

Telecoupled systems are rewired by risks

Steve J. Miller^{1*}, Laura E. Dee², Meghan T. Hayden², Uchechukwu Jarrett³, Amanda R. Carrico¹, Kate A. Brauman⁴, Eréndira Aceves-Bueno⁵

5 1. Department of Environmental Studies, University of Colorado Boulder, Boulder, CO, USA.

6 2. Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO,

7 USA.

8 3. Department of Economics, University of Nebraska-Lincoln, Lincoln, NE, USA.

9 4. Global Water Security Center, University of Alabama, Tuscaloosa, AL, USA

10 5. School of Marine & Environmental Affairs, University of Washington, Seattle, WA, USA.

12 *e-mail: steve.j.miller@colorado.edu

14 Preface

15 Risks in globally interconnected socio-environmental systems are complex: trade, migration, climate
16 phenomena like El Niño, and other processes can both redistribute and modulate risks. We argue that risk
17 must be investigated not only as a product of these systems but also as a force that rewrites them through,
18 for example, supply diversification, trade policy, insurance and other contracting, or cooperation. Two
19 key questions arise: how do individuals and institutions perceive risks in these global, complex systems,
20 and how do attempts to govern risks change how the systems function? We identify several areas for
21 interdisciplinary research to address these questions.

23 Main

24 Governance of both non-renewable (e.g., oil, minerals) and renewable (e.g., fish, crops, forests) resources
25 requires accounting for a range of risks. Risks, defined as the “potential for adverse consequences for
26 human or ecological systems”¹, may arise from changes in market conditions (e.g., demand shocks, input

27 shortages, trade policy changes), uncertainty about the current state of the resource (e.g., fish population
28 size, soil quality, or remaining mineral reserves), or shifting environmental conditions (e.g., natural
29 disasters or climate change), biological changes (e.g., disease or invasions). Risk and volatility in natural
30 resource systems have direct impacts on human well-being², threaten access to credit if banks perceive
31 repayment as uncertain, and dampen economic growth³. As a result, a range of actors, including those
32 employed in the primary sector, but also traders, governments, conservation groups, and financial
33 organizations, seek to understand these risks and reduce them. These efforts can backfire; physical
34 suppression of variability and disturbance (e.g., wildfire suppression) can increase system susceptibility to
35 larger shocks in the long run^{4,5}.

36 Modern risk assessment and governance are also challenged by growing interdependencies
37 among distant coupled human-natural systems—a process known as telecoupling^{6,7}. Teleconnections such
38 as El Niño Southern Oscillation events, which have grown stronger in the past half century⁸, are one
39 source of telecoupling. Globalization has also dramatically increased trade, human migration, knowledge
40 flows, and transmission of disease and invasive species⁹. As a result, some local resource decisions have
41 distant environmental impacts (e.g., forest protection or reforestation efforts may shift deforestation
42 elsewhere¹⁰) and the consequences of local environmental shocks are influenced by connections to other
43 regions (e.g., remittances from migrants may help buffer economic consequences of natural disasters¹¹).

44 Taken together, these interdependencies complicate the task of risk assessment considerably. For
45 example, access to export markets can provide a buffer against local demand shocks¹², but those same
46 international trade links introduce new sources of risk. These new sources include supply booms in other
47 locations driving down prices through competition; a pandemic like COVID-19 decimating demand in
48 key destination markets; or trade propagating, lengthening, and intensifying financial crises as it did in
49 2008¹³. Threats to connectivity, e.g., through weaponization of trade¹⁴, create a distinct type of structural
50 risk.

51 Current approaches to studying risk in telecoupled systems are incomplete. Many studies of
52 environmental risks ignore those that do not originate locally or use a highly simplified representation of

53 interdependencies^{15–19}. Recent efforts offer progress, characterizing^{5,20} and providing examples of risks
54 generated by complex socio-environmental systems, such as malaria risk induced by trade in
55 deforestation-associated commodities²¹ or snowpack-driven supply risk for imported agricultural
56 products²². These analyses often take the connectivity of a telecoupled system as given and ask how it
57 generates and redistributes risk. For example, tools from network science have traced the propagation of
58 individual shocks in telecoupled systems^{23,24} and highlighted how interdependencies may amplify risks
59 well beyond those posed by individual system components (“systemic risk”²⁵), even threatening system
60 collapse²⁶. However, the connectivity in telecoupled systems is not fixed – the ways in which people and
61 institutions prepare for and seek to modify risks, including efforts to ensure “response diversity”²⁷, can
62 change the network structure itself. Feedbacks from risk to the structure of telecoupled systems have been
63 less explored and raise important questions about the system-level consequences of local risk governance
64 and how individuals and institutions assess and govern risks in complex systems.

65 To this end, we argue that risk should be investigated not only as a product of telecoupled
66 systems but also as a force that can rewire them in several different ways. Multinational risk pools that
67 spread financial risks posed by natural disasters²⁸ offer one example. Those risk pools not only introduce
68 new financial interdependencies among countries, they may also reduce incentives to physically manage
69 risks via precautionary resource use or defensive expenditures (moral hazard), much as agricultural
70 insurance could induce planting of riskier crops²⁹. In turn, companies and countries that import from those
71 disaster-prone areas could choose to diversify across import sources or even stop importing from risky
72 areas, altering trade connectivity. Governments may also intervene if the resulting supply risks concern
73 basic welfare of their citizens (e.g., food security), imposing export bans or subsidizing imports. Because
74 all of these actions alter the connectivity of telecoupled systems, even answers to research and policy
75 questions that are not explicitly about risk may still depend upon how risk is governed.

76

77

78

79 **Types and examples of system rewiring**

80 Attempts to govern risk often alter the existence and strength of links between parts of a
81 telecoupled system (Fig. 1). Links can be strengthened or added, including by introducing new entities,
82 such as financial institutions, conservation organizations, or international governing bodies (Fig. 1a,
83 orange triangles). Similarly, links may be weakened or removed, such as through restriction or cessation
84 of trade. These changes can occur alongside other, locally focused risk management efforts that do not
85 alter connectivity, such as precautionary harvest, spatial closures, or conservation reserve programs.

