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Microstructure, hardness, corrosion rate evolution under solution treat-

ment tracked.

e Accelerated characterization via XRD, microscopy, hardness, immer-

sion studies.

e Physics-based Machine Learning decodes structure-property correla-

tion.

e Grain size and ternary precipitate control crucial for strength-corrosion

optimization.
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Abstract

Magnesium alloys are emerging as promising alternatives to traditional or-
thopedic implant materials thanks to their biodegradability, biocompatibil-
ity, and impressive mechanical characteristics. However, their rapid in-vivo
degradation presents challenges, notably in upholding mechanical integrity

over time. This study investigates the impact of high-temperature thermal
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processing on the mechanical and degradation attributes of a lean Mg-Zn-
Ca-Mn alloy, ZX10. Utilizing rapid, cost-efficient characterization methods
like X-ray diffraction and optical, we swiftly examine microstructural changes
post-thermal treatment. Employing Pearson correlation coefficient analysis,
we unveil the relationship between microstructural properties and critical tar-
gets (properties): hardness and corrosion resistance. Additionally, leveraging
the least absolute shrinkage and selection operator (LASSO), we pinpoint the
dominant microstructural factors among closely correlated variables. Our
findings underscore the significant role of grain size refinement in strength-
ening and the predominance of the ternary CasMggZng phase in corrosion
behavior. This suggests that achieving an optimal blend of strength and cor-
rosion resistance is attainable through fine grains and reduced concentration
of ternary phases. This thorough investigation furnishes valuable insights
into the intricate interplay of processing, structure, and properties in mag-
nesium alloys, thereby advancing the development of superior biodegradable
implant materials.

Keywords: magnesium alloys, machine learning, corrosion, mechanical

properties, rapid characterization

1. Introduction

Biodegradable magnesium alloys have emerged as a cutting-edge focus of
modern materials science and biomedical engineering due to their exceptional
mechanical properties and innate ability to degrade within the human body.
These attributes make them a compelling choice for medical implants. [1, 2]

However, to fully harness the potential of biodegradable magnesium alloys,



we must gain a comprehensive understanding of how their microstructure
changes with thermal treatment and how these transformations affect their
mechanical and corrosion properties. [3-5] In the context of biodegradable
magnesium alloys, striking the right balance between corrosion resistance
and deformation resistance becomes all the more critical. These alloys must
endure mechanical stresses in their intended applications while gradually
degrading as new tissue forms. Achieving this balance is a substantial chal-
lenge, as pure magnesium is renowned for its excellent biocompatibility but
is susceptible to deformation and rapid corrosion. One standard method
to enhance the properties of magnesium is to introduce alloying elements
that stimulate the formation of secondary phases. These secondary phases
substantially improve the material’s mechanical strength, but often at the
cost of reduced corrosion resistance, a trade-off of particular relevance to
biodegradable magnesium alloys. [6-8] Given the growing interest in devel-
oping magnesium alloys for biomedical purposes, exemplified by the recent
FDA approval of the RemeOS screw [9], a deeper understanding of the intri-
cate interplay between microstructural features and material properties is of

utmost importance.

The impact of microstructural features on material properties is often
quantified using sophisticated characterization tools such as TEM, which
imposes not only substantial financial costs but also consumes considerable
time. In response to these challenges, this study harnesses the power of
lab-based X-ray diffraction and optical microscopy to rapidly characterize

essential microstructural parameters such as dislocation density, crystallo-



graphic texture, intermetallic phase fraction, and grain size for a given Mg

alloy.

One of the significant challenges in identifying the impact of individual
microstructural features lies in their interdependence; they are not isolated
entities but rather highly correlated. [10, 11] This can be illustrated by the
example of Zener particle-pinning [12], in which grain growth is hindered
by secondary phases located on grain boundaries. While the restriction of
grain growth by the particles enhances hardness and strength, the particles
can also accelerate corrosion. Comprehending and untangling the individual

effects of these highly correlated features is difficult.

Recent advancements in machine learning algorithms have guided a new
era of exploration, allowing for an in-depth analysis of individual parameters
and the identification of dominant factors that significantly influence prop-
erties of interest, as evidenced by numerous studies. [15-25] However, most
of these investigations have either relied on computationally generated data
obtained through calculations or have drawn from experimental data sets
scattered across various sources in the literature, lacking a direct one-to-one
comparison. Furthermore, many of these studies have concentrated on the
chemistry of alloys, with limited attention given to the impact of processing
and microstructural features.

Recognizing this gap in the literature, our study aims to identify the
complex relationships between microstructure, mechanical properties, and

corrosion resistance as the microstructure evolves in a dilute biodegradable



Figure 1: Schematic illustrating the methodologies employed for understanding process-
structure-property relationships, including accelerated characterization via XRD and op-
tical microscopy, expedited property assessment through hardness measurements and 1-
day immersion studies, and application of machine learning techniques such as Pearson
Correlation Coefficient (PCC) analyses [13] and LASSO [14] for comprehending structure-
property correlations.



magnesium alloy, ZX10, as it is heat-treated over a broad range of times at
450 °C. Our study documents the evolution of microstructure, hardness, and
in-vitro corrosion rates and identifies the dominant microstructural features
during different stages of the heat treatment through machine learning, as

displayed schematically in Figure 1.

2. Materials and methods

2.1. Thermomechanical Processing

The ZX10 quaternary alloy, consisting of high-purity Mg and small con-
centrations of Zn (1.3 wt%), Ca (0.3 wt%), and Mn (0.15 wt%), was synthe-
sized through a multi-step process. Initially, ingots were created by melting
the constituent elements, followed by a homogenization heat treatment. The
ingots were then conventionally extruded at 350°C, using an extrusion ratio of
25:1, resulting in cylindrical rods with a diameter of ~ 12 mm. The extruded
rods underwent further processing using the continuous Equal Channel An-
gular Pressing (cECAP) method, where the extruded rods were subjected to
four passes in the B, route at 300°C, followed by an additional four passes
in the B, route at 200°C through a square die of side 11 mm at an angle of
120° generating an equivalent strain of 0.67 per pass, as described in Davis
et al. [26] Samples processed by cECAP are the starting material for this
study and are hereafter referred to as ‘ECAP’.

The samples were precision-cut into 11 by 11 by 1 mm? sheets using wire
electric discharge machining from ECAP rod, and the heat-affected regions
were removed by polishing with SiC P4000 sandpaper (sourced from Allied



HighTech) and a final polishing step with 0.05 pm Colloidal Silica Suspension
to achieve a mirror-like finish. In addition, ThermoCalc, a CALPHAD-based
program, was utilized to calculate the phase diagram of this alloy (as seen in
Figure 2(a)). Based on the predicted phase diagram, the ECAP samples were
subjected to solution heat treatment in an Argon gas environment within a
Carbolite Gero HTCR5/95 furnace at 450°C, where only the a-Mg phase
is stable. Heat treatments ranged from one minute to a maximum of 128
hours, followed by rapid quenching in water. Moving forward, each sample is
designated by the duration at 450°C. For instance, a sample that undergoes
a 2-minute solution heat treatment is referred to as “2 min” sample. A
temperature versus time profile for the initial heating is plotted in Figure 2(b)
and shows that samples rise into the solutionizing region, where no secondary

phases are stable, within 10 seconds.

