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Simple Summary: Despite considerable progress in cancer research and treatment, cancer continues
to be a major health challenge, often requiring invasive treatments with substantial side effects.
Immuno-therapy, which targets the immune system’s PD-1/PD-L1 pathway, represents a promising
alternative. This critical pathway allows cancer cells to avoid immune destruction by inhibiting
T-cells. Our study employs computational techniques to develop inhibitors that block the PD-L1
pathway, specifically in the acidic environment of tumors. By analyzing around 10,000 natural
compounds, we identified a potential pH-selective inhibitor that shows greater effectiveness in
the acidic conditions typical of cancerous tissues. This research suggests a novel approach for
experimental groups to explore, focusing on developing targeted, pH-dependent inhibitors that could
mark a significant step in enhancing the precision and effectiveness of immunotherapy treatments,
potentially revolutionizing cancer therapy.

Abstract: Inmunotherapy, particularly targeting the PD-1/PD-L1 pathway, holds promise in cancer
treatment by regulating the immune response and preventing cancer cells from evading immune
destruction. Nonetheless, this approach poses a risk of unwanted immune system activation against
healthy cells. To minimize this risk, our study proposes a strategy based on selective targeting of
the PD-L1 pathway within the acidic microenvironment of tumors. We employed in silico methods,
such as virtual screening, molecular mechanics, and molecular dynamics simulations, analyzing
approximately 10,000 natural compounds from the MolPort database to find potential hits with the
desired properties. The simulations were conducted under two pH conditions (pH = 7.4 and 5.5)
to mimic the environments of healthy and cancerous cells. The compound MolPort-001-742-690
emerged as a promising pH-selective inhibitor, showing a significant affinity for PD-L1 in acidic
conditions and lower toxicity compared to known inhibitors like BMS-202 and LP23. A detailed
1000 ns molecular dynamics simulation confirmed the stability of the inhibitor-PD-L1 complex under
acidic conditions. This research highlights the potential of using in silico techniques to discover novel
pH-selective inhibitors, which, after experimental validation, may enhance the precision and reduce
the toxicity of immunotherapies, offering a transformative approach to cancer treatment.

Keywords: cancer; molecular docking; molecular mechanics; molecular dynamics; immunotherapy;
PD1/PD-L1; natural inhibitors; pH-selective inhibition

1. Introduction

Cancer still ranks among the top causes of death despite efforts devoted to developing
treatments. This widespread illness, predominantly caused by acquired mutations in
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somatic cells, can affect any tissue and is defined by unchecked cell proliferation [1].
Treatment objectives might include anything from stopping the spread of cancer cells to
curing the disease. Depending on the stage of the disease, frequent treatment options may
include surgery [2], chemotherapy [3], hormonal therapies [4], radiation regimens [5], and
immunotherapy [6]. The alternatives available today vary in terms of potential adverse
effects and degree of invasiveness. The side effects of medication and cancer symptoms
are frequently addressed [7]. Imnmunotherapy is one of the least invasive and promising
options, which seeks to enhance the body’s defenses to destroy cancerous cells. The
origins of cancer immunotherapy date back to early 1891, when William Coley proposed
to utilize the immune system for cancer treatment while observing that combinations
of live and inactive Streptococcus pyogenes and Serratia marcescens bacteria could lead
to the shrinkage of tumors in patients with sarcoma [8]. Since then, immunotherapy
for cancer treatment significantly improved, and substantial progress has been made in
recent fundamental and clinical research [6,9,10]. Various approaches can be utilized
for this type of treatment, including oncolytic virus [11,12]and cytokine therapies [13],
cancer vaccines [14,15], adoptive cell transfer [16,17], and immune checkpoint inhibitor
development [18].

The programmed cell death protein 1 (PD1) and programmed death-ligand 1 (PD-
L1) are the main characters in the PD-1/PD-L1 immune checkpoint pathway. They are
crucial to regulating immunological tolerance in the tumor microenvironment [19-21].
Generally, this pathway prevents overreaction and extensive inflammation in healthy cells
by limiting T cell activation, proliferation, and cytotoxicity through the interaction of PD-1
on the activated T cells with PD-L1 or PD-L2 on the target cell. The cancer cells take
advantage of this strategy by upregulating PD-L1/2 levels, resulting in so-called “cancer
immune escape” [22]. Treatments may prevent this evasion by blocking PD1 or PD-L1,
thus effectively reactivating T cells to target tumors (Figure 1). Along with the cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) pathway [23], this pathway is a crucial target
for novel cancer therapeutics, including the monoclonal antibodies (mAbs), peptides, and
patented small molecules.

