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Abstract

Motivated by a linear nonlocal model of elasticity, this work establishes fractional analogues
of Korn’s first and second inequalities for vector fields in fractional Sobolev spaces defined over
a bounded domain. The validity of the inequalities require no additional boundary condition,
extending existing fractional Korn’s inequalities that are only applicable for Sobolev vector
fields satisfying zero Dirichlet boundary conditions. The domain of definition is required to
have a C'-boundary or, more generally, a Lipschitz boundary with small Lipschitz constant.
We conjecture that the inequalities remain valid for vector fields defined over any Lipschitz
domain. We support this claim by presenting a proof of the inequalities for vector fields defined
over planar convex domains.

1 Introduction and main results

In this paper, we prove the fractional analogues of Korn’s first and second inequalities in the so-
called bounded Lipschitz domains with small Lipschitz constant. For n > 2, suppose that Q C R" is
a bounded domain with Lipschitz boundary. Classical Korn’s inequalities give a means of controlling
the LP-norm of the gradient Vu of a Sobolev vector field w : Q@ — R"™ by the symmetric part of its

1
gradient, e(u)(x) = §(Vu(:13) + VuT(x)) (and the vector field itself). For 1 < p < 0o, a version of
the classical Korn’s first inequality [7, 8] states that there is a constant C' = C'(£2) > 0, such that

: 1, n
sl VU= Al < Clle(w)liey forall we WH(Q,R"). (1.1)

Here, Skew(R") represents the set of n x n skew symmetric matrices. Korn’s second inequality
reads as follows [7, 8]: there is a constant C' = C(§2) > 0, such that

IVl o) < C (lle@)|l oy + lulls)  forall we WH(Q,R™), (1.2)

These inequalities play a fundamental role in establishing the well posedness of the linear equations
of elastostatics, a system of partial differential equations arising from linearized elasticity under
various boundary conditions [7, 8, 6].

By a fractional analogue of these inequalities we mean estimates of these type for vector fields
in the fractional Sobolev spaces W*P(Q2; R"), for s € (0,1), where uw € LP(2; R") is in W*P(Q; R™)
if and only if

P _ [u(z) — u(y)
|’U;|WSJ, Q;R") = /Q 0 dedy < 0.
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The function space W*?(€2;R") is a Banach space with the norm [|- [[ys.p ) = || [l r () + 1+ lwer(0)-
When writing inequalities analogous to (1.1) and (1.2) for vector fields in W*?(€2; R"™), one must find
proper substitutes for the notion of gradient and symmetric part of the gradient. It is intuitively
|y — |
while the seminorm |wl|yysp () replaces ||[Vu| ryo). Noting that for €  and y close to z, one

(u(y) —u(z) (y—=) e(w)() (y—=z) (y—=z)

clear that the difference quotient could be used as a substitute for the gradient of Vu

has for suffficiently smooth vector fields u(x) that

y-z|  |y—= ly—z| ly—=|
we will use the projected difference quotient (u(?r) — u‘(m)) . (|y — :13| as the nonlocal analogue for
y—x y—x
e(u), and the seminorm
xz)) - (y—=) P

ly—a|

o= [ i

to replace its norm. This weighted norm of the projected difference quotient not only approximates
the norm of e(u) but also inherits its zero sets. Indeed, for L}, (Q) vector fields u, the equality
(u(x) —u(y)) - (x —y) =0 holds for a.e. &,y € Q, if and only if w is an infinitesimal rigid motion
[24, Proposition 1.2], i.e., u has the form

u(x) = Ax +b, for some A € Skew(R") and b € R".

Those are exactly Sobolev vector fields that make e(u) = 0 a.e. in 2, as can be seen from (1.1).
We denote this class of vector fields by R. Before we are ready to state the desired fractional
analogues of Korn’s inequalities, we need to introduce the definition of bounded domains with
Lipschitz constant not exceeding a number L > 0.

Definition 1.1. An open bounded Lipschitz domain  C R™ is said to have a Lipschitz constant
< L, if the boundary of Q can be covered by finitely many balls (or cylinders) B;, i = 1,2,...,m,
so that each portion 02N B; is the graph of a Lipschitz function with Lipschitz constant < L, upon
a rotation of the coordinate system.

Remark 1.2. An open bounded domain with C*-boundary has a local Lipschitz constant as small
as any initially chosen positive constant € > 0.

THEOREM 1.3. Let n > 2, s € (0,1), p € (1,00). There exists a constant My > 0, depending
only on n,p, and s, such that the following holds: for any open bounded Lipschitz set @ C R™ with

Lipschitz constant < My, there exist positive constants C1 and Ca, depending only on d, s,p and 2,
such that for all u € W*P(Q; R"™), one has

and
|u]WSp Q) < Oy([u ]Xsp(g + HUHLp(Q)) (1.4)

where R is the class of infinitesimal rigid motions.

Some remarks are in order. The same way the classical Korn’s inequalities are linked to the
linearized elasticity, so are their fractional analogues to some nonlocal models of elasticity. We
discuss here one such model, peridynamics, a continuum nonlocal theory of mechanics of materials



initially proposed by Stewart Silling [20, 22, 21]. In bond-based linearized peridynamics, a material
occupying a domain 2 is approximated to be a complex mass-spring system where material points
interact, at a distance, with each other over a bond joining them. If the material is subject to
(u(y) —u(z)) (y—=)
ly — | ly —x
nonlocal strain at a along the bond € = y — x. The total strain energy is postulated to be
2
W -u@) y-z)f,

proportional to
(u
w=[ [y
aJa ly — x| ly — x|

where p(&) is locally integrable and serves as a weight for the long-range interactions. Given an
external force f € L?(€;R"), the corresponding configuration can be found as a minimizer of the
functional

a deformation v(x) = x + u(x), then represents a (unit less) linearized

u — W,( / f(x (1.5)

over an appropriate admissible subset of L*(Q;R™). In fact, existence of minimizers in some subsets
of the energy space S,(Q) = {u € L*(;R"™) : W,(u) < oo} is demonstrated in [13]. See also [14]
for existence of solutions to more generalized models of linearized peridynamics. Except for n = 1,
the question that whether S,(€2), which is based on the projected difference-quotient, is equal to
the space
{u e L*(Q;R") : // y—x) () ~u(@)f —>— " dydx < oo}
w |?

based on the full difference-quotient remains open. The fractional Korn’s inequalities proved in
Theorem 1.3 address this question and establish equality of sets for a special case when p(&) =
€]~ 267 Y for s € (0,1). In this case, W,(u) = [u ul%., 2(q) and minimizing the functional in (1.5)

over a weakly closed subset of the smaller W*2(Q;R"), say, WS2(Q;R") = {u € WS3(Q;R") :
w C Q, u=0, ae. in w} is possible. To apply Hilbert space methods, inequality (1.4) is now
essential, along with a Poincaré-Korn inequality, see Lemma 2.1 below, to show the coercivity of
the functional. We leave the details to the interested readers, see [13, 14].