Ca,MgeZn;

Mg,Ca

(a) (b)

Figure 2: a) ZX10 Phase Diagram Predicted by ThermoCalc, b) Thermocouple readings
of a sample at the start of the solution heat treatment.



2.2. Characterization and Quantification of Microstructural Parameters

To characterize and quantify microstructural features rapidly, we em-
ployed optical microscopy and X-ray diffraction. We also leveraged SEM
imaging, SEM-EDS mapping, and SEM-EBSD mapping to verify the con-
sistency of the rapid analyses. To examine the ECAPed and annealed mi-
crostructures, samples were etched using a 5% Nital solution (composed of
5% Nitric Acid and 95% methanol) following the ASTM E 407 standard. [27]
Optical microscopy was performed using a Leica DMi8 Inverted Microscope
with LASX software for grain size visualization. JEOL IT700HR InTouch-
ScopeTM SEM and Thermo Scientific Helios 5 UC Focused Ion Dual Beam
were employed for imaging and EDS analysis, with EDS data analysis con-
ducted using APEX EDS software. Grain sizes were measured using optical
micrographs, scanning electron micrographs, and a MATLAB program, fol-

lowing the intercept method specified in ASTM E112-13. [2§]

The mirror-finish samples were subjected to bulk ion beam milling using
a Leica EM TIC 3X at 5kV and 3mA for 5-minutes before Electron Backscat-
tered Diffraction (EBSD) studies on a Tescan MIRA 3 GM Field Emission
SEM, equipped with Oxford EBSD detector at voltage of 20 kV. Textural and
grain size analyses for EBSD were carried out using AZteC Crystal Software
by Oxford. We also used AZteC Crystal Software to obtain the Geometri-
cally Necessary Dislocation (GND) density, based on the Weighted Burgers
Vector Method developed by Wheeler et al. [29] To mitigate the step size
influence on GND measurement and examine relative GND density changes,

a constant step size of 0.5 um was employed. The analysis focused on the



dislocation density of Burgers vectors with a magnitude of %[1150], and the

GND density was assessed using a 3 x 3 pixel kernel size.

The SEM-EDS images were initially subjected to thresholding by the
Otsu method [30] to distinguish the precipitates from the matrix based on
contrast. The representative diameter of each precipitate was then computed
by averaging its major and minor axes, which served as the basis for calcu-

lating the precipitate size distribution and area fraction.

X-ray diffraction (XRD) analysis was conducted per the principle of
Bragg’s law [31] using the Malvern Panalytical Aeris powder X-ray diffrac-
tometer, operating at 40 kV and 7.5 mA. The instrument was equipped with a
Nickel Beta Filter and a Cu X-ray source, and data collection was performed
using a step size of 0.0027°. To ensure data quality, scans were repeated
three times and subsequently summed to enhance the signal-to-noise ratio.
Data processing, such as background subtraction, removal of Koy peaks, peak
identification, and peak matching, was accomplished using X’pert HighScore

software.

The Convolutional Multiple Whole Fitting (CMWP) program developed
by Ribarik et al. was employed to determine the average dislocation density.
The standard reference material (SRM 660, LaBg) from the National Insti-
tute of Standards and Technology was employed to obtain the instrumental
profile function. Due to very minimal alloying content, the broadening of

the Mg peaks was assumed to arise mainly from the strain contributions of



the dislocations in the Mg phase. The CMWP program has been detailed in
[32-35].

Peaks exceeding a minimum threshold of 0.01 counts after background
subtraction were detected and subjected to PseudoVoigt profile fitting using
X'Pert HighScore Software, as detailed in [36]. To address the impact of tex-
ture on intensity, which can arise from preferential precipitation on specific
planes during annealing, multiple peaks with 26 values spanning the range

of 20-60° were taken into account.

We estimated the volume fraction for each constituent phase by calcu-
lating the ratio of the integrated area corresponding to an individual phase
to the sum of integrated areas for all phases as described in [37] and as
illustrated below:

A,

= 1
e T A At At A .

where V; is the volume fraction, A is the integrated area under the peak, and

subscripts a, b, ¢, d represent the constituent phases.

For texture characterization, we focused on the prismatic [1010] and [1120]
and basal [0002] planes. The degree of texture was quantified using ratios
of the integrated peak areas for prismatic planes normalized with respect to

the basal plane, as follows:

V(loio) _ A(uﬁo) V(nio) B A(11§0) 2)
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2.8. Microhardness evaluation

Microhardness measurements were conducted utilizing a 200 gf load on a
LECO AMHS55 Hardness Tester. Vickers hardness values were derived from
the indentation size through the ‘Cornerstone’ software. Each hardness data
point represents a total of at least ten measurements. In accordance with
DIN-ISO 6507 guidelines [38], the micro-indents were spaced at distances

equal to six times the average indent width.

2.4. Bio-corrosion Evaluation

The square samples measuring 11 x 11 x 1 mm? were polished on all sides
with P4000 SiC paper prior to immersion in Earle’s Balanced Salt Solution
at 5% CO5 and a temperature of 37.1°C, simulating in-vivo conditions for 24
hours. Immersion bio-corrosion tests were conducted with a sample surface
area to solution volume ratio of 0.2mL/mm” per ASTM G31-72 standard
[39]. The testing took place within a Heraeus Heracell CO5 150 incubator.
Following the immersion tests, the corroded samples were treated with a
solution composed of (200gCrOz + 10g AgNO; + 20 g Ba(NO,),) dissolved
in 17 of deionized water, following the guidelines set forth by ASTM G1 [40] to
remove corrosion products. Mass and pH measurements were acquired before
and after the corrosion testing utilizing a weighing scale (Hanchen Electronic
Analytical Balance, 0.1 mg, Digital Scale) and benchtop pH meter (Accumet
AB150, Thermo Fisher Scientific, MA, USA). The pH level was maintained
below 8. The biocorrosion rate of each sample was calculated by the weight

loss measured in an immersion period of 24 hours according to the equation
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in [39):

K
Corrosion Rate = % mm/yr (3)

where K is a constant (8.76 x 10%), W is the weight loss in the unit of gram,
A is the exposed sample surface area in the unit of cm?, T is the time of
exposure in the unit of hours, and p is the sample density in the unit of
g/cm3. The calculated density of 1.77 & 00.26, obtained using a helium gas
pycnometer (Micromeritics AccuPyc 11 1340) and a microbalance (Mettler
Toledo Model XS3DU), were employed to estimate corrosion rates. For this
study, we focused on corrosion over a single day, given that corrosion rates

are usually at their highest initially and tend to decrease over time.

