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Abstract
Motivated by a linear nonlocal model of elasticity, this work establishes fractional analogues

of Korn’s first and second inequalities for vector fields in fractional Sobolev spaces defined over
a bounded domain. The validity of the inequalities require no additional boundary condition,
extending existing fractional Korn’s inequalities that are only applicable for Sobolev vector
fields satisfying zero Dirichlet boundary conditions. The domain of definition is required to
have a C1-boundary or, more generally, a Lipschitz boundary with small Lipschitz constant.
We conjecture that the inequalities remain valid for vector fields defined over any Lipschitz
domain. We support this claim by presenting a proof of the inequalities for vector fields defined
over planar convex domains.

1 Introduction and main results
In this paper, we prove the fractional analogues of Korn’s first and second inequalities in the so-
called bounded Lipschitz domains with small Lipschitz constant. For n ≥ 2, suppose that Ω ⊂ Rn is
a bounded domain with Lipschitz boundary. Classical Korn’s inequalities give a means of controlling
the Lp-norm of the gradient ∇u of a Sobolev vector field u : Ω → Rn by the symmetric part of its
gradient, e(u)(x) = 1

2
(∇u(x) +∇u⊺(x)) (and the vector field itself). For 1 < p <∞, a version of

the classical Korn’s first inequality [7, 8] states that there is a constant C = C(Ω) > 0, such that

inf
A∈Skew(Rn)

∥∇u−A∥Lp(Ω) ≤ C∥e(u)∥Lp(Ω) for all u ∈W 1,p(Ω,Rn). (1.1)

Here, Skew(Rn) represents the set of n × n skew symmetric matrices. Korn’s second inequality
reads as follows [7, 8]: there is a constant C = C(Ω) > 0, such that

∥∇u∥Lp(Ω) ≤ C
(︁
∥e(u)∥Lp(Ω) + ∥u∥Lp

)︁
for all u ∈W 1,p(Ω,Rn). (1.2)

These inequalities play a fundamental role in establishing the well posedness of the linear equations
of elastostatics, a system of partial differential equations arising from linearized elasticity under
various boundary conditions [7, 8, 6].

By a fractional analogue of these inequalities we mean estimates of these type for vector fields
in the fractional Sobolev spaces W s,p(Ω;Rn), for s ∈ (0, 1), where u ∈ Lp(Ω;Rn) is in W s,p(Ω;Rn)
if and only if

|u|pW s,p(Ω;Rn) =

∫︂
Ω

∫︂
Ω

|u(x)− u(y)|p

|x− y|n+ps
dxdy <∞.

∗Department of Mathematics, University of California Santa Barbara, harutyunyan@ucsb.edu
†Department of Mathematics, The University of Tennessee Knoxville, mengesha@utk.edu
‡School of Mathematical Sciences, University of Nottingham Ningbo China, Hayk.Mikayelyan@nottingham.edu.cn
§Department of Applied Physics and Applied Mathematics, Columbia University, jms2555@columbia.edu

1



The function space W s,p(Ω;Rn) is a Banach space with the norm ∥·∥W s,p(Ω) = ∥·∥Lp(Ω)+ | · |W s,p(Ω).
When writing inequalities analogous to (1.1) and (1.2) for vector fields in W s,p(Ω;Rn), one must find
proper substitutes for the notion of gradient and symmetric part of the gradient. It is intuitively
clear that the difference quotient u(y)− u(x)

|y − x|
could be used as a substitute for the gradient of ∇u

while the seminorm |u|W s,p(Ω) replaces ∥∇u∥Lp(Ω). Noting that for x ∈ Ω and y close to x, one

has for suffficiently smooth vector fields u(x) that (u(y)− u(x))

|y − x|
· (y − x)

|y − x|
≈ e(u)(x)

(y − x)

|y − x|
· (y − x)

|y − x|
,

we will use the projected difference quotient (u(y)− u(x))

|y − x|
· (y − x)

|y − x|
as the nonlocal analogue for

e(u), and the seminorm

[u]pX s,p(Ω) :=

∫︂
Ω

∫︂
Ω

⃓⃓⃓
(u(y)− u(x)) · (y−x)

|y−x|

⃓⃓⃓p
|y − x|d+ps

dydx

to replace its norm. This weighted norm of the projected difference quotient not only approximates
the norm of e(u) but also inherits its zero sets. Indeed, for L1

loc(Ω) vector fields u, the equality
(u(x)−u(y)) · (x− y) = 0 holds for a.e. x,y ∈ Ω, if and only if u is an infinitesimal rigid motion
[24, Proposition 1.2], i.e., u has the form

u(x) = Ax+ b, for some A ∈ Skew(Rn) and b ∈ Rn.

Those are exactly Sobolev vector fields that make e(u) = 0 a.e. in Ω, as can be seen from (1.1).
We denote this class of vector fields by R. Before we are ready to state the desired fractional
analogues of Korn’s inequalities, we need to introduce the definition of bounded domains with
Lipschitz constant not exceeding a number L > 0.

Definition 1.1. An open bounded Lipschitz domain Ω ⊂ Rn is said to have a Lipschitz constant
≤ L, if the boundary of Ω can be covered by finitely many balls (or cylinders) Bi, i = 1, 2, . . . ,m,
so that each portion ∂Ω∩Bi is the graph of a Lipschitz function with Lipschitz constant ≤ L, upon
a rotation of the coordinate system.

Remark 1.2. An open bounded domain with C1-boundary has a local Lipschitz constant as small
as any initially chosen positive constant ϵ > 0.

Theorem 1.3. Let n ≥ 2, s ∈ (0, 1), p ∈ (1,∞). There exists a constant M0 > 0, depending
only on n, p, and s, such that the following holds: for any open bounded Lipschitz set Ω ⊂ Rn with
Lipschitz constant ≤M0, there exist positive constants C1 and C2, depending only on d, s, p and Ω,
such that for all u ∈W s,p(Ω;Rn), one has

inf
r∈R

|u− r|pW s,p(Ω) ≤ C1[u]
p
X s,p(Ω), (1.3)

and
|u|pW s,p(Ω) ≤ C2([u]

p
X s,p(Ω) + ∥u∥pLp(Ω)), (1.4)

where R is the class of infinitesimal rigid motions.

Some remarks are in order. The same way the classical Korn’s inequalities are linked to the
linearized elasticity, so are their fractional analogues to some nonlocal models of elasticity. We
discuss here one such model, peridynamics, a continuum nonlocal theory of mechanics of materials
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initially proposed by Stewart Silling [20, 22, 21]. In bond-based linearized peridynamics, a material
occupying a domain Ω is approximated to be a complex mass-spring system where material points
interact, at a distance, with each other over a bond joining them. If the material is subject to
a deformation v(x) = x + u(x), then (u(y)− u(x))

|y − x|
· (y − x)

|y − x|
represents a (unit less) linearized

nonlocal strain at x along the bond ξ = y − x. The total strain energy is postulated to be
proportional to

Wρ(u) =

∫︂
Ω

∫︂
Ω
ρ(y − x)

⃓⃓⃓⃓
(u(y)− u(x))

|y − x|
· (y − x)

|y − x|

⃓⃓⃓⃓2
dydx,

where ρ(ξ) is locally integrable and serves as a weight for the long-range interactions. Given an
external force f ∈ L2(Ω;Rn), the corresponding configuration can be found as a minimizer of the
functional

u ↦→Wρ(u)−
∫︂
Ω
f(x) · u(x)dx (1.5)

over an appropriate admissible subset of L2(Ω;Rn). In fact, existence of minimizers in some subsets
of the energy space Sρ(Ω) = {u ∈ L2(Ω;Rn) : Wρ(u) < ∞} is demonstrated in [13]. See also [14]
for existence of solutions to more generalized models of linearized peridynamics. Except for n = 1,
the question that whether Sρ(Ω), which is based on the projected difference-quotient, is equal to
the space

{u ∈ L2(Ω;Rn) :

∫︂
Ω

∫︂
Ω
ρ(y − x)

|u(y)− u(x)|2

|y − x|2
dydx <∞}

based on the full difference-quotient remains open. The fractional Korn’s inequalities proved in
Theorem 1.3 address this question and establish equality of sets for a special case when ρ(ξ) =
|ξ|−n−2(s−1), for s ∈ (0, 1). In this case, Wρ(u) = [u]2X s,2(Ω) and minimizing the functional in (1.5)
over a weakly closed subset of the smaller W s,2(Ω;Rn), say, W s,2

ω (Ω;Rn) = {u ∈ W s,2(Ω;Rn) :
ω ⊂ Ω, u = 0, a.e. in ω} is possible. To apply Hilbert space methods, inequality (1.4) is now
essential, along with a Poincaré-Korn inequality, see Lemma 2.1 below, to show the coercivity of
the functional. We leave the details to the interested readers, see [13, 14].