We emphasize that the main contribution of this work is proving inequalities (1.3) and (1.4) for
vector field in W*P(Q, R") without any “boundary conditions.” While (1.3) as stated appears to
be new to our best knowledge, its special version with A = 0, and inequality (1.4) have appeared
in recent works, albeit in restricted forms. Indeed, the variant of (1.3) with A = 0 was first
proven in [12] for the case when  is the half-space, p = 2, and for vector fields u € W 2(Q)
which is the closure of C}(€2, R") with respect to the norm || - lws2(q) (roughly speaking for vector
fields satisfying zero Dirichlet boundary conditions on 0f2), see [1]. The estimate for the half-space
was then extended for any values 1 < p < oo in [19]. The estimate was then proven in [15] for
the restricted class Wy (€, R™) for bounded C! domains, and the same result appeared in [18]
significantly shortening the proof presented in [15]. A tighter version of estimates (1.3) and (1.4)
have also been proven in [4] for the case when ps > 1, where for some constant C' > 0,

|'U,’Ws,p(Q) S C[U]Xs,p(g) fOI' all u < Wg’p(Q,Rn) (16)

Via a counterexample [4], inequality (1.6) is shown to fail for any open bounded subset 2 C R"
in the case ps < 1. This is in stark contrast to the case when Q@ = R" or Q = R} (unbounded
domains), where (1.6) is proved to hold for any s € (0,1), p € (1,00) such that ps # 1, [12, 15]. In



fact, in this case, our current work implies that the restriction ps # 1 is not even necessary. We
note that (1.6) is the fractional analogue of another version of Korn’s first inequality:

IVl ooy < Cplle() Loy for all w e WyP(Q,R),

for a constant C}, > 0 that depends only on p. This being said, a new phenomenon occurs in the
fractional setting.

Remark 1.4. It is well known that the range of exponent that validates the classical Korn inequal-
ities (1.1) and (1.2) is 1 < p < oo. Moreover, for Sobolev vector fields that satisfy zero Dirichlet
boundary conditions, one can always choose A = 0 in (1.1) in that range. However, this is no
longer true in the fractional setting because despite the fact that the case ps < 1 is included in the
validity range for (1.3) and (1.4), the version of (1.3) with A =0 fails in bounded domains in the
case ps < 1.

As it is clear from the formulation, Theorem 1.3 has the limitation that inequalities (1.3) and
(1.4) are established for a class of vector fields defined over a domain with a boundary that has
a sufficiently small Lipschitz constant. Taking clues from the classical Korn’s inequalities [17], we
conjecture that in fact the inequalities remain valid for any bounded Lipschitz domain. To support
the claim, we establish the same inequalities for planar convex Lipschitz domains with no constraint
on the size of Lipschitz constant of the boundary. This will be demonstrated in Section 4.

As we will show in Section 3, inequality (1.3) follows from (1.4). The main challenge is thus
proving (1.4). Our method of proof is standard. We first establish (1.4) for epigraphs supported by
a Lipschitz function and then use a partition of unity to localize near the boundary of the domain.
The later part of the argument is successfully carried out in [15] and [18] and we will not repeat it
here. We would rather focus on obtaining the estimate for epigraphs. That will be accomplished
after proving the existence of an extension operator to extend the vector fields in the epigraph to
be defined on R"™. As in [15] we will use the extension introduced in [17] which allows us to control
the seminorm of the extended vector fields by the seminorm over the epigraph. In this work, we
use an improved Hardy-type inequality, Lemma 2.4 in Section 2, to overcome a technical difficulty
that we encountered in [15] and restricted the validity (1.4) to only vector fields that vanish on the
boundary.

2 Korn-Poincaré and Hardy-type inequalities

Given an open set D C R”, we define the spaces X; (D) and X*P(D) to be the closure of C}(D; R")
and C!(D;R"), respectively, with respect to the norm || - | xs.p(Dy, Where CH(D;R") is the set of
C! functions whose support is compactly contained in D. It is known that for bounded domains
with Lipschitz boundary, C*(D;R™) is dense in X*P(D), as shown in [16, Theorem 3.3]. We begin
with the following Korn-Poincaré inequalities that are compatible with the seminorm [] xsp()- 1t
is worth mentioning that the fractional Korn-Poincaré inequality is an important component in the
proof of the first and second fractional Korn inequalities. This is in contrast to the classical local
setting where the Korn-Poincaré inequality is derived as a consequence of Korn’s first inequality
after the latter has been established by other means.

LEMMA 2.1 (Korn-Poincaré inequalities). Suppose that §2 is a bounded Lipschitz domain. Then for
any s € (0,1), p € (1,00), there exists a positive constant C depending only on n,p,s, and ), such



that

Hél;% Hu — THLP(Q) < C[u}Xs,p(Q) for all uc Xs,p(Q).

Moreover, if V.C LP(Q;R"™) is a weakly closed subset such that V. N'R = {0}, then there exists a
constant C > 0, that in addition may depend on V, such that

lull 2 (orny < C’[u]xs,p(g) for all ueV.

Proof. We prove the first assertion. The proof of the second can be found in [14, Proposition 2.7].
We will use a standard contradiction argument adopted by Kondratiev and Oleinik for the classical
case in [6]. Suppose that there is a sequence up € X*P(£) and the corresponding minimizers
Ay, € skew(R") and by, € R" such that

Huk — Ak X — bk-HLp(Q) =1 and [Uk-]Xs,p(Q) < l/k, k= 1, 2, N (2.7)

Upon passing to the fields vy = up — Ag - © — by we can assume without loss of generality that
Ay =0 and by =0in (2.7) for all k. Thus we have the minimality conditions

|vkllzr) < llvk — A @ = bllpq) for any A €skew(R"), beR", k=12,... (2.8)

We then have from (2.7) that the sequence vi is bounded in X*?(€2). We can now apply the
compactness theorem in [2, Theorem 1.3] to conclude that the sequence {wvy} is pre-compact in
LP(Q), thus we can assume without loss of generality that

vy — v in LP(Q), (2.9)
for some field v € LP(2). We have by (2.7) that

vk — vinllxsp) = ([VE — Vm]xsw@) + V6 — Vo)
< C([’Uk]XSvP(Q) + [’Um]xw(g) + [lvg — UmHLP(Q))
<CQ1/k+1/m+[|lvk — vl L)),

thus the condition (2.9) implies that the sequence {vy} is Cauchy and thus is convergent in X*(Q2)
and the limit is v. This gives vy — v in X*P(Q) as k — oo as well. We thus have from (2.7) that

[U}stp(ﬂ) < [Uk]xs,p(g) + [U — vk}Xs,p(Q)
<1/k+[v—vp]ysw) — 0

as k — 00, thus [v]ys.r(q) = 0, which gives
v)=A-z+b, forae xe, (2.10)

for some constant skew-symmetric matrix A € R™*" and some vector b € R" (see [24, Proposition
1.2] or [11, Theorem 3.1]). We then have by (2.7), (2.8), and (2.10) that

1= [Jvgllprq) < llvk — A~ @ = b 1r) = vk — V|| = 0,

as k — 0o, which is a contradiction. ]



Remark 2.2. We remark that if, for a given 7 > 0 and xog € R", Q(xo,T) represents a cube
centered at xg with side length 27, then a simple scaling argument yields the estimate

min [[u = 7| r(Q(ao,r) < C7° [Uxsr Qo) (2.11)
for all u € X*P(Q(xo, T)), where the constant C' is the constant which depends only on n, p, and s
and the unit cube Q(0,1).