Tumor cell %5

PD-L1 [
Inhibitor b

T Lo
Suppressed T Cell Activated T Cell

Figure 1. A schematic illustration of the T cell activation mechanism by inhibiting the PD1/PD-L1
immune checkpoint pathway.
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Currently, two FDA-approved mAbs for treating cancers target PD1: nivolumab [24]
and pembrolizumab [25]. Several mAbs are in clinical trials that target different cancers
and have shown promising anticancer results and safety profiles: AMP-224, AMP-514,
and pidilizumab [26]. Disregarding their efficiency, the antibody treatments possess sev-
eral drawbacks, such as high production costs, issues with stability, and the potential
for triggering unwanted immune responses. Thus, the increased interest was focused on
discovering small-molecule inhibitors of PD-1 and PD-L1. Most PD-L1 inhibitors act as
dimerization agents and effectively dissociate a preformed PD-1/PD-L1 complex, as shown
in [27] based on the example of Bristol Myers Squibb (BMS) biphenyl derivatives. The
compound BMS-202 exhibited the highest efficacy among the series. Later on, several
pharmaceutical companies discovered a series of small molecule PD-L1 inhibitors based
on the same biphenyl core. Among the recent works, Biphenyl Ether and Oxadiazole
Thioether-Based compounds were proposed as PD-1/PD-L1 inhibitors in [28], including
a potent compound LP23, which showed 3.2-fold better inhibitory activity than the lead
BMS-202 with an IC50 of 16.7 nM. Four protein-based designed small molecules showed
promising results for lung and colorectal cancer models in both in vitro and in vivo as-
says [29]. A series of indanes were tested in [30], where compound D3 was found to be
potent against PD-1/PD-L1 interaction (IC50 = 2.2 nM) and shown to induce immune
activity of peripheral blood mononuclear cells (PBMCs) against MDA-MB-231 cells in a
cell-based assay. Although many compounds based on the biphenyl scaffold have shown
strong performance in assays measuring binding and disruption of the PD-1/PD-L1 inter-
action, not all demonstrate practical functionality in cellular environments. Additionally,
some clinical evidence indicates the importance of accurately determining the dosage that
yields optimal immune activation rather than increasing it to the maximum tolerated dose
(MTD), which is the usual approach for many cytotoxic or targeted cancer medications [31].
Computational chemistry tools, such as molecular docking, molecular dynamics (MD)
simulation, and the molecular mechanics approach, can offer a unique opportunity to inves-
tigate the binding mechanism [32,33] and to investigate new hits and potential inhibitors of
the PD-1/PD-L1 [34-38].

In this work, we proposed an alternative approach for PD-1/PD-L1 pathway targeting.
The tumor microenvironment becomes more acidic due to the buildup of protons and lactate.
The acidic environment can promote immune evasion and tumor growth by increasing
PD-L1 expression on tumor cells and suppressing immunological responses mediated by T
cells expressing PD-1 [39,40]. Here, we propose the design of inhibitors that exhibit a higher
affinity to PD-L1 in acidic conditions than in normal physiological pH conditions. This
may reduce unwanted T-cell activation within the healthy cells while providing efficient
immune response activation in tumor microenvironments. Different pH conditions may
alter amino acids’ protonation states and protein secondary structures. This provides an
opportunity for controlling the dynamics of binding and inhibition effectiveness; given
the rise in pH-selective PD-1/PD-L1 pathway inhibitors, despite the challenges posed by
tumor heterogeneity, where different regions within a tumor exhibit varying pH levels,
targeting acidic environments remains effective [41]. Acidic regions are crucial for tumor
survival and growth, making them strategic targets for therapy.

Here, various computational techniques were utilized in this investigation to design
potential candidates with pH selectivity. This comprehensive approach aims to identify
non-toxic, natural small molecules capable of obstructing the PD-1/PD-L1 binding site
and sustaining T cell activation in the case of acidic tumor microenvironments, which is
promising for cancer treatment.

2. Materials and Methods

To acquire the 3D structure of the PD-L1 protein, we retrieved the file with PDB ID
5J89 and PDB ID 8JBA from the RCSB Protein Data Bank (https://www.rcsb.org/ accessed
on 1 January 2024). The protein structures were then carefully prepared using the Protein
Preparation Wizard, implemented in the Schrodinger Software Package (Schrodinger
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Release 2024-1: Schrodinger, LLC, New York, NY, USA, 2024.). During the preparation
phase, several optimization steps were implemented to ensure the reliability and accuracy
of the protein structures. Water molecules were eliminated to focus solely on the protein’s
relevant components. Chains C and D were removed from the tetrameric structure of a
protein, and only chains A and B remained for further investigation in the case of 5]89. After
these initial adjustments, the original hydrogen atoms were replaced, missing side chains
were filled using Prime [42], and protonation states were generated at the target pH with
Epik [43]. Further, the hydrogen bond network was minimized, and the structures were
optimized using the OPLS4 force field [44]. The entire preparation process was repeated
twice for two pH conditions: 5.5 and 7.4. By doing so, we ensured that the protein structures
were accurately represented under different pH environments, which can significantly
influence their behavior and interactions. A diverse library comprising 10,305 easily
purchasable natural and genuine compounds from the extensive MolPort Database (https:
//www.molport.com/shop/access-databases accessed on 1 January 2020) was used for this
investigation. To prepare these compounds for subsequent investigations, we employed
the LigPrep tool by optimizing compounds and generating possible protonation states at
two target pH values.