86 To make these ideas concrete, we highlight three common sources of new connectivity that arise
87 from risk governance (Fig. 1b-d). New public policies, partnerships, and treaties that directly target risk
88 offer a clear starting point. For example, the Convention on International Trade in Endangered Species
89 created new rules and reporting obligations to reduce species extinction risk, thereby linking parties to
90 that agreement (Fig 1b), altering trade flows among them, and possibly creating new illicit trade flows
91 elsewhere. Relatedly, conservation organizations seeking to limit risk of habitat or species loss may
92 induce links between their project locations, as budget constraints may imply that spending to reduce risks
93 in one place comes at the expense of spending and increased risk elsewhere. Beyond conservation,
94 institutions created to govern wildfire risk may cover large regions (e.g., at the federal level), with both
95 meetings and movement of firefighting crews introducing flows of knowledge across fire-exposed
96 locations³⁰. Even risk-related policies that do not explicitly seek to establish new connections may still do
97 so: a city government building levees to manage flood risk could induce higher rates of human in-
98 migration.

99 A second class of connectivity-altering risk governance tools are financial arrangements, with
100 food systems offering several examples. Food importers concerned about supply risk may pursue complex
101 strategies, such as purchasing land in other countries to exert control over production practices. Spatial
102 patterns of foreign land ownership contracts (Fig. 1c) suggest these contracts affect the distribution of
103 risks between the Northern and Southern Hemispheres. Futures and forward contracts for harvests play a

104 similar role in redistributing price risk, with buyers—who may be in other countries—assuming those risks.
105 Finally, crop insurance transfers production, price, or revenue risk from farmers to insurers located
106 elsewhere in exchange for premiums. Insurers may pass along a portion of that risk through reinsurance
107 contracts. Because many private insurers and reinsurers—including those who serve smallholder farmers—
108 operate internationally, risks in one country could affect premiums or the availability of coverage in
109 another (subject to regulation). Thus, the formation of some links to govern risk may prevent or constrain
110 the formation of others. Similarly, because of limitations on which crops are insurable, insurance-based
111 risk reduction strategies may constrain the countries in which different crops are grown, shaping market-
112 based links between growing regions.

113 A third familiar way in which risk governance can alter the connectivity of telecoupled systems is
114 through trade. Importers may diversify across source countries, adding links to limit price risk³¹ or
115 perceived risk of supply shortfalls; the same is true for exporters facing demand risk. The resulting
116 network of trade flows—such as that for wheat in 2021 (Fig. 1d)—can be both dense and dynamic. The
117 devastating heat wave and drought that hit Russia in 2010, together with price speculation and an export
118 ban that ensued, provides one example. Russian wheat exports fell by 30% from 2009-2010 and remained
119 lower than 2009 levels until 2014. Egypt, which had been heavily dependent on Russian wheat imports
120 prior to the heat wave, continued to source from a diverse set of countries even after Russian wheat
121 exports had rebounded in 2014 (Fig. 2)—a strategy consistent with risk governance. However, as time
122 passed after the shock of 2010, Egypt’s import shares of Russian wheat crept back up. This re-
123 concentration mirrors the dynamics of risk governance after local disasters (e.g., floods), in which
124 insurance uptake spikes after an event but fades with time³². More recently, perceived cereals supply risk
125 in the face of the Russia-Ukraine war has re-ignited Egypt’s efforts to diversify its wheat imports.

126 Not all risk governance approaches create new links in telecoupled systems; firms or
127 governments may also weaken, break, or choose not to establish links deemed risky. Agri-food businesses
128 dependent on international supply chains face not only production risk from suppliers, but also potentially
129 reputational risk if food safety or poor working conditions in source regions come to light³³. Those

130 companies may choose to eliminate links deemed to pose reputational risks, decoupling some previously
131 connected locations. Aware of price risks, governments often impose export restrictions to protect
132 domestic consumers from escalating prices, especially for staple foods, temporarily breaking export links.
133 Both the 2007-2008 food crisis and current Russia-Ukraine war offer recent high-profile examples. The
134 resulting uncertainty over trade policy can reduce incentives for firms to invest in establishing trade links
135 and infrastructure³⁴, limiting coupling well before any export bans take place.

136 Some risk governance approaches may both add new links and eliminate others. At the local
137 level, communities may pursue different livelihoods if the health of nearby natural resources are
138 perceived to be at risk, augmenting or replacing a set of distant locations with which they are connected.
139 For example, coastal fishing communities facing a risk of stock collapse or simply high catch volatility
140 may diversify into ecotourism. Doing so may replace or augment the community's connections from a
141 focus on seafood export (and import of fishing supplies) to an emphasis on locations with likely tourists.
142 This change in connectivity opens the coastal community to new flows to and from the new locations,
143 which may also include flows of risk (e.g., economic downturn leading to reduced tourism).

144 Regardless of how risk governance alters system connectivity, the changes may have unintended
145 consequences. Most changes aim to introduce negative (counteracting) feedbacks into complex systems;
146 e.g., insurance payments offset farm income losses from drought, and risk-motivated trade policy often
147 weakens export responses to world prices. However, those same changes can also create positive
148 feedbacks in other parts of the system, contributing to systemic risk. A well-known example in food
149 systems is the 2007-2008 food price crisis. A range of causes, including rising oil prices, weather-induced
150 shortfalls in wheat production, and surging biofuels demand contributed to increased prices and fears of a
151 shortage of affordable food³⁵. Several governments responded with trade policy changes (e.g., export bans
152 on rice and wheat in major exporting countries) intended to secure domestic supply for their citizens.
153 Speculators saw an arbitrage opportunity and jumped in. Collectively, those actions only exacerbated
154 food price increases elsewhere, raising food security risks in many other regions. In short, both policy and

155 market responses introduced positive (reinforcing) feedbacks that led to far greater impacts than
156 individual sources of risk would have suggested.

157

158 **Factors that shape rewiring**

159 If attempts to govern risk *can* reshape telecoupled systems, a natural follow-up question is when
160 and where those changes are likely to occur. The answer to that question depends upon how individuals
161 and institutions perceive and respond to risks arising in telecoupled systems, as well as what constraints
162 may prevent rewiring from occurring.