The following variant of the fractional Hardy-type inequality is key for proving the boundedness
of the extension operator we will define in the next section. For notational convenience, we represent
points & € R" as ¢ = («’,z,) € R" ! x R.

Definition 2.3 (Epigraph). Let f: R"™' — R be a continuous function. The set
D={(z,z,) : ¢ €R" z,> f(z')}

1s called an epigraph supported by the function f. In that case we also denote
D_={(x',z,) : ' eR" z, < f(z)}.

In what follows, f will be a globally Lipschitz function with ||V || feo@®n-1y < M. Also, capital
letter C will denote a constant that depends on n,p,s and M, while small letter ¢ will denote a
constant that depends only on n,p and s. For any epigraph D and any n > 0, define the mapping
¢, : D_ — D given by

Oy (x) = (', f(2') + n(f(2') — 2n)), (2.12)
which is clearly a Lipschitz diffeomorphism with the inverse
_ 1
(@) (@) = (@', f(2') + E(f(SC') — ),

and det(V®,) = —n. By direct calculation we get

IV (o) = \fn — L+ 72 + (L+ 02|V ]3ee. (2.13)
and
_ 1 1
1) o) = W L4 (D2 (2.14)

Hence, in space dimensions n > 2, the norms [|[V®; || p_) and HV(®77)71HL00(D) are bounded
from below by one (independent of the Lipschitz constant of f). Moreover, as proved in Lemma A.1,
there exists a constant C' > 0, depending only on n,n, and M such that

lz —y| < C|(®,) (z) —y| forall z,yeD. (2.15)

LEMMA 2.4 (Hardy-type inequality). Let f: R*! — R be a Lipschitz function with Lipschitz
constant < M, and let D C R™ be the epigraph supported by f. There exist a constant C' =
C(n,p,s,M) >0, and a constant ca(n) > 1 (coming from the Whitney cover of D), such that for

every \,pu € [1 — 6,14 0] with 6 =

2ea(n)/n(2 + M) and every vector field w € X*P(D) one has

/ |un(a:’, f(:v') + )\(-rn — f((l:/))) — ’U,n(ilfl, f(w/) + //L(xn - f(w/)))|p dx < C[U}g{
D

[ — J @) "oy

(2.16)



Proof. Given the epigraph D supported by f as in the assumption of the lemma, we consider the
sequence of cubes {Qx}7—; in R™ with the property that

(i) D = UgQy, and the @y are mutually disjoint,

(ii) the doubled cubes Q, = 2- Qy satisfy the inclusion @, C D for all k € N, and that they have
the finite intersection property

oo
Zka ($) < Cl(n) forall x € D7 and
k=1

(iii) there exists a constant cg(n) such that each of the co(n)—times enlarged cube ca(n) - Qg
intersects with the graph of f.

Such a covering of the open set D is called a Whitney cover. Given an open set, it is always possible
to construct a Whitney cover for it, see [23, Chapter VI, Theorem 1] for details. In the above, the
constants ¢;(n) and ca2(n) depend only on the space dimension n. Let now a; > 0 be the side length
of Q. Observe that on one hand condition (i) in particular implies that

|z, — f(a)] > % forall k€N, x e Qy. (2.17)

On the other hand for a fixed point x = (',x,) € Qy, let dist(zx,Gr(f)) = |z — y|, where
y = (v, f(¢)) € Gr(f) and Gr(f) is the graph of f. We have that |f(z') — f(¥')| < M|z’ — /'],
thus we can estimate
20 = f(2")| = (&', 2n) — (&, f(2))]

< (@, 2za) — (', fFNI 1. f¥) — (&, f(&))]

= dist(z, Gr(f)) + (¥, f(¥) — (&, f(2"))]

< dist(z,Gr(f)) + V1+ M2y — |

< (1++V1+ M?2)dist(x, Gr(f)) .

1
From condition (iii) we have dist(x, Gr(f)) < 02(712)+\/ﬁak < co(n)v/nay, hence

|z — f(2')] < ca(n)v/n(2+ M)ay forall keN, € Q. (2.18)
By the definition of X*P(D), it suffices to take w € C}(D,R"). We can then estimate

/hm@ﬂf@ﬂ+kwn—f@W)—wﬁﬂf@5+u@n—f@ﬁmﬂm
D |xn - f(wl)’ps

(@, (&) + Mn — F(&))) = (&', F(@') + p(zn — (@)
<§:L; 0 — f(a)P .

Setting ®%(x) = (z/, f(2') + A(z,, — f(2))) for brevity, we aim to prove the inequality

/ |un (P35 (2)) — un (P} (2)) [P

dx < Clul? (2.19)

o — Fla)P xer@



for each cube Q. For every fixed k € N we have by (2.17), that

Uy (D% () — up (D* () [P B

Next we apply the Korn-Poincaré inequality (2.11) to the cube Qk and the vector field w. Hence,
there exists a constant C' > 0, a skew-symmetric matrix A; € R™*", and a vector b, € R" such
that

[ul) — Ar() = Bl gy < Cailtl yon o, (2.21)

Observe that ®3: Qr — ®3(Qk) is a one-to-one diffeomorphism with the inverse @]/, and has
Jacobian equal to A < 1+ 6. Also, due to the inequality (2.18), we have that, for every & € @} and
every A € [1 — 4,1+ ],

[5(@) @] = [1 = Allan — f(a)] < dea(m)Vin(2 + M)ay < T,

1
2¢2(n)y/n(2 4 M)
Consequently, noting that by skew-symmetry (Ay - ®3(x) + bi)n — (A - @, (x) + bg), = 0, and
using the bound in (2.21), we can estimate that

provided 0 = . This implies the inclusion conditions ®}(Qk), ®;,(Qx) C Q.

/Q [un(PA(2)) — un (@, (@) dz (2.22)

= / |un(®X(2)) — (Ak - PX(®) + b )n — (un (P (2)) — (Ag - P (2) + br)n) |Pda

k

<2 [y (@3(@)) - (Ar- B(@) + bialde

Lot / un (@5 (1)) — (Ag - ®(2) + by P

< —Ap-y-—bf .
< Cllu(y) = Ay = billy, 6

< Cais [u(y)]lj\?s’l)(@k)‘

Putting together now (2.20) and (2.22) we discover

/ ‘un(tbi(a:)) - un(q);(x))‘p
" |zn — f(') [P

p

In order to complete the proof of the lemma, one needs to sum (2.19) over k and keep in mind the
finite intersection property in (ii). This completes the proof of Lemma 2.4. O

Remark 2.5. In the special case of the half space, where D = R’} and f = 0, inequality (2.16)
reduces to

wn (', Ay) — up (2, py)|P P
/D PN dx < C[u}Xsyp(D).

This inequality was proved in [12, Lemma 4.1] for vector fields in X3¥(D) for particular values
of A and p under the extra assumption that ps # 1. It is now clear from Lemma 2.4 that this



requirement is not necessary and that the fractional Korn’s inequality proved in [12] for vector fields
in X3P (D) is also valid for all s € (0,1) and 1 < p < 0o (even when ps =1). A consequence of this
is that the Korn inequality proved in [15] for vector fields defined on bounded domains with smooth
boundary will also be true for the full ranges of s and p.