The screening of compounds was conducted using the Virtual Screening Workflow
implemented in the Glide module [45]. This workflow enabled us to efficiently explore
a vast library of compounds and identify potential candidates for further investigation.
Grids were prepared centered on a co-crystallized ligand with a length of 36 A and a size of
the inner box of 10 A. The scoring of potential inhibitors was carried out by employing the
following algorithm: (1) initial High-Throughput Virtual Screening (HTVS); (2) Standard
Precision (SP) for the top 10% hits from the HTVS; (3) Extra Precision (XP) for the top 10%
hits from the SP. Ligands were docked flexibly with the OPLS4 force field. Virtual screening
was repeated twice for protein and ligand structures prepared at pH = 5.5 and pH = 7.4.
As a result of virtual screening, we identified and recorded the top 10 ligand candidates
based on their scores for each pH condition. Following the screening process, we identified
compounds that demonstrated successful scores at a pH of 5.5 but did not perform as
efficiently at a pH of 7.4. Five selected candidates were subjected to further simulations
using the MM /GBSA (Molecular Mechanics/Generalized Born Surface Area) module. The
MM/GBSA [46] is a widely employed method for estimating binding free energies in
molecular systems, enabling more accurate scoring than molecular docking. It combines
molecular mechanics calculations, which account for the energy contributions of bonded
and non-bonded interactions within the molecule, with the Generalized Born (GB) solvent
model that captures the solvation effects. The calculations were carried out for the five
selected compounds complexed with the protein structures at both pH values utilizing the
VSGB solvation model and OPLS4 force field. Protein flexibility was enabled for residues
at a distance of up to 12 A from all ligands processed. Through these calculations, we
obtained refined estimates of the compounds’ binding free energies, enabling further, more
accurate scoring.

After identifying the top five molecules with the most favorable binding affinity
at low pH, we performed ADMET (Absorption, Distribution, Metabolism, Elimination,
and Toxicity) profiling on these compounds to compare their predicted pharmaceutical
properties with the lead BMS-202 and novel LP23 inhibitors. The isomeric SMILES codes
for each compound were retrieved from the MolPort database (https:/ /www.molport.com/
shop/index accessed on 1 May 2024) or the PubChem database (https://pubchem.ncbi.
nlm.nih.gov/ accessed on 1 May 2024):

Compound 1 (MolPort-001-741-806):
O[Ce@H]1[C@@H](COC(=0)c2cc(O)c(0)c(0)c2)O[C@@H](OC(=0)c2cc(0)c(0)c(O)c2)[C@
H](O)[C@H]10C(=0)clcc(0)c(0)c(O)cl

Compound 2 (MolPort-005-945-958):

CC(C)(O[C@@H]10[C@H](CO)[C@@H](0)[C@H](O)[C@H]10)C(OC(=0)C=Cclccc(O)ccl)
C(=0)0Cclecc(O[C@@H]20[C@H](CO)[C@@H](0)[C@H](0)[C@H]20)ccl
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Compound 3 (MolPort-001-741-210):
Oclcc(cc(O)c10)C(=0)OC[C@H]10[C@@H](OC(=0)c2cc(0)c(0)c(0)c2)[C@H](OC(=0)c2¢
c(0)c(0)c(0)c2)[C@@H](OC(=0)c2cc(0)c(0)c(0)c2)[C@@H]10C(=0)clec(O)c(O)c(O)cl

Compound 4 (MolPort-001-740-310):
[#6]-[#o@@H]-1-[#8]-[#6@@H](-[#8]-[#6]-[#6@H]-2-[#8]-[#6@@H] (- [#8]-[#6][#6]=[#6](/ [#6])-
[#6]-[#o][#6]=[#O6](/ [#6])-[#6]-[#6][#6]=[#6](/ [#6])-[#6]-[#6][#6]=[#6]([#6])-[#6])-[#o@H](-[#8]-
[#6@ @H]-3-[#8]-[#6@@H](-[#6])-[#6@H](-[#8]-[#6](-[#6])=0)-[#6@@H](-[#8]-[#6](-[#6])=0)-
[#6@H]-3-[#8]-[#6](-[#6])=O)-[#6@@H](-[#8])-[#6@@H]-2-[#8])-[#6@H](-[#8])-[#6@H] (- [#8])-
[#6@H]-1-[#8]

Compound 5 (MolPort-001-742-690):

CC(CO[C@@H]10[C@H](COC(=0)C=Cc2ccc(O)c(0)c2)[C@@H](O)[C@H](O)[C@H]10)C1
(O)COC(=0)C1

BMS-202:
CC1=C(C=CC=C1C2=CC=CC=C2)COC3=NC(=C(C=C3)CNCCNC(=0)C)OC

LP23:
CC1=C(C=CC=C10CC2=NN=C(02)SCC3=CC=CC(=C3)CNC(CO)C(=0)O)C4=CC=CC=
C4

SMILES codes were used as inputs for ADMET prediction utilizing the ADMETLab
2.0 website (https://admetmesh.scbdd.com/service/evaluation/index accessed on 1 May
2024). ADMET Evaluation tab was used to identify molecules with favorable pharmacoki-
netic profiles and lower toxicity risks, paving the way for more efficient and safer drug
development. This website provides an easy approach to comprehensively and efficiently
predict ADMET profiles for chemicals. Predictive models were built on a high-quality
database of a quarter million entries across 53 endpoints with a multi-task graph attention
framework [47]. The following properties were assessed: Lipinski Rule, Pfizer Rule, human
colon adenocarcinoma cell line (Caco-2) permeability, Madin—Darby canine kidney cell
(MDCK) permeability, P-glycoprotein substrate, human intestinal absorption (HIA), blood—
brain barrier (BBB) penetration, fraction unbound in plasma (Fu), metabolism inhibitors
and substrates, human ether-a-go-go-related gene (hERG) blockers, human hepatotoxicity,
drug-induced liver injury (DILI), AMES toxicity, skin sensitization, carcinogenicity, and
respiratory Toxicity.