We emphasize that the main contribution of this work is proving inequalities (1.3) and (1.4) for
vector field in W s,p(Ω,Rn) without any “boundary conditions.” While (1.3) as stated appears to
be new to our best knowledge, its special version with A = 0, and inequality (1.4) have appeared
in recent works, albeit in restricted forms. Indeed, the variant of (1.3) with A = 0 was first
proven in [12] for the case when Ω is the half-space, p = 2, and for vector fields u ∈ W s,2

0 (Ω)
which is the closure of C1

c (Ω,Rn) with respect to the norm ∥ · ∥W s,2(Ω) (roughly speaking for vector
fields satisfying zero Dirichlet boundary conditions on ∂Ω), see [1]. The estimate for the half-space
was then extended for any values 1 < p < ∞ in [19]. The estimate was then proven in [15] for
the restricted class W s,p

0 (Ω,Rn) for bounded C1 domains, and the same result appeared in [18]
significantly shortening the proof presented in [15]. A tighter version of estimates (1.3) and (1.4)
have also been proven in [4] for the case when ps > 1, where for some constant C > 0,

|u|W s,p(Ω) ≤ C[u]X s,p(Ω) for all u ∈W s,p
0 (Ω;Rn). (1.6)

Via a counterexample [4], inequality (1.6) is shown to fail for any open bounded subset Ω ⊂ Rn

in the case ps < 1. This is in stark contrast to the case when Ω = Rn or Ω = Rn
+ (unbounded

domains), where (1.6) is proved to hold for any s ∈ (0, 1), p ∈ (1,∞) such that ps ̸= 1, [12, 15]. In
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fact, in this case, our current work implies that the restriction ps ̸= 1 is not even necessary. We
note that (1.6) is the fractional analogue of another version of Korn’s first inequality:

∥∇u∥Lp(Ω) ≤ Cp∥e(u)∥Lp(Ω) for all u ∈W 1,p
0 (Ω,Rn),

for a constant Cp > 0 that depends only on p. This being said, a new phenomenon occurs in the
fractional setting.

Remark 1.4. It is well known that the range of exponent that validates the classical Korn inequal-
ities (1.1) and (1.2) is 1 < p < ∞. Moreover, for Sobolev vector fields that satisfy zero Dirichlet
boundary conditions, one can always choose A = 0 in (1.1) in that range. However, this is no
longer true in the fractional setting because despite the fact that the case ps < 1 is included in the
validity range for (1.3) and (1.4), the version of (1.3) with A = 0 fails in bounded domains in the
case ps < 1.

As it is clear from the formulation, Theorem 1.3 has the limitation that inequalities (1.3) and
(1.4) are established for a class of vector fields defined over a domain with a boundary that has
a sufficiently small Lipschitz constant. Taking clues from the classical Korn’s inequalities [17], we
conjecture that in fact the inequalities remain valid for any bounded Lipschitz domain. To support
the claim, we establish the same inequalities for planar convex Lipschitz domains with no constraint
on the size of Lipschitz constant of the boundary. This will be demonstrated in Section 4.

As we will show in Section 3, inequality (1.3) follows from (1.4). The main challenge is thus
proving (1.4). Our method of proof is standard. We first establish (1.4) for epigraphs supported by
a Lipschitz function and then use a partition of unity to localize near the boundary of the domain.
The later part of the argument is successfully carried out in [15] and [18] and we will not repeat it
here. We would rather focus on obtaining the estimate for epigraphs. That will be accomplished
after proving the existence of an extension operator to extend the vector fields in the epigraph to
be defined on Rn. As in [15] we will use the extension introduced in [17] which allows us to control
the seminorm of the extended vector fields by the seminorm over the epigraph. In this work, we
use an improved Hardy-type inequality, Lemma 2.4 in Section 2, to overcome a technical difficulty
that we encountered in [15] and restricted the validity (1.4) to only vector fields that vanish on the
boundary.

2 Korn-Poincaré and Hardy-type inequalities
Given an open set D ⊂ Rn, we define the spaces X s,p

0 (D) and X s,p(D) to be the closure of C1
c (D;Rn)

and C1
c (D;Rn), respectively, with respect to the norm ∥ · ∥X s,p(D), where C1

c (D̄;Rn) is the set of
C1 functions whose support is compactly contained in D. It is known that for bounded domains
with Lipschitz boundary, C1(D;Rn) is dense in X s,p(D), as shown in [16, Theorem 3.3]. We begin
with the following Korn-Poincaré inequalities that are compatible with the seminorm [·]X s,p(Ω). It
is worth mentioning that the fractional Korn-Poincaré inequality is an important component in the
proof of the first and second fractional Korn inequalities. This is in contrast to the classical local
setting where the Korn-Poincaré inequality is derived as a consequence of Korn’s first inequality
after the latter has been established by other means.

Lemma 2.1 (Korn-Poincaré inequalities). Suppose that Ω is a bounded Lipschitz domain. Then for
any s ∈ (0, 1), p ∈ (1,∞), there exists a positive constant C depending only on n, p, s, and Ω, such
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that

min
r∈R

∥u− r∥Lp(Ω) ≤ C[u]X s,p(Ω) for all u ∈ X s,p(Ω).

Moreover, if V ⊂ Lp(Ω;Rn) is a weakly closed subset such that V ∩ R = {0}, then there exists a
constant C̃ > 0, that in addition may depend on V, such that

∥u∥Lp(Ω;Rn) ≤ C̃[u]X s,p(Ω) for all u ∈ V.

Proof. We prove the first assertion. The proof of the second can be found in [14, Proposition 2.7].
We will use a standard contradiction argument adopted by Kondratiev and Oleinik for the classical
case in [6]. Suppose that there is a sequence uk ∈ X s,p(Ω) and the corresponding minimizers
Ak ∈ skew(Rn) and bk ∈ Rn such that

∥uk −Ak · x− bk∥Lp(Ω) = 1 and [uk]X s,p(Ω) ≤ 1/k, k = 1, 2, . . . (2.7)

Upon passing to the fields vk = uk − Ak · x − bk we can assume without loss of generality that
Ak = 0 and bk = 0 in (2.7) for all k. Thus we have the minimality conditions

∥vk∥Lp(Ω) ≤ ∥vk −A · x− b∥Lp(Ω) for any A ∈ skew(Rn), b ∈ Rn, k = 1, 2, . . . (2.8)

We then have from (2.7) that the sequence vk is bounded in X s,p(Ω). We can now apply the
compactness theorem in [2, Theorem 1.3] to conclude that the sequence {vk} is pre-compact in
Lp(Ω), thus we can assume without loss of generality that

vk → v in Lp(Ω), (2.9)

for some field v ∈ Lp(Ω). We have by (2.7) that

∥vk − vm∥X s,p(Ω) = ([vk − vm]X s,p(Ω) + ∥vk − vm∥Lp(Ω))

≤ C([vk]X s,p(Ω) + [vm]X s,p(Ω) + ∥vk − vm∥Lp(Ω))

≤ C(1/k + 1/m+ ∥vk − vm∥Lp(Ω)),

thus the condition (2.9) implies that the sequence {vk} is Cauchy and thus is convergent in X s,p(Ω)
and the limit is v. This gives vk → v in X s,p(Ω) as k → ∞ as well. We thus have from (2.7) that

[v]X s,p(Ω) ≤ [vk]X s,p(Ω) + [v − vk]X s,p(Ω)

≤ 1/k + [v − vk]X s,p(Ω) → 0

as k → ∞, thus [v]X s,p(Ω) = 0, which gives

v(x) = A · x+ b, for a.e. x ∈ Ω, (2.10)

for some constant skew-symmetric matrix A ∈ Rn×n and some vector b ∈ Rn (see [24, Proposition
1.2] or [11, Theorem 3.1]). We then have by (2.7), (2.8), and (2.10) that

1 = ∥vk∥Lp(Ω) ≤ ∥vk −A · x− b∥Lp(Ω) = ∥vk − v∥Lp(Ω) → 0,

as k → ∞, which is a contradiction.
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Remark 2.2. We remark that if, for a given τ > 0 and x0 ∈ Rn, Q(x0, τ) represents a cube
centered at x0 with side length 2τ , then a simple scaling argument yields the estimate

min
r∈R

∥u− r∥Lp(Q(x0,τ)) ≤ C τ s [u]X s,p(Q(x0,τ)) (2.11)

for all u ∈ X s,p(Q(x0, τ)), where the constant C is the constant which depends only on n, p, and s
and the unit cube Q(0, 1).

The following variant of the fractional Hardy-type inequality is key for proving the boundedness
of the extension operator we will define in the next section. For notational convenience, we represent
points x ∈ Rn as x = (x′, xn) ∈ Rn−1 × R.

Definition 2.3 (Epigraph). Let f : Rn−1 → R be a continuous function. The set

D = {(x′, xn) : x′ ∈ Rn−1, xn > f(x′)}

is called an epigraph supported by the function f . In that case we also denote

D− = {(x′, xn) : x′ ∈ Rn−1, xn < f(x′)}.