We note that we refer to the inequality (2.16) as a Hardy-type because the inequality captures the
optimal decay rate to zero of a map near the boundary, say in the case when D = R",, (2, x,) —
un (', A\xy) — un(2', pxy), which vanishes on the hyperplane 0D = {x, = 0}, in terms of an
appropriate seminorm. See [3, 10] for the standard fractional Hardy-type inequalities.

3 Fractional Korn’s inequalities

3.1 Korn’s second inequality over epigraphs

This section is devoted to the fractional Korn’s second inequality for vector fields defined over
epigraphs. We prove the following theorem.

THEOREM 3.1 (Korn’s second inequality in epigraphs). Given s € (0,1) and 1 < p < oo, there
exists a universal constant My > 0 and another constant Cy > 0 depending only on n,p,s and My
with the following property: For any epigraph D supported by f:R"™' — R with |V f|p~ < My,
one has for all w € X*P(D) the inequality

[ulwsr(p) < Colulxss(p)- (3.23)

As we described in the introduction, to prove the fractional Korn’s inequality (3.23) for an
epigraph D, we first prove the existence of an extension operator to extend the vector fields in
X*P(D) to be in X*P(R") in such a way that the seminorm of the extended vector fields is controlled
by the seminorm over D. As in [15], we will show that the extension operator that was used in [17]
for the proof of the classical Korn’s inequality will also be useful to prove the fractional case.

PROPOSITION 3.2 (Extension operator). Let s € (0,1) and 1 < p < oo and let D be an epigraph
supported by a Lipschitz function f : R"™' — R with |V f|L~ = M. There exists a bounded
extension operator E : W*P(D;R") — W*P(R"™;R"), a constant C > 0, depending only on n,p, s,
and M, and a constant ¢ > 0 depending only on n,p, and s, with the property that for all u €
W*P(D;R"™) one has

[E(w)] pon@n) < Clulxsw(ny + (1 + M) 2% Mlulyenp). (3.24)

Proof. By density of C1(D;R") in W*P(D;R") (see [9, Theorem 6.70]), it suffices to show the
inequality for C! vector fields. Following the approach in [17], we define the extension operator E
as follows. For u = (u/,u,) € C}(D;R"™), and for constants \, j, k, £, m, and ¢, set

ui(x), xeD, i=12...n—1,n,
[E(u)(x)]; = | ku}(z) + (ul (), xeD_, i=12,...n—1, (3.25)
muy(x) + qul(z) , reD_,

where

A = Uy :1:' (13/ r)—x =1Uu €T
@) = (@ S@) + M) = ) = u3(2x(a) 526)
(@) 1=y (@, F(@) + pF(@) — 7)) = y(@u(@)



We choose constants A, i, k, £, m, ¢, such that

A>0, pu>0, k+l=1=m+gq, Me=—m, pul=—q. (3.27)
For 0 < A < p these constants are uniquely defined and are given by
polfe 142 m:_A(Hu)’ q:u(HA)' (3.28)
w—A w— w—X\ w—A w—A
Let now § = L be as in Lemma 2.4, and choose

2¢o(n)/n(1 4+ M)
A=1—-0 and p=1+9, (3.29)
where we note that since 6 < 1/2, A, u € [1/2,3/2], and M > 0. Recalling that the boundary 9D
is given by the equation z,, = f(z), it is clear that the - operator E takes continuous map defined
on D to continuous maps on R™. Moreover, for u € C}(D,R"), E(u) € W*P(R",R™). This can be

shown following calculations similar to the ones that will be used below estimating [E(w)]xs.»®n)
to demonstrate the inequality (3.24). We split the domain of integration and write

(B () ey = [l ) + B e
+2 / / (= Bw@) @0y (330)

‘x — y[nt(s+Dp

We need to estimate the second and the third terms. For x € D_, we write

E(u)(x) = Ex(u)(z) + E,(u)(z)
where E)(u)(x) = (k(u')*,mu)) and E,(u)(x) = (((u')*, qut). We have

[E(u)]]j\fs,p(l) )= < 2P 1([E>\( )]Xsp(p )"‘[Eu(u)]lj\»s,p(p_))a

and will estimate each of the summands next. To estimate [E)\(u)]gfs,p( Dy
of coordinates z = ®)(x) and w = P,(y) and recall the discussion about the mapping ¢ in

(2.12)—(2.14) to write the integral as

X [Br(w)]. o

/ / |k (u (w)) - (2 — W) + m(un(2) — up(w)) - ((BA) "1 (2)]n — [(Q)A)_l(w)]n)'dedw
(@) "1(2) — (@)~ L(w)|nH(s+D)p )

we make the change

Notice that
1 14+ A

(@) (=)o = (@) @) = — (20 = wn) + () = (W),

and
|2 — w| < [[VOx|[ Lo (n_y [(BA) 71 (2) = (22) ' (w)].
It then follows using the relation A k = —m, that

plk

[BA(W) e ) < NS [uv;spw)

2P~ 1mP(1 + A (s (un(2) = un(w)) - (f(2') = f(w))|"
+ ﬂ;2grp ) ||V(I) || +( Jrl // ‘z_,u)7|d—i(- Y )‘ dwdz

S

n 5 1
IR (e + (L NIV Iy ) -
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A similar estimate as above also holds for [E,(u)]%.. , (p_) Where A,k are replaced by v and £. We

now combine the two estimates, keeping in mind (2.13), from which we have ||[V® )\||nJr SH; <

C(1 4 M)™"2P | and the explicit formulae (3.28) and (3.29) which imply k? < C(1 + M)P, to obtain
the bound, after some calculations, that

[EW)np ) < Clullyospy + e+ M) MPluffy,
(0-) (D) D)

u ) — u A(x — p
A |)m _E;|nl(§‘ﬁ)1)p( W gydz in (3.30).

To that end, we denote the integral by I, and for ¢ € D_ write
E(u)(z) = ku(®x()) + tu(@pu(x)) + (m — k) (0, un(P2(2))) + (g — (0, un(®p())),

It then follows by algebraic calculations and using the relations (3.27) and (3.28) between k, ¢, m,
and ¢ that for x € D_ and y € D:

(E(U)(w) - E(U)(y)) (z-y)

It remains is to estimate the third term / / (B

( ( (@) —u(y)) - (z —y) +{(w(@u(@)) —uw(y)) - (z - y)
)(Un A(T)) _Un(q)u(w))) ( )
( ( A@) —u(y)) - (Ba(z) —y) + ¢ ( w(@) —u(y)) - (Pu(z) —y)
+ (k—m) (un Az)) — ((I)u(m ) - (yn (m'))
+h (un(@A(2)) — un(y)) (zn ( ) = Af(&') = zn))
0 (un(@u(®)) — un(y)) (zn — f(2') — p(f(@) — z0))