The most successful candidate was selected as the one that exhibited significantly
higher binding affinity toward the PD-L1 dimer at pH = 5.5 compared to pH = 7.4. The
chosen ligand—protein complexes, refined with MM /GBSA at both target pH conditions,
were further subjected to molecular dynamics simulation with the Desmond module [48].
The System Builder was used to build an orthorhombic box of minimal size solvated with
single-point charge (SPC) water molecules around the complexes. Systems were neutralized
with four sodium cations for the case of pH = 7.4 and five chlorine anions for pH = 5.5. The
OPLS4 force field was used for all the simulations. Systems were subjected to the standard
eight-step relaxation protocol followed by the 1000 ns actual run with a 25 ps recording
time step using the NPT ensemble class. We used the Simulation Interaction Diagram to
analyze the obtained MD trajectories. The generalized algorithm for the proposed approach
is sketched in Figure 2.
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Figure 2. Algorithm of approaches for pH-dependent drug discovery in this work.

3. Results
3.1. Benchmark and Positive Control

One of the best methods to verify the accuracy of a selected molecular modeling
approach is the re-docking of a co-crystallized ligand. Two lead compounds were selected
for this study: BMS-202 (PDB ID:5]89), a potent inhibitor selective to PD-L1, which promotes
its dimerization, and a more recent novel non-arylmethylamine-based inhibitor LP23, which
shows higher inhibitory activity than BMS-202 according to [28]. After re-docking and
molecular mechanics refinement, both ligands” diphenyl rings were positioned ideally

inside the protein-binding pockets (Figure 3a,b).
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Figure 3. The results of a positive control re-docking and molecular mechanics simulations for PD-L1
complex with small-molecule inhibitors at different pHs: superposition of a reference crystallographic
structure with re-docked complexes at two different target pHs for (a)—PDB ID:5]89, and (b)—PDB
ID:8JBA; ligand interaction diagrams for complexes of PD-L1 with re-docked co-crystallized ligands
after the molecular mechanics refinement: (c)—BMS-202 (PDB ID:5]89) at pH = 7.4, (d)—BMS-202
(PDB ID:5]89) at pH = 5.5, (e)—LP23 (PDB ID:8]BA) at pH = 7.4, (f)—LP23 (PDB ID:8]BA) at pH = 5.5.

The main difference was noticed for the remaining motifs, which were partially
exposed to the solvent. The best reproductivity of experimental crystallographic structure
was observed for BMS-202, with a slight difference in positions at pH = 5.5 and pH =7.4.
The nature of this difference might be explained by the 2D ligand interaction diagrams
(Figure 3c,d) when comparing the interactions between the positively charged amino group
of a ligand and the ASP122 residue of a protein. While at a low pH, it only formed a salt
bridge between positively charged nitrogen and negatively charged oxygen, at high pH, the
additional H-bond was formed. Interestingly, the predicted free binding energy was slightly
more negative for the complex at a low pH (—89.77 kcal /mol compared to —87.47 kcal/mol
in the case of pH = 7.4). When re-docking the second positive control, ligand LP23, the
polar tail connected to the oxadiazole thioether of a ligand showed significant deviation
from the reference crystallographic structure. Both high- and low-pH models were re-
docked almost identically, forming the same interactions with the protein (Figure 3e,f).
Nonetheless, their binding free energies differed slightly with values of —107.88 kcal/mol
for a low-pH model and —105.40 kcal/mol for a model with a high pH. A slight difference
in free binding energies and binding modes (in the case of BMS-202) for models at different
pHs was noticed due to a difference in protein protonation states. At a pH of 7.4, PD-
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L1 was predicted to have a total charge of —4, while at pH = 5.5, the total charge of a
protein was +6. A more detailed analysis of charged residues was needed to elucidate
the principal alteration in protonation states. The comparison of protein structures for the
two investigated models showed the only difference between the E58, H69, and H140-144
residues’ protonation states (Figure 4). Further on, considering the positive control results,
we chose PDB ID:5]89 as a template for our investigations.

H140-H142  (b) A, H140-H142
:.“. - _ @\‘\
> R ls X
d <9 ” ’

H
e Model (pH=7.4) s Model (pH=5.5)

Figure 4. Protein structures and protonation states of the critical residues at two different target pHs:
(a)—pH =74, (b)—pH =5.5.

