
Graphical Abstract

Machine Learning-guided accelerated discovery of structure-property

correlations in lean magnesium alloys for biomedical applications

Sreenivas Raguraman, Maitreyee Sharma Priyadarshini, Tram Nguyen, Ryan

McGovern, Andrew Kim, Adam J. Griebel, Paulette Clancy, Timothy P.

Weihs

���������������� ������������������


�����������
	��������������

������
	������
����������������
������������������

�������������� ��������

���­�������­������	����
������������������

��������������	�������

Bahmani ModelRalston-Biribilis ModelOrowan StrengtheningTaylor ModelHall-Petch Model

�	�������������

�
��� ��������
����������

��������

�	������������������	������������

������������������
����������

�������������������������������

5 µm 5 µm

5 µm5 µm

Ca

MnZn

Mg

5 µm

������������������������������

5 µm

���������������������

���	��������������

����������������������

25 µm

2θ
In

te
ns

ity

�������������������
Convolutional 
Multiple Whole 
Pro�le Fitting

2θ

In
te

ns
ity

�������
Texture Integrated 
Area Ratios

����������
In

te
ns

ity

2θ

�	�������������������

Vol. %

29%

71%

Quantitative Phase 
Fraction Analysis

�����������������������������

����������



Highlights

Machine Learning-guided accelerated discovery of structure-property

correlations in lean magnesium alloys for biomedical applications

Sreenivas Raguraman, Maitreyee Sharma Priyadarshini, Tram Nguyen, Ryan

McGovern, Andrew Kim, Adam J. Griebel, Paulette Clancy, Timothy P.

Weihs

• Microstructure, hardness, corrosion rate evolution under solution treat-

ment tracked.

• Accelerated characterization via XRD, microscopy, hardness, immer-

sion studies.

• Physics-based Machine Learning decodes structure-property correla-

tion.

• Grain size and ternary precipitate control crucial for strength-corrosion

optimization.
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Abstract

Magnesium alloys are emerging as promising alternatives to traditional or-

thopedic implant materials thanks to their biodegradability, biocompatibil-

ity, and impressive mechanical characteristics. However, their rapid in-vivo

degradation presents challenges, notably in upholding mechanical integrity

over time. This study investigates the impact of high-temperature thermal
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processing on the mechanical and degradation attributes of a lean Mg-Zn-

Ca-Mn alloy, ZX10. Utilizing rapid, cost-efficient characterization methods

like X-ray diffraction and optical, we swiftly examine microstructural changes

post-thermal treatment. Employing Pearson correlation coefficient analysis,

we unveil the relationship between microstructural properties and critical tar-

gets (properties): hardness and corrosion resistance. Additionally, leveraging

the least absolute shrinkage and selection operator (LASSO), we pinpoint the

dominant microstructural factors among closely correlated variables. Our

findings underscore the significant role of grain size refinement in strength-

ening and the predominance of the ternary Ca2Mg6Zn3 phase in corrosion

behavior. This suggests that achieving an optimal blend of strength and cor-

rosion resistance is attainable through fine grains and reduced concentration

of ternary phases. This thorough investigation furnishes valuable insights

into the intricate interplay of processing, structure, and properties in mag-

nesium alloys, thereby advancing the development of superior biodegradable

implant materials.

Keywords: magnesium alloys, machine learning, corrosion, mechanical

properties, rapid characterization

1. Introduction

Biodegradable magnesium alloys have emerged as a cutting-edge focus of

modern materials science and biomedical engineering due to their exceptional

mechanical properties and innate ability to degrade within the human body.

These attributes make them a compelling choice for medical implants. [1, 2]

However, to fully harness the potential of biodegradable magnesium alloys,
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we must gain a comprehensive understanding of how their microstructure

changes with thermal treatment and how these transformations affect their

mechanical and corrosion properties. [3–5] In the context of biodegradable

magnesium alloys, striking the right balance between corrosion resistance

and deformation resistance becomes all the more critical. These alloys must

endure mechanical stresses in their intended applications while gradually

degrading as new tissue forms. Achieving this balance is a substantial chal-

lenge, as pure magnesium is renowned for its excellent biocompatibility but

is susceptible to deformation and rapid corrosion. One standard method

to enhance the properties of magnesium is to introduce alloying elements

that stimulate the formation of secondary phases. These secondary phases

substantially improve the material’s mechanical strength, but often at the

cost of reduced corrosion resistance, a trade-off of particular relevance to

biodegradable magnesium alloys. [6–8] Given the growing interest in devel-

oping magnesium alloys for biomedical purposes, exemplified by the recent

FDA approval of the RemeOS screw [9], a deeper understanding of the intri-

cate interplay between microstructural features and material properties is of

utmost importance.

The impact of microstructural features on material properties is often

quantified using sophisticated characterization tools such as TEM, which

imposes not only substantial financial costs but also consumes considerable

time. In response to these challenges, this study harnesses the power of

lab-based X-ray diffraction and optical microscopy to rapidly characterize

essential microstructural parameters such as dislocation density, crystallo-
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graphic texture, intermetallic phase fraction, and grain size for a given Mg

alloy.

One of the significant challenges in identifying the impact of individual

microstructural features lies in their interdependence; they are not isolated

entities but rather highly correlated. [10, 11] This can be illustrated by the

example of Zener particle-pinning [12], in which grain growth is hindered

by secondary phases located on grain boundaries. While the restriction of

grain growth by the particles enhances hardness and strength, the particles

can also accelerate corrosion. Comprehending and untangling the individual

effects of these highly correlated features is difficult.

Recent advancements in machine learning algorithms have guided a new

era of exploration, allowing for an in-depth analysis of individual parameters

and the identification of dominant factors that significantly influence prop-

erties of interest, as evidenced by numerous studies. [15–25] However, most

of these investigations have either relied on computationally generated data

obtained through calculations or have drawn from experimental data sets

scattered across various sources in the literature, lacking a direct one-to-one

comparison. Furthermore, many of these studies have concentrated on the

chemistry of alloys, with limited attention given to the impact of processing

and microstructural features.

Recognizing this gap in the literature, our study aims to identify the

complex relationships between microstructure, mechanical properties, and

corrosion resistance as the microstructure evolves in a dilute biodegradable
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Figure 1: Schematic illustrating the methodologies employed for understanding process-
structure-property relationships, including accelerated characterization via XRD and op-
tical microscopy, expedited property assessment through hardness measurements and 1-
day immersion studies, and application of machine learning techniques such as Pearson
Correlation Coefficient (PCC) analyses [13] and LASSO [14] for comprehending structure-
property correlations.
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magnesium alloy, ZX10, as it is heat-treated over a broad range of times at

450 °C. Our study documents the evolution of microstructure, hardness, and

in-vitro corrosion rates and identifies the dominant microstructural features

during different stages of the heat treatment through machine learning, as

displayed schematically in Figure 1.