In what follows, f will be a globally Lipschitz function with ∥∇f∥L∞(Rn−1) ≤ M. Also, capital
letter C will denote a constant that depends on n, p, s and M, while small letter c will denote a
constant that depends only on n, p and s. For any epigraph D and any η > 0, define the mapping
Φη : D− → D given by

Φη(x) = (x′, f(x′) + η(f(x′)− xn)), (2.12)

which is clearly a Lipschitz diffeomorphism with the inverse

(Φη)
−1(x) = (x′, f(x′) +

1

η
(f(x′)− xn)),

and det(∇Φη) = −η. By direct calculation we get

∥∇Φη∥L∞(D−) =
√︂
n− 1 + η2 + (1 + η)2∥∇f∥2L∞ , (2.13)

and
∥∇(Φη)

−1∥L∞(D) =

√︃
n− 1 +

1

η2
+ (1 +

1

η
)2∥∇f∥2L∞ . (2.14)

Hence, in space dimensions n ≥ 2, the norms ∥∇Φη∥L∞(D−) and ∥∇(Φη)
−1∥L∞(D) are bounded

from below by one (independent of the Lipschitz constant of f). Moreover, as proved in Lemma A.1,
there exists a constant C > 0, depending only on n, η, and M such that

|x− y| ≤ C|(Φη)
−1(x)− y| for all x,y ∈ D. (2.15)

Lemma 2.4 (Hardy-type inequality). Let f : Rn−1 → R be a Lipschitz function with Lipschitz
constant ≤ M, and let D ⊂ Rn be the epigraph supported by f. There exist a constant C =
C(n, p, s,M) > 0, and a constant c2(n) ≥ 1 (coming from the Whitney cover of D), such that for
every λ, µ ∈ [1− δ, 1 + δ] with δ =

1

2c2(n)
√
n(2 +M)

and every vector field u ∈ X s,p(D) one has

∫︂
D

|un(x′, f(x′) + λ(xn − f(x′)))− un(x
′, f(x′) + µ(xn − f(x′)))|p

|xn − f(x′)|ps
dx ≤ C[u]pX s,p(D). (2.16)
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Proof. Given the epigraph D supported by f as in the assumption of the lemma, we consider the
sequence of cubes {Qk}∞k=1 in Rn with the property that

(i) D = ∪kQk, and the Qk are mutually disjoint,

(ii) the doubled cubes Q̂k = 2 ·Qk satisfy the inclusion Q̂k ⊂ D for all k ∈ N, and that they have
the finite intersection property

∞∑︂
k=1

χQ̂k
(x) ≤ c1(n) for all x ∈ D, and

(iii) there exists a constant c2(n) such that each of the c2(n)−times enlarged cube c2(n) · Qk

intersects with the graph of f.

Such a covering of the open set D is called a Whitney cover. Given an open set, it is always possible
to construct a Whitney cover for it, see [23, Chapter VI, Theorem 1] for details. In the above, the
constants c1(n) and c2(n) depend only on the space dimension n. Let now ak > 0 be the side length
of Qk. Observe that on one hand condition (i) in particular implies that

|xn − f(x′)| ≥ ak
2
, for all k ∈ N, x ∈ Qk. (2.17)

On the other hand for a fixed point x = (x′, xn) ∈ Qk, let dist(x,Gr(f)) = |x − y|, where
y = (y′, f(y′)) ∈ Gr(f) and Gr(f) is the graph of f. We have that |f(x′) − f(y′)| ≤ M |x′ − y′|,
thus we can estimate

|xn − f(x′)| = |(x′, xn)− (x′, f(x′))|
≤ |(x′, xn)− (y′, f(y′))|+ |(y′, f(y′))− (x′, f(x′))|
= dist(x,Gr(f)) + |(y′, f(y′))− (x′, f(x′))|

≤ dist(x,Gr(f)) +
√︁
1 +M2|y′ − x′|

≤ (1 +
√︁

1 +M2) dist(x,Gr(f)) .

From condition (iii) we have dist(x,Gr(f)) ≤ c2(n) + 1

2

√
nak ≤ c2(n)

√
nak, hence

|xn − f(x′)| ≤ c2(n)
√
n(2 +M)ak for all k ∈ N, x ∈ Qk. (2.18)

By the definition of X s,p(D), it suffices to take u ∈ C1
c (D,Rn). We can then estimate∫︂

D

|un(x′, f(x′) + λ(xn − f(x′)))− un(x
′, f(x′) + µ(xn − f(x′)))|p

|xn − f(x′)|ps
dx

≤
∞∑︂
k=1

∫︂
Qk

|un(x′, f(x′) + λ(xn − f(x′)))− un(x
′, f(x′) + µ(xn − f(x′)))|p

|xn − f(x′)|ps
dx.

Setting Φ∗
λ(x) = (x′, f(x′) + λ(xn − f(x′))) for brevity, we aim to prove the inequality∫︂

Qk

|un(Φ∗
λ(x))− un(Φ

∗
µ(x))|p

|xn − f(x′)|ps
dx ≤ C[u]p

X s,p(Q̂k)
, (2.19)
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for each cube Qk. For every fixed k ∈ N we have by (2.17), that∫︂
Qk

|un(Φ∗
λ(x))− un(Φ

∗
µ(x))|p

|xn − f(x′)|ps
dx ≤ 2psa−ps

k

∫︂
Qk

|un(Φ∗
λ(x))− un(Φ

∗
µ(x))|pdx. (2.20)

Next we apply the Korn-Poincaré inequality (2.11) to the cube Q̂k and the vector field u. Hence,
there exists a constant C > 0, a skew-symmetric matrix Ak ∈ Rn×n, and a vector bk ∈ Rn such
that

∥u(·)−Ak(·)− bk∥Lp(Q̂k)
≤ Cask[u]X s,p(Q̂k)

. (2.21)

Observe that Φ∗
λ : Qk → Φ∗

λ(Qk) is a one-to-one diffeomorphism with the inverse Φ∗
1/λ and has

Jacobian equal to λ ≤ 1+ δ. Also, due to the inequality (2.18), we have that, for every x ∈ Qk and
every λ ∈ [1− δ, 1 + δ],

|Φ∗
λ(x)− x| = |1− λ||xn − f(x′)| ≤ δc2(n)

√
n(2 +M)ak ≤ ak

2
,

provided δ =
1

2c2(n)
√
n(2 +M)

. This implies the inclusion conditions Φ∗
λ(Qk),Φ

∗
µ(Qk) ⊂ Q̂k.

Consequently, noting that by skew-symmetry (Ak · Φ∗
λ(x) + bk)n − (Ak · Φ∗

µ(x) + bk)n = 0, and
using the bound in (2.21), we can estimate that

∫︂
Qk

|un(Φ∗
λ(x))− un(Φ

∗
µ(x))|pdx (2.22)

=

∫︂
Qk

|un(Φ∗
λ(x))− (Ak · Φ∗

λ(x) + bk)n − (un(Φ
∗
µ(x))− (Ak · Φ∗

µ(x) + bk)n)|pdx

≤ 2p−1

∫︂
Qk

|un(Φ∗
λ(x))− (Ak · Φ∗

λ(x) + bk)n|pdx

+ 2p−1

∫︂
Qk

|un(Φ∗
µ(x))− (Ak · Φ∗

µ(x) + bk)n|pdx

≤ C∥u(y)−Ak · y − bk∥pLp(Q̂k)

≤ Capsk [u(y)]p
X s,p(Q̂k)

.

Putting together now (2.20) and (2.22) we discover∫︂
Qk

|un(Φ∗
λ(x))− un(Φ

∗
µ(x))|p

|xn − f(x′)|ps
dx ≤ C[u(y)]p

X s,p(Q̂k)
.

In order to complete the proof of the lemma, one needs to sum (2.19) over k and keep in mind the
finite intersection property in (ii). This completes the proof of Lemma 2.4.

Remark 2.5. In the special case of the half space, where D = Rn
+ and f ≡ 0, inequality (2.16)

reduces to ∫︂
D

|un(x′, λxn)− un(x
′, µxn)|p

|xn|ps
dx ≤ C[u]pX s,p(D).

This inequality was proved in [12, Lemma 4.1] for vector fields in X s,p
0 (D) for particular values

of λ and µ under the extra assumption that ps ̸= 1. It is now clear from Lemma 2.4 that this
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requirement is not necessary and that the fractional Korn’s inequality proved in [12] for vector fields
in X s,p

0 (D) is also valid for all s ∈ (0, 1) and 1 < p <∞ (even when ps = 1). A consequence of this
is that the Korn inequality proved in [15] for vector fields defined on bounded domains with smooth
boundary will also be true for the full ranges of s and p.

We note that we refer to the inequality (2.16) as a Hardy-type because the inequality captures the
optimal decay rate to zero of a map near the boundary, say in the case when D = Rn

+, (x′, xn) ↦→
un(x

′, λxn) − un(x
′, µxn), which vanishes on the hyperplane ∂D = {xn = 0}, in terms of an

appropriate seminorm. See [3, 10] for the standard fractional Hardy-type inequalities.

