted strings. We claim, to be
proved later, that for each string, there are at most n + bk
possible positions for the edit, yielding the Lemma.

To prove the claim, note that for a string of length m,
there are m + 1 possible positions for a substring edit that
involves only an insertion and m positions if the edit contains
a nontrivial deletion. The strings «;, y;, z either have length
less than n + bk or if their length is equal to n + bk (only
possible for z), then the edit must contain a deletion. [|

Assuming b,k are constants, the redundancy is bounded
above by 2blogn + o(logn), which is the same as the redun-
dancy of the efficiently encodable/decodable codes proposed
in this paper for b = 1 and the binary alphabet.

C. Relevant Prior Results

We first recall a result from syndrome compression, a
technique used to construct codes with low redundancy [16],
to our problem. A function f : 2 — N is a labeling function
with respect to sets {B(z) : € X2} if for any = € %2 and
any y € B(x), we have f(xz) # f(y).

Theorem 3 (c.f. [16, Theorem S]). Let f : 35 — Yorm) be a
labeling function with respect to sets { B(x) : * € X2}, where
R(n) = o(loglogn -logn). Then, for x € X%, there exists an
integer a < 2w°glB@)lI+ollosn) sych that for all y € B(zx),
we have f(x) # f(y) mod a.

We will use the following definitions and results from [8],
[9]. These works correct a burst of deletions with low redun-
dancy by first locating the approximate position of the error.

Given sequences * € X4 and a pattern (string) P, define
1p(x) € X7 as the indicator vector whose ith element is 1
if T(iit|P|-1] = P and is O if T[i,i+|P|—1] #Pori+|P|—
1 > n. Further, let np(x) denote the number of 1’s in 1p(x)
and ap(x) represent a length-(np(x) 4+ 1) vector whose jth
element is the distance between positions of the (j —1)-th and
the jth 1 in the string (1,1p(x),1) for j € [np(x) + 1]. A
sequence x is (P, d)-dense if each interval of length ¢ in @
contains at least one substring P, implying that each element
of ap(x) is at most 4, which is denoted by ap(x) < d. The
set of (P, d)-dense binary strings of length n is denoted by
Dp 5(n). Based on [8, Lemma 1], for P = 0¥1%, n > 5, and
§ = k226 1[log n], we have

IDps(n) NS5 > 2" (1)

For j > 2, we have ap(x); > 2k due to the length of P.

Consider € X% and y € D(x), with m = |y|,k' =
|| — |y|.- The error transforming x to y has occurred in
interval [j,j + ¢ — 1] in y if yp ;1) = @ ;-1 and
Ylj+0,m] = T[j+o+k',n]- We say that a decoder can locate an
error in an interval of length ¢ if it can find j such that the
error has occurred in interval [j,j + ¢ — 1] in the received
word. We next recall the code in [9] used to locate the burst
of deletions or localized deletions in an interval.

Lemma4 (cf. [9]). Let P = 0*1*. Given integers ¢, € [0,4],
co € [0,6n — 1], and § = k2?**T1[logn], there exists a code
Ci={x € 25 NDps(n),np(x) =c1 mod 5,

VT(ap(x)) = c2 mod 6n.} @

that can locate a burst of deletions or localized deletions in
an interval with length O((logn)?).

III. SUBSTRING EDITS IN NANOPORE SEQUENCING AND
DOCUMENT EDITING

In this section, we investigate the hypothesis that in real-
world settings, errors/edits commonly occur in a bursty man-
ner, rather than being distributed uniformly. We also study
whether substring-edit-correcting codes can achieve lower
redundancy than general edit-correcting codes. We performed
experimental studies on two real-world datasets, corresponding
to two applications of the codes:

o Error-correction: We investigate the set of errors en-
countered in nanopore sequencing [17] in DNA data
storage. The data consists of 1000 input-output pairs,
where the input represents the (true) base sequence of
a DNA molecule. Each input sequence is of length 200
!, with bases randomly generated from {4, C, G, T'}. The
output represents the sequence detected by nanopore, as
simulated by using the nanopore deep simulator [19] and
the Nanopore’s Guppy basecaller.

e Data synchronization: Suppose Alice, who knows only
x, needs to communicate x to Bob, who knows only
z. Consider two documents & and z, where x is the
edited version of z. This task is referred to as data
synchronization, and can be accomplished using error-
correcting codes [20]. We study the characteristics of the
editing process, which affects the number of bits needed
for synchronization. The dataset consists of versions 5.0
and 5.1 of the source code for the Bash utilityz, where
each common file in version 5.1 is viewed as an edited
version of the one in version 5.0.

Recall that our goal is to determine whether edits/errors
are i) bursty or ii) uniformly/independently distributed. To
rigorously answer this question, one way is to first define
a uniform/independent random process for errors and edits
and then use hypothesis testing to determine if such a model
explains the observed data, which will be discussed in Sub-
section III-B. First, however, we perform an intuitive but less
rigorous test over the alignment of pairs of sequences in
Subsection III-A. Finally, in Subsection III-C, we consider
choosing the model that leads to the lowest cost in error-
correction and synchronization tasks for our data.

A. Independence test on alignment

G——TCATCCCG

[/71=11111-
GGAT-ATCCCC

Figure 1: An alignment of
two DNA sequences, where
the top sequence can be ob-
tained from the bottom one
via deletions (/), insertions
(—), and substitutions (-).

Let z be the erroneous/edited
version of x. An alignment be-
tween x and z identifies the posi-
tions where the sequences match
and how they differ (see Fig-
ure 1). From the alignment, let
us produce the binary sequence,
denoted a, in which 1 represents

U1t is a typical length of the synthetic DNA sequences in a current DNA
storage system [18]
Zhttps://ftp.gnu.org/gnu/bash/

a match and O represents an edit (substitution, insertion,
deletion). If edits/errors are distributed in a uniform manner
over x, e.g., resulting from an “independent” process, then
it is reasonable to expect the alignment a to resemble an
iid sequence. Therefore, we apply the Wald-Wolfowitz runs-
test [21].