3.2. Library Screening and ADMET Profiling

A large database of compounds was necessary to increase the chance of finding one
with specific properties that satisfied the needs of this project. We performed a virtual
screening for 10,305 natural compounds from the Molport database utilizing both models
at a standard physiological pH = 7.4 and cancer microenvironment pH = 5.5. The ten best
ligands for each model were chosen based on the docking score and binding efficiency.
Five of the ten ligands (Table 1, names bolded) scored well for both low- and high-pH
conditions. These five were excluded from further investigation as they do not satisfy the
requirement of binding specifically to a protein at a low pH. Ligands MolPort-001-741-806,
MolPort-005-945-958, MolPort-001-741-210, MolPort-001-740-310, and MolPort-001-742-
690 were bound only in conditions similar to the tumor microenvironment; thus, these
compounds were selected as potential hits. These compounds were further renamed for
simplification as follows: Compound 1 (MolPort-001-741-806), Compound 2 (MolPort-005-
945-958), Compound 3 (MolPort-001-741-210), Compound 4 (MolPort-001-740-310), and
Compound 5 (MolPort-001-742-690).
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Table 1. Results of the virtual screening against PD-L1 protein at physiological pH and pH =5.5.

Livand Docking ~ Ghde XP Glide  Glide  Glide Glide Glide XP
8 Score '8 GScore GScore Evdw Ecoul Energy Einternal HBond
Efficiency
pH=74
MolPort-039-339-177 —14.413 —0.257 —14.413 —14.413 —46.675 —32.076 —78.751 19.539 —8.955
MolPort-001-740-898 ! —14.256 —0.324 —14.256  —14.256 —59.246 —16.306 —75.552 18.202 —5.5
MolPort-001-741-409 ! —14.029 —0.319 —14.029 —14.029 —51.465 —24.336 —75.802 11.204 —6.634
MolPort-027-853-642 ! —13.175 —0.388 -13.175 —13.175 —58.105 —16.254 —74.359 0 —4.637
MolPort-042-675-462 1 —13.101 —0.397 —13.101 —13.101 —57.753 —17.173 —74.926 0 —4.487
MolPort-006-668-633 —12.796 —0.284 —-12.796  —12.796 —65.269 —18.75 —84.018 17.747 —3.987
MolPort-019-936-738 —12.7 —0.302 —12.7 —-12.7 —37.706 —21.373 —59.079 0 —54
MolPort-019-937-075 —12.664 —0.422 —12.664 —12.664 —48.802 —19.247 —68.049 10.551 —5.187
MolPort-001-741-410 —12.601 —0.286 —12.601 —12.601 —55.576 —23.382 —78.959 14.896 -5
MolPort-044-637-514 —12.574 —0.322 —12574 —12.574 —46.353 —23.009 —69.362 17.401 —5.133
pH=55
MolPort-001-741-806 —14.696 —0.327 —14.696 —14.696 —51.996 —25.228 —77.224 13.831 —7.669
MolPort-001-740-898 ! —14.433 —0.328 —14.433  —14.433 —54.059 —18.633 —72.692 13.624 —5.871
MolPort-042-675-462 1 —13.97 —0.423 —13.97 —13.97 —41.551 —19.12 —60.672 0 —5.731
MolPort-027-853-642 —13.85 —0.407 —13.85 —13.85 —57.316 —19.191 —76.507 16.901 —4.977
MolPort-001-741-409 ! —13.809 —0.314 —13.809 —13.809 —56.672 —22.95 —79.622 12.204 —6.214
MolPort-005-945-958 —13.165 —0.263 —13.165 —13.165 —38.363 —40.886 —79.248 16.063 —8.488
MolPort-001-741-210 —13.144 —0.196 —13.144 —13.144 —58.858 —15.814 —74.672 16.758 —7.016
MolPort-001-740-310 —12.987 —0.213 —12.987  —12.987 —77.865 —14.571 —92.436 33.752 —3.641
MolPort-001-742-690 —12.914 —0.38 —12914 12914 —51.647 —17.114 —68.762 19.835 —5.107
MolPort-019-936-738 —12.759 —0.304 —12.759  —12.759 —37.839 —21.105 —58.944 0 —5.479

1 Five of the ten ligands scored well for both low- and high-pH conditions.

There was no significant difference in the docking scores of these compounds. Com-
pound 1 had the lowest docking score of —14.696 kcal/mol, and Compound 5 showed
the lowest docking score of —12.914 kcal/mol among the selected ligands. The ligand
efficiency may be more reasonable for scoring potent inhibitors. It is known that the higher
molecular weight of a drug results in predicting a greater potency due to a larger number
of potential interactions. Meanwhile, this is not always the case. The ligand efficiency takes
into consideration corrections to the molecular weight of a ligand. Our results showed that
Compound 5 had the best ligand efficiency among the top 5 compounds with a value of
—0.38 kcal/mol/HA. Within other ligands, Compound 2 showed the highest impact of the
Coulomb and H-bond energy (—79.248 kcal/mol and —8.488 kcal/mol).