3 Fractional Korn’s inequalities

3.1 Korn’s second inequality over epigraphs

This section is devoted to the fractional Korn’s second inequality for vector fields defined over
epigraphs. We prove the following theorem.

Theorem 3.1 (Korn’s second inequality in epigraphs). Given s ∈ (0, 1) and 1 < p < ∞, there
exists a universal constant M0 > 0 and another constant C0 > 0 depending only on n, p, s and M0

with the following property: For any epigraph D supported by f : Rn−1 → R with ∥∇f∥L∞ ≤M0,
one has for all u ∈ X s,p(D) the inequality

|u|W s,p(D) ≤ C0[u]X s,p(D). (3.23)

As we described in the introduction, to prove the fractional Korn’s inequality (3.23) for an
epigraph D, we first prove the existence of an extension operator to extend the vector fields in
X s,p(D) to be in X s,p(Rn) in such a way that the seminorm of the extended vector fields is controlled
by the seminorm over D. As in [15], we will show that the extension operator that was used in [17]
for the proof of the classical Korn’s inequality will also be useful to prove the fractional case.

Proposition 3.2 (Extension operator). Let s ∈ (0, 1) and 1 ≤ p < ∞ and let D be an epigraph
supported by a Lipschitz function f : Rn−1 → R with ∥∇f∥L∞ = M. There exists a bounded
extension operator E : W s,p(D;Rn) → W s,p(Rn;Rn), a constant C > 0, depending only on n, p, s,
and M, and a constant c > 0 depending only on n, p, and s, with the property that for all u ∈
W s,p(D;Rn) one has

[E(u)]X s,p(Rn) ≤ C[u]X s,p(D) + c(1 +M)
2+ n

2pM |u|W s,p(D). (3.24)

Proof. By density of C1
c (D;Rn) in W s,p(D;Rn) (see [9, Theorem 6.70]), it suffices to show the

inequality for C1 vector fields. Following the approach in [17], we define the extension operator E
as follows. For u = (u′, un) ∈ C1

c (D;Rn), and for constants λ, µ, k, ℓ, m, and q, set

[E(u)(x)]i :=

⎧⎪⎨⎪⎩
ui(x) , x ∈ D , i = 1, 2, . . . n− 1, n ,

k uλi (x) + ℓ uµi (x) , x ∈ D− , i = 1, 2, . . . n− 1 ,

muλn(x) + q uµn(x) , x ∈ D− ,

(3.25)

where

uλj (x) := uj
(︁
x′, f(x′) + λ(f(x′)− xd)

)︁
= uj(Φλ(x)),

uµj (x) := uj
(︁
x′, f(x′) + µ(f(x′)− xd)

)︁
= uj(Φµ(x)).

(3.26)
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We choose constants λ, µ, k, ℓ, m, q, such that

λ > 0 , µ > 0 , k + ℓ = 1 = m+ q , λk = −m, µℓ = −q . (3.27)

For 0 ≤ λ < µ these constants are uniquely defined and are given by

k =
1 + µ

µ− λ
, ℓ = − 1 + λ

µ− λ
, m = −λ(1 + µ)

µ− λ
, q =

µ(1 + λ)

µ− λ
. (3.28)

Let now δ =
1

2c2(n)
√
n(1 +M)

be as in Lemma 2.4, and choose

λ = 1− δ and µ = 1 + δ, (3.29)

where we note that since δ ≤ 1/2, λ, µ ∈ [1/2, 3/2], and M > 0. Recalling that the boundary ∂D
is given by the equation xn = f(x′), it is clear that the operator E takes continuous map defined
on D to continuous maps on Rn. Moreover, for u ∈ C1

c (D,Rn), E(u) ∈W s,p(Rn,Rn). This can be
shown following calculations similar to the ones that will be used below estimating [E(u)]X s,p(Rn)

to demonstrate the inequality (3.24). We split the domain of integration and write

[E(u)]pX s,p(Rn) = [u]pX s,p(D) + [E(u)]pX s,p(D−)

+ 2

∫︂
D−

∫︂
D

|(E(u)(x)− E(u)(y)) · (x− y)|p

|x− y|n+(s+1)p
dydx. (3.30)

We need to estimate the second and the third terms. For x ∈ D−, we write

E(u)(x) = Eλ(u)(x) + Eµ(u)(x)

where Eλ(u)(x) = (k(u′)λ,muλn) and Eµ(u)(x) = (ℓ(u′)µ, q uµn). We have

[E(u)]pX s,p(D−) ≤ 2p−1([Eλ(u)]
p
X s,p(D−) + [Eµ(u)]

p
X s,p(D−)),

and will estimate each of the summands next. To estimate [Eλ(u)]
p
X s,p(D−), we make the change

of coordinates z = Φλ(x) and w = Φλ(y) and recall the discussion about the mapping Φ in
(2.12)–(2.14) to write the integral as

λ2 [Eλ(u)]
p
X s,p(D−)

=

∫︂
D

∫︂
D

|k(u′(z)− u′(w)) · (z′ −w′) +m(un(z)− un(w)) · ([(Φλ)
−1(z)]n − [(Φλ)

−1(w)]n)|p

|(Φλ)−1(z)− (Φλ)−1(w)|n+(s+1)p
dzdw.

Notice that

[(Φλ)
−1(z)]n − [(Φλ)

−1(w)]n = − 1

λ
(zn − wn) +

1 + λ

λ
(f(z′)− f(w′)),

and
|z −w| ≤ ∥∇Φλ∥L∞(D−)

⃓⃓
(Φλ)

−1(z)− (Φλ)
−1(w)

⃓⃓
.

It then follows using the relation λ k = −m, that

[Eλ(u)]
p
X s,p(D−) ≤

2p−1kp

λ2
∥∇Φλ∥

n+(s+1)p
L∞(D−) [u]pX s,p(D)

+
2p−1mp(1 + λ)p

λ2+p
∥∇Φλ∥

n+(s+1)p
L∞(D−)

∫︂
D

∫︂
D

⃓⃓(︁
un(z)− un(w)

)︁
·
(︁
f(z′)− f(w′)

)︁⃓⃓p
|z −w|d+(s+1)p

dwdz

≤ 2p−1kp

λ2
∥∇Φλ∥

n+(s+1)p
L∞(D−)

(︂
[u]pX s,p(D) + (1 + λ)p∥∇f∥pL∞ |un|pW s,p(D)

)︂
.
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A similar estimate as above also holds for [Eµ(u)]
p
X s,p(D−) where λ, k are replaced by µ and ℓ. We

now combine the two estimates, keeping in mind (2.13), from which we have ∥∇Φλ∥
n+(s+1)p
L∞(D−) ≤

C(1 +M)n+2p, and the explicit formulae (3.28) and (3.29) which imply kp ≤ C(1+M)p, to obtain
the bound, after some calculations, that

[E(u)]pX s,p(D−) ≤ C[u]pX s,p(D) + c(1 +M)
n
2
+2pMp|u|pW s,p(D).

It remains is to estimate the third term
∫︂
D−

∫︂
D

|(E(u)(x)− E(u)(y)) · (x− y)|p

|x− y|n+(s+1)p
dydx in (3.30).

To that end, we denote the integral by Imix and for x ∈ D− write

E(u)(x) = ku(Φλ(x)) + ℓu(Φµ(x)) + (m− k)(0′, un(Φλ(x))) + (q − ℓ)(0′, un(Φµ(x))),

It then follows by algebraic calculations and using the relations (3.27) and (3.28) between k, ℓ,m,
and q that for x ∈ D− and y ∈ D:

(E(u)(x)− E(u)(y)) · (x− y)

= k
(︁
u(Φλ(x))− u(y)

)︁
·
(︁
x− y

)︁
+ ℓ

(︁
u(Φµ(x))− u(y)

)︁
·
(︁
x− y

)︁
+ (m− k)

(︁
un(Φλ(x))− un(Φµ(x))

)︁
·
(︁
xn − yn

)︁
= k

(︁
u(Φλ(x))− u(y)

)︁
·
(︁
Φλ(x)− y

)︁
+ ℓ

(︁
u(Φµ(x))− u(y)

)︁
·
(︁
Φµ(x)− y

)︁
+ (k −m)

(︁
un(Φλ(x))− un(Φµ(x))

)︁
·
(︁
yn − f(x′)

)︁
+k

(︁
un(Φλ(x))− un(y)

)︁(︁
xn − f(x′)− λ(f(x′)− xn)

)︁
+ℓ

(︁
un(Φµ(x))− un(y)

)︁(︁
xn − f(x′)− µ(f(x′)− xn)

)︁
+(k −m)

(︁
un(Φλ(x))− un(Φµ(x))

)︁(︁
f(x′)− xn

)︁
.