1) Wald-Wolfowitz runs-test: Consider a binary sequence
a = apay - --any—1. The Wald-Wolfowitz runs test [21] tests
the null hypothesis that a is iid using the number R of runs
as the test statistic. Conditioned on ¢; 1’s and ¢y 0’s, it can be

shown that
235 (35
()
Sy [B G [y
()

To see (3), note that (tsl:ll) (resp. ("°~')) is the number of

compositions of ¢; (resp. tg) into exactly s parts, i.e., the
number of ways t; 1’s (resp. ¢y 0’s) can be divided into s runs.
There is a factor of 2 as the sequence may start with a run of
1’s or 0’s and the denominator is the total number of sequences
with 1 1’s and ¢y 0’s. Similarly, we have (4). Note that both
very large and very small values of R imply dependence
between a;’s, and thus suggestrejecting the null hypothesis.
In all examples we tested, the actual number of runs r was
small. Therefore, for simplicity, we consider the one-sided test
with p-value Pr (R < 7lt1,t9) = 3, Pr(R = ylt1, o).
Here, the null hypothesis is that a is iid generated and the
number R of runs in a is the test statistic. Conditioned on
the number of 0’s to and the number of 1’s ¢;, the p-value is
Pr (R < r|tog,t1), as we do not expect to see very few runs in
an iid sequence. As in “RUNS-TEST” column of Table I, this
test strongly suggests that edits are not iid for both datasets.

Pr (R = 28|t1,t0) = (3)

Pr (R =25+ 1|t1,t0) =

e

B. A probabilistic edit process

Another approach is to perform hypothesis testing on a
probabilistic edit process. Again, let be our data sequence
of length n, and z its edited version. Based on an intuitive
interpretation of “uniform edits”, we define the following
simple edit process: i) A random number K; of insertions
are uniformly distributed over the n + 1 “bins” between z;
and ;41,7 =0,...,n, where xg and x,4, are defined as the
empty symbol. ii) A random number K; of substitutions and
deletions are uniformly applied on x1,...,x,.

The null hypothesis is that z is generated by this edit
process. Since insertions occur independently of substitutions
and deletions, we apply two separate tests. For insertions,
we consider W, the number of runs of insertions, as the
test statistic. W has the same distribution as the number of
nonempty bins when k = K; balls are distributed uniformly
into N = n + 1 distinct bins. We may assume that the balls
are labeled as this does not affect the distribution of W. For
1 < w < min(N, k), the probability of observing w nonempty
bins is

Pr(W = wlk,N) = —2 " w/ (5)

where BE is the number of partitions of a size-k set into w
parts, also known as Stirling numbers of the second kind. To
explain, there are (Z) ways of choosing the nonempty bins and
w!B* ways of filling them with & balls. For the denominator,
there are N* choices as each ball can be placed in 1 of N
distinct bins. If most insertions cluster in a small number of
bins, i.e., W being small, then we reject the null hypothesis.
The p-value Pr (W < w|K;) is summarized in “INS-TEST”
column of Table I. Note that a new interpretation of the “INS-
TEST” is discussed in Appendix A.

For substitutions and deletions, we consider again R, the
number of runs in the edit pattern (excluding insertions) as
the test statistic, and reject the null hypothesis if R is small.
The results are given in “SUBDEL-TEST” column of Table I.
High rejection rates for both tests suggest that edits are not
uniform.

C. Operational evaluation of error/edit models

Given two sequences & € Zg and z € EZ, their differences
can be described via b k-substring edits for a range of possible
pairs (b, k). Operationally, the best description, i.e., (b, k) pair,
is the one that leads to the lowest cost for the task at hand.
For error-correction, where z is an erroneous copy of x, the
cost is the redundancy of the code that allows correcting the
errors in z. If z can be obtained from x via b k-substring
edits, based on the GV bound, there exists such a code of
length n with redundancy logr, (b, k). For synchronization,
where x is the edited version of z (or vice versa), the cost is
the information exchange, i.e., the number of bits needed to be
transmitted. It can be shown [20] that exchanging log 7, (b, k)
bits is sufficient, achievable using a systematic code with n
information symbols and log, r,, (b, k) check symbols.

D. Experiment results

1) Alignment: Our experiment starts with computing the
alignment of data sequence pairs in both datasets. We consider
the 1000 input-output pairs in the nanopore sequencing dataset
and the 589 pairs of common files (with lengths at most
20000 bytes and contain edits) in the bash dataset. We use
the conventional dynamic programming approach [22] for
computing the alignment. Table I presents the fraction of
sequences rejecting the null hypothesis at p-value threshold
of 5% for two datasets for three tests.

RUNS-TEST | INS-TEST | SUBDEL-TEST
Bash 97.2% 100% 97.6%
DNA 95.7% 97.1% 76.1%

Table I: Fraction of sequences rejecting the null hypothesis at p-value
threshold of 5%.

2) Runs-test on alignment: For each alignment, the runs-
test is applied for determining if it resembles an iid sequence.
In particular, the alignment is first converted into a binary edit
pattern sequence with 1 representing a match and 0 one of the
three types of edits. The p-value of the runs-test is computed
according to (3) and (4), where t;,tg,r are the numbers of
1’s, 0’s, and runs in the edit pattern, respectively.

In our experiment, the runs-test is applied on all 1000 input-
output pairs in the nanopore sequencing dataset and 589 pairs
of edited files in the bash dataset. Table I contains fraction of
sequences rejecting the null hypothesis at p-value threshold of
5%.

3) Testing the edit process: The second part of our analysis
focuses on the two testings for the proposed edit process. We
assume that the alignment between two data sequences gives
the actual edits that happened. Let n be the length of the
unedited data sequence.

o INS-TEST: For the insertions, we obtain the number
of insertions K; and the number of runs of insertions
w from the alignment. The p-value is defined as the
probability of seeing at most w non-empty bins, i.e.,
Pr(W < wlk = K;, N =n+1), where the pmf of W
is given by (5).