2.5. Machine Learning-driven Analysis

We apply two machine learning techniques to understand the correlations
between the microstructural features and to identify the most significant mi-
crostructural features that affect the corrosion rate and hardness. To obtain
correlations between the microstructural features, we compute the Pearson

R correlation coefficients (PCC) [13] using the following equation:

_ 2 i@ — ) (2 — 2)
\/E?:l(xi - j)2\/231';1(21' - 2)27

(4)

Tzy

where z and z represent two different microstructural features, x; and z; rep-
resent data observations for the given microstructural feature, and z and z
represent the mean of the observations for z and z. The PCC is computed
pairwise for the microstructural features and is a statistical measure of the
linear correlation between two data sets. A positive PCC value indicates

that the values x increases as the value of y increases, and a negative PCC

12



indicates that the value of x decreases as the value of y increases. We also
compute the PCC between each microstructural feature and the targets -
hardness and corrosion rate. This analysis provides an understanding of how
each microstructural feature impacts the strengthening and degradation of

the Mg alloy.

Following the correlation analysis, we performed feature selection using
LASSO. [14] LASSO builds a linear model based on the assumption that
the model coefficient vector (3) is sparse. This implies that only some input
variables are selected to create the linear model. The following objective

function is solved by LASSO:

1
in { 5y = o815+ A3l . 5)

BERP

where NV is the number of data points, [ is the coefficient vector, x represents
the microstructural features data, y represents the targets, hardness, and
corrosion rate, and A represents a tunable hyperparameter that controls the

sparsity of our linear model.

2.5.1. Implementation of the Machine Learning Models

The machine learning models were implemented using the PyTorch pack-
age [41] in Python. We have made the code available on the following GitHub
Repository. The implementation of LASSO requires tuning of the A hyper-
parameter (Equation (5)). In our implementation, we perform a grid search
on the A parameter and select the one that gives the highest accuracy model

based on leave-one-out-cross-validation (LOOCV). We use the mean absolute
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error and R? score as the accuracy measure for cross-validation and model

selection.

3. Results and Discussion

3.1. Variation in Hardness and Corrosion on Solution Heat Treatment

As depicted in Figure 3, the initial minute of heat treatment produces
minimal impact on hardness; however, there was a sharp decrease (by 30%)
after 2-minutes. The hardness then stabilized for approximately 30-minutes
before gradually declining, resulting in a cumulative reduction of 50% by
128 hours. In contrast, the corrosion rate experienced a rapid decline (40%)
within the first minute, stabilized for the subsequent 30-minutes, and then
gradually decreased until a total reduction of 4X was observed at 128 hours.
Notably, such substantial property changes occurring within brief time inter-

vals (1-2 minutes) are unusual.

It was intriguing to note the combination of high strength and relatively
favorable corrosion rates in the 1 min sample. This observation suggests that
high-temperature annealing for shorter durations can enhance the corrosion
behavior of heavily deformed samples. These observations also underscore
the remarkable changes in material properties without alterations in chem-
istry, emphasizing the critical role of processing on properties. The underly-
ing mechanisms driving these transformations lie within the microstructure,
underlining the necessity for ongoing monitoring of microstructural changes

to attain optimal material properties.

14
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Figure 3: The evolution in hardness and corrosion rate over time reveals a loss of strength
and a reduction in corrosion rate as time progresses.
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3.2. Tracking material microstructure rapidly following heat treatment

After subjecting the samples to heat treatments and quenching, we rapidly
characterize four critical microstructural features pertinent to hardness and
corrosion using X-ray diffraction (XRD) and optical microscopy (OM) meth-
ods, which offer advantages in terms of minimal sample preparation, time
efficiency, and cost-effectiveness. These features include dislocation density,
crystallographic texture, precipitate volume, and grain size. [42, 43] While
the XRD-derived values provide averaged measurements and may not capture
local variations in dislocation densities or increases in particle size beyond
200 nm, they serve as valuable tools for explaining the observed fluctuations
in mechanical and corrosion properties as depicted in Figure 3. XRD pat-
terns and optical microstructures of all the conditions are plotted in Figures 4

and 6, respectively.

3.2.1. Variation in Dislocation Density

Based on CMWP analyses as demonstrated in Figure 4(b), the ECAP
sample has a high dislocation density exceeding 3x 10 m~2 but drops tenfold
after just a one-minute exposure to 450°C, indicative of significant dislocation
annihilation. This dramatic drop is also supported by EBSD measurements,
as demonstrated in the geometrically necessary dislocation (GND) density
plot in Figure 5(d). A noteworthy aspect is the consistent log-normal distri-

bution of GND density within the heat-treated samples.

Previous studies [44-46] have predominantly examined variations in dis-

location density over longer time scales, typically spanning 20 minutes or

16
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Figure 4: Accelerated Microstructural characterization from XRD: a) XRD pat-
terns revealing the Mg peaks (in linear scale) and presence of precipitates (in logarithm
scale) b) Dislocation density obtained from CMWP analyses revealing dislocation annihila-
tion and plateauing post-1-minute annealing; ¢) Variation in precipitate content obtained
from XRD revealing dissolution of precipitates; Texture ratios from XRD showing the

variation of (d) (1010)/(0002) and (e) (1120)/(0002) over time.
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more. Given our study utilizes far shorter time durations, we conducted in-
situ temperature measurements with a thermocouple to ensure samples reach
the annealing temperature rapidly, as shown in Figure 2(b). Note that the
samples reach the solutionizing region within 10 seconds, so even a brief one-
minute annealing period provides sufficient exposure to high temperatures

for the annihilation of dislocations.

3.2.2. Crystallographic Texture Evolution

In terms of crystallographic texture, we primarily considered three planes
for our study: the basal (0002) plane and the prismatic (1010) and (1120)
planes, which have been identified as significant influencers of corrosion be-
havior as per literature. It is worth noting that prismatic planes corrode
18-20 times faster than basal planes. [43, 47] Thus, texture ratios were cal-
culated using integrated areas from XRD scans as detailed in Section 2.2,
and both integrated area ratios (1010)/(0002) and (1120)/(0002) show sim-
ilar trends over time as seen in Figure 4(d) and (e). The XRD intensity of
the (1010) plane remains relatively constant from the first minute onwards,
whereas the intensities of the (1120) and (0002) planes fluctuate in response
to the heat treatment duration. The most pronounced variations occur dur-

ing the second minute, which coincides with the onset of grain growth.

The EBSD pole figures reveal a similar trend while offering intriguing
additional insights. The texture notably weakens from the ECAP to the
I-minute sample. In the ECAP sample, the basal plane texture tilts approx-
imately 45° to the normal. Conversely, we observe a wider range of texture

variation in the one-minute sample, spanning from 25° to 65° to the normal.