163

164 **Challenges for risk perception**

165 Determining risk exposure in telecoupled systems may be quite challenging, with multiple
166 sources of risks, links between locations, and governance elsewhere altering those links. Moreover, how
167 users perceive risks emerging from telecoupled systems is likely different from perceptions of risks that
168 originate locally, necessitating updated frameworks. Here we outline some of those challenges,
169 summarized in Figure 3: distant connections (Fig. 3, box 1), number and variety of risks (Fig. 3, box 2),
170 and complexity (Fig. 3, box 3).

171 First, telecoupling is characterized by distant connections (Fig. 3, box 1). Communities must
172 assess and respond to risks of a distant origin, and distance likely affects perceptions of and responses to
173 risk severity^{36,37}. Direct experience with a particular hazard increases its salience even if it is less
174 threatening than other, distant hazards^{38,39}. More abstract threats generally demand less cognitive and
175 emotional attention and are more likely ignored. As a result, distant hazards may receive less attention
176 and scrutiny. Salience aside, the lack of direct personal experience with distant natural resource systems
177 may also alter perceptions of risk arising from them⁴⁰, leading risk perceptions to be inaccurate,
178 imprecise, or imbued with uncertainty.

179 Perceiving distant risks in telecoupled systems raises additional challenges and questions. First,
180 information on risks originating in other countries may not be readily available, could be provided in a
181 different language, or may be communicated differently due to variation in practice across regions.
182 Likewise, perceived trustworthiness of the source of information is an important factor shaping risk
183 perception, and people tend to trust sources within an identity group or socio-cultural community
184 more^{41,42}. Such sources may not be available for distant risks.

185 Distance in telecoupled systems is also dynamic. As physical and policy-imposed trade costs have
186 come down, the relevance of distant risks to local outcomes has increased. At the same time, increasing
187 availability of information could improve both perception and statistical assessment of distant risks. It
188 remains to be seen how dynamic individual perceptions of distant risks are, and whether or not they track
189 the changing relevance of geographically distant sources of risk.

190 The lower salience, information barriers, and dynamics of distant risks may favor delegation of
191 risk assessment to institutions, which can introduce biases. Government agencies and political leaders
192 have some incentive to downplay risks to secure public approval, and agencies tasked with risk
193 assessment may have a mandate to monitor familiar local rather than distant risks⁴³, both of which could
194 lead to underestimation of risk. Further, individuals may filter externally produced risk assessments
195 through political or other ideological lenses, as exemplified in the polarized perception of viral and
196 vaccine risks in the United States⁴⁴.

197 Second, telecoupled systems contain a greater number and variety of risks than do local systems
198 (Fig. 3, box 2). Because attentional resources are finite, when new sources of risk command our attention,
199 cognitive resources allocated to other hazards are likely to decrease⁴⁵. Because attention alters
200 environmental risk perception⁴⁶, how resource users assess overall risk may depend on which of those risk
201 sources they attend to. This raises questions of whether and how resource users will prioritize or even
202 triage assessment of risks across parts of a telecoupled system. Even if all risks are eventually attended to,
203 the order in which risks are assessed could matter, especially if fatigue from assessing risk in some parts
204 of the system affects risk perception in later-assessed areas^{47,48}.

205 The socio-environmental nature of telecoupled systems also means resource users must cope with
206 a variety of risk types, including economic, policy, abiotic, and biological. Individuals may not perceive
207 those risks identically, even if the different hazards they pose and probabilities of occurrence are
208 comparable. For example, some communities could be very in tune with abiotic and biological risks
209 through experience managing their local resources but unsure how to assess risks of social origin (e.g.,
210 price or trade policy shocks), especially if the people involved live in another city or country. Conversely,
211 other communities could devote more time and effort to assessing social risks because they may perceive
212 clear channels for influencing those risks, such as petitions or protests. Understanding whether and how
213 individuals differentially assess various types of risks in telecoupled systems could be important for
214 predicting behavior, and thus the functioning of the broader systems.

215 Third, the complexity of telecoupled systems poses clear challenges for both the perception of
216 risk and evaluation of the consequences of actions intended to reduce risk (Fig. 3, box 3). Even if an
217 individual has extensive knowledge of uncertainties governing distant natural resource systems, she must
218 translate that knowledge into risk that is relevant to her own decision making. For example, a lobster
219 fisher in Mexico may understand the environmental and biological variability facing lobster communities
220 in Australia and New Zealand, but she must assess what that variability implies for her own livelihood. In
221 a dynamic system with many distributed decision makers, the consequences of distant risk for local
222 outcomes are often difficult to assess. The same complexity challenges assessment of the consequences of
223 local actions intended to reduce risk, as there could be feedback from other parts of the system (including
224 other communities attempting to reduce their own risk). Experimental evidence suggests that, in the face
225 of such complexity, people may focus narrowly on readily available information⁴⁹, compounding
226 challenges posed by language barriers and distance described earlier.

227 Complexity also challenges risk perception through cross-system spillovers and transformation of
228 risk. One example is the 1972 collapse of the Peruvian anchoveta fishery, which set off a chain of
229 events⁵⁰: resulting fishmeal and fish oil shortages in the US led some farmers there to shift from wheat to
230 soybeans—which can substitute for fishmeal and fish oil in animal feed—ultimately contributing to a wheat

231 shortage that year in other countries. A second, macroeconomic example is the impact of fracking in the
232 US on the oil-dependent Nigerian economy. With the advent of fracking, the United States transitioned
233 from a net importer of crude oil to a net exporter, contributing to rapid and large declines in global oil
234 prices⁵¹. This shock reduced the availability of foreign currencies the Nigerian Central Bank relied on to
235 maintain its fixed exchange rate regime, devalued the Nigerian Naira, and produced a recession in the
236 country, which is highly dependent on imports⁵². Assessing the risk of either chain of events requires
237 knowledge well beyond a single natural system or market, combining understanding of production risks
238 (of climate or technological origin), substitution patterns, and even monetary policy.