2. Materials and methods

2.1. Thermomechanical Processing

The ZX10 quaternary alloy, consisting of high-purity Mg and small con-

centrations of Zn (1.3 wt%), Ca (0.3 wt%), and Mn (0.15 wt%), was synthe-

sized through a multi-step process. Initially, ingots were created by melting

the constituent elements, followed by a homogenization heat treatment. The

ingots were then conventionally extruded at 350°C, using an extrusion ratio of

25:1, resulting in cylindrical rods with a diameter of ≈ 12 mm. The extruded

rods underwent further processing using the continuous Equal Channel An-

gular Pressing (cECAP) method, where the extruded rods were subjected to

four passes in the Bc route at 300°C, followed by an additional four passes

in the Bc route at 200°C through a square die of side 11 mm at an angle of

120° generating an equivalent strain of 0.67 per pass, as described in Davis

et al. [26] Samples processed by cECAP are the starting material for this

study and are hereafter referred to as ‘ECAP’.

The samples were precision-cut into 11 by 11 by 1 mm3 sheets using wire

electric discharge machining from ECAP rod, and the heat-affected regions

were removed by polishing with SiC P4000 sandpaper (sourced from Allied
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HighTech) and a final polishing step with 0.05 µm Colloidal Silica Suspension

to achieve a mirror-like finish. In addition, ThermoCalc, a CALPHAD-based

program, was utilized to calculate the phase diagram of this alloy (as seen in

Figure 2(a)). Based on the predicted phase diagram, the ECAP samples were

subjected to solution heat treatment in an Argon gas environment within a

Carbolite Gero HTCR5/95 furnace at 450°C, where only the α-Mg phase

is stable. Heat treatments ranged from one minute to a maximum of 128

hours, followed by rapid quenching in water. Moving forward, each sample is

designated by the duration at 450°C. For instance, a sample that undergoes

a 2-minute solution heat treatment is referred to as “2 min” sample. A

temperature versus time profile for the initial heating is plotted in Figure 2(b)

and shows that samples rise into the solutionizing region, where no secondary

phases are stable, within 10 seconds.

Ca2Mg6Zn3

Mn

Mg2Ca

(a) (b)

Figure 2: a) ZX10 Phase Diagram Predicted by ThermoCalc, b) Thermocouple readings
of a sample at the start of the solution heat treatment.
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2.2. Characterization and Quantification of Microstructural Parameters

To characterize and quantify microstructural features rapidly, we em-

ployed optical microscopy and X-ray diffraction. We also leveraged SEM

imaging, SEM-EDS mapping, and SEM-EBSD mapping to verify the con-

sistency of the rapid analyses. To examine the ECAPed and annealed mi-

crostructures, samples were etched using a 5% Nital solution (composed of

5% Nitric Acid and 95% methanol) following the ASTM E 407 standard. [27]

Optical microscopy was performed using a Leica DMi8 Inverted Microscope

with LASX software for grain size visualization. JEOL IT700HR InTouch-

ScopeTM SEM and Thermo Scientific Helios 5 UC Focused Ion Dual Beam

were employed for imaging and EDS analysis, with EDS data analysis con-

ducted using APEX EDS software. Grain sizes were measured using optical

micrographs, scanning electron micrographs, and a MATLAB program, fol-

lowing the intercept method specified in ASTM E112-13. [28]

The mirror-finish samples were subjected to bulk ion beam milling using

a Leica EM TIC 3X at 5kV and 3mA for 5-minutes before Electron Backscat-

tered Diffraction (EBSD) studies on a Tescan MIRA 3 GM Field Emission

SEM, equipped with Oxford EBSD detector at voltage of 20 kV. Textural and

grain size analyses for EBSD were carried out using AZteC Crystal Software

by Oxford. We also used AZteC Crystal Software to obtain the Geometri-

cally Necessary Dislocation (GND) density, based on the Weighted Burgers

Vector Method developed by Wheeler et al. [29] To mitigate the step size

influence on GND measurement and examine relative GND density changes,

a constant step size of 0.5 µm was employed. The analysis focused on the
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dislocation density of Burgers vectors with a magnitude of 1
2
[1120], and the

GND density was assessed using a 3× 3 pixel kernel size.

The SEM-EDS images were initially subjected to thresholding by the

Otsu method [30] to distinguish the precipitates from the matrix based on

contrast. The representative diameter of each precipitate was then computed

by averaging its major and minor axes, which served as the basis for calcu-

lating the precipitate size distribution and area fraction.

X-ray diffraction (XRD) analysis was conducted per the principle of

Bragg’s law [31] using the Malvern Panalytical Aeris powder X-ray diffrac-

tometer, operating at 40 kV and 7.5 mA. The instrument was equipped with a

Nickel Beta Filter and a Cu X-ray source, and data collection was performed

using a step size of 0.0027°. To ensure data quality, scans were repeated

three times and subsequently summed to enhance the signal-to-noise ratio.

Data processing, such as background subtraction, removal of Kα2 peaks, peak

identification, and peak matching, was accomplished using X’pert HighScore

software.

The Convolutional Multiple Whole Fitting (CMWP) program developed

by Ribarik et al. was employed to determine the average dislocation density.

The standard reference material (SRM 660, LaB6) from the National Insti-

tute of Standards and Technology was employed to obtain the instrumental

profile function. Due to very minimal alloying content, the broadening of

the Mg peaks was assumed to arise mainly from the strain contributions of
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the dislocations in the Mg phase. The CMWP program has been detailed in

[32–35].

Peaks exceeding a minimum threshold of 0.01 counts after background

subtraction were detected and subjected to PseudoVoigt profile fitting using

X’Pert HighScore Software, as detailed in [36]. To address the impact of tex-

ture on intensity, which can arise from preferential precipitation on specific

planes during annealing, multiple peaks with 2θ values spanning the range

of 20-60° were taken into account.

We estimated the volume fraction for each constituent phase by calcu-

lating the ratio of the integrated area corresponding to an individual phase

to the sum of integrated areas for all phases as described in [37] and as

illustrated below:

Vf,a =
Aa

Aa + Ab + Ac + Ad

(1)

where Vf is the volume fraction, A is the integrated area under the peak, and

subscripts a, b, c, d represent the constituent phases.

For texture characterization, we focused on the prismatic [1010] and [1120]

and basal [0002] planes. The degree of texture was quantified using ratios

of the integrated peak areas for prismatic planes normalized with respect to

the basal plane, as follows:

V(1010)

V(0002)

=
A(1010)

A(0002)

,
V(1120)

V(0002)

=
A(1120)

A(0002)

(2)
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2.3. Microhardness evaluation

Microhardness measurements were conducted utilizing a 200 gf load on a

LECO AMH55 Hardness Tester. Vickers hardness values were derived from

the indentation size through the ‘Cornerstone’ software. Each hardness data

point represents a total of at least ten measurements. In accordance with

DIN-ISO 6507 guidelines [38], the micro-indents were spaced at distances

equal to six times the average indent width.

2.4. Bio-corrosion Evaluation

The square samples measuring 11×11×1mm3 were polished on all sides

with P4000 SiC paper prior to immersion in Earle’s Balanced Salt Solution

at 5% CO2 and a temperature of 37.1°C, simulating in-vivo conditions for 24

hours. Immersion bio-corrosion tests were conducted with a sample surface

area to solution volume ratio of 0.2mL/mm2 per ASTM G31-72 standard

[39]. The testing took place within a Heraeus Heracell CO2 150 incubator.