ADMET prediction was conducted on the top 5 compounds to evaluate their pharma-
ceutical properties (Figure 5). Compounds were evaluated to satisfy Lipinski’s Rule of Five,
the Pfizer Rule, its adsorption properties, such as Caco-2 permeability, MDCK permeability,
P-glycoprotein (Pdp-) substrate, and human intestinal absorption (HIA); distribution, such
as plasma protein binding (PPB), blood-brain barrier (BBB) penetration, and fraction un-
bound (Fu); as well as metabolism and toxicity, such as the human ether-a-go-go related
gene (hERG) blockers, hepatotoxicity, drug-induced liver injury (DILI), Ames toxicity (mu-
tagenicity), skin sensitization, carcinogenicity, and respiratory toxicity. These properties
were also predicted for the lead compounds BMS-202 and LP23. All compounds except for
LP23 failed to satisfy Lipinski’s Rule of Five. However, they all passed the Pfizer Rule. All
five potential hits had a low human intestinal absorption, and all studied compounds were
predicted not to penetrate human colon adenocarcinoma cell lines (Caco-2), suggesting
possible problems with oral admission without further functionalizing a potential drug.
BMS-202 was predicted to penetrate the blood-brain barrier, and both BMS-202 and LP23
were shown to have a high plasma protein-binding affinity and a low fraction unbound.
The more the drug is bound to proteins in the bloodstream, the less efficiently it can traverse
cellular membranes or diffuse. The top five compounds were predicted to have better over-
all distribution properties, with only Compound 4 having a high plasma protein binding.
Both lead compounds were predicted as potential inhibitors and substrates for metabolic
processes. Similarly, Compound 1 and Compound 4 were potential metabolism inhibitors.
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Regarding the predicted toxicities, hit compounds looked more promising than the leads,
considering the predicted mutagenicity of BMS-202 and carcinogenicity of LP23. The least
toxic among the top five were Compound 2 and Compound 5.

g,:"?:; i Distributi i Toxicity -inactive
. potentially active
ADMETLab 2.0 = _ s F  Mactie
Prediction e 2 s 2 §2 z£33%¢8 Compound 1
225 ¢7 3 T ENEREE (MolPort-001-741-806)
EREEEREFEREEERERD

Compound 1
Compound 2
Compound 3
Compound 4
Compound 5
BMS-202
LP23
Compound 2 Compound 3 Compound 4
(MolPort-005-945-958) (MolPort-001-741-210) (MolPort-001-740-310)
H

Compound 5
(MolPort-001-742-690)
HQ \@H

Figure 5. ADMET profiling and 2D structures of top 5 selected compounds and two lead compounds.

3.3. MM/GBSA

It is well-known that the docking scores have a low agreement with experimental
data and may not be efficiently used for scoring accurately. Molecular mechanics with
generalized Born and surface area solvation (MM/GBSA) is a popular method used to
accurately predict the free energy of binding. The top five hit compounds’ binding poses
obtained by docking simulations were refined using the MM/GBSA method in pH 7.4 and
5.5 models. The magnitude of the negative AG determines the protein-ligand association
extent in molecular mechanics; it can be considered that AG determines the stability of any
given protein-ligand complex. While the magnitude of AG calculated using MM/GBSA
cannot be trusted, its comparison usually correlates well with in vitro binding affinities, as
shown in [49,50]. These works, among many others, demonstrate significantly elevated
free binding energies compared to the experimental results. However, as suggested by
Mulakala et al. in [49], the VSGB-2.0 MM /GBSA may be approaching the accuracy required
for the absolute binding free energy determination with R? = 0.89 between experimental
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and predicted affinities for a data set built of several protein targets and a wide range
of ligands.

The values predicted that the five ligands bound to PD-L1 did not show significant
differences in their binding affinities at different pH values (Figure 6). Forming similar
interactions with the protein, Compound 1 complexed with PD-L1 at a pH of 7.4 had a
binding free energy of —81.13 kcal/mol, and the value of —83.53 kcal/mol was calculated
for a pH of 5.5. The AG values of —59.78 kcal/mol and —57.41 kcal/mol at pH = 7.4
and pH = 5.5, respectively, were calculated for Compound 2, and binding affinities for
the Compound 3 complexes were —90.06 kcal/mol and —87.55 kcal/mol. Compound 4
was predicted to have the most negative binding free energy bound to PD-L1. However,
no significant difference was noticed between the cases of a pH of 5.5 and physiological
conditions for this ligand (—96.84 kcal/mol at a pH of 7.4 and 98.56 kcal/mol at a pH of
5.5). The 2D ligand interaction diagrams also showed no significant difference between
binding to a protein at different pH values. The maximal magnitude of difference in
binding energies under different pH conditions was 2.51 kcal/mol for Compound 3. Such
a slight difference in the calculated binding energies might be considered a simple noise
or error of the method and presumably should not result in a different binding affinity
when performing in vitro experiments. It only reflects minor fluctuations in drug-target
interactions due to pH variations and could translate to the drug maintaining effective
binding across different physiological environments. Nonetheless, this statement must be
further verified by an experimental investigation, paying special attention to Compound 4,
which was predicted to have an even higher affinity toward PD-L1 than the potent BMS-202.

In the case of Compound 5, disregarding the similar ligand interaction diagram, the
most remarkable difference in binding affinity was found, with a significantly less negative
AG in the case of a physiological pH (—73.64 kcal/mol) compared to the case of a low
pH 5.5 (—82.36 kcal/mol). It must be noted that at a higher pH, the compound seemed
to form more H-bonds. The hydroxyl group from the phenyl ring of a ligand formed two
H-bonds (with I116 and D122) at a higher pH, while at a lower pH, it was only bound to
I116. Another difference worth mentioning was the H-bond formed by a para-hydroxyl
group of a glucose motif. In the case of a higher pH, it donated hydrogen to F19, while at a
lower pH, this hydrogen was donated to A18. Despite the complex at pH 7.4 appearing
to be more promising in the 2D ligand interaction diagram, quantitatively, it was inferior
to the low-pH complex within the H-bond component (—5.54 kcal/mol for pH = 5.5 vs.
—5.38 kcal/mol for pH = 7.4), and most importantly, the Coulomb energy component
(—73.19 kcal /mol for pH = 5.5 vs. —54.70 kcal/mol for pH = 7.4). The Coulomb energy is
the energy associated with the repulsion between charged particles. Thus, the total charge
of a protein may play a crucial role in this component’s contribution.
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Figure 6. The 2D diagrams of interactions and predicted binding affinities for top 5 selected compounds.
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3.4. Molecular Dynamics