18
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Figure 5: Microstructural Evolution validation using SEM: a) SEM-EDS Maps
revealing the presence of different precipitates; b) BSE images showing precipitate dis-
solution and coarsening over time; c) Variation in area fraction and mean diameters
of precipitates obtained from SEM showing precipitate dissolution and coarsening over
time; d) Log-normal distributions of GND Density revealing dislocation annihilation and
plateauing post-1-minute annealing validating the trend from XRD; e) EBSD Pole figures
revealing the texture variation over time.
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However, a significant texture strengthening occurs in the 2-minute sample,
with the basal pole aligning more closely towards the center of the pole fig-
ure. As subsequent sections will explain, the dissolution of precipitates leads
to an increase in grain size from l-minute to 2-minutes, consequently alter-
ing the texture. By the 128-hour mark, the basal texture, (0001), exhibits a
more dispersed pattern, aligning closer to the 0 —45° range along the x-axis,

as illustrated in Figure 5(e).

3.2.3. Precipitate Evolution

In this alloy, three common types of precipitates were observed: CasMggZns,
MgoCa, and Mn, as evidenced by both XRD (Figure 4(c)) and SEM-EDS
analyses (Figure 5(a-c)). This observation aligns with the predicted phase di-
agram by ThermoCalc, illustrated in Figure 2(a). At 450°C, all three phases
are thermodynamically unstable, and the stable phase is a solid solution.

However, solutionizing completely requires significant time.

While determining phase volume fraction using integrated area measure-
ments from XRD (Figure 4), the influence of texture on preferential pre-
cipitation was deemed negligible. As expected, the calculated volume frac-
tion of all three phases decreased with annealing time, as illustrated in Fig-
ure 5(b).Within the initial minute of exposure at 450°C, the overall pre-
cipitate fraction decreased by approximately 30%. Subsequently, from 1-2
minutes, there was a decrease of around 6%, followed by stepwise declines in
the precipitate fraction, each below 1%, until the 4-hour mark, when more
pronounced decreases occur over time, resulting in close to a 70% reduction

in precipitate content.
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While XRD measurements do not provide detailed insights into precip-
itate size and distribution, they facilitate the identification of precipitate
dissolution and differential dissolution rates among precipitates, which are
challenging to obtain through optical microscopy or SEM. On the other hand,
SEM-EDS maps provided an understanding of precipitate morphology within
its resolution limit and also confirmed the dissolution of precipitates over
time, corroborating our XRD analyses. Image analysis of backscattered elec-
tron (BSE) images also revealed that precipitate diameter increased over time

while area fraction decreased, as seen in Figure 5(b) and Figure 5(c).

Upon closer examination of individual precipitate variation over time, the
initial drop in precipitate content within the first minute is attributed pri-
marily to the ternary CasMggZns phase, exhibiting close to a 40% decrease.
This substantial reduction can be attributed to the high mobility of Zn atoms
in the Mg matrix, as calculated from diffusion coefficient data obtained from
[48]. Zn atoms display a significantly higher interdiffusion coefficient (9.24
pum?/s) at 450°C compared to Ca atoms (0.19 ym?/s) and Mn (0.001 um?/s),
as well as Mg’s self-diffusion coefficient (0.03 ym?/s). The data also explains
the slower dissolution of the MgyCa phase and minimal change in the Mn

phase.
The dissolution of precipitates within such short time scales, as observed

in the first minute, appears to be an unexplored phenomenon in past liter-

ature. Most studies [49-53] typically focus on precipitate evolution starting

21



at 30-minutes or longer. However, this study underscores the importance
of monitoring microstructural features at smaller time scales, particularly at
elevated temperatures, in part because short processing times are advanta-

geous to industry.

3.2.4. Grain Size Variation

Our investigation into grain size primarily relied on optical microscopy
(Figure 6(a)), complemented by EBSD grain size measurements (Figure 6(b))
at specific time intervals to validate our findings. Initially, the ECAP sam-
ples exhibited highly refined grains, averaging approximately 800 nm in size.
Despite the observed dislocation annihilation, a one-minute annealing pro-
cess did not induce significant changes in grain size. However, as the heat
treatment extended to 128 hours, the grain size increased significantly by

60-fold, reaching nearly 50 pum towards the end of the process.

Of particular note is the ten-fold increase in grain size observed from the
first minute to the second minute, a phenomenon also evident in the tex-
ture variations illustrated in Figure 4(d) and 4(e).Such substantial changes
in microstructure tend to be under-reported in the literature that typically

considers longer time periods. [54, 55]

To understand this rise in grain growth behavior, we employed the well-

established grain growth model [11]:

d" — d" = kt, (6)

o
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Figure 6: Grain Size Analysis: a) Optical Microstructures revealing grain size coars-
ening over time; b) Inverse Pole Figures of ECAP, 1 min, 2 min, and 128 hr samples
confirming the rapid grain growth; c¢) Grain size distributions as a function of condition
revealing abnormal grain growth; d) The variation in the width of grain diameter over
time, and the fit as per Equation (6) denoting the abnormal grain growth; e) Variation
in 3D grain radius as a function of time, with a fit per the Zener model (Equation (7))
revealing the abnormal grain growth in the 27¢ min and 5 min samples, beyond which
the grain growth is normal.
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where £ is the grain growth exponent, ¢ is the time, d, is the initial grain size,
and d is the grain size at time, t. Fitting the model yields a grain growth
exponent, n &~ 5.5, that is a substantial deviation from the value proposed by
Burke and Turnbull (n = 2) [56] as seen in Figure 6(d). This deviation points
to the occurrence of abnormal grain growth, a phenomenon characterized by
the sudden emergence of unusually large grains within a matrix of uniformly
sized grains. An analysis in Supplementary Table SI 1 reveals the presence
of island grains, characterized by grains with double the average grain size,
a characteristic feature of abnormal grain size. This phenomenon is not un-
common and has been well-documented in previous studies in magnesium
alloys. [11, 54, 57, 58] The grain growth exponent observed in this study is
consistent with findings from these previous studies, where n typically falls

within the range of 2 to 7.