Following the immersion tests, the corroded samples were treated with a

solution composed of (200 gCrO3 + 10 gAgNO3 + 20 gBa(NO3)2) dissolved

in 1l of deionized water, following the guidelines set forth by ASTM G1 [40] to

remove corrosion products. Mass and pH measurements were acquired before

and after the corrosion testing utilizing a weighing scale (Hanchen Electronic

Analytical Balance, 0.1 mg, Digital Scale) and benchtop pH meter (Accumet

AB150, Thermo Fisher Scientific, MA, USA). The pH level was maintained

below 8. The biocorrosion rate of each sample was calculated by the weight

loss measured in an immersion period of 24 hours according to the equation
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in [39]:

Corrosion Rate =
K ×W

A× T × ρ
mm/yr (3)

where K is a constant (8.76× 104), W is the weight loss in the unit of gram,

A is the exposed sample surface area in the unit of cm2, T is the time of

exposure in the unit of hours, and ρ is the sample density in the unit of

g/cm3. The calculated density of 1.77 ± 00.26, obtained using a helium gas

pycnometer (Micromeritics AccuPyc II 1340) and a microbalance (Mettler

Toledo Model XS3DU), were employed to estimate corrosion rates. For this

study, we focused on corrosion over a single day, given that corrosion rates

are usually at their highest initially and tend to decrease over time.

2.5. Machine Learning-driven Analysis

We apply two machine learning techniques to understand the correlations

between the microstructural features and to identify the most significant mi-

crostructural features that affect the corrosion rate and hardness. To obtain

correlations between the microstructural features, we compute the Pearson

R correlation coefficients (PCC) [13] using the following equation:

rxy =

∑n
i=1(xi − x̄)(zi − z̄)√∑n

i=1(xi − x̄)2
√∑n

i=1(zi − z̄)2
, (4)

where x and z represent two different microstructural features, xi and zi rep-

resent data observations for the given microstructural feature, and x̄ and z̄

represent the mean of the observations for x and z. The PCC is computed

pairwise for the microstructural features and is a statistical measure of the

linear correlation between two data sets. A positive PCC value indicates

that the values x increases as the value of y increases, and a negative PCC
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indicates that the value of x decreases as the value of y increases. We also

compute the PCC between each microstructural feature and the targets -

hardness and corrosion rate. This analysis provides an understanding of how

each microstructural feature impacts the strengthening and degradation of

the Mg alloy.

Following the correlation analysis, we performed feature selection using

LASSO. [14] LASSO builds a linear model based on the assumption that

the model coefficient vector (β) is sparse. This implies that only some input

variables are selected to create the linear model. The following objective

function is solved by LASSO:

min
β∈Rp

{
1

N
∥y − xβ∥22 + λ∥β∥1

}
, (5)

where N is the number of data points, β is the coefficient vector, x represents

the microstructural features data, y represents the targets, hardness, and

corrosion rate, and λ represents a tunable hyperparameter that controls the

sparsity of our linear model.

2.5.1. Implementation of the Machine Learning Models

The machine learning models were implemented using the PyTorch pack-

age [41] in Python. We have made the code available on the following GitHub

Repository. The implementation of LASSO requires tuning of the λ hyper-

parameter (Equation (5)). In our implementation, we perform a grid search

on the λ parameter and select the one that gives the highest accuracy model

based on leave-one-out-cross-validation (LOOCV). We use the mean absolute
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error and R2 score as the accuracy measure for cross-validation and model

selection.

3. Results and Discussion

3.1. Variation in Hardness and Corrosion on Solution Heat Treatment

As depicted in Figure 3, the initial minute of heat treatment produces

minimal impact on hardness; however, there was a sharp decrease (by 30%)

after 2-minutes. The hardness then stabilized for approximately 30-minutes

before gradually declining, resulting in a cumulative reduction of 50% by

128 hours. In contrast, the corrosion rate experienced a rapid decline (40%)

within the first minute, stabilized for the subsequent 30-minutes, and then

gradually decreased until a total reduction of 4X was observed at 128 hours.

Notably, such substantial property changes occurring within brief time inter-

vals (1-2 minutes) are unusual.

It was intriguing to note the combination of high strength and relatively

favorable corrosion rates in the 1 min sample. This observation suggests that

high-temperature annealing for shorter durations can enhance the corrosion

behavior of heavily deformed samples. These observations also underscore

the remarkable changes in material properties without alterations in chem-

istry, emphasizing the critical role of processing on properties. The underly-

ing mechanisms driving these transformations lie within the microstructure,

underlining the necessity for ongoing monitoring of microstructural changes

to attain optimal material properties.
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3.2. Tracking material microstructure rapidly following heat treatment

After subjecting the samples to heat treatments and quenching, we rapidly

characterize four critical microstructural features pertinent to hardness and

corrosion using X-ray diffraction (XRD) and optical microscopy (OM) meth-

ods, which offer advantages in terms of minimal sample preparation, time

efficiency, and cost-effectiveness. These features include dislocation density,

crystallographic texture, precipitate volume, and grain size. [42, 43] While

the XRD-derived values provide averaged measurements and may not capture

local variations in dislocation densities or increases in particle size beyond

200 nm, they serve as valuable tools for explaining the observed fluctuations

in mechanical and corrosion properties as depicted in Figure 3. XRD pat-

terns and optical microstructures of all the conditions are plotted in Figures 4

and 6, respectively.

3.2.1. Variation in Dislocation Density

Based on CMWP analyses as demonstrated in Figure 4(b), the ECAP

sample has a high dislocation density exceeding 3×1015 m−2 but drops tenfold

after just a one-minute exposure to 450°C, indicative of significant dislocation

annihilation. This dramatic drop is also supported by EBSD measurements,

as demonstrated in the geometrically necessary dislocation (GND) density

plot in Figure 5(d). A noteworthy aspect is the consistent log-normal distri-

bution of GND density within the heat-treated samples.

Previous studies [44–46] have predominantly examined variations in dis-

location density over longer time scales, typically spanning 20 minutes or
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Only Magnesium peaks visible in linear scale
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b c

d e

ECAP

ECAP

1 min

2 min

5 min

15 min

30 min

1 hr

4 hr

16 hr

64 hr

128 hr

Figure 4: Accelerated Microstructural characterization from XRD: a) XRD pat-
terns revealing the Mg peaks (in linear scale) and presence of precipitates (in logarithm
scale) b) Dislocation density obtained from CMWP analyses revealing dislocation annihila-
tion and plateauing post-1-minute annealing; c) Variation in precipitate content obtained
from XRD revealing dissolution of precipitates; Texture ratios from XRD showing the
variation of (d) (1010)/(0002) and (e) (1120)/(0002) over time.
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more. Given our study utilizes far shorter time durations, we conducted in-

situ temperature measurements with a thermocouple to ensure samples reach

the annealing temperature rapidly, as shown in Figure 2(b). Note that the

samples reach the solutionizing region within 10 seconds, so even a brief one-

minute annealing period provides sufficient exposure to high temperatures

for the annihilation of dislocations.