« SUBDEL-TEST: For the substitutions and deletions, we
first remove the insertions from the alignment. Next, we
convert the alignment to the binary edit pattern and count
the number of 1’s K; (corresponding to edits) and the
number of 0’s n — K. The test statistic is again R, the
number of runs in the edit pattern. It is clear that under
the assumed edit process, the distribution of R given K,
is given by (3) and (4) with t; = K4,t9 = n — K4. The
p-value is computed in the same way.

INS-TEST and SUBDEL-TEST are both applied on the two
datasets, with fractions of rejections in Table I. Note that we
only apply INS-TEST on data sequences that contain at least 5
insertions, and only apply SUBDEL-TEST on data sequences
that contain at least 1 deletion or substitution. Apart from
Table I, Figure 2 shows the histogram of the p-values for the
“SUBDEL-TEST”. Strong evidence for rejecting the uniform
edit process can be observed.

o

=
00 01 02 03 04 05 06 07 08 09 10
p-values of subdel-test

00 01 02 03 04 05 06 07 08 09 1.0
p-values of subdel-test
(a) Bash dataset (b) Nanopore sequencing dataset

Figure 2: Histograms of p-values for SUBDEL-TEST.

4) Operational evaluation of error/edit models: For each
pair of sequences in the genome data set, among all valid (b, k)
pairs, we find the one that minimizes r, (b, k), where n =
200, g = 4 for all DNA sequences.The histogram of the best
(b, k) pairs is given in Figure 3, which indicates that viewing
the errors as 13 2-substring edits minimizes the redundancy for
the largest number of input-output pairs.® This suggests that
edits with & > 1 better describe our data and codes correcting

3We point out that only 272 sequence pairs are included as the rest are so
erroneous that they have their minimum redundancy log ry (b, k) larger than
the original length (400 bits for n = 200, q = 4).

b k-substring edits for £ > 1 are of use in DNA data storage.
Note, however, that a priori we do not know the error that will
occur and may have to over-provision to achieve reliability.

k
B Y
N
3

Figure 3: Histogram of optimal (b, k) values for the Nanopore
sequencing dataset.

Similarly, for each edited file in the bash dataset, we find
the (b, k) pair with the minimum redundancy, i.e., logr, (b, k)
with n being the unedited file size and alphabet size ¢ = 256,
among all valid pairs. In our experiment, we let k range from
1 to 10 and only consider files of lengths smaller than 3000
bytes (392 in total) to avoid large running time. The valid
(b, k) pairs are found by computing the smallest b for each
k using a dynamic programming based algorithm. By only
including files whose minimum redundancy is smaller than the
original length (logr, (b, k) < 8n), we are left with 122 files.
Figure 4 shows the histogram of the best (b, k) pairs for these
122 files. It can be seen that for majority of the files studied,
viewing edits as k-substring edits for £ > 1 minimizes the
redundancy. Interestingly, for £ = 10, a group of pairs of files
differ by b = 66 k-substring edits. A more careful analysis
reveals that the files in the new version 5.1 included a claim
of copyrights with length of roughly 660 bytes which is absent
in the corresponding files in the old version 5.0. Both Figure 3
and Figure 4 represent that the editing of files is prone to bursty
manners.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

b

Figure 4: Histogram of optimal (b, k) values for the bash dataset.

Bash dataset Nanopore sequencing dataset

k k>1 | k=1 | k2>1 k=1

average 228 1030 [062 | 084 1.06

Table II: Comparison of redundancy of burst-error correcting codes
with £ > 1 and independent indel-error-correcting codes with k = 1.

Based on Figure 3 and Figure 4, codes correcting burst
errors achieve lower redundancy compared to codes correcting
independent indels. To further support the results, Table II
presents the average redundancy of indel-correcting codes

(k = 1) and burst-correcting codes (k > 1) to correct a
symbol over two datasets, respectively. In this experiment,
suppose a dataset contains N files with file size {n1,...,nn},
we define the average redundancy of correcting the datasets
as vazl log, m(bz~7ki)/ZﬁV:1 n;, where (b;,k;) is the pair
for the ith file. Based on the numerical results, for both
datasets, the burst-error-correcting codes (kK > 1) achieve
a lower redundancy compared to the indels-error-correcting
codes (k = 1).

IV. ERROR-CORRECTING CODES FOR A k-SUBSTRING EDIT

Given a constant k, this section focuses on constructing
codes of length N for correcting a k-substring edit error
with redundancy asymptotically 2log N and polynomial time
complexities in both the encoding and decoding processes.
Unless otherwise stated, let n represent the length of (P, 0)-
dense strings and P = 0*1%.

Based on Lemma 4, given an input & € Dp 5(n), locating
the burst of deletions relies on the number of patterns np ()
and the relative distances of every two adjacent patterns
ap(x). Compared with locating a burst of deletions, locating
a k-substring edit is more complicated. Suppose « € Dp 5(n)
and y € D(x) is an output generated from « by a k-substring
edit. We need to overcome the following challenges. First,
when the k-substring edit is a burst of substitutions, i.e.,
|| = |y|, it is possible for both ap and np to remain the
same, preventing us from locating the error. Second, even if
the substring edit is strict, i.e., |x| # |y|, there is no guarantee
that the changes affecting ap» and np will enable us to identify
the approximate location of the error. To address these issues,
this paper will extend the previous error-correcting code to
correct a strict substring edit and adapt a low-redundancy code
to correct a burst of substitutions, respectively.

In order to construct error-correcting codes reaching the
GV bound, we have the following corollary, which also
summarizes our approach.

Corollary 5. The code C C XX is capable of correcting a
k-substring edit if it can correct either a k-burst substitution
or a strict k-substring edit error.