This grain growth model assumes boundary curvature drives growth, the
absence of a drag force on the boundary due to particles or solutes, and
isotropic grain boundary energies and mobilities. Given this alloy contains
second-phase particles, we investigated grain size distributions over time,
which revealed deviations from self-similarity, a hallmark of abnormal grain
growth as described by Humphreys [12] and seen in Figure 6(c). A high value
of n points to grain growth stagnation, likely due to second-phase particles
exerting a drag force on the boundaries, effectively pinning the microstruc-
ture. As illustrated in Supplementary Figure SI 1, the normalized grain
distribution and the variation in the width of the normalized distribution

exhibit specific patterns. The normalized grain size distributions remain log-
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normal throughout, except in the 2 min sample as revealed in Supplementary
Table SI 2. Notably, the breadth of the distribution does not change signif-
icantly under any of the annealing conditions; instead, it oscillates. This
observation suggests that while some grains began growing at a much faster
rate than others, broadening the distribution, the finer grains rapidly caught
up, preventing distributions from becoming bimodal. [11, 57] This transient
nature of abnormal grain growth has been observed in previous experiments

and simulations. [12, 56, 59-61]

The most commonly cited explanation for abnormal grain growth revolves
around the coarsening of particles that effectively pin the grain boundaries,
as explained well in [11]. The classical approach to understanding the impact

of pinning particles on grain growth is to employ the Zener model [62]:

4r

Rczﬁa

(7)

where R, is the limiting grain radius, r is the radius of the pinning par-
ticles, and f is the volume fraction of the particles. This equation, while
based on several simplifying assumptions like spherical particles and grains
and randomly distributed particles with no preferential arrangement at grain
boundaries, has been applied here to provide a semi-quantitative comparison

between observed and predicted grain sizes.

Our observations (Figure 6(e)) indicate that in the ECAP and 1-minute
samples, the observed grain radius remains significantly below the calculated

critical radius, hereafter referred to as the Zener radius. There appear to be
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two distinct regions of normal grain growth separated by a segment of ab-
normal grain growth (2 min and 5 min): the first region encompasses ECAP
and 1-minute, and the second region starts from 15-minutes all the way to
128 hours, aligning with the trend visible in the grain size distribution plot

in Figure 6(d).

This unusual behavior in the 2-minute sample is attributed to the sig-
nificant dissolution of the ternary phases in the first minute, which leads to
an approximately ten-fold increase in average grain size. Since these ternary
particles may be heterogeneous in size and distribution, pinning of grain
boundaries and grain growth may also be heterogeneous, resulting in a bi-
modal distribution as revealed in Supplementary Table SI 2. However, by
5-minutes, many of these particles dissolve, contributing to a nearly 8-fold
rise in grain size from 2 - 5 minutes and log-normal distributions of grain
sizes. Subsequently, the grain growth stabilizes and follows normal grain
growth behavior. This study reveals the highly correlated nature of mi-
crostructural features, wherein the presence of secondary phases correlates

with and appears to control grain growth and texture evolution.

3.8. Correlations between Microstructural Features

Figure 7 displays the Pearson R correlation coefficients (PCC) [13] for the
microstructural features characterized in our study. The left matrix in Fig-
ure 7(a) presents results obtained while including the ECAP sample before
any solution treatment, while the right matrix Figure 7(b) shows correlation

coefficients after excluding data for the ECAP sample.
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Figure 7: Correlations between the microstructural features (a) with ECAP and (b) with-
out ECAP sample.

Upon removing the ECAP sample point, significant changes in corre-
lations are evident, particularly regarding the dislocation density, p. This
variation can be attributed to dislocation annihilation occurring during the
initial minute of high-temperature annealing, as detailed in Section 3.2.1
and Figure 4(b). The sudden initial drop in dislocation density results in the
identification of some unusual and unphysical correlations, such as between
dislocation density and (1120/0002) texture ratio. Additionally, the dislo-
cation density exhibits small positive correlations with precipitate volume
fractions. This may arise from the simultaneous occurrence of dislocation
annihilation and precipitate dissolution upon annealing, leading to these un-

expected correlations.

Our analysis in Figure 7(b) reveals a strong negative correlation between
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grain size (d) and precipitate volume fractions, consistent with Zener theory
(Equation (7)). Furthermore, grain size exhibits a robust negative correla-
tion with texture for the (1120/0002) texture ratio, which could explain the
observed trend of the texture becoming more basal over time, as depicted in
the pole figures in Figure 5(e). Moreover, we observe high correlations among
the three precipitate volume fractions, which is unsurprising given their re-
lationship through the constraint that their sum equals 1. This correlation
likely arises from the simultaneous dissolution of all these precipitates over
time.

The correlations presented here offer valuable insights into the interplay
between various microstructural features in our alloy system, shedding light
on the complex relationships governing its behavior. Taken together, the
data underscores the importance of accelerated characterization combined

with advanced statistical analysis in understanding such correlations.

3.4. Machine Learning-guided Structure Property Correlations

3.4.1. Strengthening Mechanism

In this investigation, we utilize a machine learning approach comprising
Pearson correlation coefficient [13] and LASSO regression [14] analyses to
understand the influence of individual microstructural features on hardness.
Recognizing the limitations posed by a small dataset, we address this chal-
lenge by integrating established physics-based models for strengthening into
these feature selection models. This integration involves leveraging physics-

based features, a strategy detailed below.
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In general, the common physical factors contributing to the strength-
ening of a magnesium alloy are solid solution strengthening (ogs), disloca-
tion strengthening (o), grain size strengthening (o), and precipitation
strengthening (o,,;). Based on previously known theory, we can estimate
the total strengthening in the alloys to be a sum of individual strengthening

mechanisms. [63]

0 = 055+ 0pis+0ogp+ Oppt s

= mY Bi(X)”?+ MaGb/p+ kd™"* + A7,

(8)

In Equation 8, the first term represents the contribution from solid solu-
tion strengthening as explained by the Labusch model [64, 65], the second
term represents the contribution from dislocations that can be estimated
by Taylor dislocation model [63], the third term represents grain boundary
strengthening based on the Hall-Petch relationship [66], and the last term
represents the contribution from precipitates as estimated using the Orowan
model. [63] The individual fits of each of these models are listed in the Ap-
pendix A.6.

For solution-strengthening, X; denotes the atomic fraction of solute 7, and
B; represents the potency factor corresponding to solute element 7. Assuming
all the solute atoms (0.4 at.% of Zn and 0.2 at.% of Ca) are in solution,

the maximum solution-hardening is estimated to be only 10 MPa / 3.3 Hy
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(calculated from [67]). We neglect the contribution of Mn due to its minimal
content (< 0.07 at.%). Since this maximum hardening is barely 1% of the
measured hardness, we consider solid solution-strengthening to be negligible
and do not consider it for the analyses. In Equation 8, the parameter o = 0.2
captures dislocation interactions within the basal slip system, G signifies the
shear modulus of the Mg matrix (approximately 16.6 GPa), p encapsulates
dislocation density, b represents the Burgers vector (roughly 0.32nm), M
is the Taylor factor (=~ 4.5 in Mg alloys [68]), d signifies the grain size, k
is the Hall-Petch slope obtained by fitting our data into the above model,
and A7 is the increment in the critical resolved shear stress (CRSS) due to
precipitates. [69] To quantify the strengthening effect of precipitates, the
increment in the A7, resulting from the necessity for dislocations to bypass

two distinct precipitates, is estimated as follows:

Gb )