3.2.2. Crystallographic Texture Evolution

In terms of crystallographic texture, we primarily considered three planes

for our study: the basal (0002) plane and the prismatic (1010) and (1120)

planes, which have been identified as significant influencers of corrosion be-

havior as per literature. It is worth noting that prismatic planes corrode

18-20 times faster than basal planes. [43, 47] Thus, texture ratios were cal-

culated using integrated areas from XRD scans as detailed in Section 2.2,

and both integrated area ratios (1010)/(0002) and (1120)/(0002) show sim-

ilar trends over time as seen in Figure 4(d) and (e). The XRD intensity of

the (1010) plane remains relatively constant from the first minute onwards,

whereas the intensities of the (1120) and (0002) planes fluctuate in response

to the heat treatment duration. The most pronounced variations occur dur-

ing the second minute, which coincides with the onset of grain growth.

The EBSD pole figures reveal a similar trend while offering intriguing

additional insights. The texture notably weakens from the ECAP to the

1-minute sample. In the ECAP sample, the basal plane texture tilts approx-

imately 45° to the normal. Conversely, we observe a wider range of texture

variation in the one-minute sample, spanning from 25° to 65° to the normal.
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Figure 5: Microstructural Evolution validation using SEM: a) SEM-EDS Maps
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revealing the texture variation over time.
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However, a significant texture strengthening occurs in the 2-minute sample,

with the basal pole aligning more closely towards the center of the pole fig-

ure. As subsequent sections will explain, the dissolution of precipitates leads

to an increase in grain size from 1-minute to 2-minutes, consequently alter-

ing the texture. By the 128-hour mark, the basal texture, (0001), exhibits a

more dispersed pattern, aligning closer to the 0− 45° range along the x-axis,

as illustrated in Figure 5(e).

3.2.3. Precipitate Evolution

In this alloy, three common types of precipitates were observed: Ca2Mg6Zn3,

Mg2Ca, and Mn, as evidenced by both XRD (Figure 4(c)) and SEM-EDS

analyses (Figure 5(a-c)). This observation aligns with the predicted phase di-

agram by ThermoCalc, illustrated in Figure 2(a). At 450°C, all three phases

are thermodynamically unstable, and the stable phase is a solid solution.

However, solutionizing completely requires significant time.

While determining phase volume fraction using integrated area measure-

ments from XRD (Figure 4), the influence of texture on preferential pre-

cipitation was deemed negligible. As expected, the calculated volume frac-

tion of all three phases decreased with annealing time, as illustrated in Fig-

ure 5(b).Within the initial minute of exposure at 450°C, the overall pre-

cipitate fraction decreased by approximately 30%. Subsequently, from 1-2

minutes, there was a decrease of around 6%, followed by stepwise declines in

the precipitate fraction, each below 1%, until the 4-hour mark, when more

pronounced decreases occur over time, resulting in close to a 70% reduction

in precipitate content.

20



While XRD measurements do not provide detailed insights into precip-

itate size and distribution, they facilitate the identification of precipitate

dissolution and differential dissolution rates among precipitates, which are

challenging to obtain through optical microscopy or SEM. On the other hand,

SEM-EDS maps provided an understanding of precipitate morphology within

its resolution limit and also confirmed the dissolution of precipitates over

time, corroborating our XRD analyses. Image analysis of backscattered elec-

tron (BSE) images also revealed that precipitate diameter increased over time

while area fraction decreased, as seen in Figure 5(b) and Figure 5(c).

Upon closer examination of individual precipitate variation over time, the

initial drop in precipitate content within the first minute is attributed pri-

marily to the ternary Ca2Mg6Zn3 phase, exhibiting close to a 40% decrease.

This substantial reduction can be attributed to the high mobility of Zn atoms

in the Mg matrix, as calculated from diffusion coefficient data obtained from

[48]. Zn atoms display a significantly higher interdiffusion coefficient (9.24

µm2/s) at 450°C compared to Ca atoms (0.19 µm2/s) and Mn (0.001 µm2/s),

as well as Mg’s self-diffusion coefficient (0.03 µm2/s). The data also explains

the slower dissolution of the Mg2Ca phase and minimal change in the Mn

phase.

The dissolution of precipitates within such short time scales, as observed

in the first minute, appears to be an unexplored phenomenon in past liter-

ature. Most studies [49–53] typically focus on precipitate evolution starting
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at 30-minutes or longer. However, this study underscores the importance

of monitoring microstructural features at smaller time scales, particularly at

elevated temperatures, in part because short processing times are advanta-

geous to industry.

3.2.4. Grain Size Variation

Our investigation into grain size primarily relied on optical microscopy

(Figure 6(a)), complemented by EBSD grain size measurements (Figure 6(b))

at specific time intervals to validate our findings. Initially, the ECAP sam-

ples exhibited highly refined grains, averaging approximately 800 nm in size.

Despite the observed dislocation annihilation, a one-minute annealing pro-

cess did not induce significant changes in grain size. However, as the heat

treatment extended to 128 hours, the grain size increased significantly by

60-fold, reaching nearly 50 µm towards the end of the process.

Of particular note is the ten-fold increase in grain size observed from the

first minute to the second minute, a phenomenon also evident in the tex-

ture variations illustrated in Figure 4(d) and 4(e).Such substantial changes

in microstructure tend to be under-reported in the literature that typically

considers longer time periods. [54, 55]

To understand this rise in grain growth behavior, we employed the well-

established grain growth model [11]:

dn − dno = kt, (6)
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Figure 6: Grain Size Analysis: a) Optical Microstructures revealing grain size coars-
ening over time; b) Inverse Pole Figures of ECAP, 1 min, 2 min, and 128 hr samples
confirming the rapid grain growth; c) Grain size distributions as a function of condition
revealing abnormal grain growth; d) The variation in the width of grain diameter over
time, and the fit as per Equation (6) denoting the abnormal grain growth; e) Variation
in 3D grain radius as a function of time, with a fit per the Zener model (Equation (7))
revealing the abnormal grain growth in the 2nd min and 5th min samples, beyond which
the grain growth is normal.
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where k is the grain growth exponent, t is the time, do is the initial grain size,

and d is the grain size at time, t. Fitting the model yields a grain growth

exponent, n ≈ 5.5, that is a substantial deviation from the value proposed by

Burke and Turnbull (n = 2) [56] as seen in Figure 6(d). This deviation points

to the occurrence of abnormal grain growth, a phenomenon characterized by

the sudden emergence of unusually large grains within a matrix of uniformly

sized grains. An analysis in Supplementary Table SI 1 reveals the presence

of island grains, characterized by grains with double the average grain size,

a characteristic feature of abnormal grain size. This phenomenon is not un-

common and has been well-documented in previous studies in magnesium

alloys. [11, 54, 57, 58] The grain growth exponent observed in this study is

consistent with findings from these previous studies, where n typically falls

within the range of 2 to 7.