In subsections IV-A and IV-B, error-correcting codes to
correct a strict k-substring edit and a k-burst substitution are
presented, respectively, followed by the final code construction
in Subsection IV-C and the analysis of the time complexities
of encoding/decoding in Subsection IV-D.

A. Error-correcting code for a strict k-substring edit

Similar to works in [8], [9], given a constant k, this
subsection focuses on correcting a strict k-substring edit by
first localizing the error and then correcting it in the interval.
More specifically, it consists of two steps. First, we extend
the error-locating code in Lemma 4 from [9] to locate the
strict k-substring edit in an interval of length L = O((logn)?)
with redundancy asymptotically log n. Second, a modified syn-
drome compression code [11], [16] is designed to correct the
error in the specific interval with redundancy asymptotically
O(loglogn).

1) Locating the error in an interval: This subsection fo-
cuses on extending the codes in Lemma 4 to locate a strict
k-substring edit since it will affect at least one of np(x) and

ap(x).

Lemma 6. Given P = 0*1* and § = k221 [logn), let x €
Dps(n) NEL be a (P,J)-dense string and y € D(x). Then
a k-substring edit does not create nor destroy more than two
adjacent patterns P in x, i.e., np(y) € [np(x)—2,np(x)+2).

Proof: Let £ = uvw and y = uv’w. Observe that

(a) (b)
np(u) + np(w) < np(x) < np(u) + np(w) + 2,

(© (C))
np(u) + np(w) < np(y) < np(u) +np(w) + 2,

where the upper bounds hold because |v|,|v'| < k and the
length of the pattern is 2k. The upper bound on np(y) follows
from (d) and (a), and the lower bound from (c) and (b). N

Then we have the following corollary.

Corollary 7. Let x € Dp s(n) and y € D(x). Then ap(y)
can be generated from ap(x) as a result of a 3-substring-edit.

According to the changes of np(x) and ap(x), we extend
the code in Bitar et al. work [9] as the following construction
that helps to locate a strict k-substring edit occurring in the
(P, 6)-dense string for & € Dp 5(n). Compared to localized
deletions only reducing the length, the following modification
can deal with the case of increasing the length and locating a
strict k-substring edit in a wider interval.

Construction 8. Given 0 < ¢y <4 and 0 < ¢y < Tn, let

Cioc(c1,c2) = {x € 25 N Dp 5(n), np(x)=c; mod 5,
VT (ap(x))=ce mod 7n}.

Then we have the following lemma.

Lemma9. Let k be a constant. Given x € Cio.(c1, 2), a strict
k-substring edit occurring in x can be located in a substring
of x with length O(6%) = O((logn)?).

Proof: The lemma is proved by adapting a similar method
from the work [9]. Suppose each x € Cj,.(c1, ¢2) is partitioned
into substrings by the pattern P = 0*1*. To locate the strict k-
substring edit, one approach is to find the substrings that are
affected by the k-substring edit. In this proof, we construct
a monotonic function with respect to the index of the first
substring affected by the strict k-substring edit (given in (8)).
This will enable us to find a range of the indices, leading to
an interval in which the strict k-substring edit occurs.

Consider € Cjyc(c1,¢2) and y € D(x). We get ap(x)
and np(x) from x and similarly ap(y) and np(y) from y.
Since © € Dp 5(n), we have 2k < ap(xz); < ¢ for i > 2.

In the following, we analyze the changes from ap(x)
to ap(y). Based on Corollary 7, the vector ap(y) can be
generated from ap(x) by replacing a substring u in ap(x)

with another substring v in ap(y), ie.,

ap(x) = (aP(x)[l t), U, ap(x) elmp(w)])

= (ap(Y)[1,0)> W P (Y) e np (9)])s ©
ap(y) = (ap ()11, Y, ap(T) [y np(a)])

= (ap(¥)1.), s 4P (Y)[ea,np (v)])-

where 0 < |ul,|v] <3, t < e, e <t+ 3. Note that ap(y);
satisfies 2k < ap(y); < 30+k < 46, where the lower bound is
obtained since P has length 2k for ¢ > 2. Furthermore, based
on Lemma 6, we have |np(y) —np(x)| < 2 and ||u|—|v|| <
2. Therefore, the value of ap(y); is upper bounded by 36 + k
after breaking two patterns and inserting a substring of length
upper bounded by k.

Let d = |u| — |v|. Then d € [—2,2] can be uniquely com-
puted from y, i.e., d=np(y) — ¢c; mod 5. Let k' = |x| — |y|,
then we have k' = S5 " ap(z); — 302, ap(y);, where
0 < |k'| < k. Note that k&’ # 0 for a strict k-substring edit.

Then we have

Z:=VT(ap(y)) -

np(y) e1—1 ex—1
=d Z ap(y)i —t (Z ap(x); — Z aP(y)i)

VT(ap(z))

1=eg 1=t 1=t
er1—1 es—1 (7)
- Y (i tap@)i+ Y (i—tap(y);
i=t+1 i=t+1
np(y)
=d Y ap(y); —th' + E,
i=t+3

Where 0<|k|<kand E = defz ap(y)i — 211;1('

ap(z); + 2 tjl(' t)ap(y);. Since ex <t + 3, the total
components of the first and the last summation are at most
three each with coefficients max(|d|, ez —t —1) < 2. Then we
have |E| < 3-2-max(ap(y);) < 240. Then the difference of
VT check sums satisfies

where 0 < [k'| < k results from a strict k-substring edit
compared to k > k' > 0 for a burst deletion. Because |d| < 2
and |tk'| < n, we have |d277’ff§ ap(y); — tk'| < 3n. This,
along with the fact that |E| < 246, implies —3n — 24§ <
Z < 3n+ 244. Since Tn > 6n 4485 + 1 and VT (ap(x)) =
¢o mod 7n, the integer Z € [—3n—246+1,3n+245 — 1] can
be uniquely obtained based on Z = VT'(ap(y)) —c2 mod 7n.
In the following, we define a function

np(y)

—dZap

i=t+3

—tk'. (8)

Our task is to prove that H () is a strictly monotonic function
with respect to ¢ for 0 < |k’| <k, not only k > k' > 0:

o Firstly, suppose 0 < k' < k. If d > 0, H(¢) is a strictly

decreasing function of ¢. If d < 0, then by the function

ap(y); > 2k > k', then H(¢) is a strictly increasing
function of ¢.

o Secondly, suppose —k < k' < 0. If d < 0, H(t) is a
strictly increasing function of ¢. If d > 0, since ap(y); >
2k > —k', H(t) is a strictly decreasing function of ¢.