AT= ———1n—.
4 27r)\*\/1—1/n7“o

(9)
Here, \* signifies the effective planar inter-particle spacing on the slip plane,
v is the Poisson’s ratio of the Mg matrix (~ 0.3), d; denotes the mean
planar diameter of the particles on the slip plane calculated from XRD using
the Scherrer equation and assuming that peak broadening is due to particle
size effects. r, is the core radius of the dislocations, approximated to be
the magnitude of b (rp = 0.32nm). [70] Given the Scherrer equation is
only valid for particle sizes less than 200 nm [71], we limit our consideration
to particles below this threshold, which are the ones most responsible for
strengthening. Following the methodology outlined by J.F. Nie [72], the

mean inter-precipitate spacing can be approximated based on the volume

30



fraction of the precipitates, f and mean diameter of the precipitates, d as:

0T e

=007

(10)

The precipitate size and spacing obtained through this route are listed in the
Table SI 3. We carried out hardness (Hy) to yield strength (o,) conversions
using the relationship where (o, ~ 3.3 x Hy). [73] Given the absence of
existing models describing the influence of texture on strength, we opted to

utilize the texture intensity ratios derived directly from XRD.
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Figure 8: Identification of dominant microstructural features for strengthening using (a)
Pearson R correlation coefficients [13] and (b) LASSO [14].

Using the above relations, we first conducted a correlation analysis us-
ing the Pearson R correlation coefficients [13] between the microstructural

features and the hardness value as seen in Figure 8(a). We observed that
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the inverse square root of the mean grain size (1/ \/c_l) is strongly positively
correlated with hardness, implying that the hardness value increases with
a decrease in the grain size, consistent with Hall-Petch strengthening. [66]
Likewise, the descriptors for precipitates in both ternary and binary phases
exhibit a positive correlation with hardness values, suggesting that the pres-
ence of precipitates enhances alloy hardness, as anticipated in precipita-
tion strengthening. [49, 63] This correlation may also be due to precipi-
tates hindering grain growth rather than directly resulting from precipitation

strengthening.

However, the unusual, highly positive correlation observed with (1120/0002)
texture ratio and its impact on hardness could stem from its significant de-
crease over time. Similarly, the very slight negative correlation seen with
(1010/0002) texture ratio might result from the relatively constant intensity
of (1120) plane during annealing, coupled with changes primarily in (0002)
plane. Although both textures exhibit correlations, these are indirect and do
not directly affect hardness, as indicated by LASSO descriptors below and
previous literature. Instead, it’s the precipitates influencing grain growth

that effectively impact texture as elaborated in Section 3.2.2.

As correlations do not imply causation, we conducted LASSO regres-
sion to further understand the importance and dominance of microstructural
features. LASSO, a method known for its ability to simplify models by
eliminating less impactful variables, provided a refined understanding of the

most significant features affecting hardness. Our LASSO model estimated
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the contribution and dominance of each feature using physics-informed and

microstructure-based models, as seen below:

Hy = MA(1/Vd)+Byp+) C’i(%ln[do]) + ...

(1010) . (1120)

D002y T E (oo02)

J (11)

where A, B, C;, D, and E are fitting constants in LASSO that give the feature
importance value. The LASSO regression fit has an accuracy of 93.14%, and

the fit was obtained by optimizing over the A\ parameter using “leave-one-

out”-cross-validation (LOOCYV).

In Figure 8(b), our analysis underscores the predominant influence of
grain size on the mechanical properties of the materials studied, aligning
with established literature on the dominance of grain size strengthening in
Magnesium alloys. [74-76] This phenomenon arises from the hindrance of
dislocation and twinning motion by grain boundaries, which enhances the
yield strength within the Mg matrix. The Hall-Petch slope (k), ranging from
90 to 300 MPa pum!/?, surpasses that of Al alloys or Steel by a factor of 2 to

5, highlighting the significance of grain size in strengthening. [66, 76]

While both ternary and binary precipitates contribute to material strength-
ening, our analysis suggests that the ternary phase plays a relatively more
substantial role in accordance with experimental observations. This could
result from the higher volume fraction of the ternary phase over the bi-

nary phase. Despite their positive correlation with hardness, the impact
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of precipitates on strengthening, as inferred from LASSO analysis, appears
comparatively modest. This observation aligns with the limited effective-
ness of precipitates in strengthening via the Orowan mechanism [49], likely
due to their susceptibility to cutting by dislocations. [76, 77| Additionally,
in the context of a dilute alloy system, the effectiveness of precipitates in
strengthening is further compromised. The tendency for coarsening and dis-
solution of precipitates over time leads to diminished strengthening effects,
as confirmed by LASSO analysis. The relative influence of precipitates on
strength is largely dictated by their volume fraction, with the ternary phase
exhibiting the highest importance, followed by binary precipitates, and then
the Mn phase with its extremely low volume fraction. However, it is worth
noting that precipitates indirectly contribute to strengthening by impeding
grain growth during solution treatment, thereby enhancing strength through
the Hall-Petch mechanism. This explains the discrepancy between the high
correlation observed through Pearson R Correlation and the relatively lower

importance assigned by LASSO analysis.

In contrast, dislocation strengthening does not feature prominently in our
analysis despite its high correlation with hardness. This discrepancy arises
from the significant drop in dislocation density during the initial phase of
high-temperature solution treatment, followed by stabilization at relatively
constant levels. However, lower temperature annealing regimes may reveal a
more pronounced impact of dislocations on hardness, as indicated by PCC

analysis. [63]
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When considering other microstructural features, the contribution of tex-
ture to strengthening appears negligible, likely due to its minimal influence
on hardness. This observation is consistent with prior research highlighting

the limited effect of texture on material hardness. [78, 79|

3.4.2. Corrosion Mechanism

Corrosion rates in Mg alloys, much like strengthening, are influenced by
various microstructural factors, including grain size, secondary phases, tex-
ture, and dislocation. However, there remains a gap in theoretical models
linking these microstructural features to corrosion rates. Only a few studies

have attempted to establish such correlations [80, 81].

In line with methodologies used for understanding strengthening mech-
anisms, we employ Pearson correlation analysis [13] and LASSO regression
techniques [14] to assess the influence of individual microstructural features
on corrosion rate. To mitigate the limitations posed by a relatively small
dataset, we integrate established physics-based models for strengthening into
the feature selection process of both Pearson correlation coefficient (PCC)

and LASSO regression models, as elaborated below.

Grain size (d) is one of the most critical microstructural features influenc-
ing corrosion rate. Given that grain boundaries harbor more lattice defects
and dislocations compared to the interiors of grains, grain boundaries are ex-
pected to corrode faster when exposed to corrosive environments. As a result,
grain boundaries are considered to accelerate the corrosion rate. However,

the relationship between grain size and the corrosion rate is complex, with
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conflicting reports suggesting that larger or smaller grain sizes may either

decrease or elevate the corrosion rates. [3, 43, 82-84]

Here we utilize the Hall-Petch type model that Ralston and Birbilis pro-

posed to explain the relationship between corrosion rate and grain size [80]:

CR=A+ % (12)
where the constant A depends on the specific environmental conditions, and
B represents a material constant that varies with composition. The fit of the
Ralston-Birbilis model is listed in Supplementary Figure SI 6. A modified
version of the Ralston-Birbilis model was proposed by Bahmani et al. [84],
where the grain size effect is limited to the matrix phase by the matrix

fraction, fasg.