This grain growth model assumes boundary curvature drives growth, the

absence of a drag force on the boundary due to particles or solutes, and

isotropic grain boundary energies and mobilities. Given this alloy contains

second-phase particles, we investigated grain size distributions over time,

which revealed deviations from self-similarity, a hallmark of abnormal grain

growth as described by Humphreys [12] and seen in Figure 6(c). A high value

of n points to grain growth stagnation, likely due to second-phase particles

exerting a drag force on the boundaries, effectively pinning the microstruc-

ture. As illustrated in Supplementary Figure SI 1, the normalized grain

distribution and the variation in the width of the normalized distribution

exhibit specific patterns. The normalized grain size distributions remain log-
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normal throughout, except in the 2 min sample as revealed in Supplementary

Table SI 2. Notably, the breadth of the distribution does not change signif-

icantly under any of the annealing conditions; instead, it oscillates. This

observation suggests that while some grains began growing at a much faster

rate than others, broadening the distribution, the finer grains rapidly caught

up, preventing distributions from becoming bimodal. [11, 57] This transient

nature of abnormal grain growth has been observed in previous experiments

and simulations. [12, 56, 59–61]

The most commonly cited explanation for abnormal grain growth revolves

around the coarsening of particles that effectively pin the grain boundaries,

as explained well in [11]. The classical approach to understanding the impact

of pinning particles on grain growth is to employ the Zener model [62]:

Rc =
4r

3f
, (7)

where Rc is the limiting grain radius, r is the radius of the pinning par-

ticles, and f is the volume fraction of the particles. This equation, while

based on several simplifying assumptions like spherical particles and grains

and randomly distributed particles with no preferential arrangement at grain

boundaries, has been applied here to provide a semi-quantitative comparison

between observed and predicted grain sizes.

Our observations (Figure 6(e)) indicate that in the ECAP and 1-minute

samples, the observed grain radius remains significantly below the calculated

critical radius, hereafter referred to as the Zener radius. There appear to be
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two distinct regions of normal grain growth separated by a segment of ab-

normal grain growth (2 min and 5 min): the first region encompasses ECAP

and 1-minute, and the second region starts from 15-minutes all the way to

128 hours, aligning with the trend visible in the grain size distribution plot

in Figure 6(d).

This unusual behavior in the 2-minute sample is attributed to the sig-

nificant dissolution of the ternary phases in the first minute, which leads to

an approximately ten-fold increase in average grain size. Since these ternary

particles may be heterogeneous in size and distribution, pinning of grain

boundaries and grain growth may also be heterogeneous, resulting in a bi-

modal distribution as revealed in Supplementary Table SI 2. However, by

5-minutes, many of these particles dissolve, contributing to a nearly 8-fold

rise in grain size from 2 - 5 minutes and log-normal distributions of grain

sizes. Subsequently, the grain growth stabilizes and follows normal grain

growth behavior. This study reveals the highly correlated nature of mi-

crostructural features, wherein the presence of secondary phases correlates

with and appears to control grain growth and texture evolution.

3.3. Correlations between Microstructural Features

Figure 7 displays the Pearson R correlation coefficients (PCC) [13] for the

microstructural features characterized in our study. The left matrix in Fig-

ure 7(a) presents results obtained while including the ECAP sample before

any solution treatment, while the right matrix Figure 7(b) shows correlation

coefficients after excluding data for the ECAP sample.
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Figure 7: Correlations between the microstructural features (a) with ECAP and (b) with-
out ECAP sample.

Upon removing the ECAP sample point, significant changes in corre-

lations are evident, particularly regarding the dislocation density, ρ. This

variation can be attributed to dislocation annihilation occurring during the

initial minute of high-temperature annealing, as detailed in Section 3.2.1

and Figure 4(b). The sudden initial drop in dislocation density results in the

identification of some unusual and unphysical correlations, such as between

dislocation density and (112̄0/0002) texture ratio. Additionally, the dislo-

cation density exhibits small positive correlations with precipitate volume

fractions. This may arise from the simultaneous occurrence of dislocation

annihilation and precipitate dissolution upon annealing, leading to these un-

expected correlations.

Our analysis in Figure 7(b) reveals a strong negative correlation between
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grain size (d) and precipitate volume fractions, consistent with Zener theory

(Equation (7)). Furthermore, grain size exhibits a robust negative correla-

tion with texture for the (112̄0/0002) texture ratio, which could explain the

observed trend of the texture becoming more basal over time, as depicted in

the pole figures in Figure 5(e). Moreover, we observe high correlations among

the three precipitate volume fractions, which is unsurprising given their re-

lationship through the constraint that their sum equals 1. This correlation

likely arises from the simultaneous dissolution of all these precipitates over

time.

The correlations presented here offer valuable insights into the interplay

between various microstructural features in our alloy system, shedding light

on the complex relationships governing its behavior. Taken together, the

data underscores the importance of accelerated characterization combined

with advanced statistical analysis in understanding such correlations.

3.4. Machine Learning-guided Structure Property Correlations

3.4.1. Strengthening Mechanism

In this investigation, we utilize a machine learning approach comprising

Pearson correlation coefficient [13] and LASSO regression [14] analyses to

understand the influence of individual microstructural features on hardness.

Recognizing the limitations posed by a small dataset, we address this chal-

lenge by integrating established physics-based models for strengthening into

these feature selection models. This integration involves leveraging physics-

based features, a strategy detailed below.
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In general, the common physical factors contributing to the strength-

ening of a magnesium alloy are solid solution strengthening (σSS), disloca-

tion strengthening (σdis), grain size strengthening (σgb), and precipitation

strengthening (σppt). Based on previously known theory, we can estimate

the total strengthening in the alloys to be a sum of individual strengthening

mechanisms. [63]

σ = σSS + σDis + σGB + σppt,

= m
∑
i

Bi(Xi)
2/3 +MαGb

√
ρ+ kd−1/2 +∆τ.

(8)

In Equation 8, the first term represents the contribution from solid solu-

tion strengthening as explained by the Labusch model [64, 65], the second

term represents the contribution from dislocations that can be estimated

by Taylor dislocation model [63], the third term represents grain boundary

strengthening based on the Hall-Petch relationship [66], and the last term

represents the contribution from precipitates as estimated using the Orowan

model. [63] The individual fits of each of these models are listed in the Ap-

pendix A.6.