239 Aside from the cognitive demands it imposes, complexity may also lead participants in
240 telecoupled systems to perceive that they have little control over their own outcomes – a sentiment likely
241 reinforced by the distal nature of some risks. Low perceived control may have multiple consequences for
242 risk perception and response. Given that greater perceived control can bias risk assessment toward
243 optimism⁵³, we might expect risk assessment in telecoupled systems to suffer less from optimism bias.
244 Low perceived control at the individual level may also heighten calls for government intervention.
245 However, in complex, telecoupled systems, local and federal governments may be able to exert only
246 limited influence over the risks to which their constituents are exposed, through either local policy or
247 incomplete control over international agreements. Still, if governments do not intervene to limit
248 constituent risks, political representatives could risk being unseated.

249 The complexity of telecoupled systems may give rise to systemic risks; however, it is unclear
250 whether and how various system participants perceive them. Systemic risks are partly a function of how
251 other people and institutions govern risk – how diversified they are, whether governments are likely to
252 intervene if shocks do occur, and which of the many other tools discussed above will be deployed. How
253 do individuals form beliefs about the potential risk governance behavior of others, especially when those
254 others may be halfway across the globe? Moreover, because people update both their perception of and
255 attitudes toward future risks having experienced a shock^{54,55}, maintaining updated beliefs about how
256 others will govern risk in a telecoupled system seems especially daunting. While this sort of higher-order

257 belief formation has long been recognized as central to the functioning of economies, understanding how
258 individuals form and use those beliefs is an active area of research⁵⁶.

259

260 **Constraints affecting risk governance**

261 Understanding when and how risk governance will rewire telecoupled systems also requires
262 acknowledging inequalities in access to relevant tools and resources. For example, the spatial
263 autocorrelation of many environmental processes exposes nearby, low-cost trading partners to similar
264 risks⁵⁷, making risk reduction via trade diversification more difficult or expensive for some vulnerable
265 communities. Export-dependent communities may also contractually bear a disproportionate share of
266 risks due to existing power dynamics with buyers in wealthier countries, raising environmental justice
267 concerns. As for local risk reduction tools, some small banks or insurers may be unwilling to assume the
268 risks that telecoupled systems pose for two reasons. First, accurately pricing complex risks arising in
269 globally interconnected systems is difficult⁵⁸, and small financial institutions may not have the expertise
270 or resources to do so. Second, risks across local resource users may be highly correlated due to shared
271 environmental conditions or common export markets. A local bank or insurer may not wish to take on the
272 risk of paying out to most local resource users at once, while larger, more diversified financial institutions
273 in other locations may be more willing. Separately, risk preferences⁵⁹, access to risk-smoothing financial
274 services⁶⁰, and participation in natural resource sectors such as agriculture⁶¹ all vary with gender. As such,
275 attempts to model adoption of different risk reduction strategies within telecoupled systems should allow
276 for various forms of heterogeneity.

277 Disparities in access to information are also likely to magnify the risk perception challenges
278 described earlier. Without direct experience or information, individuals may rely on observed behavior of
279 peers to guide risk perceptions or subsequent actions^{62,63}. This phenomenon is also quite common in
280 interconnected financial markets: the high fixed costs of gathering country-specific information price out
281 some banks or multinational investors⁶⁴. As such, some investors mimic the decisions of others without
282 accounting for the differences in characteristics that may make a particular action optimal for one firm but

283 detrimental to another. In a natural resource setting, such “herding” behavior⁶⁵ could lead to convergence
284 on risk governance choices that are not appropriate for some or all resource users. Thus, individuals or
285 communities with access to information (or the resources to acquire it) may shape the risk-related
286 behavior of those without it, entrenching existing inequities.

287

288 **Paths forward**

289 Improving our understanding of how risks rewire telecoupled systems should begin with a
290 foundational understanding of the constraints and risk perception challenges just described. We highlight
291 three sets of tools that could be useful. First, lab or field experiments can shed light on risk perception in
292 telecoupled systems. One experimental design could investigate how the type or number of risks alters
293 risk perception (Fig. 3, box 2) by presenting farmers with a fixed trade network, varying the number and
294 type of risks within the network (e.g., potential drought or crop disease outbreaks in competing regions,
295 or trade bans), and asking participants to explicitly assess risks. Probabilities and magnitudes of these
296 events could be constructed in a way that they imply equivalent financial consequences for the
297 participant, thereby isolating the role of type or number of risks for a fixed trade network. A second
298 example experiment could investigate the role of system complexity (Fig. 3, box 3) on risk perception by
299 placing a single risk (e.g., wildfire) in a trade network and asking participants (e.g. importers) to assess
300 the probability of local impacts. Varying the network structure while keeping the probabilities of loss the
301 same could allow for isolation of the role of system complexity in risk perception, building on studies of
302 belief formation in network settings⁶⁶.

303 Second, comparative case studies could offer a complementary perspective, moving beyond
304 network representations of telecoupled systems. One line of inquiry could examine institutional and
305 policy factors that affect perception of and adaptation to telecoupled risks in organizations. Recent work
306 on local risks⁶⁷ suggests that institutional adherence to historical processes, strategies, and (potentially
307 idiosyncratic) definitions of success shape the adoption of specific risk reduction actions (echoing

308 observations in ref. ⁴³). A similar comparative case study approach could assess whether these
309 observations extend to a telecoupled context, e.g., how do different lobster fishing cooperatives in Mexico
310 gather information on and adjust their export strategies in response to perceived demand risks in China?
311 Do they fall back on readily available information as lab experiments⁴⁹ suggest, or, given the stakes for
312 livelihoods, do cooperatives seek out unfamiliar sources, such as scientific reports or news stories in other
313 languages? Beyond information gathering, do these organizations try new risk governance strategies or
314 lean harder on historical precedent when the novelty and distal nature of risks in telecoupled systems
315 means there is less *direct* experience on which to draw (Figure 3, box 1)? Comparative case studies in this
316 and other empirical settings could begin to elucidate answers to these questions.