Given Z, k', and d, we can locate ¢ in the set

I={t:H(t) €[Z — 246, Z + 240]}.

For a monotonic function H (t), there are at most 486 + 1
choices of ¢. Since ap(y); < 49, we can locate the strict k-
substring edit in an interval of length at most £ =192§% +
46 = 0(6%) = O((logn)?). The time complexity to compute
ap(y), np(y), and the interval is O(n). [|

2) Correcting the error in an interval: Assuming the strict
k-substring edit is located in an interval of length O(5?), we
present error-correcting codes that can correct this error.

Similar to [11], we generate two sets of blocks of length
2L by partitioning * € Dp s(n). More specifically, given
N = n/2L, let S, = (Sc1,8¢2,...,8,5) and S, =
(801,802, -+, SO(N—l)) denote the set of even and odd blocks
respectively, where S¢; = @[p(i—1)41,2i1) for i € [N] and
So0i = T((2i-1)L41,(2i41)L] for i € [N —1].

If the k-substring edit is located in a specific interval with
the length upper bounded by L, then it will only affect one
length-2L block of either S, and S,, explicitly shown in the
proof of Lemmea 12. In the following, we apply a modified
syndrome compression code [16] to correct a strict k-substring
edit in a length-2L string.

Based on Theorem 3, for a labeling function f and a stored
sequence u € E%L, the decoder can recover u from the
retrieved word v € D(u), the integer a, and (f(u) mod a).
Observe that the number of bits required to represent f(u)
does not affect the redundancy since the redundancy needed
to convey a and (f(w)moda) is 2loga. According to
Theorem 3, this latter quantity is affected by the size of
B(u). Since a strict k-substring edit can be viewed as a k-
burst deletion followed by a k-burst insertion, we introduce
a labeling function that can correct at most 2k insertions,
deletions, and substitutions. The following theorem introduces
such a function from [14].

Theorem 10 (cf. [14]). Given a constant k, t = 2k, and
L = O((logn)?), there exists a labeling function g : ¥3- —
Yor(,2) Such that for any two distinct strings s, and ss con-
fusable under at most t insertions, deletions, and substitutions,
we have g(s1) # g(s2), where R(t,2L) = ((t*+1)(2t2+1)+
2t2(t — 1)) log 2L + o(log 2L) = O(loglog n) + o(loglog n).

Based on Lemma 2, given u € 2L the size of the confus-
able set B(u) satisfies HB() < (2L + k)?(k + 1)*22%. For
xS [N | and each s.; € EQ , there exists an integer a.; (which
depends on ||B(s.;)||) such that for every w; € B(Se),
9(8ei) # g(we;) mod ae;, where a; < 298 lIB(sci)l+ollog L)
The same property holds for each s,; € ¥2L for i € [N —1].

Based on the two sets of messages Se,S,, we have the
following construction for a k-substring edit.

Construction 11. Let 3 = (f51,52,...,06). Given x €
Cloc(B1, B2) with length n, we form two sets of message blocks
Se and S,. Let B3, ..., Bs < a. Then we have

Cstrict(/Ba Oé) = {(B € Cloc(BhﬁQ)v

N

N
Z ae;=f3 mod «, Z(g(sei) mod a,;)=04 mod «,

i=1 i=1

N-1 N-1
Z a0 =05 mod «, Z (9(80i) mod a;)=0 mod a.}
i=1 i=1

where o > (2L + k)*(k 4 1)*22kge(egl)
max(aet, ot - -+ Qy(i_1y Go(r_1y:@enN)s 0 < P < 4
0§ﬂ2§7n’ and0§ﬁ3764aﬂ57 6 < Q.

Note that a similar construction appeared recently in [11],
[12] for burst deletions. However, our construction includes a
more powerful error-locating code and modified modulus so
that our code can correct a strict k-substring edit.

Lemma 12. Given a constant k, the error-correcting code
Cstrict(B, @) in Construction 11 can correct a strict k-
substring edit error with redundancy logn + 16loglogn +
o(loglogn) bits.

Proof: Let € € Cstrict(B,a) and z € D(x) with
k' = |z| — || # 0. Let £ denote the length of the interval in
which the strict k-substring is located, as given at the end of
the proof of Lemma 9. Specifically, based on Construction 8
and Lemma 9, we can find j € [n — £] such that the strict k-
substring edit is located iAn Z(5 54 —1]- We choose L to satisf):
L>L+k Letin=|[(—1)/L]. Then, (A+ 1)L +1>j
and thus (R +2)L+k'+1 > J + L. Therefore, Z[pL] = T[aL)
and Z[(a42) L4k +1,n+k'] = L[(a+2)L+1,n]- If 7 1S even, we
will aim to reconstruct S, and if it is odd, S,. Suppose 7
is even and let S| be the reconstruction of S.. From z[;p
and Z[(442)L+k +1,n+k']» WE can reconstruct all blocks of
S, error-free, except s.;,9 = n/2 + 1, for which we set
Se; = Z[L+1,(h+2)L+k]- Then this block s/, contains the
whole interval of length £ where the strict k-substring edit
occurs. Thus s, € D(s;) and the other blocks in S, are
error-free. For all error-free blocks s’ej with j # i, we can
recover a.; and g(s.j). We can uniquely recover a.; and
9(Sei) mod ae;, followed by recovering s.; based on s.;, a.;,
and g(s.;) mod a;. Hence, we can recover x from S. The
case for odd 7 is similar.