+(k — m)(un(q’x( ) —Un(%(w)))(f(ﬂ?’) — Tp).
The latter three terms add up to zero. We then have the estimate that

e /! u(iy(@ ‘w_u) @@ -,

’n+(s+1)p
P
v IC u(y)) - (2u() — y)|
+ C? / / ]a: —y\”+ 5+ Dp dydx
+Cl—mp [ [ = /@) - (tn(@r(@)) — un(@u@D) )1
|£L' _ y|n+(s+1)p Y
- Irlmm + Irzmx + Igua:
The first two terms I\ . and I2,. can be estimated in similar ways. To demonstrate, making the

change of variables z = ®,(x), we obtain that

| Ckp//\ 2) —uly) - (- y)[
Liw = dydz.
D | (@) (2) — y|rtstp
We now use (2.15) to estimate the latter by Clu]ys»(py. We finish the proof by estimating ...
Making the variable change z = <I>1(:v) to work solely in D, we have that

[Yn — f(2)[Plun (2((21)"1(2))) — un(Pu((®1) " (2)))IP
”“*“SC/ / ’ |(<§1) 1(z) [P : dydz

- C/ J(2)un(2, f(2') + Mazn = f(2)) = un(2', f(2) + p(zn — £(2))IPdz,
D

11



where for each z € D

‘yn B f(z/)’p
J(Z): n+s+1pdy§—/8p
/D<|zf—y'\2+|<yn—f<z'>>+<zn—f<z'>>|2>‘z s e S

as shown in Lemma A.2 in the appendix (or [15, Lemma A.1]). As a consequence, we have that

B <0 [ mE TG 2D Zn (e [ £l S,
D

i on — F)]

Finally, an application of Lemma 2.4 together with (3.31) completes the proof of the proposition. [

(3.31)

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Theorem 3.1 follows by an application of the above proposition and Korn’s
second inequality for R", [19]. Indeed, let u € C}(D;R™). As remarked in the proof, E(u) €
WP(R™ R™). Then by the fractional Korn’s second inequality proved in [19, Theorem 1.1] for
vector fields defined on R", we have, on the one hand, for a constant ¢y = ¢o(n, p, s), that

[ulwsrpy < |E(w)|wspmny < col E(w)]xsp@ny-
On the other hand, Proposition 3.2 yields for constants C,c > 0 that
|B(w)| xsp(@n) < Clulyes(p) + (1 + V£ ]1) 5|V f[| oo [ulwon(p)).
Consequently, we obtain
fulwen(p) < coClulyenp) + ecoL+ [V fll )2 B[V Lo ulwer (o)

— n 1
which yields (3.23) for u € C!(D;R") provided My fulfills (14 My)*"2 My < —. To conclude
ce

0
that (3.23) holds for general uw € X*P(D), we use the definition of X*?(D). Take a sequence
{u;} c C}(D;R™) converging to u in X*P(D). Then a subsequence (not relabeled) converges a.e.
on D and so by Fatou’s lemma

|’U,|Ws,p(D) < hm inf |u]"Ws,p(D) < CO hm inf |'U;j|Xs,p(D) = Co|’u,|Xs,p(D).
J—00 J—00
0

Remark 3.3. As a consequence of Theorem 3.1, the extension E in Proposition 3.2 is a continuous
operator from X*P(D) to X*P(R"), since (3.24) and (3.23) yield

[B(w)] s (@ny < Clulvsn(py + e(1+M)> % Mlulywesny < Clulvsn(p)-

3.2 Fractional Korn’s second inequality in bounded domains

In this section we provide a proof of inequality (1.4) in Theorem 1.3. As already mentioned, we will
adopt a partition of unity argument employed in [15]. For the convenience of the reader we repeat
the arguments here. Before we present the proof, we make the following observations related to

12



estimates involving the product Yu of u € X*P(Q) and ¢ € WLo(Q). First, such a product Yu
belongs to A*P(2) with the estimate

[Yulxsr) < cll$llwrellwllxsr),

where ¢ depends only on n,p, s, and diam(Q2). This is precisely [15, Lemma 3.1]. Second, due to
[15, Lemma 3.2], if Q C €, and there exists § > 0 such that for all y € Q\

dist(y, supp(v))) = 8 > 0,

then after extending the product by 0 on Q\ Q, it will belong to X*P(Q) with the similar estimate

Wl @y < B lwroe full o, (3.32)

where ¢1(3) depends only on n,p, s,diam(2), and . Both statements can be proven by a direct
evaluation of the X’ seminorm of the product ¢u, see [15] for details. We are now ready to present
the proof of the the theorem.

Proof of inequality (1.4) of Theorem 1.3. Let My be the constant found in Theorem 3.1. Suppose
that Q is a bounded Lipschitz domain with local Lipschitz constant < Mj. By definition, we may
choose an open set {2y € {? and open balls B, (yj), for j =1,..., N with centers y; € 02 such that

1. Q:LJ;-VZOQJ- where ; = QN B, (y;) for j=1,...,N.

2. Forevery 1 < j < N, define Tj : B;,(y;) — R" to be the operator consisting of the translation
y; — 0 and a rotation such that T;(0Q N B,;(y;)) coincides with part of the graph of a
Lipschitz function f; : R*™* — R with IV fillpee(mn-1y < Mp. Note that the function f;
is initially only defined on an open bounded subset of R"~!, but we extend it into all of
R™! by Kirszbraun’s theorem [5], preserving the Lipschitz constant. This is necessary for
the reduction of the situation to epigraphs in R" 1.

Set Q; = Tj(Brj (yj)), and also define

Qf ={xecQ;: x> fi(x)}, QF ={zecQ;: = <fix)},
K :={xeR" : 2, > fi(x")}, K ={xcR":z,<f(z)}.

We may choose the map Tj so that T;(Q;) = Q;. Note that T} is a bi-Lipschitz map with
Lipschitz constant depending only on n and 2. Let {cpj}évzo C C°(R™;R) be a C*° partition of
unity subordinate to the collection {Q0} U {B;,(y;) ;\le. Then for every 1 < j < N, we have
supp(y;) C By, (y;), dist(y, supp(w;)) > 85 > 0 for every y € Q\ ;. We also have supp(po) C o,
dist(y, supp(yo)) > Bo > 0 for every y € Q\ Q, and Zj‘vzo p; =1onQ.

Suppose now u € C1(; R"). Define u; = pju, for j =0,1,..., N. We consider u first. After
extending it by 0 to R", we have that ug € X*P(R") and that by the fractional Korn’s inequality
on R", [19] and (3.32)

C[uo]xs,p(Rn) (333)

CC?(ﬁo)HSDOHWLOO ||U’|stp(9)-

[wo|wsr() <
<
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For j =1,..., N applying again (3.32) using the semi norm | - [yysp(q) instead of [-]ys.»(q) we have

|wjlwen(ay < A (B))llsllwre ujllwsr@,) (3.34)

where c{(ﬂj) depends only on s,p,n, diam(Q2) and f;. Now since T} consists of a rotation and a
translation, VTj is a constant rotation, with T;(x) — Tj(y) = (VT})(x — y). Therefore, writing
R; := VTj, define vj(x) := Rju{(Tj_l(w)). Then we have v; € Ws’p(Q;r) and that for each
Yy € Kj \ Qj, dist(y, Supp(v;)) > B, > 0 for some positive constant 3,. Moreover,

101l o @) = 1wsllzo @)y Villwenigry = Ilusllwsr @), and (o] 4 o) = [uilxsr @)