317 Third, observational statistical analyses could evaluate the insights generated by the first two
318 approaches, identifying when and where connectivity-altering risk governance strategies are used in
319 practice (e.g., When do possible crop losses trigger export bans?). These analyses would face at least two
320 key identification challenges. First, changes in perceived risk may co-occur with and be influenced by
321 actual shocks (e.g., a recent flood), so that separating effects of risk and effects of shocks is difficult. One
322 option is to consider only connectivity changes that occur after announcement of a risk (e.g., public
323 forecasts) but before a shock is realized. Another possibility is to use event studies to examine how
324 shocks alter risk perceptions and responses in communities that are not directly affected. This was done
325 for communities near nuclear power plants in China after the Fukushima disaster⁶⁸, though without our
326 proposed focus on connectivity-altering responses to risk. A second key challenge is the statistical
327 interference or spillovers inherent in telecoupled systems. Changes in risk will rarely affect a single
328 location in isolation, and connectivity-altering risk governance will change where spillovers occur. Recent
329 methodological advances, e.g., using network lags as instrumental variables⁶⁹, could offer more credible
330 ways to draw causal inferences in this context.

331 Insights from these three and other approaches can guide development of models of telecoupled
332 systems with risk-aware participants and risk-responsive connectivity. At a minimum, we should demand
333 that these models offer improved predictive performance (e.g., for existence, magnitude, and volatility of

334 system flows) in data-rich systems where it can be assessed. General equilibrium models provide one
335 potential model framework; recent precedent in agricultural trade offers a tractable example incorporating
336 trade, volatility, and risk preferences⁷⁰. However, important questions remain on how often such systems
337 are in equilibrium. Perceptions of risks and even risk preferences may take time to catch up with system
338 dynamics or changing connectivity, or perceptions of risks may ebb and flow as in the example of Egypt's
339 wheat import strategies. These behavioral dynamics are typically absent from general equilibrium models.

340 Agent-based models present an alternative modeling route: the rule-based behavior of agents
341 (whether farmers, exporters, or policymakers) offers a clear place to incorporate risk-related behavior.
342 Recent agent-based efforts to model global economic activity⁷¹ and telecoupled agricultural systems⁷²
343 offer two promising starting points, but neither includes rules for how agents gather information about
344 distant risks, how that information is used to form perceptions of risk, or how those perceptions alter rules
345 governing action. Given the inherent flexibility of agent-based modeling, an important challenge will be
346 extracting insights that generalize across a range of telecoupled systems⁷³.

347 Approaches from network science could help assess these generalizability concerns. Telecoupled
348 systems have been usefully represented as networks^{24,74}, including in studies of how those networks
349 change in response to shocks⁷⁵—but not in response to risks. One idea is to model many telecoupled
350 systems as multilayer networks with differing initial connectivity (e.g., trade and land ownership
351 networks), then to ask which features of initial connectivity (e.g., edge density, degree distribution,
352 clustering coefficients) predict higher levels of risk-induced rewiring, and which confer stability. Any
353 relationships that do emerge could aid in characterizing when and where modeling insights apply. While
354 relating initial network properties to network dynamics is not new, doing so for multilayer networks with
355 endogenous link formation as in telecoupled systems makes identifying such relationships both
356 interesting and challenging. A related idea is to instead vary a modeling assumption about risk-related
357 behavior (e.g., risk aversion toward risks originating in another country) to observe how behavioral
358 assumptions shape the telecoupled system network structure after any responses to risk. Inverting that

359 relationship could potentially allow for inferring aspects of risk-related behavior from how the
360 telecoupled system network structure evolved.

361 In sum, we advocate for the joint pursuit of micro-scale research on behavioral responses to risk
362 and advances in macro-scale, risk-aware models of telecoupled systems. While ambitious, linking
363 research across those scales is essential to determining who ultimately bears the risks that pervade
364 telecoupled systems. If we erroneously assume connections in telecoupled systems are fixed or model
365 their evolution based on an inaccurate understanding of behavioral responses to risk, our projections of
366 which consumers are likely to be food insecure or which communities might see their livelihoods collapse
367 are likely to be wrong. Over short time horizons, these errors could be minor, as communities may not
368 have ample time to change their behavior or connectivity. However, many sustainability challenges entail
369 risks and risk governance strategies that arise over much longer timescales.

370 This concern echoes the “Lucas critique” in economic forecasting⁷⁶, which casts doubt on
371 predictions from phenomenological models that are not rooted in behavioral microfoundations. In our
372 context, *historical* connectivity in telecoupled systems – trade networks, migration patterns, financial
373 flows – offer only a phenomenological understanding of how telecoupled systems function. Our
374 perspective boils down to a call to integrate modeling and behavioral science advances that allow
375 analyses of telecoupled systems to overcome this critique, echoing related calls for integration of a range
376 of human behaviors into social climate models⁷⁷. Building risk-related behavior into increasingly complex
377 models of telecoupled systems is only useful if the underlying behavioral foundations are plausible. To
378 build out our knowledge of those foundations, we need to better understand the set of risks communities
379 are exposed to in telecoupled systems, and how communities process and govern those risks. In short, we
380 need an integrated investigation of how risks rewire telecoupled systems.

381

382

383

384 **Contributions**

385 S.J.M., L.E.D., and E.A.-B. identified the initial concept. M.T.H. conducted the initial literature
386 review. S.J.M. led paper writing and revisions. L.E.D., M.T.H., U.J., A.R.C., K.A.B., and E.A.-
387 B. contributed to writing and revision according to their areas of expertise.

388

389 **Acknowledgements**

390 S.J.M., L.E.D., and M.T.H. acknowledge support from the University of Colorado Research and
391 Innovation Office. S.J.M. and U.J. acknowledge support from the United States National Science
392 Foundation, Award #2314999.

393

394 **Competing interests**

395 The authors declare no competing interests.

396

397 **References**

- 398 1. Intergovernmental Panel on Climate Change (IPCC). *The Ocean and Cryosphere in a
399 Changing Climate: Special Report of the Intergovernmental Panel on Climate Change.*
400 (Cambridge University Press, 2022). doi:10.1017/9781009157964.
- 401 2. Adger, W. N., Barnett, J., Heath, S. & Jarillo, S. Climate change affects multiple dimensions
402 of well-being through impacts, information and policy responses. *Nat. Hum. Behav.* **6**, 1465–
403 1473 (2022).
- 404 3. van der Ploeg, F. & Poelhekke, S. Volatility and the natural resource curse. *Oxf. Econ. Pap.*
405 **61**, 727–760 (2009).