For solution-strengthening, Xi denotes the atomic fraction of solute i, and

Bi represents the potency factor corresponding to solute element i. Assuming

all the solute atoms (0.4 at.% of Zn and 0.2 at.% of Ca) are in solution,

the maximum solution-hardening is estimated to be only 10 MPa / 3.3 HV
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(calculated from [67]). We neglect the contribution of Mn due to its minimal

content (< 0.07 at.%). Since this maximum hardening is barely 1% of the

measured hardness, we consider solid solution-strengthening to be negligible

and do not consider it for the analyses. In Equation 8, the parameter α = 0.2

captures dislocation interactions within the basal slip system, G signifies the

shear modulus of the Mg matrix (approximately 16.6GPa), ρ encapsulates

dislocation density, b represents the Burgers vector (roughly 0.32 nm), M

is the Taylor factor (≈ 4.5 in Mg alloys [68]), d signifies the grain size, k

is the Hall-Petch slope obtained by fitting our data into the above model,

and ∆τ is the increment in the critical resolved shear stress (CRSS) due to

precipitates. [69] To quantify the strengthening effect of precipitates, the

increment in the ∆τ , resulting from the necessity for dislocations to bypass

two distinct precipitates, is estimated as follows:

∆τ =
Gb

2πλ∗
√
1− ν

ln
d∗pi
ro

. (9)

Here, λ∗ signifies the effective planar inter-particle spacing on the slip plane,

ν is the Poisson’s ratio of the Mg matrix (≈ 0.3), d∗pi denotes the mean

planar diameter of the particles on the slip plane calculated from XRD using

the Scherrer equation and assuming that peak broadening is due to particle

size effects. ro is the core radius of the dislocations, approximated to be

the magnitude of b (r0 = 0.32nm). [70] Given the Scherrer equation is

only valid for particle sizes less than 200 nm [71], we limit our consideration

to particles below this threshold, which are the ones most responsible for

strengthening. Following the methodology outlined by J.F. Nie [72], the

mean inter-precipitate spacing can be approximated based on the volume
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fraction of the precipitates, f and mean diameter of the precipitates, d∗pi as:

λ = (
0.779√

f
− 0.785)× d∗pi . (10)

The precipitate size and spacing obtained through this route are listed in the

Table SI 3. We carried out hardness (HV) to yield strength (σy) conversions

using the relationship where (σy ≈ 3.3 × HV). [73] Given the absence of

existing models describing the influence of texture on strength, we opted to

utilize the texture intensity ratios derived directly from XRD.
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Figure 8: Identification of dominant microstructural features for strengthening using (a)
Pearson R correlation coefficients [13] and (b) LASSO [14].

Using the above relations, we first conducted a correlation analysis us-

ing the Pearson R correlation coefficients [13] between the microstructural

features and the hardness value as seen in Figure 8(a). We observed that
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the inverse square root of the mean grain size (1/
√
d) is strongly positively

correlated with hardness, implying that the hardness value increases with

a decrease in the grain size, consistent with Hall-Petch strengthening. [66]

Likewise, the descriptors for precipitates in both ternary and binary phases

exhibit a positive correlation with hardness values, suggesting that the pres-

ence of precipitates enhances alloy hardness, as anticipated in precipita-

tion strengthening. [49, 63] This correlation may also be due to precipi-

tates hindering grain growth rather than directly resulting from precipitation

strengthening.

However, the unusual, highly positive correlation observed with (1120/0002)

texture ratio and its impact on hardness could stem from its significant de-

crease over time. Similarly, the very slight negative correlation seen with

(1010/0002) texture ratio might result from the relatively constant intensity

of (1120) plane during annealing, coupled with changes primarily in (0002)

plane. Although both textures exhibit correlations, these are indirect and do

not directly affect hardness, as indicated by LASSO descriptors below and

previous literature. Instead, it’s the precipitates influencing grain growth

that effectively impact texture as elaborated in Section 3.2.2.

As correlations do not imply causation, we conducted LASSO regres-

sion to further understand the importance and dominance of microstructural

features. LASSO, a method known for its ability to simplify models by

eliminating less impactful variables, provided a refined understanding of the

most significant features affecting hardness. Our LASSO model estimated
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the contribution and dominance of each feature using physics-informed and

microstructure-based models, as seen below:

HV = λ[A(1/
√
d) + B

√
ρ+

∑
i

Ci(
1

λ∗ ln[d0]) + ...

... +D
(1010)

(0002)
+ E

(1120)

(0002)
], (11)

where A, B, Ci, D, and E are fitting constants in LASSO that give the feature

importance value. The LASSO regression fit has an accuracy of 93.14%, and

the fit was obtained by optimizing over the λ parameter using “leave-one-

out”-cross-validation (LOOCV).

In Figure 8(b), our analysis underscores the predominant influence of

grain size on the mechanical properties of the materials studied, aligning

with established literature on the dominance of grain size strengthening in

Magnesium alloys. [74–76] This phenomenon arises from the hindrance of

dislocation and twinning motion by grain boundaries, which enhances the

yield strength within the Mg matrix. The Hall-Petch slope (k), ranging from

90 to 300 MPa µm1/2, surpasses that of Al alloys or Steel by a factor of 2 to

5, highlighting the significance of grain size in strengthening. [66, 76]

While both ternary and binary precipitates contribute to material strength-

ening, our analysis suggests that the ternary phase plays a relatively more

substantial role in accordance with experimental observations. This could

result from the higher volume fraction of the ternary phase over the bi-

nary phase. Despite their positive correlation with hardness, the impact
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of precipitates on strengthening, as inferred from LASSO analysis, appears

comparatively modest. This observation aligns with the limited effective-

ness of precipitates in strengthening via the Orowan mechanism [49], likely

due to their susceptibility to cutting by dislocations. [76, 77] Additionally,

in the context of a dilute alloy system, the effectiveness of precipitates in

strengthening is further compromised. The tendency for coarsening and dis-

solution of precipitates over time leads to diminished strengthening effects,

as confirmed by LASSO analysis. The relative influence of precipitates on

strength is largely dictated by their volume fraction, with the ternary phase

exhibiting the highest importance, followed by binary precipitates, and then

the Mn phase with its extremely low volume fraction. However, it is worth

noting that precipitates indirectly contribute to strengthening by impeding

grain growth during solution treatment, thereby enhancing strength through

the Hall-Petch mechanism. This explains the discrepancy between the high

correlation observed through Pearson R Correlation and the relatively lower

importance assigned by LASSO analysis.

In contrast, dislocation strengthening does not feature prominently in our

analysis despite its high correlation with hardness. This discrepancy arises

from the significant drop in dislocation density during the initial phase of

high-temperature solution treatment, followed by stabilization at relatively

constant levels. However, lower temperature annealing regimes may reveal a

more pronounced impact of dislocations on hardness, as indicated by PCC

analysis. [63]
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When considering other microstructural features, the contribution of tex-

ture to strengthening appears negligible, likely due to its minimal influence

on hardness. This observation is consistent with prior research highlighting

the limited effect of texture on material hardness. [78, 79]

3.4.2. Corrosion Mechanism

Corrosion rates in Mg alloys, much like strengthening, are influenced by

various microstructural factors, including grain size, secondary phases, tex-

ture, and dislocation. However, there remains a gap in theoretical models

linking these microstructural features to corrosion rates. Only a few studies

have attempted to establish such correlations [80, 81].

In line with methodologies used for understanding strengthening mech-

anisms, we employ Pearson correlation analysis [13] and LASSO regression

techniques [14] to assess the influence of individual microstructural features

on corrosion rate. To mitigate the limitations posed by a relatively small

dataset, we integrate established physics-based models for strengthening into

the feature selection process of both Pearson correlation coefficient (PCC)

and LASSO regression models, as elaborated below.