For further evaluation of a hit Compound 5 compound, an extensive 1000 ns simulation
was conducted to estimate the stability of the obtained complexes. In conditions of a
physiological pH, the complex was shown to be unstable with high protein and ligand root
mean square deviations (RMSD) values (Figure 7a). The protein’s RMSD mostly ranged
from 2.4 to 6.4, while the ligand’s deviations fit on protein reached as high as 36 A, with
the most significant instability shown after 600 ns. The ligand’s fit on the ligand remained
constant throughout the 1000 ns with relatively minimal changes. When tested at the pH of
the tumor microenvironment (Figure 7b), the protein RMSD exhibited significantly more
stability. The RMSD of the ligand fit on protein also remained extremely stable until a
short fragment of deviations between 725 and 825 ns, where an increase by approximately
6 A was noted. After this brief increase, the ligand returned to its former position for
the remainder of the time. The RMSD of the ligand fit on the ligand remained stable
throughout the 1000 ns. The root mean square fluctuation (RMSF) calculates individual
residue flexibility. It demonstrates how much a particular residue moved during the
simulation. The model with a higher pH showed slightly more flexibility and fluctuation
across the binding residues up to 3 A for most of the sequence (Figure 7c). In contrast, for
the model with a low pH, these fluctuations did not exceed 2 A (Figure 7d). Exceptionally
high fluctuations were observed between indexes 116-130 and 240-252, corresponding to
the sequence residues V130-H144 from the first subunit and V130-H142 from the subunit.
These are the helix structures located at the C-terminal of the PD-L1, for which fluctuation
is an ordinary event. The significant protein residue fluctuations for a model of pH 7.4
were combined with a very high RMSF of the ligand fit on protein, ranging between 8 and
11 A across the whole ligand structure (Figure 7e). The ligand fluctuations in lower-pH
conditions were significantly lower (Figure 7f), not exceeding 2 A when fit on the ligand
and with a maximum of 4 A when it was fit on the protein, resulting in a significantly
more stable complex. The 2D ligand interaction diagram supported the above observations
(Figure 7g,h). Compound 5 left the binding pocket of a protein within 1000 ns simulation at
pH 7.4. Conversely, at a pH of 5.5, the results showed the ligand to be very stable in the
binding pocket. Several meaningful interactions were demonstrated between the ligand
and protein, including a hydrogen bond formed between the double-bonded oxygen of
the hydroxyoxolan-2-one fragment and R113 residue (86% of the simulation time), the
oxygen of glucose motif and Y123 residue (63% of the simulation time), and between the
hydroxyl group of the phenyl ring and 1116 amino acid residue (32% of the simulation
time). With this apparent difference in affinities, supported by both molecular mechanics
and molecular dynamics simulation, Compound 5 could be a potential hit in the search
for a drug that would selectively inhibit PD-L1 in cancer microenvironment pH conditions
while interacting significantly less with this protein at a normal physiological pH.
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Figure 7. Results of molecular dynamics simulations: protein and ligand RMSD for PD-
L1/Compound 5 complexes at (a)—pH = 7.4, (b)—pH = 5.5; protein RMSF at (¢)—pH = 7.4,
(d)—pH =5.5; ligand RMSF at (e)—pH = 7.4, (f)—pH = 5.5; and 2D ligand interaction diagram
at (g)—pH =74, (h)—pH =5..

4. Discussion

The investigation into PD-L1 inhibitors reveals key insights into the effects of pH on
binding affinity and stability, offering some understanding of how these factors might be
leveraged to enhance cancer immunotherapy. The initial step involved the re-docking of the
known PD-L1 inhibitors, BMS-202 and LP23, to validate our computational approach. By
achieving a high agreement of a binding pose with known crystal structures, we established
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a foundation for further accurate analyses. The difference in PD-L1’s charge at different
pHs (Figure 4) favored the proposed hypothesis of an attempt to investigate potential
inhibitors, which would have a greater affinity toward PD-L1 at a low pH. The comparison
of protein structures for the two investigated models revealed that at a physiological pH of
7.4, all histamine amino acid residues were neutral, and glutamic acid was deprotonated.
Lowering the pH to 5.5 resulted in the protonation of most histamine residues (H69, H140
(for only one subunit), H141, H142, H143, and H144), which is obvious considering its
sidechain pK4 value of around 6.04. Interestingly, the glutamic acid residue of the first
subunit was also protonated, while E58 of the other subunit remained deprotonated. The
sidechain of the glutamic acid has a pKa value of around 4.07, which suggests that the pH
used for these models was not low enough to protonate it. However, protein protonation is
more complex than simply considering the pKa values of each residue. This complexity
arises because of the electrostatic interactions between ionizable groups within the protein
and the surrounding solvent, affecting the pK, and these groups’ protonation state.