The latter three terms add up to zero. We then have the estimate that

Imix ≤ Ckp
∫︂
D−

∫︂
D

⃓⃓(︁
u(Φλ(x))− u(y)

)︁
·
(︁
Φλ(x)− y

)︁⃓⃓p
|x− y|n+(s+1)p

dydx

+ Cℓp
∫︂
D−

∫︂
D

⃓⃓(︁
u(Φµ(x))− u(y)

)︁
·
(︁
Φµ(x)− y

)︁⃓⃓p
|x− y|n+(s+1)p

dydx

+ C|k −m|p
∫︂
D−

∫︂
D

⃓⃓(︁
yn − f(x′)

)︁
·
(︁
un(Φλ(x))− un(Φµ(x))

)︁⃓⃓p
|x− y|n+(s+1)p

dydx

= I1mix + I2mix + I3mix.

The first two terms I1mix and I2mix can be estimated in similar ways. To demonstrate, making the
change of variables z = Φλ(x), we obtain that

I1mix =
Ckp

λ

∫︂
D

∫︂
D

⃓⃓(︁
u(z)− u(y)

)︁
·
(︁
z − y

)︁⃓⃓p
| (Φλ)

−1 (z)− y|n+(s+1)p
dydz.

We now use (2.15) to estimate the latter by C[u]X s,p(D). We finish the proof by estimating I3mix.
Making the variable change z = Φ1(x) to work solely in D, we have that

I3mix ≤ C

∫︂
D

∫︂
D

|yn − f(z′)|p|un(Φλ((Φ1)
−1(z)))− un(Φµ((Φ1)

−1(z)))|p

|(Φ1)−1(z)− y|n+(s+1)p
dydz

= C

∫︂
D
J(z)|un(z′, f(z′) + λ(zn − f(z′)))− un(z

′, f(z′) + µ(zn − f(z′)))|pdz,
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where for each z ∈ D

J(z) =

∫︂
D

|yn − f(z′)|p

(|z′ − y′|2 + |(yn − f(z′)) + (zn − f(z′))|2)
n+(s+1)p

2

dy ≤ C

|zn − f(z′)|sp

as shown in Lemma A.2 in the appendix (or [15, Lemma A.1]). As a consequence, we have that

I3mix ≤ C

∫︂
D

|un(z′, f(z′) + λ(zn − f(z′)))− un(z
′, f(z′) + µ(zn − f(z′)))|p

|zn − f(z′)|sp
dz. (3.31)

Finally, an application of Lemma 2.4 together with (3.31) completes the proof of the proposition.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Theorem 3.1 follows by an application of the above proposition and Korn’s
second inequality for Rn, [19]. Indeed, let u ∈ C1

c (D;Rn). As remarked in the proof, E(u) ∈
W s,p(Rn,Rn). Then by the fractional Korn’s second inequality proved in [19, Theorem 1.1] for
vector fields defined on Rn, we have, on the one hand, for a constant c0 = c0(n, p, s), that

|u|W s,p(D) ≤ |E(u)|W s,p(Rn) ≤ c0|E(u)|X s,p(Rn).

On the other hand, Proposition 3.2 yields for constants C, c > 0 that

|E(u)|X s,p(Rn) ≤ C|u|X s,p(D) + c(1 + ∥∇f∥L∞)
2+ n

2p ∥∇f∥L∞ |u|W s,p(D)).

Consequently, we obtain

|u|W s,p(D) ≤ c0C|u|X s,p(D) + cc0(1 + ∥∇f∥L∞)
2+ n

2p ∥∇f∥L∞ |u|W s,p(D),

which yields (3.23) for u ∈ C1
c (D;Rn) provided M0 fulfills (1+M0)

2+ n
2pM0 <

1

cc0
. To conclude

that (3.23) holds for general u ∈ X s,p(D), we use the definition of X s,p(D). Take a sequence
{uj} ⊂ C1

c (D;Rn) converging to u in X s,p(D). Then a subsequence (not relabeled) converges a.e.
on D and so by Fatou’s lemma

|u|W s,p(D) ≤ lim inf
j→∞

|uj |W s,p(D) ≤ C0 lim inf
j→∞

|uj |X s,p(D) = C0|u|X s,p(D).

Remark 3.3. As a consequence of Theorem 3.1, the extension E in Proposition 3.2 is a continuous
operator from X s,p(D) to X s,p(Rn), since (3.24) and (3.23) yield

[E(u)]X s,p(Rn) ≤ C[u]X s,p(D) + c(1 +M)
2+ n

2pM |u|W s,p(D) ≤ C|u|X s,p(D).

3.2 Fractional Korn’s second inequality in bounded domains

In this section we provide a proof of inequality (1.4) in Theorem 1.3. As already mentioned, we will
adopt a partition of unity argument employed in [15]. For the convenience of the reader we repeat
the arguments here. Before we present the proof, we make the following observations related to
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estimates involving the product ψu of u ∈ X s,p(Ω) and ψ ∈ W 1,∞(Ω). First, such a product ψu
belongs to X s,p(Ω) with the estimate

[ψu]X s,p(Ω) ≤ c ∥ψ∥W 1,∞∥u∥X s,p(Ω),

where c depends only on n, p, s, and diam(Ω). This is precisely [15, Lemma 3.1]. Second, due to
[15, Lemma 3.2], if Ω ⊂ Ω̃, and there exists β > 0 such that for all y ∈ Ω̃ \ Ω

dist(y, supp(ψ)) ≥ β > 0,

then after extending the product by 0 on Ω̃ \Ω, it will belong to X s,p(Ω̃) with the similar estimate

[ψu]X s,p(Ω̃) ≤ c1(β)∥ψ∥W 1,∞∥u∥X s,p(Ω), (3.32)

where c1(β) depends only on n, p, s, diam(Ω), and β. Both statements can be proven by a direct
evaluation of the X seminorm of the product ψu, see [15] for details. We are now ready to present
the proof of the the theorem.

Proof of inequality (1.4) of Theorem 1.3. Let M0 be the constant found in Theorem 3.1. Suppose
that Ω is a bounded Lipschitz domain with local Lipschitz constant ≤ M0. By definition, we may
choose an open set Ω0 ⋐ Ω and open balls Brj (yj), for j = 1, . . . , N with centers yj ∈ ∂Ω such that

1. Ω = ∪N
j=0Ωj where Ωj = Ω ∩Brj (yj) for j = 1, . . . , N .

2. For every 1 ≤ j ≤ N , define Tj : Brj (yj) → Rn to be the operator consisting of the translation
yj → 0 and a rotation such that Tj(∂Ω ∩ Brj (yj)) coincides with part of the graph of a
Lipschitz function fj : Rn−1 → R with ∥∇fj∥L∞(Rn−1) ≤ M0. Note that the function fj
is initially only defined on an open bounded subset of Rn−1, but we extend it into all of
Rn−1 by Kirszbraun’s theorem [5], preserving the Lipschitz constant. This is necessary for
the reduction of the situation to epigraphs in Rn−1.

Set Qj = Tj(Brj (yj)), and also define

Q+
j := {x ∈ Qj : xn > fj(x

′)} , Q−
j := {x ∈ Qj : xn < fj(x

′)} ,
K+

j := {x ∈ Rn : xn > fj(x
′)} , K−

j := {x ∈ Rn : xn < fj(x
′)} .

We may choose the map Tj so that Tj(Ωj) = Q+
j . Note that Tj is a bi-Lipschitz map with

Lipschitz constant depending only on n and Ω. Let {ϕj}Nj=0 ⊂ C∞
c (Rn;R) be a C∞ partition of

unity subordinate to the collection {Ω0} ∪ {Brj (yj)}Nj=1. Then for every 1 ≤ j ≤ N, we have
supp(ϕj) ⊂ Brj (yj), dist(y, supp(ϕj)) ≥ βj > 0 for every y ∈ Ω \Ωj . We also have supp(ϕ0) ⊂ Ω0,
dist(y, supp(ϕ0)) ≥ β0 > 0 for every y ∈ Ω \ Ω0, and

∑︁N
j=0 ϕj ≡ 1 on Ω.

Suppose now u ∈ C1(Ω;Rn). Define uj := ϕju, for j = 0, 1, . . . , N. We consider u0 first. After
extending it by 0 to Rn, we have that u0 ∈ X s,p(Rn) and that by the fractional Korn’s inequality
on Rn, [19] and (3.32)

|u0|W s,p(Ω) ≤ c[u0]X s,p(Rn) (3.33)
≤ cc01(β0)∥ϕ0∥W 1,∞∥u∥X s,p(Ω).
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For j = 1, . . . , N applying again (3.32) using the semi norm | · |W s,p(Ω) instead of [·]X s,p(Ω) we have

|uj |W s,p(Ω) ≤ cj1(βj)∥ϕj∥W 1,∞∥uj∥W s,p(Ωj) (3.34)

where cj1(βj) depends only on s, p, n, diam(Ω) and βj . Now since Tj consists of a rotation and a
translation, ∇Tj is a constant rotation, with Tj(x) − Tj(y) = (∇Tj)(x − y). Therefore, writing
Rj := ∇Tj , define vj(x) := Rjuj(T

−1
j (x)). Then we have vj ∈ W s,p(Q+

j ) and that for each
y ∈ K+

j \Q+
j , dist(y, Supp(vj)) ≥ β̃j > 0 for some positive constant β̃j . Moreover,

∥vj∥Lp(Q+
j ) = ∥uj∥Lp(Ωj), ∥vj∥W s,p(Q+

j ) = ∥uj∥W s,p(Ωj), and [vj ]X s,p(Q+
j ) = [uj ]X s,p(Ωj).