Grain size (d) is one of the most critical microstructural features influenc-

ing corrosion rate. Given that grain boundaries harbor more lattice defects

and dislocations compared to the interiors of grains, grain boundaries are ex-

pected to corrode faster when exposed to corrosive environments. As a result,

grain boundaries are considered to accelerate the corrosion rate. However,

the relationship between grain size and the corrosion rate is complex, with
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conflicting reports suggesting that larger or smaller grain sizes may either

decrease or elevate the corrosion rates. [3, 43, 82–84]

Here we utilize the Hall-Petch type model that Ralston and Birbilis pro-

posed to explain the relationship between corrosion rate and grain size [80]:

CR = A+
B√
d
. (12)

where the constant A depends on the specific environmental conditions, and

B represents a material constant that varies with composition. The fit of the

Ralston-Birbilis model is listed in Supplementary Figure SI 6. A modified

version of the Ralston-Birbilis model was proposed by Bahmani et al. [84],

where the grain size effect is limited to the matrix phase by the matrix

fraction, fMg.

CR = A+B × fMg√
d
. (13)

Lastly, Bahmani et al. [84] combined the effects of the grain size and precip-

itate effects on corrosion into the following model:

CR = A+B × fMg√
D

+ C ×
∑
i

fi|∆Ei|. (14)

where fi represents the volume fraction of the intermetallic phase obtained

from XRD, and ∆Ei signifies the volta-potential difference between the inter-

metallic and Mg matrix. The fit of the Bahmani precipitate model is listed

in Supplementary Figure SI 7.
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As per the galvanic series, Mg ranks among the most anodic structural

metals, whereas most secondary phases, with the exception of Mg2Ca, ex-

hibit cathodic characteristics, rendering Mg more prone to corrosion. [85]

The corrosion rate attributed to micro-galvanic cells due to the presence of

intermetallic phases can be effectively modeled by considering the voltaic po-

tential difference (obtained from [81]), the kinetics of the reaction, and the

volume fraction of the phase, which represents the available sites for corro-

sion. The third term in Equation (14) establishes the correlation between

corrosion and the presence of precipitates. Remarkably, fitting the precipi-

tate model to the corrosion rate data yields an R2 value of 0.87 as shown in

Supplementary Figures SI 6 and SI 7.

It has been known that dislocation density and crystallographic texture

can also impact corrosion rates significantly. [47, 84] According to the lit-

erature [84, 86], excess dislocations often accelerate the nucleation and ex-

pansion of pitting and the generation of corrosion products. Texture also

significantly affects the corrosion behavior of Mg alloys as the work function

is different on different crystallographic planes. [43] However, no physical or

numerical models exist to describe their contributions, thus facilitating the

need to correlate them to corrosion rates directly.

To enable this analysis, we first conducted correlation analyses, as shown

in Figure 9(a), to understand the correlation between microstructural fea-

tures and corrosion rate, combining the physical relationships outlined above.

In this data set, we observed positive correlations for dislocation density and
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precipitate fraction (with ternary being the most correlated), consistent with

the literature that dislocation density and precipitates increase the corrosion

rates. Additionally, (1120/0002) texture ratio showed a positive correlation,

in line with literature [47] suggesting that prismatic planes corrode faster,

while (1010/0002) texture ratio exhibited a small negative correlation. How-

ever, this slight negative correlation might be attributed to the relatively

constant intensity of (1010) plane during annealing, coupled with changes

primarily occurring in the (0002) plane. The inverse square root of grain

size also showed a positive correlation, suggesting that grain size refinement

increases corrosion. However, it’s essential to note that a high correlation

does not necessarily equate to influencing corrosion behavior.

To truly distinguish between these microstructure features and gain in-

sights into the dominant microstructure, we conducted LASSO fitting, as

outlined below:

CR = λ[A(1/
√
d) + Bρ+ C ×

∑
i

fi|∆E|+ ...

... +D
(1010)

(0002)
+ E

(1120)

(0002)
], (15)

where A, B, C, D, and E are fitting constants in LASSO that give the feature

importance value. The LASSO regression fit has an accuracy of 81.16%, and

the fit was obtained by optimizing over the λ parameter using LOOCV; see

Section 2.5.

The literature presents an interesting and somewhat contradictory per-
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Figure 9: Identification of dominant microstructural features influencing corrosion using
(a) Pearson R correlation coefficients [13] and (b) LASSO [14].

spective on the relationship between grain size and corrosion rate. Bahmani

et al. [43, 81] suggest that an increase in grain size may reduce corrosion

rate due to factors such as decreased lattice strain, dislocation density, and

surface potential. Conversely, a decrease in grain size may lead to a lower cor-

rosion rate due to the formation of a more uniform and coherent passivation

layer, increased barrier effects at grain boundaries against crystallographic

pitting, and enhancement of basal plane intensity. Despite a positive correla-

tion observed with 1/
√
d in Pearson R correlation analysis, LASSO regression

(Figure 9(b)) indicates that grain size may not have a significant impact on

corrosion rate for this Mg alloy and under these processing conditions.

The LASSO analysis, mirroring PCC analyses, reveals that corrosion

rates are predominantly influenced by the ternary Ca2Mg6Zn3 phase. The
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potential difference between the intermetallic phase and the matrix drives

electrons from the anode to the cathode, forming galvanic cells. In this elec-

trochemical process, the anodic second phase degrades upon contact with the

nobler matrix in a galvanic cell, while the matrix degrades when the second

phase is nobler than the matrix. Specifically, Ca2Mg6Zn3 acts as a cathode,

and the Mg matrix serves as an anode at their interface, enabling the forma-

tion of a micro galvanic cell and thereby increasing the corrosion rate. [4, 5,

87]

Mg2Ca exhibits a positive correlation with corrosion and contributes to

corrosion despite being more anodic than Mg [87]. Kim et al. [88] demon-

strated that the formation of a galvanic cell between the Mg anode and

Mg2Ca cathode accelerated the hydrogen evolution rate, thereby increasing

corrosion. However, their impact is relatively minor due to their lower vol-

ume fraction and potential differences compared to the ternary phase.

Despite its positive correlation, the Mn phase appears to play no signifi-

cant role in corrosion behavior. While the potential difference [81] indicates

that the Mn phase also acts as a cathode, forming a galvanic couple and

leading to increased corrosion rates as seen in PCC analyses, its extremely

low content in these alloys renders it of minimal impact, as reflected in the

LASSO analysis.

Generally, dislocations act as anodic sites relative to the matrix [84], lead-

ing to a strong positive correlation between dislocation density and corrosion
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rate. This effect becomes most pronounced in highly deformed samples and

can even persist following low-temperature thermal treatments in which dis-

locations can be fairly stable. For the high-temperature anneals performed

here, the LASSO analysis indicates that dislocation density has little in-

fluence, likely due to the rapid annihilation of dislocations within the first

minute of annealing. Further research incorporating a range of dislocation

densities is necessary to comprehensively grasp their impact on the corrosion

behavior of this Mg alloy.

Similar to dislocations, literature [47] suggests that texture exerts some

influence on corrosion rate. While there is a positive correlation, the LASSO

analysis indicates the impact is negligible for high-temperature thermal pro-

cessing of this Mg alloy. The lack of influence can be partly attributed to

the absence of strong texture in this ECAP sample, even following high-

temperature anneals. We argue that a relatively random distribution of

textures effectively nullifies its impact.