We will demonstrate the last equality as the others can be established similarly. By a change of

coordinates,
(Rjuj(z) — Ryuj(y)) - (Tj(x) — Ty(y))["
[v; XSP(Q+ // \T() T;(y)|n+epte dude

/ / |(Byus(@) — Rjui(y) - (Ryw — Ry)[”

‘R T — Rjy’n—i-sp-‘rp

‘p

dydx

// ‘RR U’J| _Ug(y))'(w—y)

‘n+5p+p
U5l

Extending v; by 0 on K;r \ Q;, we have that v; € Cl(K;T;R"). Applying the fractional Korn’s
inequality for epigraphs, Theorem 3.1, we have

""j|ws,p(Q;L) = |'Uj|Ws,p(K;F) (3.35)
< CHUJ ||X5»P(K;_)’
where C' only depends on s, p,n and My. We may also apply (3.32) to estimate further as
||"’j”;vs,p(K]+) = C%(Bj)””j“xs,p(cgj) (3.36)
We combine now (3.34), (3.35), and (3.36) to obtain
|'u’j|W5vp(Q) < CHU’HXS’?’(Q)a ] = 1727"'7N7 (337)

where C' is a positive constant that depends on s, p,n,diam(Q2), My, and the partition of unity.
Therefore by (3.33) and (3.37), we have

N
ulwsp(Q) = {ZUJ}WW(Q < Z Ujlwsrq) < Cllullxsrq)
J=0 J=0

The estimate for vector fields w in W*P(Q); R") follows by density. This completes the proof. [
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3.3 Fractional Korn’s first inequality in bounded domains
In this section we provide a proof of inequality (1.3) in Theorem 1.3.

Proof of inequality (1.3) of Theorem 1.3. Assume in contradiction (1.3) fails to hold. It then fol-
lows that there exist a sequence u; € W*P(Q,R") and a sequence of skew-symmetric matrices
Ay, € skew(R") such that

. 1
|uk_Ak'm’Ws,p(Q): AESIIggI(R”) |uk —A- m|Ws,p(Q) =1 and [uk]Xs,p(Q) < %, k= 1, 2, cee (3.38)

We may also assume that for each k the average of uy — Ay - @ over € is 0 by shifting it by a vector
b, € R™ if necessary. Upon passing to the fields vy = up — A - © — by, we can further assume
without loss of generality that Ay = 0 and by = 0. Thus the minimality conditions

[Velwsw) < [vk — A x|wsn) forany A €skew(R"), k=1,2,... (3.39)

hold and by Poincaré’s inequality, the sequence vy is bounded in W*?(Q; R"). From the compact-
ness theorem, [1, Theorem 7.1], the sequence {vy} is pre-compact in LP(2), thus we can assume
without loss of generality that

vy — v in LP(Q), (3.40)

for some field v € LP(€2). We then have by Korn’s second inequality (1.4) and (3.39) that

vk — v llwsr@) < C([ve — vmlxse@) + lvr — vmllLr(@)
< C([vr]wsr) + [mlasr@) + 1V — vmllLr@))
< C/k+1/m+ [lvg — vmllLe@),
thus the condition (3.40) implies that the sequence {vy} is Cauchy and thus is convergent in

W#P(Q). This gives, as k — oo
vp — v in WH(Q). (3.41)

From (3.38) and (3.41) we have

[v]xsw(e) < [Vk]xso@) + v — vi]asr(q)
< 1/k + [’U — ’Uk]Ws,p(Q) —0

as k — 00, thus [v]ys.r(q) = 0, which gives
vie)=A-xz+b, forae xe(), (3.42)

for some constant skew-symmetric matrix A € R™*" and some vector b € R™ [24, Proposition 1.2].
Note that then we have by (3.38), (3.39), (3.41), and (3.42):

1= ’vk‘ws,p(g) S |Uk — A . .’B’Ws,p(g) = ‘Uk — ’U’Ws,p(g) —0

as k — 0o, which is a contradiction. ]
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4 Fractional Korn’s inequality for planar polygonal convex do-
mains

As we discussed in the introduction, we conjecture that the smallness of the Lipschitz constant of
the boundary of the domain is not necessary for the validity of the Fractional Korn’s inequalities.
In this section, we will support this hypothesis by demonstrating the validity of the inequality in
the case of planar polygonal convex domains. The argument of the proof mimics the strategy we
used for smooth domains. We begin by proving the inequality for angular domains. We then cover
the boundary of the convex polygonal domain by balls centered on the boundary. The resulting
intersecting sets are either wedges (bounded angular domains) or half balls over which we will have
the appropriate estimates. Finally, we use a partition of unity argument to obtain the estimates
over the convex polygon. In this section, vectors defined on the planar domains are represented as
u = (u1, ug).

4.1 The case of angular domains

Consider an angular planar domain D with an angle of span in the interval (0, 7). Upon an affine
change of variables, we may assume without loss of generality that D is given by

D={xcR®: 0<uz, ar <}, (4.1)

for some o € R. Note that D is exactly half of the epigraph supported by the function f(x1) = ax;
defined over (0,00). In that case, we set

D_:{a:ER2 0<my, xo<azxi}.

Notice that DU D_ = Rilzo ={(z1,22) € R?: 2y > 0}. We begin by demonstrating the existence
of an extension operator to prove that vector fields defined over D can be extended to R§1>0

accompanied with an appropriate control of their nonlocal norm. We use the extension operator
defined in [17] for planar angular domains where it is shown to map W1?(D;R?) to Wh?(R? R?).

PROPOSITION 4.1. Let s € (0,1), 1 < p < oo, and let D be given by (4.1). Then, there exists
a bounded extension operator E : X*P(D) — Xs’p(R§1>0) such that E(u)(x) = u(x) for x € D.
Moreover, there exists a constant C > 0 depending only on p, s, and «, such that for allu € X*P(D),

[E(w)]xsnmz ) < C[ulxsrp) + ullro)- (4.2)

z1>0

Proof. As before, it suffices to prove the inequality for u € CHD;R?). Following [17], we set
E(u)(x) = Ex(u)(x) + Eu(u)(x), for £ € D_, where

A(w) (@) = (kup () + ak(l+ Nuj (@), mu (@)
p(w)(@) = (Cuy(z) — ak(1 + Nuh (), quy (), (4.3)

N >

ST

and E(u)(x) = u(x), if ¢ € D. The constants A, p, k, ¢, m, g, satisfy the constraints (3.27)-(3.29),
and the functions u? and uf! are defined as before in (3.26). Note that this is the extension for
epigraphs with the additional summand k(14 \)(u3 () —ub ()) in the 1st component of E(u)(x)

for & € D_. The proof of the estimate in (4.2) follows the calculations done for the case of the
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epigraphs. Below we sketch the proof only including those calculations that are new. As before,
we begin by decomposing the integral as

):[E( )]Xsp(p)+[E( )]Xsp(
s / / [ )@=,

’:B _ ‘n—l— (s+1)p

[E(u)}Xs p(Ril>0

We need to estimate the last two terms. Clearly,

[E(")]is,p(pf) < 2rt ([E)\( )];(sp(D ) [E (u )]Xsp(p ))