We will demonstrate the last equality as the others can be established similarly. By a change of
coordinates,

[vj ]
p

X s,p(Q+
j )

=

∫︂
Ωj

∫︂
Ωj

⃓⃓(︁
Rjuj(x)−Rjuj(y)

)︁
·
(︁
Tj(x)− Tj(y)

)︁⃓⃓p
|Tj(x)− Tj(y)|n+sp+p

dydx

=

∫︂
Ωj

∫︂
Ωj

⃓⃓(︁
Rjuj(x)−Rjuj(y)

)︁
·
(︁
Rjx−Rjy

)︁⃓⃓p
|Rjx−Rjy|n+sp+p

dydx

=

∫︂
Ωj

∫︂
Ωj

⃓⃓⃓
R⊺

jRj

(︁
uj(x)− uj(y)

)︁
·
(︁
x− y

)︁⃓⃓⃓p
|x− y|n+sp+p

dydx

= [uj ]
p
X s,p(Ωj)

.

Extending vj by 0 on K+
j \ Q+

j , we have that vj ∈ C1(K+
j ;Rn). Applying the fractional Korn’s

inequality for epigraphs, Theorem 3.1, we have

|vj |W s,p(Q+
j ) ≤ |vj |W s,p(K+

j ) (3.35)

≤ C∥vj∥X s,p(K+
j ),

where C only depends on s, p, n and M0. We may also apply (3.32) to estimate further as

∥vj∥X s,p(K+
j ) ≤ cj2(βj̃)∥vj∥X s,p(Q+

j ) (3.36)

We combine now (3.34), (3.35), and (3.36) to obtain

|uj |W s,p(Ω) ≤ C∥u∥X s,p(Ω), j = 1, 2, . . . , N, (3.37)

where C is a positive constant that depends on s, p, n, diam(Ω), M0, and the partition of unity.
Therefore by (3.33) and (3.37), we have

[u]W s,p(Ω) =
[︂ N∑︂
j=0

uj

]︂
W s,p(Ω)

≤
n∑︂

j=0

[uj ]W s,p(Ω) ≤ C∥u∥X s,p(Ω).

The estimate for vector fields u in W s,p(Ω;Rn) follows by density. This completes the proof.
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3.3 Fractional Korn’s first inequality in bounded domains

In this section we provide a proof of inequality (1.3) in Theorem 1.3.

Proof of inequality (1.3) of Theorem 1.3. Assume in contradiction (1.3) fails to hold. It then fol-
lows that there exist a sequence uk ∈ W s,p(Ω,Rn) and a sequence of skew-symmetric matrices
Ak ∈ skew(Rn) such that

|uk−Ak·x|W s,p(Ω)= min
A∈skew(Rn)

|uk −A · x|W s,p(Ω) = 1 and [uk]X s,p(Ω) ≤
1

k
, k = 1, 2, . . . (3.38)

We may also assume that for each k the average of uk−Ak ·x over Ω is 0 by shifting it by a vector
bk ∈ Rn if necessary. Upon passing to the fields vk = uk − Ak · x − bk, we can further assume
without loss of generality that Ak = 0 and bk = 0. Thus the minimality conditions

|vk|W s,p(Ω) ≤ |vk −A · x|W s,p(Ω) for any A ∈ skew(Rn), k = 1, 2, . . . (3.39)

hold and by Poincaré’s inequality, the sequence vk is bounded in W s,p(Ω;Rn). From the compact-
ness theorem, [1, Theorem 7.1], the sequence {vk} is pre-compact in Lp(Ω), thus we can assume
without loss of generality that

vk → v in Lp(Ω), (3.40)

for some field v ∈ Lp(Ω). We then have by Korn’s second inequality (1.4) and (3.39) that

∥vk − vm∥W s,p(Ω) ≤ C([vk − vm]X s,p(Ω) + ∥vk − vm∥Lp(Ω))

≤ C([vk]X s,p(Ω) + [vm]X s,p(Ω) + ∥vk − vm∥Lp(Ω))

≤ C(1/k + 1/m+ ∥vk − vm∥Lp(Ω)),

thus the condition (3.40) implies that the sequence {vk} is Cauchy and thus is convergent in
W s,p(Ω). This gives, as k → ∞

vk → v in W s,p(Ω). (3.41)

From (3.38) and (3.41) we have

[v]X s,p(Ω) ≤ [vk]X s,p(Ω) + [v − vk]X s,p(Ω)

≤ 1/k + [v − vk]W s,p(Ω) → 0

as k → ∞, thus [v]X s,p(Ω) = 0, which gives

v(x) = A · x+ b, for a.e. x ∈ Ω, (3.42)

for some constant skew-symmetric matrix A ∈ Rn×n and some vector b ∈ Rn [24, Proposition 1.2].
Note that then we have by (3.38), (3.39), (3.41), and (3.42):

1 = |vk|W s,p(Ω) ≤ |vk −A · x|W s,p(Ω) = |vk − v|W s,p(Ω) → 0

as k → ∞, which is a contradiction.
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4 Fractional Korn’s inequality for planar polygonal convex do-
mains

As we discussed in the introduction, we conjecture that the smallness of the Lipschitz constant of
the boundary of the domain is not necessary for the validity of the Fractional Korn’s inequalities.
In this section, we will support this hypothesis by demonstrating the validity of the inequality in
the case of planar polygonal convex domains. The argument of the proof mimics the strategy we
used for smooth domains. We begin by proving the inequality for angular domains. We then cover
the boundary of the convex polygonal domain by balls centered on the boundary. The resulting
intersecting sets are either wedges (bounded angular domains) or half balls over which we will have
the appropriate estimates. Finally, we use a partition of unity argument to obtain the estimates
over the convex polygon. In this section, vectors defined on the planar domains are represented as
u = (u1, u2).

4.1 The case of angular domains

Consider an angular planar domain D with an angle of span in the interval (0, π). Upon an affine
change of variables, we may assume without loss of generality that D is given by

D = {x ∈ R2 : 0 < x1, αx1 < x2}, (4.1)

for some α ∈ R. Note that D is exactly half of the epigraph supported by the function f(x1) = αx1
defined over (0,∞). In that case, we set

D− = {x ∈ R2 : 0 < x1, x2 < αx1}.

Notice that D ∪D− = R2
x1≥0 = {(x1, x2) ∈ R2 : x1 ≥ 0}. We begin by demonstrating the existence

of an extension operator to prove that vector fields defined over D can be extended to R2
x1>0

accompanied with an appropriate control of their nonlocal norm. We use the extension operator
defined in [17] for planar angular domains where it is shown to map W 1,2(D;R2) to W 1,2(R2,R2).

Proposition 4.1. Let s ∈ (0, 1), 1 < p < ∞, and let D be given by (4.1). Then, there exists
a bounded extension operator E : X s,p(D) → X s,p(R2

x1>0) such that E(u)(x) = u(x) for x ∈ D.
Moreover, there exists a constant C > 0 depending only on p, s, and α, such that for all u ∈ X s,p(D),

[E(u)]X s,p(R2
x1>0)

≤ C([u]X s,p(D) + ∥u∥Lp(D)). (4.2)

Proof. As before, it suffices to prove the inequality for u ∈ C1
c (D;R2). Following [17], we set

E(u)(x) = Ẽλ(u)(x) + Ẽµ(u)(x), for x ∈ D−, where

Ẽλ(u)(x) = (kuλ1(x) + αk(1 + λ)uλ2(x),mu
λ
2(x))

Ẽµ(u)(x) = (ℓuµ1 (x)− αk(1 + λ)uµ2 (x), qu
µ
2 (x)), (4.3)

and E(u)(x) = u(x), if x ∈ D. The constants λ, µ, k, ℓ, m, q, satisfy the constraints (3.27)-(3.29),
and the functions uλi and uµi are defined as before in (3.26). Note that this is the extension for
epigraphs with the additional summand αk(1+λ)(uλ2(x)−u

µ
2 (x)) in the 1st component of E(u)(x)

for x ∈ D−. The proof of the estimate in (4.2) follows the calculations done for the case of the
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epigraphs. Below we sketch the proof only including those calculations that are new. As before,
we begin by decomposing the integral as

[E(u)]pX s,p(R2
x1>0)

= [E(u)]pX s,p(D) + [E(u)]pX s,p(D−)

+ 2

∫︂
D−

∫︂
D

|(E(u)(x)− E(u)(y)) · (x− y)|p

|x− y|n+(s+1)p
dydx. (4.4)

We need to estimate the last two terms. Clearly,

[E(u)]pX s,p(D−) ≤ 2p−1
(︂
[Ẽλ(u)]

p
X s,p(D−) + [Ẽµ(u)]

p
X s,p(D−)

)︂
.