Our study then progressed to a comprehensive virtual screening of over 10,000 com-
pounds, aiming to discover potential inhibitors that demonstrate selective activity under
acidic conditions, typical for cancerous tissues, while showing reduced activity at the
physiological pH of healthy cells. Compound 5 emerged as particularly promising of
the screened compounds due to its high binding affinity and stability at lower pH levels,
as evidenced by molecular dynamics simulations. These simulations were essential in
illustrating that Compound 5 fits well within the PD-L1 binding pocket under acidic condi-
tions and maintains its conformation (Supplementary Video S1), suggesting that it could
remain effective over longer periods in the tumor microenvironment. Molecular dynamics
simulation in normal physiological conditions revealed this complex to be unstable (Supple-
mentary Video 52), which satisfied the desired activity of a potential drug candidate within
this hypothesis. Moreover, the assessment of pharmaceutical properties through ADMET
profiling provided deeper insights into the pharmacokinetics of Compound 5, predicting it
to be overall less toxic when compared to the known PD-L1 inhibitors, BMS-202 and LP23.
Notably, the compound displayed a low potential for hepatotoxicity and no significant
carcinogenic risk, which are critical considerations for developing a safe cancer therapy.
These properties highlight Compound 5’s suitability for further preclinical development.

To the best of the authors” knowledge, limited information is available about this com-
pound in the literature. MolPort-001-742-690, or ([(2R,35,4S,5R,6R)-3,4,5-trihydroxy-6-[2-(3-
hydroxy-5-oxooxolan-3-yl)propoxyJoxan-2-ylJmethyl(E)-3-(3,4-dihydroxyphenyl)prop-2-en
oate) is a derivative of a hydroxycinnamic acid, found as a metabolite in species such as
Mus musculus and Nippostrongylus brasiliensis according to the ChEBI database. It also
might be found in Rindera graeca root extracts derived from various culture conditions [51].
Some bioassay data available on the PubChem website indicate that most assays performed
(quantitative high-throughput screenings (QHTS) or regular high-throughput screenings
(HTS)) Compound 5 was found to be inactive. The only bioassay showing potential activity
was a primary fluorescence-based thiol-reactive (MSTI) qHTS assay to identify artifact
compounds [52]. This suggests that the compound can bind natural thiols and poten-
tially modify protein cysteine residues. Cytotoxic profiling of annotated libraries using
quantitative high-throughput screening revealed this compound to be inactive, suggesting
low toxicity and validating the ADMET prediction illustrated in this work. Interestingly,
the primary qHTS used to identify gynecologic anti-cancer compounds using libraries of
7914 approved drugs and bioactive compounds showed Compound 5 to be inactive or
inconclusive [53]. However, considering that this study aimed to analyze the chemothera-
peutic activities of compounds against gynecologic cancer cell lines, it may not necessarily
correlate with immunotherapy results due to differences in mechanisms of action. Follow-
ing this literature search, it is clear that a more detailed experimental investigation of this
compound is necessary.

Our findings advocate for the experimental validation and continued exploration
of Compound 5 as a hit candidate for targeted cancer immunotherapy. The distinct pH-



Cancers 2024, 16, 2295

16 of 19

dependent binding characteristics of this compound could potentially lead to the develop-
ment of treatments that are effective in the acidic tumor microenvironment and safe for the
patient overall.

5. Conclusions

Immunotherapeutic treatments for cancer offer significant advantages over traditional
treatment options due to their targeted approach and potential for reduced side effects.
Our research aimed to discover a safe yet effective natural compound capable of inhibiting
the binding of PD-1 to PD-L1, specifically in the acidic conditions typical of the tumor
microenvironment (pH of 5.5), without affecting PD-L1 at the normal physiological pH. The
goal was to find an inhibitor that would allow T-cells to continue proliferating and fighting
cancer cells without inadvertently suppressing the immune response in healthy tissue.

Through extensive in silico methods, including virtual screening, ADMET prediction,
MM/GBSA, and molecular dynamics simulations, we analyzed over 10,000 compounds.
Our efforts led us to Compound 5 (MolPort-001-742-690), a compound that demonstrated
significant potential for further study through in vitro methods to assess its viability as a
cancer treatment. Compound 5 showed promising binding affinity and ligand efficiency
in virtual screening, while ADMET predictions suggested minimal side effects. Moreover,
molecular dynamics simulations revealed significant correlations in binding affinity related
to pH levels, indicating that this compound could strongly bind to PD-L1 under acidic,
tumor-like conditions and potentially remain bound long enough to exert a therapeutic
effect. These data support the further exploration of MolPort-001-742-690 as a targeted,
pH-selective cancer therapy, which still needs experimental confirmation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//drive.google.com/drive/folders/1PsXOAjVCg_WqTql9YSz_XGtb9pDjtYaw?usp=drive_link (ac-
cessed on 19 June 2024). Video S1: molecular dynamics trajectory of MolPort-001-742-690/PD-L1
complex at pH = 5.5; Video S2: molecular dynamics trajectory of MolPort-001-742-690/PD-L1 complex
atpH="74.
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