According to (1), there are at least 2"~ (P,§)-dense
strings, which are partitioned in Constructions 8 and 11 into
5-7n - a* sets. Hence, there exists some code Cytrict(3, @)
such that [|Currict (B,)| > 2. Let @ = (2L + k)2(k +
1)%22k90(log L) with L = O((logn)?). The redundancy is
n —1og ||Cstrict (B,)| <14 4loga + log 7n +log5
=logn + 16loglogn + o(loglogn). []

B. Error-correcting codes for a k-burst substitution

In this subsection, we present a code that can correct a k-
burst substitution error.

Construction 13 (cf. [23], Fire code). Let go(z) be an
irreducible polynomial of degree m > k that does not divide
22k=1 _ 1. Then, there exists a linear cyclic code, called
the Fire code, of length n; = LCM(2k — 1,2™ — 1) with
the generator polynomial g(z) = (22=1 — 1)go(x) and

deg(g(x)) = m+ 2k — 1. The Fire code Cp is an [ny,n] code
with code length ny and dimension n = ny — (m + 2k — 1).

Theorem 14 (cf. [23]). The Fire code Cr can correct a single
k-burst substitution.

The following lemma gives the redundancy of Cr.

Lemmal5. Given a constant k, the Fire code Cr corrects a k-
burst substitution with the redundancy asymptotically logn +
2k + o(logn).

Proof: Based on Construction 13, the redundancy of the
Fire code is

r(Cr) = n1 —logy ||Cr|| = m + 2k — 1.

Given x € ¥§, m > k, and n; = LCM(2k — 1,2™ — 1), the
length of Fire code satisfies

2" —1<ny=n+m+2k—1<(2k—1)2™ —1).

Hence, we have m = logni+o(logny) = log n+o(logn) > k
as n — oo. Thus the redundancy of the Fire code is asymp-
totically log n+2k + o(logn) when k is a constant. [|
Hence, given € X7, there exists a function hp(x)
of length asymptotically logn+2k + o(logn) such that
(z,hp(x)) € Cp can correct a k-burst substitution.

C. Combined error-correcting codes

Based on Corollary 5, given * € Dps(n) N X4, the
receiver can correct a k-substring edit from y € D(x) if
hp(x) and (B3,) are sent to the receiver by an error-free
channel. For simplicity, let r,, := (hp(x),3,«) be a binary
representation of the data. Then each codeword of the final
error-correcting codes can be generated by concatenating two
parts, i.e., (x, 7). Furthermore, we may add a buffer between
x and 7, such that a k-substring edit affects either x or
r.. Finally, We also need another function that can detect or
correct a k-substring edit occurring in r,. We start by finding
a suitable buffer b.

Since a k-substring edit should not affect both = and 7,
the length of the buffer satisfies |b;| > k. The buffer in
the following lemma helps distinguish whether the strict k-
substring edit affects x or 7.

Lemma 16. Let w = xbyu with * € X3, by, =
1RH10FHI1A L and w € X3, Let z be obtained from w
through a strict k-substring edit. There exists a decoder that
given z returns either x or an element of D(x) along with wu.

Proof: Suppose the edit replaces some substring
Wii41,j—1) of w with a string ¢, where j —i — 1 < k,[t| <
k,j—i—1%#|t|. f j =i+ 1, the edit deletes nothing and
inserts ¢.) Let ¥’ = |w| — |z| = (j —i—1) — |¢|. Note that for
all m <1 and all £ > j, we have w,, = z,, and wy = zp_g.

Recall that wi, 11 ,13k+3 = by = 1FT1OFF1IFL Let m*
be the smallest m € [n + 1,n + 3k + 3] such that w,, # 2z,
and ¢* the largest £ € [n 4+ 1,n + 3k + 3] such that w, #
zo—k. Because 0 < |k’'| < k and due to the structure of by,
at least one of m™* and ¢* exists. Conditioned on existence,
i< m*, j > 0%

Suppose m* exists and m* < n + 2k + 4. Since i < m*,
i<i+k+1<m*+k<n+3k+4. Thus u is not affected
by the edit and 2[jz|_|u|+1,|z]] = U, Z[1,n—k] € D(2).

Next, suppose m* does not exist or m* > n+ 2k + 4. Then
Znt2kt+2 = Wni2k+2 = 0 and zpqok13 = Wpyope3 = 1. We
consider the cases of ¥’ > 0 and k¥’ < 0. Suppose first &' > 0.
Then n + 2k + k' 4+ 2 € [n + 2k + 3,n + 3k + 2] and thus
Wnt2k+k'+2 = 1. Hence, 0 = zpiok42 # Wnyoktrr4+2 = 1,
implying that ¢* exists and ¢* > n+2k+k +2 > n+
2k + 3. Second, suppose k' < 0. Then n + 2k + k' + 3 €
[n + k4 3,n + 2k + 2] and thus w,4or+k+3 = 0. Hence,
1 = zpi2k+3 # Wnaoktk+3 = 0, implying that ¢* exists
and * > n+ 2k + kK + 3 > n + k + 3. Thus, regardless
of the sign of &/, we have ¢* > n + k + 3. It follows that
1>j—k—1>/0*—k>n+ 3. Hence, x is not affected by
the edit and © = z[y).

Based on the preceding discussion, the decoder computes
m*. If m* exists and m* < n + 2k + 4, then it returns
Z[|z|—|ul+l,|z)] = U and Z[1n—k] € D(w) Else, it returns
Z[1n] = . |

Lemma 17. Given a constant k and b, = 1k+t1pk+11k+1
a burst-substitution-detecting function & in xbgr,E1(ry) is
sufficient to decode x for a k-substring edit.