406 4. Holling, C. s. & Meffe, G. K. Command and Control and the Pathology of Natural Resource
407 Management. *Conserv. Biol.* **10**, 328–337 (1996).

408 5. Nyström, M. *et al.* Anatomy and resilience of the global production ecosystem. *Nature* **575**,
409 98–108 (2019).

410 6. Liu, J. *et al.* Framing Sustainability in a Telecoupled World. *Ecol. Soc.* **18**, (2013).

411 7. Liu, J. Integration across a metacoupled world. *Ecol. Soc.* **22**, (2017).

412 8. Grothe, P. R. *et al.* Enhanced El Niño–Southern Oscillation Variability in Recent Decades.
413 *Geophys. Res. Lett.* **47**, e2019GL083906 (2020).

414 9. Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of
415 globalization. *J. Appl. Ecol.* **46**, 10–18 (2009).

416 10. Meyfroidt, P., Rudel, T. K. & Lambin, E. F. Forest transitions, trade, and the global
417 displacement of land use. *Proc. Natl. Acad. Sci.* **107**, 20917–20922 (2010).

418 11. Pelling, M. & Uitto, J. I. Small island developing states: natural disaster vulnerability and
419 global change. *Environ. Hazards* **3**, 49–62 (2001).

420 12. Almunia, M., Antràs, P., Lopez-Rodriguez, D. & Morales, E. Venting Out: Exports during a
421 Domestic Slump. *Am. Econ. Rev.* **111**, 3611–3662 (2021).

422 13. Claessens, S., Tong, H. & Wei, S.-J. From the financial crisis to the real economy: Using
423 firm-level data to identify transmission channels. *J. Int. Econ.* **88**, 375–387 (2012).

424 14. Farrell, H. & Newman, A. L. Weak links in finance and supply chains are easily weaponized.
425 *Nature* **605**, 219–222 (2022).

426 15. Schweitzer, F. *et al.* Economic Networks: The New Challenges. *Science* **325**, 422–425
427 (2009).

428 16. Kasperski, S. & Holland, D. S. Income diversification and risk for fishermen. *Proc. Natl.*
429 *Acad. Sci.* **110**, 2076–2081 (2013).

430 17. Deines, J. M., Liu, X. & Liu, J. Telecoupling in urban water systems: an examination of
431 Beijing's imported water supply. *Water Int.* **41**, 251–270 (2016).

432 18. Hoekstra, A. Y. & Mekonnen, M. M. Imported water risk: the case of the UK. *Environ. Res.*
433 *Lett.* **11**, 055002 (2016).

434 19. Simpson, N. P. *et al.* A framework for complex climate change risk assessment. *One Earth*
435 **4**, 489–501 (2021).

436 20. Keys, P. W. *et al.* Anthropocene risk. *Nat. Sustain.* **2**, 667–673 (2019).

437 21. Chaves, L. S. M. *et al.* Global consumption and international trade in deforestation-
438 associated commodities could influence malaria risk. *Nat. Commun.* **11**, 1258 (2020).

439 22. Qin, Y. *et al.* Snowmelt risk telecouplings for irrigated agriculture. *Nat. Clim. Change* **12**,
440 1007–1015 (2022).

441 23. Gephart, J. A., Rovenskaya, E., Dieckmann, U., Pace, M. L. & Bränström, Å. Vulnerability
442 to shocks in the global seafood trade network. *Environ. Res. Lett.* **11**, 035008 (2016).

443 24. Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to
444 environmental shocks. *Nat. Food* **2**, 54–65 (2021).

445 25. Centeno, M. A., Nag, M., Patterson, T. S., Shaver, A. & Windawi, A. J. The Emergence of
446 Global Systemic Risk. *Annu. Rev. Sociol.* **41**, 65–85 (2015).

447 26. Helbing, D. Globally networked risks and how to respond. *Nature* **497**, 51–59 (2013).

448 27. Walker, B. *et al.* Response diversity as a sustainability strategy. *Nat. Sustain.* 1–9 (2023)
449 doi:10.1038/s41893-022-01048-7.

450 28. Ciullo, A., Strobl, E., Meiler, S., Martius, O. & Bresch, D. N. Increasing countries' financial
451 resilience through global catastrophe risk pooling. *Nat. Commun.* **14**, 922 (2023).

452 29. Cole, S., Giné, X. & Vickery, J. How Does Risk Management Influence Production
453 Decisions? Evidence from a Field Experiment. *Rev. Financ. Stud.* **30**, 1935–1970 (2017).

454 30. Butsic, V., Kelly, M. & Moritz, M. A. Land Use and Wildfire: A Review of Local Interactions
455 and Teleconnections. *Land* **4**, 140–156 (2015).

456 31. Muhammad, A. Source Diversification and Import Price Risk. *Am. J. Agric. Econ.* **94**, 801–
457 814 (2012).

458 32. Atreya, A., Ferreira, S. & Michel-Kerjan, E. What drives households to buy flood insurance?
459 New evidence from Georgia. *Ecol. Econ.* **117**, 153–161 (2015).

460 33. Rueda, X., Garrett, R. D. & Lambin, E. F. Corporate investments in supply chain
461 sustainability: Selecting instruments in the agri-food industry. *J. Clean. Prod.* **142**, 2480–
462 2492 (2017).

463 34. Handley, K. & Limão, N. Policy Uncertainty, Trade, and Welfare: Theory and Evidence for
464 China and the United States. *Am. Econ. Rev.* **107**, 2731–2783 (2017).

465 35. Headey, D. & Fan, S. Anatomy of a crisis: the causes and consequences of surging food
466 prices. *Agric. Econ.* **39**, 375–391 (2008).

467 36. Liberman, N. & Trope, Y. The Psychology of Transcending the Here and Now. *Science* **322**,
468 1201–1205 (2008).

469 37. Spence, A., Poortinga, W. & Pidgeon, N. The Psychological Distance of Climate Change.
470 *Risk Anal.* **32**, 957–972 (2012).

471 38. Akerlof, K., Maibach, E. W., Fitzgerald, D., Cedeno, A. Y. & Neuman, A. Do people
472 “personally experience” global warming, and if so how, and does it matter? *Glob. Environ.*
473 *Change* **23**, 81–91 (2013).