A simple calculation reveals that the additional summands αk(1+λ)uλ2(x) and αk(1+λ)uµ2 (x) make
it possible to simplify further. Indeed, after change of variables z = Φλ(x) = (x1, αx1+λ(αx1−x2))
and w = (y1, αy1 + λ(αy1 − y2)), we have that

(Ẽλ(u)(z)− Ẽλ(u)(w)) · (Φ−1
λ (z)− Φ−1

λ (w)) = k(u(z)− u(w)) · (z −w),

and hence
[Ẽλ(u)]

p
X s,p(D−) ≤ C(α, λ, k, p, s)[u]pX s,p(D).

Similar estimates also holds for [Ẽµ(u)]
p
X s,p(D−), after noting that the relations between the param-

eters in (3.27), implies that αk(1+λ) = −αℓ(1+µ). The point here is that the additional summand
αk(1 + λ)(uλ2(x) − uµ2 (x)) in the first component of the extension facilitates a cancellation of the
extra term, which is |u|W s,p(D) multiplied by the Lipschitz constant α, that would appear if we
otherwise use the extension operator (3.25) treating the domain as a Lipschitz domain. This elim-
inates the need for the Lipschitz constant to be small so as to absorb the term involving |u|W s,p(D).

What is left now is estimating the mixed integral
∫︂
D−

∫︂
D
. . . dydx appearing in (4.4). This can be

estimated as in the proof of Proposition 3.2. The only difference is that there will be an additional
term due to the new term αk(1 + λ)(uλ2(x)− uµ2 (x)). This amounts to estimating the expression

IInew =

∫︂
D−

∫︂
D

|(uλ2(x)− uµ2 (x)) · (x1 − y1)|p

|x− y|2+p+ps
dydx (4.5)

in terms of the norm of u in X s,p(D). To prove (4.5), by the change of variable z = Φ1(x), we have

IInew = C

∫︂
D

∫︂
D

|(uλ2(Φ
−1
1 (z))− uµ2 (Φ

−1
1 (z))) · (z1 − y1)|p

|Φ−1
1 (z)− y|2+p+ps

dydz

≤ C

∫︂
D
I(z)|uλ2(Φ−1

1 (z))− uµ2 (Φ
−1
1 (z))|pdz,

where for any fixed z ∈ D we have set

I(z) =

∫︂
D

|z1 − y1|p

|Φ−1
1 (z)− y|2+p+ps

dy.

Using Lemma A.2 from the appendix we have that for each z ∈ D,

I(z) ≤ C

|z2 − f(z1)|ps
,
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with a constant C that depends only on p, s, and the Lipschitz constant of f(z1) = αz1, which is α
in this case. As a consequence, we have

IInew ≤ C

∫︂
D

|uλ2(Φ
−1
1 (z))− uµ2 (Φ

−1
1 (z))|p

|z2 − f(z1)|ps
dz (4.6)

= C

∫︂
D

|u2(z1, f(z1) + λ(z2 − f(z1)))− u2(z1, f(z1) + µ(z2 − f(z1)))|p

|z2 − f(z1)|ps
dz.

In order to finish the proof we need to estimate the expression in (4.6) by the seminorm [u]X s,p(D).
This would be straightforward by Lemma 2.4, if D was an epigraph (but D is just part of an
epigraph). We demonstrate below how the proof of Lemma 2.4 can be adjusted to this situation.
To that end, we need to provide an appropriate Whitney-type cover of D. Let F = {x ∈ R2 :
x1, x2 > 0} be the first quadrant in R2. We cover F by horizontal rows of identical dyadic cubes
as follows: Cover the strip F ∩ {2k ≤ x2 ≤ 2k+1} by closed cubes, Qk, of side length 2k, for every
k ∈ Z starting from the x2−axis. The resulting cover is exactly the restriction of the Whitney cover
of the upper half-space on the first quadrant. Notice here that, Qk is 2k distant away from the
x1-axis, and the doubled cubes Q̂+

k in the direction of the positive axes have a finite intersection
property. Now, the domain D is the image of F under the bi-Lipschitz mapping

ϕ : F → D defined by ϕ(x1, x2) = (x1, x2+αx1).

Each of the dyadic cubes Qk (from the covering of F ) will get mapped to a parallelogram Pk

which will constitute a Whitney-type cover of D, by a sequence of dyadic parallelograms. It is not
difficult to see that Pk is a translation of 2k times the base parallelogram P̄ 0 determined by the
points (0, 0), (0, 1), (1, α), and (1, 1 + α). This construction gives rise to a perfect cover of D, as
the parallelograms are essentially disjoint. Moreover, for any k, the height of parallelogram Pk is
comparable to its distant away from the line x2 = αx1 = f(x1), and the finite intersection property
of enlarged cubes of the initial Whitney cover will also persist under the mapping ϕ. We denote the
image of the doubled cubes Q̂+

k by P̂+
k . That is, P̂+

k = ϕ(Q̂
+
k ) and, from the construction, these are

just translations of 2k times P̄+
0 , which is the paralellogram determined by the points (0, 0), (0, 2),

(2, 2α), (2, 2+2α). With this at hand, we can now repeat the argument in the proof of Lemma 2.4.
Since the argument is almost the same for this construction, we only demonstrate the analogue of
the inequality (2.22). To that end, we have∫︂

Pk

|u2(z1, f(z1) + λ(z2 − f(z1))⏞ ⏟⏟ ⏞
=Φ∗

λ(z)

)− u2(z1, f(z1) + µ(z2 − f(z1))⏞ ⏟⏟ ⏞
=Φ∗

µ(z)

)|pdz (4.7)

≤ 2p−1

∫︂
Pk

|u2(Φ∗
λ(z))− (Ãk · Φ∗

λ(z) + bk)2|pdz

+ 2p−1

∫︂
Pk

|u2(Φ∗
µ(z))− (Ãk · Φ∗

µ(z) + bk)2|pdz

≤ C∥u(y)− Ãk · y − bk∥p
Lp(P̂

+
k )

≤ Cãpsk [u(y)]p
X s,p(P̂

+
k )
,

where ãk is the height of Pk and, as before, we can show that for appropriately chosen λ and µ,
depending on α and n, Φ∗

λ(Pk),Φ
∗
µ(Pk) ⊂ P̂

+
k . Notice that the choice of the infinitesimal rigid
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displacement x ↦→ Ãk · x+ bk as well as the last inequality follow from a version of Poincaré-Korn
inequality over the parallelogram P̂

+
k (see Remark 2.2). Indeed, after noting that the area of the

base parallelogram P̄ 0 is 1, then by a simple scaling we have that for any τ > 0,

min
r∈R

∥u− r∥Lp(τP̄ 0) ≤ Cτ s[u]X s,p(τP̄ 0),

where C independent of τ. Putting together the analogue of (2.20) and (4.7) we obtain that∫︂
Pk

|u2(Φ∗
λ(x))− u2(Φ

∗
µ(x))|p

|x2 − f(x1)|ps
dx ≤ C[u(y)]p

X s,p(P̂k)
.

The rest is similar to the proof of Lemma 2.4.

Remark 4.2. Following the above procedure, we can show that the above extension operator is also
bounded from W s,p(D,R2) to W s,p(R2

x1>0,R2). The proposition also implies the fractional Korn’s
second inequality for planar angular domains. Indeed, let u ∈ C1

c (D,R2). Then by Proposition
4.1, we can extend u to E(u) ∈ X s,p(R2

x1>0) such that

[E(u)]X s,p(R2
x1>0)

≤ C([u]X s,p(D) + ∥u∥Lp(D)).

Noting that E(u) is defined on an epigraph, up to a rotation, we may apply the fractional Korn’s
inequality for epigraphs, Theorem 3.1, and obtain

|u|W s,p(D,R2) ≤ |E(u)|W s,p(R2
x1>0,R2) ≤ C[E(u)]X s,p(R2

x1>0)
≤ C([u]X s,p(D) + ∥u∥Lp(D)). (4.8)

4.2 The case of planar convex polygonal domains

In this subsection, we show that extension of vector fields defined in planar convex polygonal
domains D to R2 with controlled ∥ ·∥X s,p norm is possible. We prove the following extension result.

Proposition 4.3. Let n = 2, s ∈ (0, 1) and 1 < p <∞. Let Ω be a convex polygonal domain, i.e.
∂Ω is a simple closed curve that is piecewise affine, with finitely many vertices with interior angle
in (0, π). Then there exists a positive constant C, depending only on s, p and Ω, such that for all
u ∈W s,p(Ω;R2), one has

|u|pW s,p(Ω) ≤ C([u]pX s,p(Ω) + ∥u∥pLp(Ω)).