Proof: Recall that since |b,| > k, a k-substring edit will
not affect and r,& (r,) simultaneously. We present how a
burst-substitution-detecting function is sufficient to decode x.
Given w = xbyr,E1(ry), let z = D(w). Furthermore, let
k' = Jw| — |z|. Then we decode « in the following process.

o Suppose @b, T,E1(ry) suffers a strict k-substring edit
and k' # 0. Based on Lemma 16, we can distinguish
whether x is affected. If x is error-free, we are done. If
x is affected by a strict k-substring edit, then r,, is error-
free. Since z[1,,—] € D(x), then @ can be recovered
from z[s/ and (B3, @) in 7.

o Suppose xb,1r;E1(ry) suffers a k-burst substitution and
k' = 0. Then we decode x in following cases:

= If Zjpy1niaess) = LFFIOFFIIFTL the burst sub-
stitution affects either & or r;z& (ry). If the burst-
substitution-detecting code £ does not detect an error
in 7,&1(ry), then x is affected. Then we can decode
x from z[;) € D(x) and hp(x) in 7. If an error is

detected in 74&1 (ry), T = 2[1) is error-free.

- If Zrt1nt3k+8) # IR but
Zin41n42k42) = 17O @ is error-free.
-If Zpi1n43kes) # IR but

Zin+k42,n+3k+3) = 0FT115FTL then zp;) € D(z) can
be generated from x by a k-burst substitution. Thus,
we can decode x from 2j; ,) € D(x) and hp(x).

— Otherwise, the k-substring edit only affect the buffer,
x is error-free. u

The simplest burst-substitution-detecting function is a
parity-checking function. Given 7, let L; = |rz| > k. Then
we partition 74, into 7' = [L; /(k+1)] blocks of length (k+1),
ie., w; for j € [T], where additional Os are appended if the
last block has less than (k+1) binary symbols. Then the error-
detecting function &; : EQLl — E§k+2 appends ~; and 72 in

the binary form (each with length (k+1)) following 7, where
"= (Zﬁ{ﬂ w2j71> mod 28+, = <Z]£/12J w2j> mod 251,
The final construction is shown below.

Construction 18. Given a constant k, b, = 1¥T10k+115+1
we have a construction Cn as

Cn = {xbgrzy17e € Zév,a: € X5 NDps(n)},

where v, = (hp(x),8,a) and 172 are in binary form
generated by £ (ry) in each codeword Tbyrzvy1v2 € XY

Theorem19. The error-correcting code Cp in Construction 18
can correct a k-substring edit with the redundancy of asymp-
totically 2log N + o(log N) bits, where N = n + 2logn +
o(logn).

Proof: We first prove that the error-correcting code Cy
can correct a k-substring edit. Given w = xb,r,v1v2 € Cn
and z € D(w). Let k¥’ = |w| — |z|.

o If k' # 0, the buffer b, helps distinguish whether the
strict k-substring edit affects by Lemma 16. If x is
error-free, we are done. If x suffers a substring edit, then
T4 is error-free and @ can be recovered from z[; ,, /] €
D(x) and (8, @).

e If ¥ = 0. Then ~; and ~2 help recover x based on
Lemma 17.

Next, we discuss the redundancy of the code Cy.

Based on (1), the size of the error-correcting code in
Construction 18 is |[Cy|| > 2"~!. Furthermore, given a
codeword ¢ = xbyr,7y17v2, the lengths of x, by, r,, and
Y172 are n, 3k + 3, 2log n+16 log logn + 2k + o(log n), and
2k + 2, respectively. Therefore, the total length of c is N =
n+2logn+16loglogn+7k+o(logn). Then the redundancy
of the code in Construction 18 is asymptotically N—log||C|| =
2logn + 16loglogn + Tk+o(logn) = 2log N + o(log N),
where logn = log N + o(log N).]

D. Time complexity

This subsection presented the polynomial time complexities

in both encoding and decoding algorithms.

We start with the time complexity of the encoder. Given a

constant k, each codeword is generated by four steps:

« First, given u € 33, an (P,)-dense string « € Dp 5(n)
can be generated by Algorithm 2 from Wang et.al [12].
The time complexity is polynomial with respect to n.

« Second, append a buffer b, = 1¥10F*+11*+! with time
complexity O(1) .

e Third, produce r, to correct a k-burst edit by applying
the encoders of the linear Fire code [23], the error-
locating code in Lemma 9, and the modified syndrome
compression codes. For a constant k, the encoders of Fire
code [23] and the error-locating code have polynomial
time complexity with respect to n. Furthermore, based
on [14], [16], for a constant k, the time complexity of
the modified syndrome compression is also polynomial
with respect to n.

« Forth, append two parity blocks «; and ~, with time
complexity O(n).
Therefore, the time complexity of the encoder is polynomial
with respect to n.

The decoder consists of detecting the parity check bits,
decoding the Fire code [23], locating the error in an in-
terval, and decoding the modified syndrome compression
codes. Similarly, for a constant k, the time complexity of
the decoder is also polynomial with respect to n. Since
N = n + 2logn + o(logn), the time complexities of both
the encoder and decoder are polynomial with respect to V.

V. CONCLUSION

A Ek-substring edit will have many localized errors such
as burst insertions/deletions/substitutions as a special case.
Based on two datasets, the statistical hypothesis tests and the
codes reaching the GV bounds show that the substring edits
are common errors and substring-edit-correcting codes can
achieve a lower redundancy compared to insertion/deletion-
error-correcting codes. Therefore, this paper constructs error-
correcting codes to correct a k-substring edit with the redun-
dancy of asymptotically 2 logn and polynomial time complex-
ities in both encoding and the decoding algorithms. In addition
to the ongoing work, numerous unsolved challenges remain,
including the development of systematic codes for correcting
substring edits and the creation of error-correcting codes with
approximately logn bits of redundancy.

REFERENCES

[11 Y. Tang, S. Motamen, H. Lou, K. Whritenour, S. Wang, R. Gabrys,
and F. Farnoud, “Correcting a substring edit error of bounded length,”
in 2023 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2023, pp. 1-6.