_ g
(JR—A+B><\/E. (13)

Lastly, Bahmani et al. [84] combined the effects of the grain size and precip-

itate effects on corrosion into the following model:

fm
CR=A+Bx =2 +(Cx AE;|. 14
NG Z [l AE;] (14)
where f; represents the volume fraction of the intermetallic phase obtained
from XRD, and AE}; signifies the volta-potential difference between the inter-
metallic and Mg matrix. The fit of the Bahmani precipitate model is listed
in Supplementary Figure SI 7.
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As per the galvanic series, Mg ranks among the most anodic structural
metals, whereas most secondary phases, with the exception of Mg,Ca, ex-
hibit cathodic characteristics, rendering Mg more prone to corrosion. [85]
The corrosion rate attributed to micro-galvanic cells due to the presence of
intermetallic phases can be effectively modeled by considering the voltaic po-
tential difference (obtained from [81]), the kinetics of the reaction, and the
volume fraction of the phase, which represents the available sites for corro-
sion. The third term in Equation (14) establishes the correlation between
corrosion and the presence of precipitates. Remarkably, fitting the precipi-
tate model to the corrosion rate data yields an R? value of 0.87 as shown in

Supplementary Figures SI 6 and SI 7.

It has been known that dislocation density and crystallographic texture
can also impact corrosion rates significantly. [47, 84] According to the lit-
erature [84, 86|, excess dislocations often accelerate the nucleation and ex-
pansion of pitting and the generation of corrosion products. Texture also
significantly affects the corrosion behavior of Mg alloys as the work function
is different on different crystallographic planes. [43] However, no physical or
numerical models exist to describe their contributions, thus facilitating the

need to correlate them to corrosion rates directly.

To enable this analysis, we first conducted correlation analyses, as shown
in Figure 9(a), to understand the correlation between microstructural fea-
tures and corrosion rate, combining the physical relationships outlined above.

In this data set, we observed positive correlations for dislocation density and
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precipitate fraction (with ternary being the most correlated), consistent with
the literature that dislocation density and precipitates increase the corrosion
rates. Additionally, (1120/0002) texture ratio showed a positive correlation,
in line with literature [47] suggesting that prismatic planes corrode faster,
while (1010/0002) texture ratio exhibited a small negative correlation. How-
ever, this slight negative correlation might be attributed to the relatively
constant intensity of (1010) plane during annealing, coupled with changes
primarily occurring in the (0002) plane. The inverse square root of grain
size also showed a positive correlation, suggesting that grain size refinement
increases corrosion. However, it’s essential to note that a high correlation

does not necessarily equate to influencing corrosion behavior.

To truly distinguish between these microstructure features and gain in-
sights into the dominant microstructure, we conducted LASSO fitting, as

outlined below:

CR = MA(1/Vd)+Bp+Cx Y fIAE|+ .

(1010) . (1120)

D G002) T F 0002)

J, (15)

where A, B, C, D, and E are fitting constants in LASSO that give the feature
importance value. The LASSO regression fit has an accuracy of 81.16%, and
the fit was obtained by optimizing over the A parameter using LOOCV; see
Section 2.5.

The literature presents an interesting and somewhat contradictory per-
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Figure 9: Identification of dominant microstructural features influencing corrosion using
(a) Pearson R correlation coefficients [13] and (b) LASSO [14].

spective on the relationship between grain size and corrosion rate. Bahmani
et al. [43, 81] suggest that an increase in grain size may reduce corrosion
rate due to factors such as decreased lattice strain, dislocation density, and
surface potential. Conversely, a decrease in grain size may lead to a lower cor-
rosion rate due to the formation of a more uniform and coherent passivation
layer, increased barrier effects at grain boundaries against crystallographic
pitting, and enhancement of basal plane intensity. Despite a positive correla-
tion observed with 1/ V/d in Pearson R correlation analysis, LASSO regression
(Figure 9(b)) indicates that grain size may not have a significant impact on

corrosion rate for this Mg alloy and under these processing conditions.

The LASSO analysis, mirroring PCC analyses, reveals that corrosion

rates are predominantly influenced by the ternary CasMggZns phase. The
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potential difference between the intermetallic phase and the matrix drives
electrons from the anode to the cathode, forming galvanic cells. In this elec-
trochemical process, the anodic second phase degrades upon contact with the
nobler matrix in a galvanic cell, while the matrix degrades when the second
phase is nobler than the matrix. Specifically, CasMggZns acts as a cathode,
and the Mg matrix serves as an anode at their interface, enabling the forma-

tion of a micro galvanic cell and thereby increasing the corrosion rate. [4, 5,

87]

Mgy Ca exhibits a positive correlation with corrosion and contributes to
corrosion despite being more anodic than Mg [87]. Kim et al. [88] demon-
strated that the formation of a galvanic cell between the Mg anode and
Mgy Ca cathode accelerated the hydrogen evolution rate, thereby increasing
corrosion. However, their impact is relatively minor due to their lower vol-

ume fraction and potential differences compared to the ternary phase.

Despite its positive correlation, the Mn phase appears to play no signifi-
cant role in corrosion behavior. While the potential difference [81] indicates
that the Mn phase also acts as a cathode, forming a galvanic couple and
leading to increased corrosion rates as seen in PCC analyses, its extremely

low content in these alloys renders it of minimal impact, as reflected in the

LASSO analysis.

Generally, dislocations act as anodic sites relative to the matrix [84], lead-

ing to a strong positive correlation between dislocation density and corrosion
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rate. This effect becomes most pronounced in highly deformed samples and
can even persist following low-temperature thermal treatments in which dis-
locations can be fairly stable. For the high-temperature anneals performed
here, the LASSO analysis indicates that dislocation density has little in-
fluence, likely due to the rapid annihilation of dislocations within the first
minute of annealing. Further research incorporating a range of dislocation
densities is necessary to comprehensively grasp their impact on the corrosion

behavior of this Mg alloy.

Similar to dislocations, literature [47] suggests that texture exerts some
influence on corrosion rate. While there is a positive correlation, the LASSO
analysis indicates the impact is negligible for high-temperature thermal pro-
cessing of this Mg alloy. The lack of influence can be partly attributed to
the absence of strong texture in this ECAP sample, even following high-
temperature anneals. We argue that a relatively random distribution of

textures effectively nullifies its impact.