Proof. The proof is similar to that of inequality (1.4). Choose an open set Ω0 ⋐ Ω and open balls
Brj (yj), for j = 1, . . . , N with centers yj at the vertices of Ω such that

1. Ω = ∪N
j=0Ωj where Ωj = Ω ∩Brj (yj) for j = 1, . . . , N and yj /∈ Bri(yi) if i ̸= j.

2. For every 1 ≤ j ≤ N , define Tj : Brj (yj) → R2 to be the operator consisting of the translation
yj → 0 and a rotation such that Tj(∂Ω ∩ Brj (yj)) coincides with part of an angular planar
domain {x ∈ R2 : 0 < x1, αjx1 < x2}, for αj ∈ R.

Set Qj = Tj(Brj (yj)), and also define

Q+
j := {x ∈ Qj : 0 < x1, αjx1 < x2} , Q−

j := {x ∈ Qj : 0 < x1, αjx1 > x2} ,
K+

j := {x ∈ R2 : 0 < x1, αjx1 < x2} , K−
j := {x ∈ R2 : 0 < x1, αjx1 > x2} .
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We may choose the map Tj so that Tj(Ωj) = Q+
j . Note that Tj is a bi-Lipschitz map with Lipschitz

constant depending only on Ω. Let {ϕj}Nj=0 ⊂ C∞
c (R2;R) be a C∞ partition of unity subordinate

to the collection {Ω0} ∪ {Brj (yj)}Nj=1. Then for every 1 ≤ j ≤ N, we have supp(ϕj) ⊂ Brj (yj),

dist(y, supp(ϕj)) ≥ βj > 0 for every y ∈ Ω \ Ωj . We also have supp(ϕ0) ⊂ Ω0, dist(y, supp(ϕ0)) ≥
β0 > 0 for every y ∈ Ω \ Ω0, and

∑︁N
j=0 ϕj ≡ 1 on Ω.

Suppose now u ∈ C1(Ω;R2). Define uj := ϕju, for j = 0, 1, . . . , N. Following the exact
procedure in the proof of Theorem 1.3 we show that

|u0|W s,p(Ω) ≤ C∥u∥X s,p(Ω) (4.9)

and
|uj |W s,p(Ω) ≤ C∥u∥X s,p(Ω), j = 1, 2, . . . , N, (4.10)

where C is a positive constant that depends on s, p, diam(Ω), and the partition of unity. Therefore
by (4.9) and (4.10), we have

[u]W s,p(Ω) =
[︂ N∑︂
j=0

uj

]︂
W s,p(Ω)

≤
n∑︂

j=0

[uj ]W s,p(Ω) ≤ C∥u∥X s,p(Ω).

The estimate for vector fields u in W s,p(Ω;R2) follows by density. This completes the proof.
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A Some technical lemmas
The following estimate is used in the proof of boundedness of the extension operator in cylindrical
epigraphs. The lemma originally appeared in [15] with the restriction that the base function f has
a small Lipschitz constant. We prove the lemma without any restriction on f here.

Lemma A.1. Let f : Rn−1 → R be Lipschitz with Lipschitz constant M. Let D ⊂ Rn be an epigraph
supported by f . For λ > 0 let Φλ(x) : D− → D be as in (2.12). Then one has

|x− y| ≤ C|Φ−1
λ (x)− y| for all x,y ∈ D,

for some constant C = C(λ,M).

Proof. We have Φ−1
λ (x) = (x′, f(x′) +

1

λ
(f(x′)− xn)), hence we can calculate for any x,y ∈ D− :

|Φ−1
λ (x)− y|2 = |x′ − y′|2 +

⃓⃓⃓⃓
1

λ
xn + yn − (1 +

1

λ
)f(x′)

⃓⃓⃓⃓2
.
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In the case xn ≤ yn we have

1

λ
xn + yn − (1 +

1

λ
)f(x′) = (yn − xn) + (1 +

1

λ
)(xn − f(x′))

≥ yn − xn ≥ 0

thus we get |Φ−1
λ (x) − y| ≥ |x − y|. Assume in the sequel xn > yn. Let ϵ = ϵ(M,λ) ∈ (0, 1/2] be

a small constant yet to be chosen. If |x′ − y′| ≥ ϵ|x − y|, then we are done. Assuming further
|x′ − y′| < ϵ|x− y|, we have

|x′ − y′| < ϵ√
1− ϵ2

|xn − yn| < 2ϵ|xn − yn|.

We can then calculate again

1

λ
xn + yn − (1 +

1

λ
)f(x′) =

1

λ
(xn − yn) + (1 +

1

λ
)(yn − f(y′)) + (1 +

1

λ
)(f(y′)− f(x′))

≥ 1

λ
(xn − yn)−M(1 +

1

λ
)|y′ − x′|

≥ (
1

λ
− ϵM(1 +

1

λ
))(xn − yn)

=
1

2λ
(xn − yn)

≥ 0,

if we choose ϵ = min(
1

2
,

1

2M(1 + λ)
). The proof is now complete.

The following estimate is used in the proof of the existence of a bounded extension operator on
planar angular domains.

Lemma A.2. Let f : Rn−1 → R be Lipschitz with Lipschitz constant M. Let D ⊂ Rn be an epigraph
supported by f . For the map Φλ(x

′, xn) = (x′, (1 + λ)f(x′) − λxn) : D− → D with λ > 0, there
exists a constant C, depending only on n, p, s, λ and M, such that

I(x) =

∫︂
D

|x− y|p

|Φ−1
λ (x)− y|n+p+ps

dy ≤ C

|xn − f(x′)|ps
for all x ∈ D.

Proof. For simplicity we will present a proof for λ = 1, the general case being completely similar.
We have ∫︂

D

|x− y|p

|Φ−1
1 (x)− y|n+p+ps

dy =

∫︂
D

(|x′ − y′|2 + |xn − yn|2)p/2

(|x′ − y′|2 + |yn + xn − 2f(x′)|2)(n+p+ps)/2
dy.

For ϵ > 0 yet to be chosen, and for any x ∈ D define the complementary subsets of D as follows:

Eϵ
1(x) = {y ∈ D : |y′ − x′| ≥ ϵ(xn − f(x′))}, Eϵ

2(x) = {y ∈ D : |y′ − x′| < ϵ(xn − f(x′))}.

In what follows, the constant C may depend only on n, p, s,M and ϵ. In the case y ∈ Eϵ
1(x),

substitute a = xn − f(x′) > 0, y′ − x′ = aw′ and yn + xn − 2f(x′) = at, where |w′| ≥ ϵ and
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w′ belongs to a subset of Rn−1 and t belongs to a subset of R. We can then estimate using the
inequality (|w′|2 + |t− 2|2)1/2 ≤ C(|w′|+ |t|+ 1) that∫︂

Eϵ
1(x)

(|x′ − y′|2 + |xn − yn|2)p/2

(|x′ − y′|2 + |yn + xn − 2f(x′)|2)(n+p+ps)/2
dy

≤ 1

aps

∫︂
R

∫︂
{w′∈Rn−1 : |w′|≥ϵ}

(|w′|2 + |t− 2|2)p/2

(|w′|2 + |t|2)(n+p+ps)/2
dw′dt

≤ C

aps

∫︂
R

∫︂
{w′∈Rn−1 : |w′|≥ϵ}

1

(|w′|+ |t|)n+ps
+

1

(|w′|+ |t|)n+ps+p
dw′dt

≤ C

aps

∫︂
{w∈Rn : |w|≥ϵ}

1

|w|n+ps
+

1

|w|n+ps+p
dw

=
C(ϵ)

aps
,

Consider now the case y ∈ Eϵ
2(x). We have in that case

yn + xn − 2f(x′) = (yn − f(y′)) + (f(y′)− f(x′)) + xn − f(x′)

≥ −M |y′ − x′|+ xn − f(x′)

≥ (1− ϵM)(xn − f(x′)).

Thus, if we choose ϵ = 1/2M , we will have yn+xn−2f(x′) ≥ (xn−f(x′))/2. Consequently, setting
x′ − y′ = aw′ and yn + xn − 2f(x′) = at, we will have that |w′| < ϵ and w′ belongs to a subset of
Rn−1, while t belongs to a subset of (1/2,∞). We can estimate in a similar manner:∫︂

Eϵ
2(x)

(|x′ − y′|2 + |xn − yn|2)p/2

(|x′ − y′|2 + |yn + xn − 2f(x′)|2)(n+p+ps)/2
dy

≤ 1

aps

∫︂ ∞

1/2

∫︂
{w′∈Rn−1 : |w′|<ϵ}

(|w′|2 + |t− 2|2)p/2

(|w′|2 + |t|2)(n+p+ps)/2
dw′dt

≤ 1

aps

∫︂ ∞

1/2

∫︂
{w′∈Rn−1 : |w′|<ϵ}

1

(|w′|+ |t|)n+ps
+

1

(|w′|+ |t|)n+ps+p
dw′dt

≤ C

aps

∫︂
{w∈Rn : |w|>1/2}

1

|w|n+ps
+

1

|w|n+ps+p
dw

≤ C

aps
.

This completes the proof of the lemma.
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