[2] P. Fire, A class of multiple-error-correcting binary codes for non-
independent errors. Stanford University, 1959, vol. 55.

[3] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion
(corresp.),” IEEE Transactions on Information Theory, vol. 30, no. 5,
pp. 766-769, 1984.

[4] W. Zhou, S. Lin, and K. Abdel-Ghaffar, “Burst or random error
correction based on Fire and BCH codes,” in 2014 Information Theory
and Applications Workshop (ITA). 1EEE, 2014, pp. 1-5.

[5] L. Cheng, T. G. Swart, H. C. Ferreira, and K. A. Abdel-Ghaffar, “Codes
for correcting three or more adjacent deletions or insertions,” in 20714
IEEE International Symposium on Information Theory. 1EEE, 2014,
pp- 1246-1250.

[6] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
correcting a burst of deletions or insertions,” IEEE Transactions on
Information Theory, vol. 63, no. 4, pp. 1971-1985, 2017.

[71 C. Schoeny, F. Sala, and L. Dolecek, “Novel combinatorial coding
results for DNA sequencing and data storage,” in 2017 51st Asilomar
Conference on Signals, Systems, and Computers. 1EEE, 2017, pp. 511—
515.

[8] A. Lenz and N. Polyanskii, “Optimal codes correcting a burst of

deletions of variable length,” in 2020 IEEE International Symposium
on Information Theory (ISIT). 1EEE, 2020, pp. 757-762.

[91 R. Bitar, S. K. Hanna, N. Polyanskii, and I. Vorobyev, “Optimal codes

correcting localized deletions,” in 2021 IEEE International Symposium

on Information Theory (ISIT). 1EEE, 2021, pp. 1991-1996.

S. K. Hanna and S. El Rouayheb, “Codes for correcting localized

deletions,” IEEE Transactions on Information Theory, vol. 67, no. 4,

pp- 22062216, 2021.

S. Wang, Y. Tang, R. Gabrys, and F. Farnoud, “Permutation codes for

correcting a burst of at most ¢ deletions,” in 2022 58th Annual Allerton

Conference on Communication, Control, and Computing (Allerton).

IEEE, 2022, pp. 1-6.

[10]

[11]

[12] S. Wang, Y. Tang, J. Sima, R. Gabrys, and F. Farnoud, “Non-binary
codes for correcting a burst of at most t deletions,” 2022. [Online].
Available: https://arxiv.org/abs/2210.11818

J. Sima and J. Bruck, “On optimal k-deletion correcting codes,” IEEE
Transactions on Information Theory, vol. 67, no. 6, pp. 3360-3375,
2020.

J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic ¢-deletion cor-
recting codes,” in 2020 IEEE International Symposium on Information
Theory (ISIT). 1EEE, 2020, pp. 769-774.

Y. Tang, H. Lou, and F. Farnoud, “Error-correcting codes for short
tandem duplications and at most p substitutions,” in 202/ IEEE In-
ternational Symposium on Information Theory (ISIT). 1EEE, 2021, pp.
1835-1840.

J. Sima, R. Gabrys, and J. Bruck, “Syndrome compression for optimal
redundancy codes,” in 2020 IEEE International Symposium on Informa-
tion Theory (ISIT). 1EEE, 2020, pp. 751-756.

D. Deamer, M. Akeson, and D. Branton, “Three decades of nanopore
sequencing,” Nature Biotechnology, vol. 34, no. 5, pp. 518-524, May
2016.

A. Doricchi, C. M. Platnich, A. Gimpel, F. Horn, M. Earle, G. Lanza-
vecchia, A. L. Cortajarena, L. M. Liz-Marzén, N. Liu, R. Heckel ef al.,
“Emerging approaches to dna data storage: Challenges and prospects,”
ACS nano, vol. 16, no. 11, pp. 17552-17 571, 2022.

Y. Li, S. Wang, C. Bi, Z. Qiu, M. Li, and X. Gao, “Deepsimulatorl. 5: a
more powerful, quicker and lighter simulator for nanopore sequencing,”
Bioinformatics, vol. 36, no. 8, pp. 2578-2580, 2020.

A. Orlitsky, “Interactive communication: Balanced distributions, corre-
lated files, and average-case complexity,” in [1991] Proceedings 32nd
Annual Symposium of Foundations of Computer Science, Oct. 1991, pp.
228-238.

C. R. Mehta and N. R. Patel, “IBM SPSS exact tests,” Armonk, NY:
IBM Corporation, pp. 23-24, 2011.

S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443-453, 1970.

R. E. Blahut, Algebraic codes for data transmission. — Cambridge
university press, 2003.

[13]
[14]

[15]

[16]
(17]

(18]

[19]

[20]

[21]

[22]

[23]

APPENDIX A
ALTERNATIVE INTERPRETATION OF “INS-TEST”

Section III-B interprets the “INS-TEST” model in the
probabilistic edit process by considering each insertion inde-
pendently. In this section, we introduce another interpretation
of considering distributing k balls into N bins by considering
k uniform balls. According to the proposed edit process in
Section III-B, the probability of observing w non-empty bins
can be shown as

() ()

SR

S

Pr (W = w|k,N) =)

where (N +3_1) denotes all the cases of distributing s balls
into N bins, and (g) (5;11) denotes all the cases that w bins
are not empty

RUNS-TEST | INS-TEST | SUBDEL-TEST
Bash 97.2% 100% 97.6%
DNA 95.7% 94.6% 76.1%

Table III: Fraction of sequences rejecting the null hypothesis at p-
value threshold of 5% with new “INS-TEST” interpretation.

Based on eq (9), we follow the same process in Subsec-
tion III-D3 to do the “INS-TEST”. The p-value is defined
as the probability of seeing at most w non-empty bins, i.e.,
Pr(W <wl|s = K;, N =n+1), where the pmf of W is
given by (9). The second column of Table III still shows
strong evidence for rejecting the uniform edit process for two
datasets.