4. Conclusions and Future Work

In this study, we used rapid characterization techniques and machine
learning analyses to investigate the complex interplay between thermal pro-
cessing, microstructure, hardness, and corrosion rates in an Mg alloy. Uti-
lizing XRD and optical microscopy, we swiftly characterized microstructural
features with minimal sample preparation, while hardness measurements and
1-day immersion tests provided rapid insights into mechanical and corrosion

behavior, respectively.
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While the anticipated trend of decreasing hardness and corrosion rates
with prolonged high-temperature annealing was observed, intriguing devia-
tions were noted at short annealing times. Particularly, a 1-minute anneal
at 450°C yielded a favorable combination of high hardness and relatively low
corrosion rate. This brief annealing significantly reduced dislocation density
and dissolved ternary precipitates. Extending the annealing time to two min-
utes resulted in a considerable increase in grain size accompanied by texture
variations. These distinct variations underscore the importance of employing
accelerated characterization techniques to capture variations across various

annealing durations.

Despite the challenges posed by strong correlations among microstruc-
tural features and limited data, we successfully established correlations be-
tween microstructural features, hardness, and corrosion rates using machine
learning-based feature selection routes, such as LASSO regression, as well as

Pearson R Correlations in conjunction with physics-based relationships.

Our analysis highlights the significant roles of grain size refinement in
strengthening and the control of corrosion rates by ternary phase fraction,
as revealed by LASSO. Importantly, our findings emphasize that achieving a
fine grain size and reducing the presence of ternary phases and dislocations

can yield an optimal combination of strength and corrosion resistance.

In our future work, we will conduct a larger study using random forests

42



for feature engineering and a Bayesian optimization closed-loop discovery
method (PAL 2.0 [89]) to optimize processing conditions for high hardness
and low corrosion rates in Mg alloys. This study will involve gathering an
extensive dataset of various processing conditions and employing accelerated
property evaluations. Bayesian optimization will iteratively refine our models
based on experimental feedback, ensuring precise identification of optimal
processing routes. Our models will undergo rigorous validation and iterative
improvement, focusing on application-specific optimization for orthopedic
implants and biodegradable medical devices. This approach aims to advance
Mg alloy processing and develop high-strength, corrosion-resistant materials

for biomedical applications.
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Appendix A Supplementary Information

Appendix A.1 Grain Size Measurements

Condition | Time (hr) | Mean (um) | St.Dev | Minimum (um) | Maximum pm)
ECAP 0 0.83 0.35 0.33 2.11
1 min 0.02 0.84 0.40 0.24 2.29
2 min 0.07 11.52 4.73 2.32 20.78
5 min 0.08 19.39 9.97 3.14 51.34
15 min 0.25 18.17 12.76 3.29 66.01
30 min 0.50 20.82 12.87 2.10 62.42

1 hr 1.00 21.27 12.37 4.89 62.20
4 hr 4.00 25.66 12.89 4.46 58.86
16 hr 16.00 27.61 17.88 6.34 99.99
64 hr 64.00 40.39 29.04 5.41 158.34
128 hr 128.00 49.40 23.42 11.03 137.49

Table SI 1: Grain Size Statistics

Appendix A.2 Normalized Grain Size Distributions

Figure SI 1: Normalized Grain Size Distributions
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Appendix A.3 Goodness of Log-normal fit
We can see log-normal distributions throughout, except in the 2-minute sce-

nario where x? < 0.05.

Condition | Time | Breadth | 2
ECAP 0.00 1.85 0.12

1 min 0.02 2.26 0.89
2 min 0.03 2.19 0.02
5 min 0.08 2.53 0.21

15 min 0.25 3.10 0.48
30 min 0.50 3.39 0.19

1 hr 1.00 2.54 0.66
4 hr 4.00 2.58 0.26
16 hr 16.00 2.76 0.88
64 hr 64.00 3.38 0.83
128 hr 128.00 2.52 0.53

Table SI 2: Log-normal grain size distribution

Appendix A.4 Geometrically Necessary Dislocation Maps
The GND maps obtained from EBSD revealing

Figure SI 2: GND Distribution Maps
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Appendix A.5 Precipitate Size and Spacing

Condition Mean Precipitate Diameter (nm) | Mean Particle Spacing (nm)
Ca2Mg6Zn3 Mgzca Mn CazMgGZn3 Mg2Ca Mn

ECAP 149.30 117.58 131.00 277.77 374.66 | 473.76
1 min 147.81 129.50 148.07 345.53 432.92 | 663.54
2 min 158.73 116.73 214.17 385.68 395.52 | 965.69
5 min 146.14 146.83 161.08 357.84 486.68 | 746.53
15 min 151.20 109.10 104.77 373.95 368.60 | 462.26
30 min 150.91 194.96 168.10 373.59 651.65 | 759.71
1 hr 137.44 132.64 153.98 293.44 363.97 | 518.52
4 hr 157.93 136.20 114.55 343.34 395.16 | 382.39
16 hr 131.87 180.60 171.67 298.72 531.36 | 606.25
64 hr 126.42 129.02 168.75 335.67 386.09 | 677.80
128 hr 175.17 172.12 130.17 501.92 647.61 | 523.19

Table SI 3: Precipitate Size and Spacing estimated through XRD

Appendix A.6 Strengthening Mechanism Models
Appendiz A.6.1. Hall Petch Model
The Hall Petch model (Hy = kd~%%) exhibited a superior fit of 89.4%,

denoting a dominant influence of grain boundaries on strengthening.
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Figure SI 3: Hall Petch Strengthening
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Appendiz A.6.2. Taylor Dislocation Model

The poor fit (R* = 0.45) of the Taylor dislocation model (o4;s = MaGb,/p)

represents the suppressed roles of dislocation density in strengthening this

material.
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Figure SI 4: Dislocation Strengthening

Appendiz A.6.3. Orowan Strengthening Model

The poor fits of the Orowan model upon strengthening from the ternary
(R?* = 0.625), binary (R? = 0.4715), and Mn (R* = 0.34) denote the limited

roles of precipitates in strengthening this material.
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Figure SI 5: Precipitate Strengthening by Orowan Mechanism

Appendix A.7 Corrosion Mechanism Models
Appendiz A.7.1. Ralston-Birbilis Model

We fitted our grain sizes to corrosion using the Ralston-Birbilis model
elaborated in Equation (12). We found a poor fit of 46%, denoting the

suppressed role of grain size in corrosion behavior.
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Figure SI 6: Ralston-Bibilis Grain Size Model - as a function of solution heat treatment

Appendiz A.7.2. Bahmani Model
We fitted our precipitate contributions to corrosion using the Bahmani

precipitate model, as shown below:

CR = A+ C X [ feaMegzns | ALCayMegzns | + frig,cal ABMg,cal 4 [y | AEym|]
(A1)
We observed a superior fit of 88%, denoting the dominance of the precip-

itates on the corrosion behavior.
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Figure SI 7: Bahmani Precipitate Model - as a function of solution heat treatment
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