474 39. McDonald, R. I., Chai, H. Y. & Newell, B. R. Personal experience and the ‘psychological
475 distance’ of climate change: An integrative review. *J. Environ. Psychol.* **44**, 109–118 (2015).

476 40. Demski, C., Capstick, S., Pidgeon, N., Sposato, R. G. & Spence, A. Experience of extreme
477 weather affects climate change mitigation and adaptation responses. *Clim. Change* **140**,
478 149–164 (2017).

479 41. Earle, T. C. Trust in Risk Management: A Model-Based Review of Empirical Research. *Risk*
480 *Anal.* **30**, 541–574 (2010).

481 42. Siegrist, M. Trust and Risk Perception: A Critical Review of the Literature. *Risk Anal.* **41**,
482 480–490 (2021).

483 43. Boin, A., 't Hart, P., Stern, E. & Sundelius, B. *The Politics of Crisis Management: Public*
484 *Leadership under Pressure*. (Cambridge University Press, 2016).
485 doi:10.1017/9781316339756.

486 44. Fridman, A., Gershon, R. & Gneezy, A. COVID-19 and vaccine hesitancy: A longitudinal
487 study. *PLOS ONE* **16**, e0250123 (2021).

488 45. Sisco, M. R. *et al.* Examining evidence for the Finite Pool of Worry and Finite Pool of
489 Attention hypotheses. *Glob. Environ. Change* **78**, 102622 (2023).

490 46. Mrkva, K., Cole, J. C. & Van Boven, L. Attention increases environmental risk perception. *J.*
491 *Exp. Psychol. Gen.* **150**, 83–102 (2021).

492 47. Blaywais, R. & Rosenboim, M. The effect of cognitive load on economic decisions. *Manag.*
493 *Decis. Econ.* **40**, 993–999 (2019).

494 48. Hinson, J. M., Jameson, T. L. & Whitney, P. Impulsive decision making and working
495 memory. *J. Exp. Psychol. Learn. Mem. Cogn.* **29**, 298–306 (2003).

496 49. Enke, B. What You See Is All There Is*. *Q. J. Econ.* **135**, 1363–1398 (2020).

497 50. Carlson, A. K., Taylor, W. W., Liu, J. & Orlic, I. Peruvian anchoveta as a telecoupled
498 fisheries system. *Ecol. Soc.* **23**, (2018).

499 51. Jarrett, U., Mohaddes, K. & Mohtadi, H. Oil price volatility, financial institutions and
500 economic growth. *Energy Policy* **126**, 131–144 (2019).

501 52. Department of Banking and Finance, Rivers State University, Port Harcourt, Iwedi,
502 M., Igbanibo Dumini, S., & Department of Banking and Finance, Rivers State University,
503 Port Harcourt, Nigeria. Nigeria Economy and the Politics of Recession: A Critique. *J. Adv.*
504 *Econ. Finance* **2**, (2017).

505 53. Klein, C. T. F. & Helweg-Larsen, M. Perceived Control and the Optimistic Bias: A Meta-
506 Analytic Review. *Psychol. Health* **17**, 437–446 (2002).

507 54. Chuang, Y. & Schechter, L. Stability of experimental and survey measures of risk, time, and
508 social preferences: A review and some new results. *J. Dev. Econ.* **117**, 151–170 (2015).

509 55. Shum, M. & Xin, Y. Time-Varying Risk Aversion? Evidence from Near-Miss Accidents. *Rev.*
510 *Econ. Stat.* **104**, 1317–1328 (2022).

511 56. Coibion, O., Gorodnichenko, Y., Kumar, S. & Ryngaert, J. Do You Know that I Know that
512 You Know...? Higher-Order Beliefs in Survey Data*. *Q. J. Econ.* **136**, 1387–1446 (2021).

513 57. Dingel, J. I., Meng, K. C. & Hsiang, S. M. Spatial Correlation, Trade, and Inequality:
514 Evidence from the Global Climate. Working Paper at <https://doi.org/10.3386/w25447> (2019).

515 58. Blommestein, H. J. Difficulties in the Pricing of Risks in a Fast-Moving Financial Landscape
516 (A Methodological Perspective). *J. Financ. Transform.* **22**, 23–32 (2008).

517 59. Eckel, C. C. & Grossman, P. J. Chapter 113 Men, Women and Risk Aversion: Experimental
518 Evidence. in *Handbook of Experimental Economics Results* (eds. Plott, C. R. & Smith, V. L.)
519 vol. 1 1061–1073 (Elsevier, 2008).

520 60. Adegbite, O. O. & Machethe, C. L. Bridging the financial inclusion gender gap in smallholder
521 agriculture in Nigeria: An untapped potential for sustainable development. *World Dev.* **127**,
522 104755 (2020).

523 61. FAO. *The status of women in agrifood systems*. (FAO, 2023). doi:10.4060/cc5343en.

524 62. Pidgeon, N., Kasperson, R. E. & Slovic, P. *The Social Amplification of Risk*. (Cambridge
525 University Press, 2003).

526 63. Wolf, J., Adger, W. N., Lorenzoni, I., Abrahamson, V. & Raine, R. Social capital, individual
527 responses to heat waves and climate change adaptation: An empirical study of two UK
528 cities. *Glob. Environ. Change* **20**, 44–52 (2010).

529 64. Calvo, G. A. & Mendoza, E. G. Rational contagion and the globalization of securities
530 markets. *J. Int. Econ.* **51**, 79–113 (2000).

531 65. Lynham, J. Identifying Peer Effects Using Gold Rushers. *Land Econ.* **93**, 527–548 (2017).

532 66. Grimm, V. & Mengel, F. Experiments on Belief Formation in Networks. *J. Eur. Econ. Assoc.*
533 **18**, 49–82 (2020).

534 67. Vitale, C. Understanding the shift toward a risk-based approach in flood risk management, a
535 comparative case study of three Italian rivers. *Environ. Sci. Policy* **146**, 13–23 (2023).

536 68. Huang, L. *et al.* Effect of the Fukushima nuclear accident on the risk perception of residents
537 near a nuclear power plant in China. *Proc. Natl. Acad. Sci.* **110**, 19742–19747 (2013).