4. Conclusions and Future Work

In this study, we used rapid characterization techniques and machine

learning analyses to investigate the complex interplay between thermal pro-

cessing, microstructure, hardness, and corrosion rates in an Mg alloy. Uti-

lizing XRD and optical microscopy, we swiftly characterized microstructural

features with minimal sample preparation, while hardness measurements and

1-day immersion tests provided rapid insights into mechanical and corrosion

behavior, respectively.
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While the anticipated trend of decreasing hardness and corrosion rates

with prolonged high-temperature annealing was observed, intriguing devia-

tions were noted at short annealing times. Particularly, a 1-minute anneal

at 450°C yielded a favorable combination of high hardness and relatively low

corrosion rate. This brief annealing significantly reduced dislocation density

and dissolved ternary precipitates. Extending the annealing time to two min-

utes resulted in a considerable increase in grain size accompanied by texture

variations. These distinct variations underscore the importance of employing

accelerated characterization techniques to capture variations across various

annealing durations.

Despite the challenges posed by strong correlations among microstruc-

tural features and limited data, we successfully established correlations be-

tween microstructural features, hardness, and corrosion rates using machine

learning-based feature selection routes, such as LASSO regression, as well as

Pearson R Correlations in conjunction with physics-based relationships.

Our analysis highlights the significant roles of grain size refinement in

strengthening and the control of corrosion rates by ternary phase fraction,

as revealed by LASSO. Importantly, our findings emphasize that achieving a

fine grain size and reducing the presence of ternary phases and dislocations

can yield an optimal combination of strength and corrosion resistance.

In our future work, we will conduct a larger study using random forests
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for feature engineering and a Bayesian optimization closed-loop discovery

method (PAL 2.0 [89]) to optimize processing conditions for high hardness

and low corrosion rates in Mg alloys. This study will involve gathering an

extensive dataset of various processing conditions and employing accelerated

property evaluations. Bayesian optimization will iteratively refine our models

based on experimental feedback, ensuring precise identification of optimal

processing routes. Our models will undergo rigorous validation and iterative

improvement, focusing on application-specific optimization for orthopedic

implants and biodegradable medical devices. This approach aims to advance

Mg alloy processing and develop high-strength, corrosion-resistant materials

for biomedical applications.
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Appendix A Supplementary Information

Appendix A.1 Grain Size Measurements

Condition Time (hr) Mean (µm) St.Dev Minimum (µm) Maximum µm)
ECAP 0 0.83 0.35 0.33 2.11
1 min 0.02 0.84 0.40 0.24 2.29
2 min 0.07 11.52 4.73 2.32 20.78
5 min 0.08 19.39 9.97 3.14 51.34
15 min 0.25 18.17 12.76 3.29 66.01
30 min 0.50 20.82 12.87 2.10 62.42
1 hr 1.00 21.27 12.37 4.89 62.20
4 hr 4.00 25.66 12.89 4.46 58.86
16 hr 16.00 27.61 17.88 6.34 99.99
64 hr 64.00 40.39 29.04 5.41 158.34
128 hr 128.00 49.40 23.42 11.03 137.49

Table SI 1: Grain Size Statistics

Appendix A.2 Normalized Grain Size Distributions

Figure SI 1: Normalized Grain Size Distributions
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Appendix A.3 Goodness of Log-normal fit

We can see log-normal distributions throughout, except in the 2-minute sce-

nario where χ2 < 0.05.

Condition Time Breadth χ2

ECAP 0.00 1.85 0.12
1 min 0.02 2.26 0.89
2 min 0.03 2.19 0.02
5 min 0.08 2.53 0.21
15 min 0.25 3.10 0.48
30 min 0.50 3.39 0.19
1 hr 1.00 2.54 0.66
4 hr 4.00 2.58 0.26
16 hr 16.00 2.76 0.88
64 hr 64.00 3.38 0.83
128 hr 128.00 2.52 0.53

Table SI 2: Log-normal grain size distribution

Appendix A.4 Geometrically Necessary Dislocation Maps

The GND maps obtained from EBSD revealing

Figure SI 2: GND Distribution Maps
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Appendix A.5 Precipitate Size and Spacing

Condition
Mean Precipitate Diameter (nm) Mean Particle Spacing (nm)
Ca2Mg6Zn3 Mg2Ca Mn Ca2Mg6Zn3 Mg2Ca Mn

ECAP 149.30 117.58 131.00 277.77 374.66 473.76
1 min 147.81 129.50 148.07 345.53 432.92 663.54
2 min 158.73 116.73 214.17 385.68 395.52 965.69
5 min 146.14 146.83 161.08 357.84 486.68 746.53
15 min 151.20 109.10 104.77 373.95 368.60 462.26
30 min 150.91 194.96 168.10 373.59 651.65 759.71
1 hr 137.44 132.64 153.98 293.44 363.97 518.52
4 hr 157.93 136.20 114.55 343.34 395.16 382.39
16 hr 131.87 180.60 171.67 298.72 531.36 606.25
64 hr 126.42 129.02 168.75 335.67 386.09 677.80
128 hr 175.17 172.12 130.17 501.92 647.61 523.19

Table SI 3: Precipitate Size and Spacing estimated through XRD

Appendix A.6 Strengthening Mechanism Models

Appendix A.6.1. Hall Petch Model

The Hall Petch model (HV = kd−0.5) exhibited a superior fit of 89.4%,

denoting a dominant influence of grain boundaries on strengthening.
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Figure SI 3: Hall Petch Strengthening
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Appendix A.6.2. Taylor Dislocation Model

The poor fit (R2 = 0.45) of the Taylor dislocation model (σdis = MαGb
√
ρ)

represents the suppressed roles of dislocation density in strengthening this

material.
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Figure SI 4: Dislocation Strengthening

Appendix A.6.3. Orowan Strengthening Model

The poor fits of the Orowan model upon strengthening from the ternary

(R2 = 0.625), binary (R2 = 0.4715), and Mn (R2 = 0.34) denote the limited

roles of precipitates in strengthening this material.
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Figure SI 5: Precipitate Strengthening by Orowan Mechanism

Appendix A.7 Corrosion Mechanism Models

Appendix A.7.1. Ralston-Birbilis Model

We fitted our grain sizes to corrosion using the Ralston-Birbilis model

elaborated in Equation (12). We found a poor fit of 46%, denoting the

suppressed role of grain size in corrosion behavior.
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Figure SI 6: Ralston-Bibilis Grain Size Model - as a function of solution heat treatment

Appendix A.7.2. Bahmani Model

We fitted our precipitate contributions to corrosion using the Bahmani

precipitate model, as shown below:

CR = A+ C × [fCa2Mg6Zn3 |∆ECa2Mg6Zn3 |+ fMg2Ca|∆EMg2Ca|+ fMn|∆EMn|]

(A.1)

We observed a superior fit of 88%, denoting the dominance of the precip-

itates on the corrosion behavior.
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Figure SI 7: Bahmani Precipitate Model - as a function of solution heat treatment
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