A simple calculation reveals that the additional summands ak(1-+\)u3 () and ak(1+X\)ub () make
it possible to simplify further. Indeed, after change of variables z = ®)(x) = (x1, azx1 + A\ (az1 —x2))
and w = (y1,ay1 + AM(ay1 — y2)), we have that

(Bx(u)(2) — Ex(u)(w)) - (237 (2) — 23 (w)) = k(u(2) —u(w)) - (z — w),

and hence
[EA( )]Xsp(D )= < Cla, A\ k,p, s)[u ]Ij\fs,p(p)-

Similar estimates also holds for [E,,(u)]% “vew(p_)» after noting that the relations between the param-

eters in (3.27), implies that ak(1+\) = —al(1+u). The point here is that the additional summand
a k(1 + \)(up(z) — ub(x)) in the first component of the extension facilitates a cancellation of the
extra term, which is \u]Ws,p( p) multiplied by the Lipschitz constant «, that would appear if we
otherwise use the extension operator (3.25) treating the domain as a Lipschitz domain. This elim-
inates the need for the Lipschitz constant to be small so as to absorb the term involving ]u\Ws,p( D)-

What is left now is estimating the mixed integral / / ...dydzx appearing in (4.4). This can be
p_JD

estimated as in the proof of Proposition 3.2. The onl}; difference is that there will be an additional
term due to the new term ak(1+ ) (u%(:c) — uf(x)). This amounts to estimating the expression

e [ [ 18O ) s

in terms of the norm of w in X*?(D). To prove (4.5), by the change of variable z = ®; (), we have

Moy = C / / (@1 () — (@1 () (er =yl

;l(z) _ y|2+p+ps

<c/ (@7 (2)) — b (@77 (2)) Pdz,

where for any fixed z € D we have set

|Zl — y1|p
d
]<I> |2+p+ps Y

Using Lemma A.2 from the appendix we have that for each z € D,

C
)= L=
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with a constant C' that depends only on p, s, and the Lipschitz constant of f(z1) = az1, which is «
in this case. As a consequence, we have

|u (D1 (2)) — uh (P (2)IP
Ilhew < C/D 2 — f(21)P° dz (4.6)
_ uz (21, f(21) + Az — f(21)) — ualen, f(z1) + plz2 = F))P
=, PR 4=

In order to finish the proof we need to estimate the expression in (4.6) by the seminorm [u]ys.»(p)-
This would be straightforward by Lemma 2.4, if D was an epigraph (but D is just part of an
epigraph). We demonstrate below how the proof of Lemma 2.4 can be adjusted to this situation.
To that end, we need to provide an appropriate Whitney-type cover of D. Let F = {x € R?

x1,x2 > 0} be the first quadrant in R2. We cover F' by horizontal rows of identical dyadic cubes
as follows: Cover the strip F' N {2]’C <z < 2k+1} by closed cubes, Qy, of side length 2%, for every
k € Z starting from the xo—axis. The resulting cover is exactly the restriction of the Whitney cover
of the upper half-space on the first quadrant. Notice here that, Qj is 2" distant away from the

~

xz1-axis, and the doubled cubes Qz in the direction of the positive axes have a finite intersection
property. Now, the domain D is the image of ' under the bi-Lipschitz mapping

¢ : F — D defined by p(z1,z9) = (z1, zo+ax1).

Each of the dyadic cubes Qi (from the covering of F') will get mapped to a parallelogram Py
which will constitute a Whitney-type cover of D, by a sequence of dyadic parallelograms. It is not
difficult to see that Py is a translation of 2¥ times the base parallelogram P, determined by the
points (0,0), (0,1), (1,«), and (1,1 4 «). This construction gives rise to a perfect cover of D, as
the parallelograms are essentially disjoint. Moreover, for any k, the height of parallelogram Py is
comparable to its distant away from the line 9 = ary = f(x1), and the finite intersection property
of enlarged cubes of the initial Whitney cover will also persist under the mapping ¢. We denote the
image of the doubled cubes Qz by P;r That is, Pz = go(Q;r) and, from the construction, these are
just translations of 2¥ times par, which is the paralellogram determined by the points (0, 0), (0, 2),
(2,2a), (2,24 2«). With this at hand, we can now repeat the argument in the proof of Lemma 2.4.
Since the argument is almost the same for this construction, we only demonstrate the analogue of
the inequality (2.22). To that end, we have

lua(z1, f(21) + A(z2 — f(21))) — u2(z1, f(21) + plz2 — f(21)))Pdz (4.7)
=33 () =Pj(2)

<o /P s (@5, (2)) — (A - B3(2) + by)aldz

Py,

L op-1 /P s (®%(2)) — (Ag - B%(2) + by )a[Pdz

< — A -y—b|?
< Cllu(y) = Ax -y —bell], o)
< COFP° p

< Cay, [u(y)]‘){s,p(ﬁ);)’

where ay, is the height of P, and, as before, we can show that for appropriately chosen A\ and u,
depending on « and n, ®}(P%), ®,(Px) C PZ Notice that the choice of the infinitesimal rigid
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displacement @ +— Ay, -z + by, as well as the last inequality follow from a version of Poincaré-Korn
inequality over the parallelogram PZ (see Remark 2.2). Indeed, after noting that the area of the
base parallelogram Py is 1, then by a simple scaling we have that for any 7 > 0,

Hg}% | =7l 1o(rpy) < OT (U] xon(rpy)s

where C independent of 7. Putting together the analogue of (2.20) and (4.7) we obtain that

/ |ug (P} () — ua (P ())”
Py

|z2 — f(21)P5 dw < Cluly)l;

Xxsp(Py)

The rest is similar to the proof of Lemma 2.4.
O

Remark 4.2. Following the above procedure, we can show that the above extension operator is also
bounded from W*P(D,R?) to WS’P(R§1>O,R2). The proposition also implies the fractional Korn’s
second inequality for planar angular domains. Indeed, let u € C’cl(ﬁ, Rg). Then by Proposition
4.1, we can extend u to E(u) € X*P(R2 ) such that

[E()]lasr@z ) < Cllulasem) + ulloem))-

Noting that E(u) is defined on an epigraph, up to a rotation, we may apply the fractional Korn’s
inequality for epigraphs, Theorem 3.1, and obtain

[ulwer(pr2) < \E(U)’Wsm(RgPO,R?) < C[E(u)]XSvP(R§1>O) < C([u]xsopy + lullr(py).  (4.8)

4.2 The case of planar convex polygonal domains

In this subsection, we show that extension of vector fields defined in planar convex polygonal
domains D to R? with controlled || - || xs.» norm is possible. We prove the following extension result.

PROPOSITION 4.3. Let n =2, s € (0,1) and 1 < p < co. Let Q be a convex polygonal domain, i.e.
0%} is a simple closed curve that is piecewise affine, with finitely many vertices with interior angle

in (0,7). Then there exists a positive constant C, depending only on s,p and 2, such that for all

u € WP (Q: R?), one has

[l < Culyenoy + [l )

Proof. The proof is similar to that of inequality (1.4). Choose an open set Qy € §2 and open balls
B, (yj), for j =1,..., N with centers y; at the vertices of 2 such that

1. Q= U;-V:OQJ- where Q; = QN B, (y;) for j =1,...,N and y; ¢ B, (y;) if i # j.

2. Forevery 1 <j < N, define Tj : B, (y;) — RR? to be the operator consisting of the translation
y; — 0 and a rotation such that 7;(0Q2 N B, (y;)) coincides with part of an angular planar
domain {x € R? : 0 < 2y, ajxy < x2}, for o € R.