538 69. Comola, M. & Prina, S. Treatment Effect Accounting for Network Changes. *Rev. Econ. Stat.*
539 **103**, 597–604 (2021).

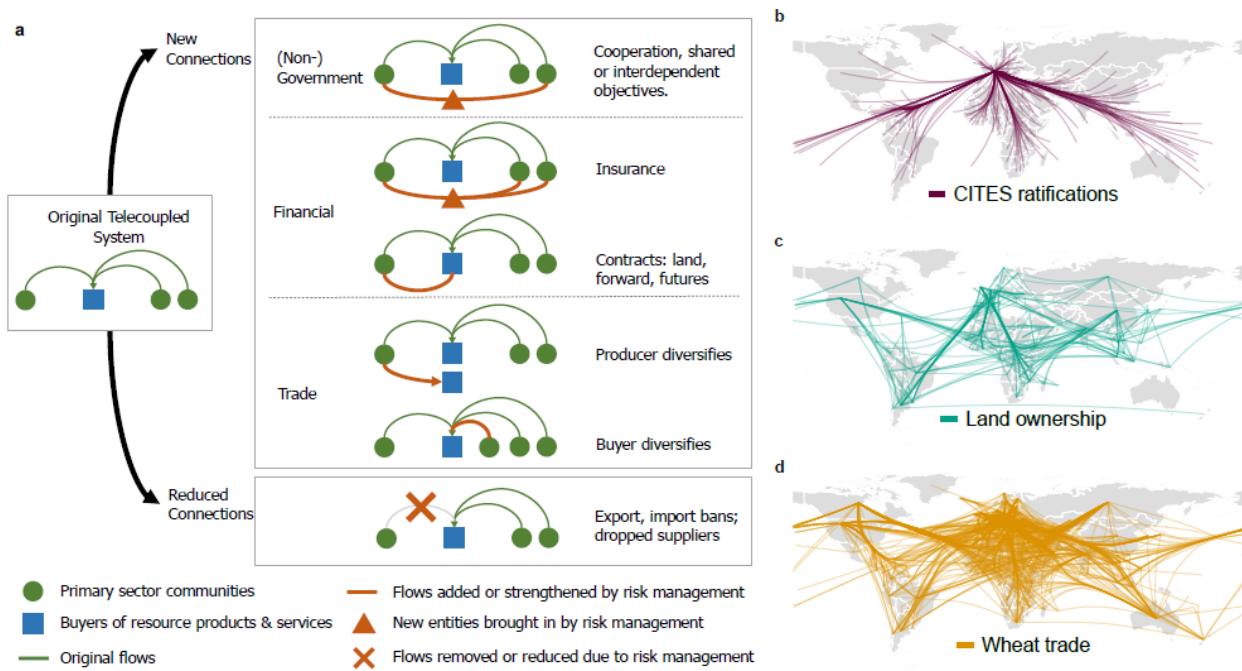
540 70. Allen, T. & Atkin, D. Volatility and the Gains From Trade. *Econometrica* **90**, 2053–2092
541 (2022).

542 71. Lamperti, F., Dosi, G., Napoletano, M., Roventini, A. & Sazio, A. Faraway, So Close:
543 Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment
544 Model. *Ecol. Econ.* **150**, 315–339 (2018).

545 72. Dou, Y. *et al.* Land-Use Changes in Distant Places: Implementation of a Telecoupled Agent-
546 Based Model. *J. Artif. Soc. Soc. Simul.* **23**, 11 (2020).

547 73. O'Sullivan, D. *et al.* Strategic directions for agent-based modeling: avoiding the YAAWN
548 syndrome. *J. Land Use Sci.* **11**, 177–187 (2016).

549 74. Schaffer-Smith, D. *et al.* Network analysis as a tool for quantifying the dynamics of
550 metacoupled systems: an example using global soybean trade. *Ecol. Soc.* **23**, (2018).


551 75. Carlson, A. K., Young, T., Centeno, M. A., Levin, S. A. & Rubenstein, D. I. Boat to bowl:
552 resilience through network rewiring of a community-supported fishery amid the COVID-19
553 pandemic. *Environ. Res. Lett.* **16**, 034054 (2021).

554 76. Lucas, R. E. Econometric policy evaluation: A critique. *Carnegie-Rochester Conf. Ser.*
555 *Public Policy* **1**, 19–46 (1976).

556 77. Beckage, B., Moore, F. C. & Lacasse, K. Incorporating human behaviour into Earth system
557 modelling. *Nat. Hum. Behav.* **6**, 1493–1502 (2022).

558

559 **Figures**

560

561 **Fig. 1 | Risk governance can modify connectivity in telecoupled systems.** a. Telecoupled systems link
 562 primary sector communities (green) and purchasers of resource-derived goods or services (blue), with
 563 complex risks arising from interconnected socio-environmental systems. Attempts to govern any one of
 564 those risks may include adding new links with other entities or locations (“New connections”) or
 565 weakening or breaking links with distant systems (“Reduced connections”), possibly bringing in new
 566 institutions (orange triangles, e.g., insurers or international governance bodies) to help govern risk. These
 567 changes may alter the functioning of the telecoupled system overall, including changing the risks faced by
 568 other system participants across the globe. Examples of each type of increased connectivity are shown
 569 after modification by risk-related behavior in panels b-d: (b) Government or non-governmental
 570 organization: links from parties to the Convention on International Trade in Endangered Species to the
 571 Convention’s depository in Switzerland (cites.org); (c) Financial: foreign land ownership contracts
 572 (landmatrix.org); (d) Trade: wheat export flows in 2021 (UN comtrade).

573

Telecoupled system features	Challenges for risk perception
1. Distant connections 	Information, language barriers, no direct experience
2. Number & variety of risks 	Attention, fatigue
3. Complexity 	Propagation, transformation, interdependency, systemic risk

581
582
583
584
585
586
587

Fig. 3 | Challenges for risk perception in telecoupled systems. Communities (circles) are linked (lines) to others in several distinct ways (layers) in a simple hypothetical telecoupled system. The connectivity in telecoupled systems, together with the risk governance efforts of the various communities embedded in them, poses unique challenges for risk perception. Specifically, perceiving risks is made more difficult by the distance, number and types, and complexity of connections.