Set Q; = Tj(Brj (y;)), and also define

Q;— 2:{w€Qj 0 < 2y, Ozj:IZ1<l’2}, Q]_ 2:{:]26Qj 0 <2y, ajx1>a;2},
KJ‘F ::{CCER2 : 0 <, ajr <z}, KJ_ ::{CCE]R2 : 0 <1, oz > @2}
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We may choose the map T} so that T;(£2;) = Q+ Note that T} is a bi-Lipschitz map with Lipschitz
constant depending only on Q. Let {¢p; }]:0 C Cg" (R%R) be a C* partition of unity subordinate
to the collection {Q0} U {B;, (yj)}évzl Then for every 1 < j < N, we have supp(y;) C By, (y;),
dist(y, supp(¢;)) > B; > 0 for every y € '\ ;. We also have supp(pg) C Qo, dist(y, supp(yo)) >
Bo > 0 for every y € Q\ Qp, and Z;V:o‘ﬁj =1on Q.

Suppose now u € Cl(ﬁ; R2). Define u; := ¢ju, for j = 0,1,..., N. Following the exact
procedure in the proof of Theorem 1.3 we show that

[wolwsria) < Cllullxspq) (4.9)

and
|'u,j’Ws,p(Q) < CH’U,HXs,p(Q), _] = 1,2,...,N, (4.10)

where C'is a positive constant that depends on s, p, diam(€2), and the partition of unity. Therefore
by (4.9) and (4.10), we have

n

N
ulwer(@) = {Z“J}Wspm [slwsr(@) < Clullrer@)-
J=0 =0

The estimate for vector fields w in W*P(Q; RQ) follows by density. This completes the proof. [
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A Some technical lemmas

The following estimate is used in the proof of boundedness of the extension operator in cylindrical
epigraphs. The lemma originally appeared in [15] with the restriction that the base function f has
a small Lipschitz constant. We prove the lemma without any restriction on f here.

LEMMA A.1. Let f : R" ' — R be Lipschitz with Lipschitz constant M. Let D C R™ be an epigraph
supported by f. For A\ > 0 let ®(x): D_ — D be as in (2.12). Then one has

@~y < Cloy (@) —y| forall @yeD,
for some constant C = C(\, M).

Proof. We have ®,!(x) = (z/, f(z) + —(f(z) — x,)), hence we can calculate for any x,y € D_ :

> =

2

_ 1 1
@51 (@) — ylP = | — o/ + |+ g~ (1 ) ()
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In the case x,, <y, we have

Sen by — (L4 5@ = (= 7) + (L4 ) — (&)

> Yn — Ty >0

thus we get |®,'(z) — y| > |z — y|. Assume in the sequel z,, > yy. Let € = (M, \) € (0,1/2] be
a small constant yet to be chosen. If |’ — 9’| > €|z — y|, then we are done. Assuming further
|z’ — y'| < €|z — y|, we have

/

|m - yl| < |$n - yn| < 26|mn - yn|

€
V1—¢€2

We can then calculate again

1 1 1 1 1
S o = (L D F@) = 5 = wn) + L+ D~ FB)) + 1+ 1)) — f&))
1 1
> = . B = / /
= )\(‘Tn yn) M(1+>\)|y 93|
1 1
> (2 — _ _
> (5 = M(1+ 7)) — 90)
1
- ﬁ(xn _yn)
>0,
if we ch —min(t,— 1 ) Th f i let O
1I we Ccnoose € = min 272M(1—|—)\) . € Proor 1s now complete.

The following estimate is used in the proof of the existence of a bounded extension operator on
planar angular domains.

LEMMA A.2. Let f: R" ! — R be Lipschitz with Lipschitz constant M. Let D C R™ be an epigraph
supported by f. For the map ®x(x',z,) = (', (1 + X) f(z') — A\z,): D — D with X > 0, there
exists a constant C, depending only on n,p,s, A and M, such that

C
Ia::/ _ y< ———— forall x€D.
(=) p |3} () — y|rtrirs | — f(a')|Ps

Proof. For simplicity we will present a proof for A = 1, the general case being completely similar.
We have

/ |z —yl? y:/ (|2’ — '] + 20 — yn| )P/ iy
D |7} (@) — y[rirres D (12 — Y2 + |yn + zn — 2f (2/)|2) (ntptps)/277
For € > 0 yet to be chosen, and for any @ € D define the complementary subsets of D as follows:

Ei(x)={yeD : |y - | 2 e(zn — f(2))}, Ei(x)={yeD : |y —2| <e(wn— f(z))}

In what follows, the constant C' may depend only on n,p,s, M and e. In the case y € Ef(x),
substitute a = z, — f(') > 0, ¥ — 2’ = aw’ and y, + z,, — 2f(x’) = at, where |w'| > € and
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w’ belongs to a subset of R™ ! and ¢ belongs to a subset of R. We can then estimate using the
inequality (Jw’|? + |t — 2|*)/2 < C(|w'| + |t| + 1) that

[ (o g/l =P
2) ([T = U2 + [yn + 2o — 2 (a/)[2) (0 H00) 2
(' + |t — 220/

S s duw'dt
ooare / /'w 1ERn-L ¢ |w!|>e} ’w”z _|_ ’t’ ) (n+p+ps)/2
S s / / = dw'dt
B w
aP® JR J{w' ern-1 : jwr|2ep ([0 + \t\)n+ps ([w'] + [t])nrestr
c R
= gps w
abs {weR™ : |w|>e} ‘w‘n-‘rps |w’n+ps+p
_ C(9
=

Consider now the case y € E5(x). We have in that case
Yn + 20— 2f(2) = (yo — f(¥) + (F (W) = f(&) + 20 — f(2)
~Mly' —a'| + zn - f(2)
(1 —eM)(zn — f(')).
Thus 1f we choose e =1/2M, we will have y,, +z, — 2f (') > (x, — f(z'))/2. Consequently, setting

' —y = aw' and y,, + z, — 2f(2') = at, we will have that |w’| < ¢ and w’ belongs to a subset of
R"™! while ¢ belongs to a subset of (1/2,00). We can estimate in a similar manner:

/ (|$/ y’|2—|—|x —yp |2)p/2 dy
Es() (1T — Y12 + [yn + 20 — 2f (/) |2) (ptps) /2

72 t—9 2\p/2
= ws / / (|w2‘ * D) sdw'dt
aps 1/2 J{w'eRn—1 : jw/|<e} (‘w ’ + ‘t’ ) (n+p+ps)/

>
>

1
G T dw'dt
abs //2 /w 1ERP-1 ; |w!|<e} (|w ’ + |t|)n+p5 (|w,‘ T ’t|)n+ps+p
< ¢ 1 N 1 .
= a» w
aP* Jwern : jwi>1/2) [W[HTPS T [w[r PP
C
<.
<

This completes the proof of the lemma.
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